

1

Course II : Calculus

What is Calculus ?

Calculus is a branch of mathematics.

• functions, • limits, • derivatives, • integrals, • power series

Calculus is the study of change.

- cf. *Geometry* is the study of shape.
 - Algebra is the study of operation.

Calculus is a gateway to advanced mathematics.

• We must study and understand completely.

Calculus has wide applications in

• science, • engineering, •economics, •biology

Calculus has two branches

• differential calculus, • integral calculus,

Contents

- **Lesson 01** Limit of Functions and Derivatives
- **Lesson 02** Derivative and Graphs
- **Lesson 03** Differentiation Formulas
- Lesson 04 Derivatives of Trigonometric Functions
- **Lesson 05** Derivatives of Logarithmic Functions and Exponential Functions
- **Lesson 06** Applications of Derivatives to Equations and Inequality
- **Lesson 07** Application to Physics
- **Lesson 08** Approximation of a Function
- Lesson 09 Antiderivatives
- **Lesson 10** Definite Integrals
- Lesson 11 Estimating Area by Rectangles
- **Lesson 12** Application of Integrals (1)
- Lesson 13. Application of Integrals (2)
- **Lesson 14.** Differential Equations (1)
- Lesson 15. Differential Equations (2)

Course II

Lesson 1 Limit of Functions and Derivatives

1A •Limit of a function

Definition of a Limit

If a function f(x) can be made to be as close to L as desired by making x sufficiently close to a, we say that "the limit of f(x), as x approaches a, is L " and we write as follows

$$\lim_{x \to a} f(x) = L$$

We can also write $f(x) \rightarrow L$ as $x \rightarrow a$ and read "f(x) approaches L as x approaches a.

Limit of a Function

The limit of $f(x) = x^2$ as x approaches 2 is 4

Several Comments about the Limit

• For the limit of a function to exists, the left-hand and right-hand limits must be equal, that is $\lim_{x \to a_{-}} f(x) = L \text{ and } \lim_{x \to a_{+}} f(x) = L \qquad \begin{array}{c} f(x) \\ 3 \end{array}$

> Limit does not exit at x = 2

•
$$\lim_{x \to a} f(x) = L$$
 is not always equal
to $f(a)$

Indeterminate Form

The forms 0^{0} , $\frac{0}{0}$, 1^{∞} , $\infty - \infty$, $\frac{\infty}{\infty}$, $0 \times \infty$, ∞^{0} , etc. are called indeterminate

forms because they do not give enough information to determine values.⁸

Means to find a limit of an Indeterminate Form 0/0

- (1) Case of Polinomial \rightarrow Factor them
- (2) Case of Irrational Function \rightarrow Multiply the conjugate

Example 1.3 Determine the values of a and b so that the following expression holds. $\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 + ax + b} = 1$

$$x \rightarrow 1 x^2 + a$$

Ans.

When $x \rightarrow 1$, then $x^2 + x - 2 \rightarrow 0$ and $x^2 + ax + b \rightarrow 1 + a + b$

In order for limit to exist, 1 + a + b must be zero. $\therefore h = -a - 1$ Substituting this, we have

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 + ax + b} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{(x - 1)(x + a + 1)} = \lim_{x \to 1} \frac{(x + 2)}{(x + a + 1)} = \frac{3}{a + 2}$$

Therefore,

$$\frac{3}{a+2} = 1$$
 \therefore $a = 1$ and $b = -2$

Exercise

[Exercise 1.1] Determine the values of *a* and *b* so that the following relationship holds. $\lim_{x \to 1} \frac{ax^2 + bx + 1}{x - 1} = 3$

Ans.

Pause the video and try to solve by yourself

Answer to the Exercise

[Exercise 1.1] Determine the values of a and b so that the following relationship holds. $\lim_{x \to 1} \frac{ax^2 + bx + 1}{x - 1} = 3$

Ans.

