Lesson 3 Linear and Quadratic Inequalities

3A

- Inequalities of numbers
- Linear inequalities

Intervals and Their Graphs

Inequality signs

$$
\begin{array}{ll}
a<b & \\
a \leq b \\
a>b & \text { means } \\
a \geq b & a \text { is less than } b \\
a & a \text { is greater than } b \\
a & \text { is greater than or equal to } b
\end{array}
$$

Intervals

A (real) interval is a set of real number that lies between two numbers .
Closed interval

$$
\begin{array}{ll}
{[a, b]} & \{x \in R: a \leq x \leq b\} \\
(a, b) & \{x \in R: a<x<b\} \\
{[a, b)} & \{x \in R: a \leq x<b\} \\
(a, b] & \{x \in R: a<x \leq b\}
\end{array}
$$

Open interval
Half-open interval

number line

Some Properties of Inequalities

1. Transitivity
2. Addition

If $a>b$, then $a+c>b+c$.
3. Subtraction
4. Multiplication and Division

$$
\begin{aligned}
& \text { If } a>b \text { and } c>0 \text {, then } a c>b c \text { and } \frac{a}{c}>\frac{b}{c} \text {. } \\
& \text { If } a>b \text { and } c<0 \text {, then } a c<b c \text { and } \frac{a}{c}<\frac{b}{c} .
\end{aligned}
$$

From the third property, we can derive the following by putting $b=c$.

$$
\text { If } a>c \text {, then } a-c>0 \text {. }
$$

Arithmetic Mean and Geometric Mean

Example 1. Prove the following inequality $\quad \frac{a+b}{2} \geq \sqrt{a b} \quad(a \geq 0, b \geq 0)$
Ans.

$$
\begin{aligned}
\frac{a+b}{2}-\sqrt{a b} & =\frac{a+b-2 \sqrt{a b}}{2}=\frac{\sqrt{a}^{2}+\sqrt{b}^{2}-2 \sqrt{a b}}{2} \\
& =\frac{(\sqrt{a}-\sqrt{b})^{2}}{2} \geq 0
\end{aligned}
$$

Therefore

$$
\frac{a+b}{2} \geq \sqrt{a b}
$$

Equality holds when $\quad a=b$.
[Note]

$$
\frac{a+b}{2}: \text { Arithmetic mean }
$$

$\sqrt{a b}:$ Geometric mean

Example

$$
\begin{array}{ll}
\frac{12+3}{2}=7.5 & \sqrt{12 \times 3}=6 \\
\frac{8+7}{2}=7.5 & \sqrt{8 \times 7}=7.48 \\
\frac{7.5+7.5}{2}=7.5 & \sqrt{7.5 \times 7.5}=7.5
\end{array}
$$

Linear Inequality

Linear Inequality

One balance weight has 100 g . Let the weight of the apple be x. Then we have

$$
x+100>3 \times 100 \quad \therefore x>200
$$

Linear inequality

$$
\begin{aligned}
& a x+b>c x+d \\
& \rightarrow a x-c x>d-b
\end{aligned}
$$

\rightarrow Divide by $(a-c) \quad$ but be careful of its sign.

Example 1. Solve the following inequality $4 x-2>10$
Ans. $\quad 4 x-2>10$

$$
\begin{aligned}
& \therefore 4 x>12 \quad \leftarrow \text { add } 2 \text { to both sides } \\
& \therefore x>3 \\
& \therefore \text { divide by } 4
\end{aligned}
$$

Graph and Linear Inequality

The inequality in Example 1

$$
4 x-12>0
$$

Corresponding to this, we consider

$$
y=4 x-12
$$

and illustrate this in the $x-y$ plane.
The x-intercept is $x=3$.
The domain corresponding to $y>0$ is $x>3$

Therefore,
the solution. $x>3$

Exercise

Exercise 1 Solve the following double inequality
 $$
\left\{\begin{array}{l} 7 x-1 \geq 4 x-7 \\ x+5>3(1+x) \end{array}\right.
$$

Ans.

Pause the video and solve the problem.

