Lesson 5
 Trigonometric Functions (II)

5A

- Radian - Another Unit of Angle
- Graphs of Trigonometric Functions

Degree (${ }^{\circ}$)

-Angle of $1 / 360$ of one circle
$\cdot 360$ is a familiar number in astronomy. (One year $=365$ day ≈ 360)

Radian (non-dimention)
\bullet Angle is described by the ratio of the arc to the radius.

$$
360^{\circ} \Leftrightarrow \quad 2 \pi=\frac{2 \pi r}{r \leftarrow \text { Arc }}
$$

-A pure number (no unit) but symbol "rad" is used.

- 1 rad=57.29… (Memorize $360^{\circ}=2 \pi \mathrm{rad}$.)

Merits of Radian

Example 1: Expression becomes simple.

Area of a sector with angle θ and radius r

$$
\begin{aligned}
& \theta[\text { degree }]: \pi r^{2} \frac{\theta}{360} \\
& \theta[\mathrm{rad}]: \\
& r^{2} \frac{\theta}{2} \quad\left(=\pi r^{2} \frac{\theta}{2 \pi}\right)
\end{aligned}
$$

Example 2: Values of trigonometric functions of a small angle can be obtained approximately.

When angle θ is small

$$
\sin \theta=\frac{\mathrm{BH}}{\mathrm{OB}} \approx \frac{\operatorname{arcAB}}{\mathrm{OB}}=\theta
$$

EX.

$$
\sin \frac{\pi}{180} \approx \frac{\pi}{180} \approx \frac{3.1416}{180}=0.01745
$$

(From Table, $1 \mathrm{deg} \approx 0.0175$)

Graphs of the Sine/Cosine Functions

Graph of the Tangent Function

$\xrightarrow\left[(x \longrightarrow 1]{r / y} \tan \theta=\frac{y}{x} \xrightarrow{\substack{x=1} y=\tan \theta}\right.$

Periodic Function

Periodic function

A function $f(x)$ is said to be periodic with period p if we have

$$
f(x+p)=f(x)
$$

Namely, the values of a function repeat themselves regularly.

Examples 1 Find the period of the sine functions $y=\sin x$

$$
\sin (x+2 \pi)=\sin x \quad \text { Period }=2 \pi
$$

Example

Example 2. Illustrate the following functions and show their periods
(1) $y=2 \sin x$
(2) $y=\sin 2 x$
(3) $y=\sin \left(x-\frac{\pi}{3}\right)$

Ans. (1) Expansion in the y-direction (period $=2 \pi$)

(2) Expansion in the x-direction

(3) Shift in the x-direction (period $=2 \pi$)

Exercise

Exercise 1. Answer about the following function

$$
y=2 \sin \left(2 x-\frac{\pi}{3}\right) \quad(0 \leq x \leq 2 \pi)
$$

(1) When dos this function becomes zero? (2) What are the values of this function at $x=0,2 \pi \quad$ (3) Illustrate this function.

Ans.

Pause the video and solve the problem.

Exercise

Exercise 1. Answer about the following function

$$
y=2 \sin \left(2 x-\frac{\pi}{3}\right) \quad(0 \leq x \leq 2 \pi)
$$

(1) When does this function become zero? (2) What are the values of this function at $x=0,2 \pi \quad$ (3) Illustrate this function.
Ans.
(1) $0 \leq x \leq 2 \pi, \therefore 0 \leq 2 x \leq 4 \pi$,
$\therefore-\frac{\pi}{3} \leq 2 x-\frac{\pi}{3} \leq 4 \pi-\frac{\pi}{3}$

Therefore y becomes zero at $\quad 2 x-\frac{\pi}{3}=0, \pi, 2 \pi, 3 \pi \quad \therefore x=\frac{\pi}{6}, \frac{2 \pi}{3}, \frac{7 \pi}{6}, \frac{5 \pi}{3}$
(2) At $x=0: \quad y=2 \sin \left(-\frac{\pi}{3}\right)=-\sqrt{3}$

At $x=2 \pi: \quad y=2 \sin \left(4 \pi-\frac{\pi}{3}\right)=2 \sin \left(-\frac{\pi}{3}\right)=-\sqrt{3}$
(3)

Ahh! That's so easy!

