## Lesson 11 Logarithm and Common Logarithm

## 11A

- Logarithm of a number
- Merits of logarithm
- Logarithmic Identities


## Logarithm of a Number

$$
M=a^{p}
$$

## Definition

The logarithm of a number $M$ is the exponent $p$ by which another fixed value (the base) $a$ has to be raised to produce that number, and it written as

$$
p=\log _{a} M
$$

## In other words

- The value $p$ is the answer to the question "To what power must $a$ be raised in order to yield $M$ ?".



## Merits of Logarithm (1)

## Merit (1)

- Logarithm can represent a large number by a small number.

$$
\text { Ex. } \quad x=100000 \rightarrow \log _{10} x=5
$$

- Logarithmic scale is helpful to represent wide range of values with different details.
(See next slide for illustration)


That makes sense!

## Logarithmic Scale

http://www.isas.jaxa.jp/home/solar/home/ solar/yohkoh/Graph/Yohkoh full.gif


## Logarithmic Identities

Product $\quad \log _{a} M N=\log _{a} M+\log _{a} N$
Quotient $\quad \log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N$
Power $\quad \log _{a} M^{k}=k \log _{a} M$
[ Example 11.1] Prove the product rule of logarithm.
Ans.
Let $M=a^{p}$ and $\quad N=a^{q}$. Then $p=\log _{a} M, \quad q=\log _{a} N$
By multiplication $\quad M \cdot N=a^{p} \cdot a^{q}=a^{p+q}$
Therefore $\quad \log _{a} M \cdot N=p+q=\log _{a} M+\log _{a} N$

## Special Cases

## Special Values

$$
\left.\left.\begin{array}{lll}
a^{1}=a \\
a^{0}=1 \\
a^{-1}=\frac{1}{a} & \longrightarrow & \log _{a} a=1 \\
\log _{a} 1=0
\end{array}\right] \quad \log _{a}\left(\frac{1}{a}\right)=-1\right)
$$

## Special Identities

$$
\begin{array}{lll}
\log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N & \xrightarrow{M=1} & \log _{a} \frac{1}{N}=-\log _{a} N \\
\log _{a} M^{k}=k \log _{a} M & \xrightarrow{k=\frac{1}{n}} & \log _{a} \sqrt[n]{M}=\frac{1}{n} \log _{a} M
\end{array}
$$

## Changing the Base of Logarithm

[Example 11.2] Prove the following formula : $a(\neq 1), b(\neq 1), c(\neq 1)$ are positive real numbers

$$
\log _{a} b=\frac{\log _{c} b}{\log _{c} a}
$$

Ans.
Let $p=\log _{a} b$, then $b=a^{p}$ holds.
If we make logarithms with base $c$ of both sides, we have

$$
\begin{aligned}
& \log _{c} b=\log _{c} a^{p} \\
& \therefore \log _{c} b=p \log _{c} a
\end{aligned}
$$

Since $\quad a \neq 1$, we see $\log _{c} a \neq 0$
Therefore, $\quad p=\frac{\log _{c} b}{\log _{c} a}$

## Logarithmic Equation

[Example 11.3] Solve the following equations.
(1) $\log _{2} x=3$
(2) $\log _{2}(x+3)+\log _{2}(2 x-1)=2$

Ans.
(1) From the definition $\quad x=2^{3}=8$
(2) Because $x+3>0$ and $2 x-1>0$

Therefore $\quad x>\frac{1}{2}$
The given expression becomes

$$
\begin{aligned}
& \quad \log _{2}(x+3)(2 x-1)=\log _{2} 4 \\
& \therefore(x+3)(2 x-1)=4 \quad \therefore 2 x^{2}+5 x-7=0 \\
& \therefore(x-1)(2 x+7)=0 \\
& \therefore x=1, \quad x=-\frac{7}{2} \\
& \text { Since } \quad x>\frac{1}{2}, \text { we have } \quad x=1
\end{aligned}
$$

## Logarithmic Inequality

[Example 11.4] Solve the following inequality. $\log _{2} x<3$

Ans.

$$
\log _{2} x<3=\log _{2} 2^{3}=\log _{2} 8
$$

From the graph of $y=\log _{2} x$, we have

$$
0<x<8
$$



## Exercise

[Ex.11.1] Find the values of (1) $\log _{5} 125$
(2) $\log _{10} 10 \sqrt{10}$
[Ex.11.2] Simplify the following expressions: (1) $\log _{10} 2+\log _{10} 5$ (2) $\log _{3} 7-\log _{3} 63$

## Answer to the Exercise

[Ex.11.1] Find the values of (1) $\log _{5} 125$
(2) $\log _{10} 10 \sqrt{10}$
(1)

We put $\log _{5} 125=p$,
Then, we have $5^{p}=125=5^{3} \quad \therefore p=3$
(2)

$$
\log _{10} 10 \sqrt{10}=\log _{10} 10^{\frac{3}{2}}=\frac{3}{2} \log _{10} 10=\frac{3}{2}
$$