Answer to the Exercise

Exercise 1 Solve the following double inequality $7 x-1 \geq 4 x-7$

$$
x+5>3(1+x)
$$

Ans. The first inequality

$$
\begin{equation*}
7 x-1 \geq 4 x-7 \quad \therefore 3 x \geq-6 \quad \therefore x \geq-2 \tag{1}
\end{equation*}
$$

The second equation

$$
\begin{equation*}
x+5>3(1+x) \quad \therefore-2 x>-2 \quad \therefore x<1 \tag{2}
\end{equation*}
$$

The intersection of the two solutions

$$
-2 \leq x<1
$$

Lesson 3

Linear and Quadratic Inequalities

3B

- Quadratic Functions and Roots
- Quadratic Inequalities

Equations and Graphs of Functions

Quadratic Inequality

After rearrangement, quadratic inequality has the following standard form

$$
a x^{2}+b x+c>0 \quad<,<
$$

[Review] Quadratic Functions and Roots

| $D=b^{2}-4 a c>0$ | $D=b^{2}-4 a c=0$ | $D=b^{2}-4 a c<0$ |
| :---: | :---: | :---: | :---: | :---: |
| Two real roots | | |
| Case of $a>0$ | | |

Step 1. Rearrange the inequality to the standard form

$$
a x^{2}+b x+c>0
$$

Step 2. Illustrate the corresponding quadratic function

$$
y=a x^{2}+b x+c=a(x-p)^{2}+q
$$

Step 3. Solve the quadratic equation $a x^{2}+b x+c=0$ and find its roots α and β.

Step 4. Find the sign of y in each interval divided by α and β, and select the intervals which satisfy the inequality $a x^{2}+b x+c>0$.

Case of $a>0$ and $D=b^{2}-4 a c>0$

Example 2 Solve the inequality $x^{2}-4 x+3>0$

Ans.

The standard form $\quad y=(x-2)^{2}-1$

By factoring, we have $y=(x-1)(x-3)$
therefore, the roots are $x=1, x=3$
The inequality is satisfied in the shaded domain.

The solution is

$$
x<1, \quad x>3
$$

Case of $a>0$ and $D=b^{2}-4 a c=0$

Example 3 Solve the inequality $x^{2}-4 x+4>0$

Ans.

The standard form

$$
y=(x-2)^{2}
$$

The graph has one contact point at $x=2$.

Therefore, the answer is all real number except $x=2$

Case of $a>0$ and $D=b^{2}-4 a c<0$

Example 4 Solve the inequality $\quad x^{2}-4 x+5>0$

Ans.

The standard form $\quad y=(x-2)^{2}+1$
The graph has no contact point

The solution of this inequality is all real numbers.

Exercise

Exercise 2. Solve the following inequalities.
$\begin{array}{ll}\text { (1) }-x^{2}-2 x+2<0 & \text { (2) } x^{2}+x+2<0\end{array}$

Pause the video and solve the problem.

Answer to the Exercise

Exercise 2. Solve the following inequalities.
(1) $-x^{2}-2 x+2<0$
(2) $x^{2}+x+2<0$

Ans. (1) The corresponding quadratic equation :

$$
-x^{2}-2 x+2=0
$$

The roots :

$$
x=\frac{2 \pm \sqrt{(-2)^{2}-4(-1)(2)}}{2(-1)}=-1 \pm \sqrt{3}
$$

From the figure

$$
x<-1-\sqrt{3}, \quad x>-1+\sqrt{3}
$$

(2) $D=1^{2}-4 \times 1 \times 2=-7<0$

The graph $y=x^{2}+x+2$ does not cross with the x-axis.
A parabola opening upward.
Therefore, there is no solution.

Exercise

Exercise 3. Solve the following simultaneous inequalities.

$$
\begin{aligned}
& x^{2}+4 x+3>0 \\
& 2 x^{2}+x-6 \leq x^{2}+2 x
\end{aligned}
$$

Pause the video and solve the problem.

Answer to the Exercise

Exercise 3. Solve the following simultaneous inequalities.

$$
\begin{aligned}
& x^{2}+4 x+3>0 \\
& 2 x^{2}+x-6 \leq x^{2}+2 x
\end{aligned}
$$

Ans. The first equation is

$$
x^{2}+4 x+3=(x+3)(x+1)>0
$$

The solutions are $\quad x<-3, \quad x>-1$
The second equation is

$$
\left(2 x^{2}+x-6\right)-\left(x^{2}+2 x\right)=x^{2}-x-6=(x+2)(x-3) \leq 0
$$

Whose solution lies in the interval $\quad-2 \leq x \leq 3$
From the figure, we have

$$
-1<x \leq 3
$$