Lesson 5
 Trigonometric Functions (II)

5B

- Trigonometric Equation - Trigonometric Inequality

Trigonometric Equation

A trigonometric equation is any equation that contains unknown trigonometric function.

$$
\text { Ex. } \quad 2 \sin ^{2} x+3 \cos x-3=0
$$

- This kind of equation is true for certain angles.
[Note] A trigonometric equation that holds true for any angl is called a trigonometric identity, which we will study next lesson.
- Some trigonometric equation can be solved easily by using algebra ideas, while others may not be solved exactly but approximately.

Example $1 \quad 2 \sin x-1=0$
This can be easily solved.
See next slide.
Example $2 \quad 2 \sin x-x=0$ Roots x_{1} and x_{2} can be found numerically (See the figure).

11

Example

Example 1. Solve the following trigonometric equation. $2 \sin x-1=0$
Ans. Step 1 We first look atsin x as being the variable of the equation a solve as we did before. $\quad \therefore \sin x=\frac{1}{2}$
Step 2 Recall the graph ofy $=\sin x \quad$ from 0 to 2π or a unit circle, and ob

Step 3 Considering the periodicity, add π

$$
\therefore \quad x=\frac{\pi}{6}+2 n \pi, \frac{5 \pi}{6}+2 n \pi
$$

Trigonometric Inequality

A trigonometric inequality is any inequality that contains unknown trigonometric function. It can be solved based on a trigonometric

Example 2. Solve the following trigonometric equation. $2 \sin x-1>0$
Ans. Step 1 Convert the given inequality to a trigonometric equation by replacin sign to equality sign. $2 \sin x-1=0$
Step 2 Solve the resulting equation in the interval $[0,2 \pi \exists \pi \neq \varnothing, 5 \pi / 6$
-27-3

Step 3 Among intervals divided by the obtained satisfy the trigonometric inequality $\leq \frac{5 \pi}{6}$

Step 4 Extend ϕ_{3} the soltion to the whole domain $\frac{\pi}{6}+2 n \pi<x<\frac{5 \pi}{6}+2 n \pi$

Exercise

Exercise 1. Solve the following trigonometric equation.

$$
2 \sin ^{2} x+3 \cos x-3=0
$$

Ans.

Pause the video and solve the problem.

Exercise

Exercise 1. Solve the following trigonometric equation.

$$
2 \sin ^{2} x+3 \cos x-3=0 \quad 0 \leq x \leq 2 \pi
$$

Ans.

$$
\begin{array}{ll}
2 \sin ^{2} x+3 \cos x-3=0 & \sin ^{2} x+\cos ^{2} x=1 \\
\text { Put } \quad X=\cos x &
\end{array}
$$

$$
\therefore 2\left(1-X^{2}\right)+3 X-3=0 \quad \therefore 2 X^{2}-3 X+1=0 \quad \therefore(X-1)(2 X-1)=0
$$

$$
\therefore \quad X=1, \quad X=\frac{1}{2}
$$

From $\cos x=1$

$$
\therefore \quad x=0,2 \pi
$$

From $\quad \cos x=\frac{1}{2}$

$$
\therefore x=\frac{\pi}{3}, \quad \frac{5 \pi}{3}
$$

Exercise

Exercise 2. Solve the following trigonometric inequality $\tan x \geq-\sqrt{3}$
Ans.

Pause the video and solve the problem.

Answer to the Exercise

Exercise 2. Solve the following trigonometric inequality $\tan x \geq-\cdots \cdot-\cdots$
Ans.
The corresponding trigonometric equation is

$$
\tan x=-\sqrt{3}
$$

Tangent has the period π as shown in the figure. In the interval $[-\pi / 2$, $\pi / 2]$, the root is

$$
\begin{aligned}
& \text { oot is } \frac{\pi}{x}=-\frac{\pi}{3}
\end{aligned}
$$

From the graph and considering the periodicity, the e_{π} solution is $-\frac{\pi}{3}+n \pi \leq x<\frac{\pi}{2}+n \pi$

