Course II : Calculus

What is Calculus?

Calculus is a branch of mathematics.

- functions, • limits, • derivatives, • integrals, • power series

Calculus is the study of change.
cf. • Geometry is the study of shape.

- Algebra is the study of operation.

Calculus is a gateway to advanced mathematics.

- We must study and understand completely.

Calculus has wide applications in

- science, • engineering, •economics, •biology

Calculus has two branches

- differential calculus, • integral calculus,

Contents

Lesson 01 Limit of Functions and Derivatives
Lesson 02 Derivative and Graphs
Lesson 03 Differentiation Formulas
Lesson 04 Derivatives of Trigonometric Functions
Lesson 05 Derivatives of Logarithmic Functions and ExponentialFunctions
Lesson 06 Applications of Derivatives to Equations and Inequality
Lesson 07 Application to Physics
Lesson 08 Approximation of a Function
Lesson 09 Antiderivatives
Lesson 10 Definite Integrals
Lesson 11 Estimating Area by Rectangles
Lesson 12 Application of Integrals (1)
Lesson 13. Application of Integrals (2)
Lesson 14. Differential Equations (1)
Lesson 15. Differential Equations (2)

Course II

Lesson 1 Limit of Functions and Derivatives

1A
 -Limit of a function

Definition of a Limit

Definition of a Limit

If a function $f(x)$ can be made to be as close to L as desired by making x sufficiently close to a, we say that "the limit of $f(x)$, as x approaches a, is L " and we write as follows

$$
\lim _{x \rightarrow a} f(x)=L
$$

We can also write $f(x) \rightarrow L$ as $x \rightarrow a$ and read " $f(x)$ approaches L as x approaches a.

Limit of a Function

[Example] $f(x)=x^{2}$

x	$f(x)$	x	$f(x)$
1.0	1.000000	3.0	9.000000
1.5	2.250000	2.5	6.250000
1.8	3.240000	2.2	4.840000
1.9	3.610000	2.1	4.410000
1.99	3.960100	2.01	4.040100
1.999	3.996001	2.001	4.004001

The limit of $f(x)=x^{2}$ as x approaches 2 is 4

Several Comments about the Limit

- For the limit of a function to exists, the left-hand and right-hand limits must be equal, that is
$\lim _{x \rightarrow a-} f(x)=L$ and $\lim _{x \rightarrow a+} f(x)=L$

$$
\begin{aligned}
& \text { Limit does not exit } \\
& \text { at } x=2
\end{aligned}
$$

- $\lim _{x \rightarrow a} f(x)=L$ is not always equal to $f(a)$

Example

Example 1.1 Find the limit value of the following function.

$$
\lim _{x \rightarrow 1} \frac{x^{2}-x}{x-1}
$$

Ans.

$$
\lim _{x \rightarrow 1} \frac{x^{2}-x}{x-1}=\lim _{x \rightarrow 1} \frac{x(x-1)}{x-1}=\lim _{x \rightarrow 1} x=1
$$

- Even if the function has not a value at $x=a$, the limit may exist.

Indeterminate Form

The forms $0^{0}, \frac{0}{0}, 1^{\infty}, \infty-\infty, \frac{\infty}{\infty}, 0 \times \infty, \infty^{0}$, etc. are called indeterminate forms because they do not give enough information to determine values. 8

Example

Example 1.2 Find the limit value of the following function.

$$
\lim _{x \rightarrow 1} \frac{\sqrt{x-1}-1}{x}
$$

Ans.

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{\sqrt{x+1}-1}{x}=\lim _{x \rightarrow 1} \frac{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}{x(\sqrt{x+1}+1)}=\lim _{x \rightarrow 1} \frac{(x+1)-1}{x(\sqrt{x+1}+1)} \\
& =\lim _{x \rightarrow 1} \frac{1}{(\sqrt{x+1}+1)}=\frac{1}{2}
\end{aligned}
$$

Means to find a limit of an Indeterminate Form 0/0
(1) Case of Polinomial \rightarrow Factor them
(2) Case of Irrational Function \rightarrow Multiply the conjugate

Example

Example 1.3 Determine the values of a and b so that the following expression holds.

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}+a x+b}=1
$$

Ans.

When $x \rightarrow 1$, then $x^{2}+x-2 \rightarrow 0$ and $x^{2}+a x+b \rightarrow 1+a+b$ In order for limit to exist, $1+a+b$ must be zero. $\quad \therefore b=-a-1$ Substituting this, we have

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}+a x+b}=\lim _{x \rightarrow 1} \frac{(x-1)(x+2)}{(x-1)(x+a+1)}=\lim _{x \rightarrow 1} \frac{(x+2)}{(x+a+1)}=\frac{3}{a+2}
$$

Therefore,

$$
\frac{3}{a+2}=1 \quad \therefore \quad a=1 \text { and } \quad b=-2
$$

Exercise

[Exercise 1.1] Determine the values of a and b so that the following relationship holds.

$$
\lim _{x \rightarrow 1} \frac{a x^{2}+b x+1}{x-1}=3
$$

Ans.

