Lesson 2
 Algebraic Equations and Functions

2A

- Algebraic Equations
- First Order Equations
- Second Order Equations

Algebraic Equation

Q. The weight of a box containing 8 apples is 1500 g .

The weight of the box is 300 g . Assuming every apple has the same weight. What is the weight of one apple ?
A. Let the weight of one apple be x. Then we have $8 x+300=1500$. Therefore $x=150 \mathrm{~g}$.

First order equation

Equation

Statement of equality between two expressions consisting of varia and/or numbers is called an equation.

$$
f(x)=g(x)
$$

Algebraic Equation (Polynomial Equation)

$$
a_{0} x^{n}+a_{1} x^{n-1}+a_{n-2} x^{2}+\cdots+a_{n-1} x+a_{n}=0
$$

Linear Equation

$$
\begin{aligned}
& a x+b=0 \quad(a \neq 0) \\
& \quad \therefore a x=-b \quad \therefore x=-\frac{b}{a} \quad: \text { the root of this equation. }
\end{aligned}
$$

Simultaneous Linear Equations

Simultaneous equations are a set of equations containing multiple variables.
Example 1. Solve the following equations $\left.\begin{array}{c}2 x+y=8 \\ x+y=6\end{array}\right\}$
Ans.
[Substitution method] From the second eq. $y=-x+6$ Substituting this to the first eq.

$$
2 x+(-x+6)=8 \quad \therefore x=2
$$

[Elimination method] Subtracting the second eq. from the first eq. $x=2$ Substituting this to the first eq. $\quad 4+y=8 \quad \therefore y=4$

Quadratic Equation (Second Order Polynomial Equation)

Quadratic Equation

$$
a x^{2}+b x+c=0 \quad(a \neq 0)
$$

(1) Solve by factoring

If we can factor it in the following form $a(x-p)(x-q)=0$, the roots are $x=p, \quad x=q$.

Example 2. Solve the following equations
(1) $x^{2}+8 x+12=0$
(2) $6 x^{2}-x-15=0$
(1) $\quad(x+2)(x+6)=0 \quad \therefore x+2=0 \quad$ or $\quad x+6=0$

Therefore, $x=-2$ or $x=-6$
The roots are $\quad x=-2,-6$
(2) $(2 x+3)(3 x-5)=0$
$\therefore 2 x+3=0$
$3 x-5=0$
$\therefore x=-\frac{3}{2}$
$x=\frac{5}{3}$
The roots are $\quad x=-\frac{3}{2}, x=\frac{5}{3}$

Quadratic Formula

(2) Solve by the Quadratic Formula

We cannot factor the following equation by observation.

$$
\text { Ex. } \quad x^{2}+5 x+3=0
$$

Quadratic formula

$$
a x^{2}+b x+c=0 \quad(a \neq 0)
$$

If $b^{2}-4 a c>0$, there exist two distinct roots $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
If $b^{2}-4 a c=0$, there exists one root (double root)

$$
x=-\frac{b}{2 a}
$$

If $b^{2}-4 a c<0$, there is no real root.
(Refer to the next slide about the proof.)

Derivation of the Quadratic Formula

The quadratic formula is derived as follows.

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& \therefore x^{2}+\frac{b}{a} x=-\frac{c}{a}
\end{aligned}
$$

By completing the square, we have

That was too easy!

$$
\begin{aligned}
& \left(x+\frac{b}{2 a}\right)^{2}=-\frac{c}{a}+\frac{b^{2}}{4 a^{2}}=\frac{b^{2}-4 a c}{4 a^{2}} \\
& \therefore x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \\
& \therefore x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \text { : Quadratic formula }
\end{aligned}
$$

Exercise

Exercise 1. There is a string of length 100 cm . We want to make a rectangle with area $400 \mathrm{~cm}^{2}$ by this string. What are the lengths of the sides of this rectangle?

Pause the video and solve the problem.

Answer to the Exercise

Exercise 1. There is a string of length 100 cm . We want to make a rectangle with area $400 \mathrm{~cm}^{2}$ by this strong. What are the lengths of two sides of this rectangle ?

$400 \mathrm{~cm}^{2}$

Let the length of one side be x

Then, we have $\quad x(50-x)=400$

$$
\begin{aligned}
& \therefore \quad x^{2}-50 x+400=0 \\
& \therefore \quad x=\frac{50 \pm \sqrt{50^{2}-4 \times 1 \times 400}}{2 \times 1}=40,10
\end{aligned}
$$

The side lengths are 40 cm and 10 cm
[Note] When your got the answer, confirm that the solutions satisfy the physical meanings. In this problem, \boldsymbol{X} must be between 0 cm and 50 cm .

