Course I

1

Lesson 3 Linear and Quadratic Inequalities

3A

Inequalities of numbers

Linear inequalities

Intervals and Their Graphs

Inequality signs

a < b	means	a	is less than b
$a \leq b$		a	is less than or equal to b
a > b		a	is greater than b
$a \ge b$		a	is greater than or equal to b

Intervals

A (real) interval is a set of real number that lies between two numbers .

Closed interval	[a, b]	$\{x \in R : a \le x \le b\}$	<u>a</u> b
Open interval	(a,b)	$\{x \in R : a < x < b\}$	a b
Half-open interval	[a,b)	$\{x \in R : a \le x < b\}$	
Half-open interval	(a, b]	$\{x \in R : a < x \le b\}$	
	· –		number line

Some Properties of Inequalities

- **1. Transitivity** If a > b and b > c, then a > c.
- **2. Addition** If a > b, then a + c > b + c.
- **3. Subtraction** If a > b, then a c > b c.
- 4. Multiplication and Division

If
$$a > b$$
 and $c > 0$, then $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$
If $a > b$ and $c < 0$, then $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$

From the third property, we can derive the following by putting b = c.

If
$$a > c$$
, then $a - c > 0$.

.

Arithmetic Mean and Geometric Mean

Linear Inequality

One balance weight has 100g. Let the weight of the apple be \mathcal{X} . Then we have

 $x + 100 > 3 \times 100$ $\therefore x > 200$

Linear inequality

$$ax + b > cx + d$$

$$\rightarrow ax - cx > d - b$$

 \rightarrow Divide by (a - c) but be careful of its sign.

Example 1. Solve the following inequality 4x - 2 > 10

Ans. 4x - 2 > 10 $\therefore 4x > 12 \qquad \leftarrow \text{ add } 2 \text{ to both sides}$ $\therefore x > 3 \qquad \leftarrow \text{ divide by } 4$

Graph and Linear Inequality

The inequality in Example 1

4x - 12 > 0

Corresponding to this, we consider

$$y = 4x - 12$$

and illustrate this in the x - y plane.

The *x*-intercept is x = 3.

The domain corresponding to y > 0 is x > 3Therefore,

the solution. x > 3

Exercise

Exercise 1	Solve the following double inequality	$\int 7x - 1 \ge 4x - 7$	
		$\int x + 5 > 3(1+x)$, , , , , ,

Ans.

Pause the video and solve the problem.

Answer to the Exercise

Exercise 1 Solve the following double inequality $7x-1 \ge 4x-7$ x+5 > 3(1+x)

Ans. The first inequality

 $7x - 1 \ge 4x - 7$ $\therefore 3x \ge -6$ $\therefore x \ge -2$ $\cdots (1)$

The second equation

x + 5 > 3(1 + x) $\therefore -2x > -2$ $\therefore x < 1$ (2)

The intersection of the two solutions

$$-2 \le x < 1$$

Course I

Lesson 3 Linear and Quadratic Inequalities

3B • Quadratic Functions and Roots • Quadratic Inequalities

Equations and Graphs of Functions

Quadratic Inequality

After rearrangement, quadratic inequality has the following standard form

$$ax^2 + bx + c > 0$$

$$\geq, <, \leq$$

[Review] Quadratic Functions and Roots

Steps to Solve Quadratic Inequalities

Step 1. Rearrange the inequality to the standard form

$$ax^2 + bx + c > 0$$

Step 2. Illustrate the corresponding quadratic function

$$y = ax^{2} + bx + c = a(x - p)^{2} + q$$

Step 3. Solve the quadratic equation $ax^2 + bx + c = 0$ and find its roots α and β .

Step 4. Find the sign of \mathcal{Y} in each interval divided by α and β , and select the intervals which satisfy the inequality $ax^2 + bx + c > 0$.

11

Case of a > 0 and $D = b^2 - 4ac > 0$

Example 2 Solve the inequality
$$x^2 - 4x + 3 > 0$$

Ans.

The standard form
$$y = (x-2)^2 - 1$$

By factoring, we have y = (x-1)(x-3)therefore, the roots are x = 1, x = 3

The inequality is satisfied in the shaded domain.

The solution is x < 1, x > 3

Case of a > 0 and $D = b^2 - 4ac = 0$

Example 3 Solve the inequality $x^2 - 4x + 4 > 0$

Ans.

The standard form

$$y = (x-2)^2$$

The graph has one contact point at x = 2.

Therefore, the answer is all real number except x = 2

Case of a > 0 and $D = b^2 - 4ac < 0$

Example 4 Solve the inequality

 $x^2 - 4x + 5 > 0$

Ans.

The standard form $y = (x-2)^2 + 1$ The graph has no contact point

The solution of this inequality is all real numbers.

Exercise

Exercise 2. Solve the following inequalities. (1) $-x^2 - 2x + 2 < 0$ (2) $x^2 + x + 2 < 0$

Pause the video and solve the problem.

Answer to the Exercise

Exercise 2. Solve the following inequalities. (1) $-x^2 - 2x + 2 < 0$ (2) $x^2 + x + 2 < 0$

Ans. (1) The corresponding quadratic equation :

$$-x^2 - 2x + 2 = 0$$

The roots :

$$x = \frac{2 \pm \sqrt{(-2)^2 - 4(-1)(2)}}{2(-1)} = -1 \pm \sqrt{3} \qquad \frac{-1 - \sqrt{3}}{x}$$

From the figure

$$x < -1 - \sqrt{3}, \quad x > -1 + \sqrt{3}$$

(2) $D = 1^2 - 4 \times 1 \times 2 = -7 < 0$

The graph $y = x^2 + x + 2$ does not cross with the *x*-axis.

A parabola opening upward.

Therefore, there is no solution.

Exercise

Pause the video and solve the problem.

Answer to the Exercise

Ans. The first equation is

$$x^{2} + 4x + 3 = (x+3)(x+1) > 0$$

The solutions are x < -3, x > -1

The second equation is

$$(2x^{2} + x - 6) - (x^{2} + 2x) = x^{2} - x - 6 = (x + 2)(x - 3) \le 0$$

Whose solution lies in the interval From the figure, we have _____

$$-1 < x \leq 3$$

 $-2 \leq x \leq 3$