Pause the video and try to solve by yourself

Answer to the Exercise

[Exercise 1.1] Determine the values of a and b so that the following relationship holds.

$$
\lim _{x \rightarrow 1} \frac{a x^{2}+b x+1}{x-1}=3
$$

Ans.
When $x \rightarrow 1$, then $x-1 \rightarrow 0$ and $a x^{2}+b x+1 \rightarrow a+b+1$
In order to exist a limit value $1, \quad a+b+1=0 \quad \therefore b=-a-1$
Substituting this, we have

$$
\lim _{x \rightarrow 1} \frac{a x^{2}+b x+1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(a x-1)}{x-1}=\lim _{x \rightarrow 1}(a x-1)=a-1
$$

Therefore,

$$
a-1=3 . \text { Namely, } a=4 \text { and } b=-5
$$

Lesson 1
 Limit of Functions and Derivatives

1B
 - Derivatives of Functions

Average Rate of Change

Increments

$$
\begin{aligned}
& \Delta x=x_{2}-x_{1} \\
& \Delta y=y_{2}-y_{1} \\
& \text { The slope } \frac{\Delta y}{\Delta x}
\end{aligned}
$$

Average Rate of Change

$$
\frac{\Delta y}{\Delta x} \text { or } \frac{f(b)-f(a)}{b-a}
$$

Definition of a Derivative

Derivative

The slope at point A (the tangent line T) can be obtained by making point B approach point A .

$$
\lim _{b \rightarrow a} \frac{f(b)-f(a)}{b-a}=f^{\prime}(a)
$$

This is called the derivative of $f(x)$ at a

Putting $b=a+h$, we also have

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a)
$$

That makes sense!

How to Find the Derivative

[Example 1-4] About the function $f(x)=x^{2}$
(1) Find the average rate of change between $x=1$ and $x=2$.
(2) Find the instantaneous rate of change at $x=a$.
(3) Find the point where the instantaneous rate of change is equal to the average rate of change between $x=1$ and $x=2$.

Ans.

$$
\text { (1) } \frac{f(2)-f(1)}{2-1}=4-1=3
$$

(2) $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{(a+h)^{2}-a^{2}}{h}=\lim _{h \rightarrow 0}(2 a+h)$

$$
=2 a
$$

(3) Using the results of (1) and (2), we put $2 a=3$

$$
\therefore a=\frac{3}{2}
$$

Derivative as a Function

Let the number a varies and replace it by x.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$f^{\prime}(x)$ is called the derivative of $f(x)$ or the derivative function of $f(x)$ (because it has been "derived" from $f(x)$.)

Alternative notation

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

[note]

The definition $\frac{d y}{d x}$ is read as: "the derivative with respect to x ", boyy ", düx ovety "otxsimply" $d y " d x$

How to Find a Derivative Function

[Example 1-4] Find the derivative function of
(1) $f(x)=x$
(2) $f(x)=x^{2}$
(3) $f(x)=x^{3}$

Ans. Definition $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
(1) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)-x}{h}=\lim _{h \rightarrow 0}(1)=1$
(2) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x$
(3) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}=\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right)=3 x^{2}$

Formula

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Higher Derivatives

Since $f^{\prime}(x)$ is a function, it also has its own derivative which is denoted by

$$
\frac{d^{2} y}{d x^{2}}=f^{\prime \prime}(x)=f^{(2)}(x) \quad: \text { The second derivative function }
$$

We can continue

$$
\frac{d^{3} y}{d x^{3}}=f^{\prime \prime \prime}(x)=f^{(3)}(x)
$$

: The third derivative function

The process of finding a derivative function is called differentiation.

Example

[Example 1-5] If $f(x)=x^{3}-x$, find and interpret $f^{\prime \prime}(x)$

Using the formula $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$, we get

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-1 \\
& f^{\prime \prime}(x)=6 x
\end{aligned}
$$

These derivatives are illustrated in the Right-hand side.

- $f^{\prime \prime}(x)$ is the slope of the curve $y=f^{\prime}(x)$
- $f^{\prime \prime}(x)$ is the rate of change of $y=f^{\prime}(x)$

Exercise

[Exercise 1.2] Function $f(x)=x^{3}+a x^{2}+b x+c$ Satisfy the conditions $f(1)=3, f(0)=1$ and $f^{\prime}(-1)=16$. Find the constants a, b and c.

Ans.

Pause the video and try to solve by yourself

Answer to the Exercise

[Exercise 1.2] Function $f(x)=x^{3}+a x^{2}+b x+c$
Satisfy the conditions $f(1)=3, f(0)=1$ and $f^{\prime}(-1)=16$. Find the constants a, b and c.

Ans.
The derivative function is

$$
f^{\prime}(x)=3 x^{2}+2 a x+b
$$

Given condition

$$
\begin{aligned}
& f(1)=1+a+b+c=3 \\
& f(0)=c=1 \\
& f^{\prime}(-1)=3-2 a+b=16
\end{aligned}
$$

From these equations

$$
a=-4, b=5, c=1
$$