When $x \rightarrow 1$, then $x - 1 \rightarrow 0$ and $ax^2 + bx + 1 \rightarrow a + b + 1$

In order to exist a limit value 1, a+b+1=0 $\therefore b=-a-1$ Substituting this, we have

$$\lim_{x \to 1} \frac{ax^2 + bx + 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(ax - 1)}{x - 1} = \lim_{x \to 1} (ax - 1) = a - 1$$

Therefore,

$$a-1=3$$
 . Namely, $a=4$ and $b=-5$

Lesson 1 Limit of Functions and Derivatives

1B

Derivatives of Functions

Average Rate of Change

Increments $\Delta x = x_2 - x_1$ $\Delta y = y_2 - y_1$ The slope $\frac{\Delta y}{\Delta x}$

Average Rate of Change

$$\frac{\Delta y}{\Delta x} \quad \text{or} \quad \frac{f(b) - f(a)}{b - a}$$

Definition of a Derivative

Derivative

The slope at point A (the tangent line T) can be obtained by making point B approach point A.

$$\lim_{b \to a} \frac{f(b) - f(a)}{b - a} = f'(a)$$

This is called the derivative of f(x) at a

Putting b = a + h, we also have

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$

y = f(x) f(b) f(a) f(a) f(a) f(a) f(a) f(a) f(b) f(b) f(a) f(a) f(b) f(b

How to Find the Derivative

- **[Example 1-4]** About the function $f(x) = x^2$
- (1) Find the average rate of change between x = 1 and x = 2.
 - 2) Find the instantaneous rate of change at x = a.
- (3) Find the point where the instantaneous rate of change is equal to the average rate of change between x = 1 and x = 2.

Ans. (1)
$$\frac{f(2) - f(1)}{2 - 1} = 4 - 1 = 3$$

(2)
$$f'(a) = \lim_{h \to 0} \frac{(a + h)^2 - a^2}{h} = \lim_{h \to 0} (2a + h)$$
$$= 2a$$

(3) Using the results of (1) and (2), we put 2a = 3

$$\therefore a = \frac{3}{2}$$

Derivative as a Function

Let the number a varies and replace it by x.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

f'(x) is called the derivative of f(x)or the derivative function of f(x)(because it has been "derived" from f(x).)

Alternative notation

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

[note]

The definition $\frac{dy}{dx}$ is read as : "the derivative with respect to x", " by y", dx over " of x simply " dy "dx 17

How to Find a Derivative Function

[Example 1-4] Find the derivative function of (1) f(x) = x (2) $f(x) = x^2$ (3) $f(x) = x^3$. Ans. Definition $f'(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$ (1) $f'(x) = \lim_{h \to 0} \frac{(x+h) - x}{h} = \lim_{h \to 0} (1) = 1$ (2) $f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} (2x+h) = 2x$ (3) $f'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \to 0} (3x^2 + 3xh + h^2) = 3x^2$

Formula $\frac{d}{dx}(x^n) = nx^{n-1}$

Higher Derivatives

Since f'(x) is a function, it also has its own derivative which is denoted by $\frac{d^2y}{dx^2} = f''(x) = f^{(2)}(x) \qquad : \text{The second derivative function}$

We can continue

$$\frac{d^{3}y}{dx^{3}} = f'''(x) = f^{(3)}(x)$$
: The third derivative function

The process of finding a derivative function is called differentiation.

[Example 1-5] If $f(x) = x^3 - x$, find and interpret f''(x)

Using the formula $\frac{d}{dx}(x^n) = nx^{n-1}$, we get

$$f'(x) = 3x^2 - 1$$
$$f''(x) = 6x$$

These derivatives are illustrated in the Right-hand side.

• f''(x) is the slope of the curve y = f'(x)

• f''(x) is the rate of change of y = f'(x)

Exercise

Ans.

Pause the video and try to solve by yourself

Answer to the Exercise

[Exercise 1.2] Function $f(x) = x^3 + ax^2 + bx + c$ Satisfy the conditions f(1) = 3, f(0) = 1 and f'(-1) = 16. Find the constants a, b and c.

Ans.

The derivative function is $f'(x) = 3x^{2} + 2ax + b$ Given condition f(1) = 1 + a + b + c = 3 f(0) = c = 1 f'(-1) = 3 - 2a + b = 16

From these equations

$$a = -4, b = 5, c = 1$$

