Course I

Lesson 8 Exponential Functions

8A • Rational numbers and Irrational Numbers

Numbers

Natural number

- Ordinary numbers used for counting and ordering.
- Zero is not included.

[Ex.] 1, 2, 3, 4, 5, ···

Integer

• Numbers consisting of the natural numbers, their negative numbers and zero.

[Ex.] ····, -3, -2, -1, 0, 1, 2, 3, ····

• Integers are expressed by the following points on the number line.

Numbers - Cont.

Rational numbers

• A rational number is any number that can be expressed as a fraction of two integers

in the form $\frac{m}{n}$.

• The denominator n must not be equal to zero.

[Ex.]
$$\frac{1}{2}\left(=\frac{2}{4}\right), \frac{3}{7}$$

- Since n can be equal to 1, every integer is a rational number.
- The fraction is expressed by two types of decimal numbers ① Finite decimal expansion $[Ex.] \frac{1}{25} = 0.04$

(2) Infinite recurring decimal expansion [Ex.] $\frac{1}{27} = 0.037037037037037\cdots$

Irrational numbers

- An irrational number is any real number that is not a rational, i.e., one that cannot be written as a fraction.
- Decimal expansion of irrational numbers never ends and never enters periodic pattern.

[Ex.]
$$\sqrt{2} = 1.41421356\cdots$$

 $\pi = 3.14159265\cdots$

Real number

- Real numbers include all the rational numbers and all the irrational numbers.
- Real numbers are expressed by a number line.

Number System

Example

Example 1. Prove that $\sqrt{2}$ is an irrational number.

Ans.

If $\sqrt{2}$ is a rational number, we can express it as a fraction $\frac{m}{n}$ in lowest term. Then

$$\frac{m}{n} = \sqrt{2} \qquad \therefore \ \frac{m}{n} \cdot \frac{m}{n} = \frac{mm}{nn} = 2$$

Because m and η has no common divisor except 1, mm and nn also has no common divisor. Therefore, it is impossible to be

$$\frac{mm}{nn} = 2$$

Therefore, $\sqrt{2}$ is not a rational number, that is, it is an irrational number.

Example

Example 2. Express the following recurring decimal as a fraction. 0.037037037037.....

Ans.

Since the number repeat at every three digits, we consider the difference between ${\cal X}$ and 1000 x .

 $1000x = 37.037037037037 \cdots$ -) $x = 0.037037037037 \cdots$ 999x = 37

Therefore

$$x = \frac{37}{999} = \frac{1}{27}$$

I got it !

Rationalization of the Denominator

In order to make the expression simple and calculation easier, the irrational number in the denominator are eliminated in the following way.

Example 3. Rationalize the denominator of the following numbers. (1) $\frac{6}{\sqrt{2}}$ (2) $\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}}$ Ans. (1) $\frac{6}{\sqrt{2}} = \frac{6 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{6 \times \sqrt{2}}{2} = 3\sqrt{2}$

> (2) We use the relationship $(a+b)(a-b) = a^2 - b^2$ Then

$$\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}} = \frac{\left(\sqrt{2} + \sqrt{3}\right)}{\left(\sqrt{2} - \sqrt{3}\right)} = \frac{\left(\sqrt{2} + \sqrt{3}\right)^2}{\left(\sqrt{2} - \sqrt{3}\right)\left(\sqrt{2} + \sqrt{3}\right)}$$
$$= \frac{2 + 2\sqrt{2}\sqrt{3} + 3}{2 - 3} = -5 - 2\sqrt{6}$$

8

Exercise

Ans.

Pause the video and solve the problem.

Answer to the Exercise

Ans.

Course I

Lesson 8 Exponential Functions

8B •Exponential Functions

Positive Integer Exponent

Power

The product whose factors are equal.

Theorems on Power

Multiplication

$$a^{n}a^{m} = a^{n+m}$$
, $(a^{n})^{m} = a^{nm}$, $(ab)^{n} = a^{n}b^{n}$

Division

[Ex.]
$$\frac{a^8}{a^3} = a^5$$
, $\frac{a^3}{a^8} = \frac{1}{a^5}$, $\frac{a^6}{a^6} = 1$

Extension to Negative Integer Exponent

Extension to Rational Exponent

From the rule $(a^n)^m = a^{nm}$, we have

$$\left(a^{\frac{m}{n}}\right)^n = a^{\frac{m}{n} \times n} = a^m$$

Therefore

$$a^{\frac{m}{n}} = (a^m)^{\frac{1}{n}} = \sqrt[n]{a^m}$$

Extension to Irrational Exponent

Irrational number

The value of a power with an irrational exponent is defined as the limit of a power with a rational exponent

[Ex.]
$$a^{\sqrt{2}} = ?$$

 $2^1 = 2.00000$
 $2^{1.4} = 2.63902$
 $2^{1.41} = 2.65737$
 $2^{1.414} = 2.66475$

Exponential Function

Exponential function

Characteristics

Phenomena with Exponential Growth (1)

SARS Case (Virus)

2002-11 First patient was found in China 2003-03 Patients 1622 (58 died) 2003-05 Patients 8860 (792 died)

Growth by Doubling

$$y = 2^x$$

Assumption : Each bacteria splits into two cells in every one hour.

End of Hour	1	2	3	4	5	6	7	8	9	10	11	12	13	14	 24
Bacteria - starting with one	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192	16384	 16777216

24 hr

Phenomena with Exponential Growth (2)

Compound interest calculation

[Ex.] Principal \$1000 Annual compound interest rate 5 % 1 Year later \$1050.00

 10 Years later
 \$1628.89

 20 Years later
 \$2653.30

 30 Years later
 \$4321.94

Exercise

Exercise 2 Illustrate the graphs of the following functions on the given coordinates and discuss their relationship.

Examples

Example 4 Illustrate the graphs of the following functions on the given coordinates and discuss their relationship.

(1)
$$y = 2^x$$
 (2) $y = \frac{2^x}{4}$

Since
$$y = \frac{2^x}{4} = 2^{x-2}$$
, it is

obtained by shifting the graph $y = 2^x$ rightward by 2.