[Ex.11.2] Simplify the following expressions: (1) $\log _{10} 2+\log _{10} 5$ (2) $\log _{3} 7-\log _{3} 63$
(1) $\log _{10} 2+\log _{10} 5=\log _{10}(2+5)=\log _{10} 10=1$
(2) $\log _{3} 7-\log _{3} 63=\log _{3} \frac{7}{63}=\log _{3} \frac{1}{9}=\log _{3} 3^{-2}=-2$

## Exercise

[Ex.11.3] (1) Simplify the following expression $\left(\log _{2} 9+\log _{4} 3\right)\left(\log _{3} 2+\log _{9} 4\right)$ (Hint: Make a common base.)
(2) Solve the following logarithmic equation $\quad \log _{2} x+\log _{2}(x-7)=3$

Pause the video and solve the problem by yourself.

## Answer to the Exercise

[Ex.11.3] (1) Simplify the following expression
(Hint: Make a common base.)
(2) Solve the following equation. $\quad \log _{2} x+\log _{2}(x-7)=3$
(1) $\left(\log _{2} 9+\log _{4} 3\right)\left(\log _{3} 2+\log _{9} 4\right)=\left(\log _{2} 9+\frac{\log _{2} 3}{\log _{2} 4}\right)\left(\frac{\log _{2} 2}{\log _{2} 3}+\frac{\log _{2} 4}{\log _{2} 9}\right)$

$$
\begin{aligned}
& =\left(2 \log _{2} 3+\frac{\log _{2} 3}{2}\right)\left(\frac{1}{\log _{2} 3}+\frac{2}{2 \log _{2} 3}\right) \\
& =\frac{5}{2} \log _{2} 3 \cdot \frac{2}{\log _{2} 3}=5
\end{aligned}
$$

(2) $\quad \log _{2} x+\log _{2}(x-7)=3$

Since, $x>0$ and $x-7>0$, therefore $x>7$

$$
\begin{aligned}
& \log _{2} x(x-7)=\log _{2} 2^{3} \quad \therefore x(x-7)=8 \\
& \therefore(x+1)(x-8)=0
\end{aligned}
$$

From (1), the answer is $\quad x=8$

## Course I

## Lesson 11 Logarithm and Common Logarithm

## 11B

- Special Logarithm
- Common Logarithm


## Various Bases

## Various exponential function

## Various logarithmic function




Then, which one shall we use?
$\rightarrow$ We are familiar to decimal number.

$$
2356=2 \times 10^{3}+3 \times 10^{2}+5 \times 10+6
$$

## Special Logarithms

## Common Logarithm

$$
a=10 \quad y=\log _{10} x \quad \text { or } \quad y=\log x
$$

-This has applications in science and engineering.

## Natural Logarithm

$$
a=e=2.718 \ldots \quad y=\log _{e} x \quad \text { or } \quad y=\ln x
$$

- This is also written as $y=\ln x$
- This is used in pure mathematics.
- This will be explained later in the lesson on differentiation.


## Binary Logarithm

$$
a=2 \quad y=\log _{2} x
$$

-This is used in computer science.

## Common Logarithm

- Values of common logarithm are given in the logarithmic table.
- The table gives the value for $1<M<9.99$.
- For $M=a \times 10^{n} \quad(1 \leq a<10)$, the logarithmic value is obtained by

$$
\log _{10} M=\log _{10}\left(a \times 10^{n}\right)=n+\log _{10} a
$$

## Table of Common Logarithm

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.0 | .0000 | .0043 | .0086 | .0128 | .0170 | .0212 | .0253 | .0294 | .0334 | .0374 |
| 1.1 | .0414 | .0453 | .0492 | .0531 | .0569 | .0607 | .0645 | .0682 | .0719 | .0755 |
| 1.2 | .0792 | .0828 | .0864 | .0899 | .0934 | .0969 | .1004 | .1038 | .1072 | .1106 |
| 1.3 | .1139 | .1173 | .1206 | .1239 | .1271 | .1303 | .1335 | .1367 | .1399 | .1430 |
| 1.4 | .1461 | .1492 | .1523 | .1553 | .1584 | .1614 | .1644 | .1673 | .1703 | .1732 |
| 1.5 | .1761 | .1790 | .1818 | .1847 | .1875 | .1903 | .1931 | .1959 | .1987 | .2014 |


| 9.5 | .9777 | .9782 | .9786 | .9791 | .9795 | .9800 | .9805 | .9809 | .9814 | .9818 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9.6 | .9823 | .9827 | .9832 | .9836 | .9841 | .9845 | .9850 | .9854 | .9859 | .9863 |
| 9.7 | .9868 | .9872 | .9877 | .9881 | .9886 | .9890 | .9894 | .9899 | .9903 | .9908 |
| 9.8 | .9912 | .9917 | .9921 | .9926 | .9930 | .9934 | .9939 | .9943 | .9948 | .9952 |
| 9.9 | .9956 | .9961 | .9965 | .9969 | .9974 | .9978 | .9983 | .9987 | .9991 | .9996 |

