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The Power Rule 
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• This rule holds for any real number. 

[Examples 3-1] Differentiate the following functions.                                                   
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Linearity Rules 

Linearity Rules 
Assume that           and            are differentiable functions. 
•  Constant Multiple rule :  
•  Sum Rule : 
•  Difference Rule : 
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Product Rule 

Product Rule 
Assume that           and            are differentiable functions. 
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[Examples 3-3] Find the derivative function of                                                 )15(3)( 2 += xxxh
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The Quotient Rule 
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                                      Quotient Rule   
                                                
　　　　　　　　　　　　　　　　In particular 
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The second one is proved as 

Using this, we have 

Ans. 

[Examples 3-4] Compute the derivative function of    
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Exercise 

[ Exercise 3-1 ] 　Calculate the derivatives of the following functions in 
two ways. First use the Quotient Rule, then rewrite the function 
algebraically and apply the Power Rule directly. 
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Pause the video and solve the problem by yourself. 
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Excercise 

[ Ex.3-1 ] 　Calculate the derivatives of the following functions in two ways. First use the  
Quotient Rule, then rewrite the function algebraically and apply the Power Rule directly. 
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Quotient Rule 

Power Rule 

Quotient Rule 
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The Chain Rule 

The Chain Rule  

If        　 and          　 are differentiable, the next relationship holds. 

 

 

Setting                 　　, we may also write this as   

                                                      or 
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Example 

[Examples 3-5] Calculate the derivative of                                                         13 += xy
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 This is a composite function in the form  

 and  

Since 　　　　							and , we have 

Ans. 
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Derivative of Implicit Functions (1) 

Ex:  circle 

y
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(1) Solve for        and then differentiate. 
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Two kinds of function 

•  Explicit function :                             [Ex.] 

•  Implicit function :                             [Ex.] 
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Derivative of Implicit Functions (2) 

[Ex.] A circle 
(2) Take derivative of each term and apply the chain rule. 

Take the derivative of both sides  
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Exercise 

[ Exercise 3-2 ] 　Calculate the derivatives of the following functions  
(1)                                                          (2) 
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Pause the video and solve the problem by yourself. 
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Excercise 
[ Ex.3-3 ] 　Calculate the derivatives of the following functions  
(1)                                                               (2) 
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Excercise 

 
[ Ex.3-4 ] 　Find the derivative            of the            
 
                   function                                                               
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Answer to the Excercise 

 
[ Ex.3-4 ] 　Find the derivative           of the function                                                               
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