Lesson 2
 Algebraic Equation and Functions

2B

－What is a Function？
－Linear Functions．
－Quadratic Functions．

What is a Function?

Function

-When a quantity y depends on or is determined by another quantity x or quantities $x_{1}, x_{2}, \cdots, x_{n}$, we say that y is a function of x or $x_{1}, x_{2}, \cdots, x_{n}$.

- This relationship is expressed by

$$
y=f(x) \text { or } y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

- Here, y is called the dependent variable and x is the independent variable.

$y=x^{3}-3 x^{2}+2 x+1$

Example

Example 3. Suppose that a rectangle is made by a string with length 100 cm . Represent the area y by the length x of one side.

Ans.

$$
y=(50-x) x=-x^{2}+50 x \quad(50>x>0)
$$

Linear Function (First-Degree Polynomial Function of One Variable)

1. Slope-intercept form

$$
\frac{y=m x+b \quad(m \neq 0)}{m: \text { slope }}
$$

2. Point-slope form

$$
y-b=m(x-a) \quad(m \neq 0)
$$

The line passes the point (a, b)
3. General form

$$
a x+b y+c=0
$$

Note

Strictly speaking

The third form $a x+b y+c=0$ is a linear equation but not a linear fucntion.

Definition of a function:

- Function defined by $y=f(x)$ has a meaning of projection (mapping) from x to y.

- Functions are mathematical ideas that take one or more variables and produce a variable.

Quadratic Function

Quadratic Function (Second-Degree Polynomial Function)

1. General form

$$
y=a x^{2}+b x+c \quad(a \neq 0)
$$

2. Standard Form

$$
y=a(x-p)^{2}+q \quad(a \neq 0)
$$

-p $=$ horizontal shift

$\bullet q=$ vertical shift

Trajectory of a thrown ball is a parabola represented by a quadratic function

Derivation of the Standard Form

Example 4. Derive the standard form of a quadratic equation from its general form.

Ans.

$$
\begin{aligned}
& a x^{2}+b x+c=a\left(x^{2}+\frac{b}{a} x\right)+c \\
& =a\left\{x^{2}+2 \frac{b}{2 a} x+\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right\}+c \\
& =a\left\{\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right\}+c \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a^{2}} \\
& \therefore \quad p=-\frac{b}{2 a}, \quad q=-\frac{b^{2}-4 a c}{4 a^{2}}
\end{aligned}
$$

Equations and Graphs of Functions

Linear Equation and Linear Function

Quadratic Equation and Quadratic Function

$$
\text { Case of } a>0 \quad D=b^{2}-4 a c>0 \quad D=b^{2}-4 a c=0 \quad D=b^{2}-4 a c<0
$$

Shifting of a Graph

Parallel shift (upward)

Symmetrical shift with respect to the x-axis

Parallel shift (rightward)

Symmetrical shift with respect to the y-axis

Symmetrical shift with respect to the origin

Maximum and Minimum Values of a Function

Example 5. Find the maximum and minimum values of the following function.

$$
y=x^{2}-4 x+9 \quad(0 \leq x \leq 3)
$$

Ans.
$y=x^{2}-4 x+9=\left(x^{2}-4 x+4\right)+5=(x-2)^{2}+5$
We can illustrate the graph of this function as shown in the right side Considering the domain, we have the coordinates of the following three points.

The left boundary : $(0,9)$
The vertex: $\quad(2,5)$

The right boundary: $(3,6)$
Therefore, the maximum value is 9 and the minimum value is 5 .

Exercise

Exercise 2. (1) Find the coordinates of the vertex of

$$
y=2 x^{2}-4 x+5
$$

(2) Find the coefficients of the quadratic function

$$
y=a x^{2}+b x+c
$$

which represents the graph in the right side.

Pause the video and solve the problem.

Exercise

Exercise 2. (1) Find the coordinates of the vertex of the function $y=2 x^{2}-12 x+17$
(2) Find the coefficients of the function

$$
y=a x^{2}+b x+c
$$

which represents the graph.

(1) $2 x^{2}-12 x+17=2\left(x^{2}-6 x\right)+17=2\left\{(x-3)^{2}-3^{2}\right\}+17=2(x-3)^{2}-1$

Therefore, the coordinate of the vertex is $(3,-1)$
(2) From the coordinate of the vertex, the function is represented by

$$
y=a(x+2)^{2}+5
$$

Substituting the coordinate of the y-intercept $(0,-3)$ into this function, we have

$$
-3=a(0+2)^{2}+5 \quad \therefore a=-2
$$

Therefore,

$$
y=-2(x+2)^{2}+5 \quad \therefore y=-2 x^{2}-8 x-3
$$