## Examples

[Example 11.5] Find the common logarithm of the following numbers.

$$
0.01, \quad 0.1, \quad 1, \quad 10, \quad 100
$$

Ans.

$$
\begin{array}{lc}
\log _{10} 0.01=\log _{10} 10^{-2}=-2 & \log _{10} 10=1 \\
\log _{10} 0.1=-1 & \log _{10} 100=2 \\
\log _{10} 1=0 &
\end{array}
$$

[Example 11.6] Find the common logarithm of 11910 from the logarithmic table.
Ans.

$$
\log _{10} 11910=\log _{10}\left(1.191 \times 10^{4}\right) \approx 4+\log _{10} 1.19=4+0.0755=4.0755
$$

## Examples

[Example 11.7] Find the number of digits of $6^{25}$. Use the following values.

$$
\log _{10} 2=0.3010, \quad \log _{10} 3=0.4771
$$

Ans.
Put $N=6^{25}$ and take the common logarithm of both sides.

$$
\begin{aligned}
\log _{10} N= & \log _{10} 6^{25}=25 \times\left(\log _{10} 2+\log _{10} 3\right)=25 \times(0.3010+0.4771) \\
& =19.4525
\end{aligned}
$$

Then $\quad N=10^{19.4525}$
Therefore $\quad 10^{19}<N<10^{20}$
This means that $6^{25}$ is a 20 digits number

## Merit of Logarithm (2)

By this product rule $\log _{a} M N=\log _{a} M+\log _{a} N$, we can replace the laborious product by an easy addition.
[ Example 11.8] $x=123111, y=9663189$ are given. Find the approximate value of $x y$ using a logarithmic table in the previous slide.

Ans.

$$
\begin{aligned}
x & =1.23111 \times 10^{5} \quad \therefore \log _{10} x=\log _{10} 1.23111+\log _{10} 10^{5} \approx \log _{10} 1.23+5 \\
y & =9.663189 \times 10^{6} \quad \therefore \log _{10} y=\log _{10} 9.663189+\log _{10} 10^{6}=\log _{10} 9.66+6
\end{aligned}
$$

From table $\quad \log _{10} 1.23=0.0899, \quad \log _{10} 9.66=0.9850$
Therefore

$$
\begin{array}{r}
\log _{10} x y=\log _{10} x+\log _{10} y \approx\left(\log _{10} 1.23+5\right)+\left(\log _{10} 9.66+6\right) \\
\approx 5.0899+6.9850 \approx 12+0.0749 \approx 12+\log _{10} 1.19=\log _{10}\left(1.19 \times 10^{12}\right) \\
\therefore \quad x y \approx 1.19 \times 10^{12}
\end{array}
$$

## Slide Rule



Fig. 2 Overview

## Example

## [Example 11.7] When we keep 1 million yen in the bank with the rate of interest $5 \%$, how

 much can we get after 5 years? Use the table in the former slide.Ans.

$$
\begin{aligned}
& \quad y=1000000 \times 1.05^{5} \\
& \log _{10} y=6+\log _{10} 1.05^{5}=6+5 \times \log _{10} 1.05=6+5 \times 0.0212=6+0.106
\end{aligned}
$$

From the table $0.106 \approx \log _{10} 1.28$

$$
\log _{10} y \approx 6+\log _{10} 1.28=\log _{10}\left(1.28 \times 10^{6}\right)=\log _{10}\left(128 \times 10^{4}\right)
$$

We can get about 1.28 million yen

The precise value is $\quad 1000000 \times 1.05^{5}=1276281.5$

## Exercise

[Ex.11.4] Let $\log _{10} 2=0.3010$ and $\log _{10} 3=0.47 .71$ Find the values of (1) $\log _{10} 125$, (2) $\log _{2} 5$

Pause the video and solve the problem by yourself.

## Answer to the Exercise

[Ex.11.4] Let $\log _{10} 2=0.3010$ and $\log _{10} 3=0.47 .71$
Find the value of (1) $\log _{10} 125$, (2) $\log _{2} 5$
(1) $\log _{10} 125=\log _{10} 5^{3}=3 \log _{10} 5=3 \log _{10}(10 / 2)=3\left(1-\log _{10} 2\right)$

$$
=3 \times(1-0.3010)=2.0970
$$

(2)

$$
\log _{2} 5=\frac{\log _{10} 5}{\log _{10} 2}=\frac{1-\log _{10} 2}{\log _{10} 2}=\frac{1-0.3010}{0.3010} \approx 2.322
$$

