Course I

Lesson 5 Trigonometric Functions (II)

5A

- Radian Another Unit of Angle
- Graphs of Trigonometric Functions

Radian

Degree (°)

•Angle of 1/360 of one circle

•360 is a familiar number in astronomy. (One year = 365day \approx 360)

Radian (non-dimention)

•Angle is described by the ratio of the arc to the radius.

$$360^{\circ} \Leftrightarrow 2\pi = \frac{2\pi r}{r} \leftarrow \operatorname{Arc}_{\operatorname{Radius}}$$

•A pure number (no unit) but symbol "rad" is used.

• 1rad=57.29••• (Memorize 360°=2π rad.)

Merits of Radian

Example 1: Expression becomes simple.

Area of a sector with angle θ and radius *r*

Example 2: Values of trigonometric functions of a small angle can be obtained approximately.

(From Table, $1 \text{deg} \approx 0.0175$)

Graphs of the Sine/Cosine Functions

Graph of the Tangent Function

5

Periodic Function

Periodic function

A function f(x) is said to be periodic with period p if we have f(x + p) = f(x)

Namely, the values of a function repeat themselves regularly.

Example

Exercise 1. Answer about the following function

$$y = 2\sin(2x - \frac{\pi}{3})$$
 ($0 \le x \le 2\pi$)

(1) When dos this function becomes zero ? (2) What are the values of this function at $x=0, 2\pi$ (3) Illustrate this function.

Ans.

Pause the video and solve the problem.

Exercise 1. Answer about the following function $y = 2\sin(2x - \frac{\pi}{2}) \qquad (0 \le x \le 2\pi)$ When does this function become zero? (2) What are the values of this function at (1) x=0, 2π (3) Illustrate this function. Ans. (1) $0 \le x \le 2\pi$, $\therefore 0 \le 2x \le 4\pi$, $\therefore -\frac{\pi}{3} \le 2x - \frac{\pi}{3} \le 4\pi - \frac{\pi}{3}$ Therefore \mathcal{Y} becomes zero at $2x - \frac{\pi}{3} = 0$, π , 2π , 3π $\therefore x = \frac{\pi}{6}$, $\frac{2\pi}{3}$, $\frac{7\pi}{6}$, $\frac{5\pi}{3}$ (2) At x = 0: $y = 2\sin(-\frac{\pi}{3}) = -\sqrt{3}$ At $x = 2\pi$: $y = 2\sin(4\pi - \frac{\pi}{2}) = 2\sin(-\frac{\pi}{2}) = -\sqrt{3}$ (3) $\frac{2}{2}\pi$ x <u>π</u> 6 Ahh! That's so easy! **Course I**

Lesson 5 Trigonometric Functions (II)

Trigonometric Equation
 Trigonometric Inequality

Trigonometric Inequality

A trigonometric equation is any equation that contains unknown trigonometric function.

Ex.
$$2\sin^2 x + 3\cos x - 3 = 0$$

- This kind of equation is true for certain angles.
 [Note] A trigonometric equation that holds true for any angle is called a trigonometric identity, which we will study next lesson.
- Some trigonometric equation can be solved *easily* by using algebra ideas, while others may not be solved exactly but *approximately*.

Example

Trigonometric Inequality

A trigonometric inequality is any inequality that contains unknown trigonometric function. It can be solved based on a trigonometric e Example 2. Solve the following trigonometric equation. $2 \sin x - 1 > 0$

Ans. <u>Step 1</u> Convert the given inequality to a trigonometric equation by replacin sign to equality sign. $2 \sin x - 1 = 0$

<u>Step 2</u> Solve the resulting equation in the interval [0, $2\pi = \pi/6$, $5\pi/6$

<u>Step 3</u> Among intervals divided by the obtained roots, find the intervals where satisfy the trigonometric inequality $x \neq \frac{5\pi}{6}$

<u>Step 4</u> Extends the solution to the whole domain $\frac{\pi}{6} + 2n\pi < x < \frac{5\pi}{6} + 2n\pi$

Exercise 1. Solve the following trigonometric equation. $2\sin^2 x + 3\cos x - 3 = 0$

Ans.

Pause the video and solve the problem.

Exercise 2. Solve the following trigonometric inequality $\tan x \ge -\sqrt{3}$

Ans.

Pause the video and solve the problem.

Answer to the Exercise

Exercise 2. Solve the following trigonometric inequality $\tan x \ge -\sqrt{3}$

Ans.

The corresponding trigonometric equation is

$$\tan x = -\sqrt{3}$$

