Course II

Lesson 4
 Derivatives of Trigonometric Functions

4A

- Derivative of Sine Function
- Limit of $\sin x$ x
- Derivatives of Basic Trigonometric Function

Derivative of Sine Function

Variation of slopes

Derivative by definition

$$
\begin{aligned}
& =f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
= & \lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\
= & \lim _{h \rightarrow 0}\left(\cos x \cdot \frac{\sin h}{h}-\sin x-\frac{1-\cos h}{h}\right)
\end{aligned}
$$

Limit of $\sin x / x$

Consider a sector with central angle x

Compare the areas of $\triangle \mathrm{OAB}$, sector OAB , and $\triangle \mathrm{OAT}$

$$
\begin{aligned}
& \frac{1}{2} \cdot 1 \cdot \sin x<\left(\pi \cdot 1^{2}\right) \cdot \frac{x}{2 \pi}<\frac{1}{2} \cdot 1 \cdot \tan x \\
& \therefore \quad \sin x<x<\tan x
\end{aligned}
$$

Divide by $\sin x(>0)$

$$
\text { As } x \rightarrow 0
$$

$$
\begin{aligned}
& \therefore \quad 1<\frac{x}{\sin x}<\frac{1}{\cos x} \\
& \therefore 1>\frac{\sin x}{x}>\frac{\cos x}{1} \\
& \lim _{h \rightarrow 0} \frac{\sin x}{x}=1
\end{aligned}
$$

Derivative of Sine Function-Cont.

$$
\begin{gathered}
f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\cos x \frac{\sin h}{h}-\sin x \frac{1-\cos h}{h}\right) \\
1 \quad \frac{(1-\cos h)(1+\cos h)}{h(1+\cos h)}=\frac{1-\cos ^{2} h}{h(1+\cos h)}=\frac{\sinh }{h} \frac{\sinh }{(1+\cos h)}
\end{gathered}
$$

Therefore

$$
(\sin x)^{\prime}=\cos x
$$

That makes sense!
[Example 4-1] Derive the derivative of $\cos x$ and $\tan x$

Ans.

(1) From the triangle in the right side

$$
\cos x=\sin \left(\frac{\pi}{2}-x\right)
$$

Therefore

$$
\begin{aligned}
(\cos x)^{\prime} & =\left(\sin \left(\frac{\pi}{2}-x\right)\right)=\cos \left(\frac{\pi}{2}-x\right) \cdot\left(\frac{\pi}{2}-x\right) \\
& =\sin x \times(-1)=-\sin x
\end{aligned}
$$

(2) From the quotient rule

$$
\begin{aligned}
& (\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)=\frac{\cos x \cdot \cos x-\sin x(-\sin x)}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{aligned}
$$

Summary of Derivatives of Tri. Functions

(1) The basic trigonometric derivatives (Memorize!)

$$
\frac{d}{d x} \sin x=\cos x, \quad \frac{d}{d x} \cos x=-\sin x
$$

(2) Other standard relationships
(Derive from (1) if necessary)

$$
\begin{array}{lr}
\frac{d}{d x} \tan x=\sec ^{2} x, & \frac{d}{d x} \sec x=\sec x \tan x \\
\frac{d}{d x} \cot x=-\csc ^{2} x, & \frac{d}{d x} \csc x=-\csc x \cot x
\end{array}
$$

[note]
These formula are valid only when the angle x is measured in radians.
[Example 4.2] Find the derivatives of the following functions:

$$
\text { (1) } y=\cos ^{2} x \quad \text { (2) } y=x \sin x+\cos x
$$

Ans.
(1) Chain rule

$$
\begin{gathered}
y^{\prime}=2 \cos x \cdot(\cos x)^{\prime}=2 \cos x \cdot(-\sin x) \\
=-2 \sin x \cos x=-\sin 2 x
\end{gathered}
$$

(2) Product rule

$$
\begin{aligned}
y^{\prime} & =(x \cdot \sin x)^{\prime}+(\cos x)^{\prime} \\
& =(1 \cdot \sin x+x \cos x)-\sin x=x \cos x
\end{aligned}
$$

Exercise

[Ex.4.1] Find the derivatives of the following functions:
(1) $y=\sin a x^{2}$
(2) $y=\frac{1}{\tan x}$
(3) $y=\cos \left(\frac{x}{2}+\frac{\pi}{6}\right)$

Pause the video and solve the problem by yourself.

Answer to Exercise

[Ex.4.1] Find the derivatives of the following functions:
(1) $y=\sin a x^{2}$
(2) $y=\frac{1}{\tan x}$
(3) $y=\cos \left(\frac{x}{2}+\frac{\pi}{6}\right)$
(1) $\frac{d}{d x} \sin \left(a x^{2}\right)=\frac{d}{d u} \sin u \frac{d}{d x}\left(a x^{2}\right)=\cos u \cdot(2 a x)=2 a x \cos \left(a x^{2}\right)$
(2) $y^{\prime}=\left(\frac{\cos x}{\sin x}\right)=\frac{(-\sin x) \sin x-\cos x(\cos x)}{\sin ^{2} x}=-\frac{\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x}=-\frac{1}{\sin ^{2} x}$
(3) $y^{\prime}=\frac{d}{d u} \cos u \frac{d}{d x}\left(\frac{x}{2}+\frac{\pi}{6}\right)=-\frac{1}{2} \sin \left(\frac{x}{2}+\frac{\pi}{6}\right)$

Course II

Lesson 4
 Derivatives of Trigonometric Functions

4B

- Derivatives and Motions
- Position, Velocity and Acceleration
- Simple Harmonic Motion

Velocity and Acceleration

Point \mathbf{P} is moving on the straight line :

Its position is given by

$$
x=f(t)
$$

The average velocity between t_{1} and t_{2}

$$
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}
$$

The instantaneous velocity at $t=t_{1}$

$$
v\left(t_{1}\right)=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t} \quad v=\frac{d s}{d t}=f^{\prime}(t)
$$

The instantaneous acceleration at $t=t_{1}$

$$
\alpha=\frac{d v}{d t}=f^{\prime \prime}(t)
$$

[Example 4-3] The position of the mass moving on the x-axis is given by $s(t)=t^{3}-3 t^{2}-9 t+10$
(1) Find the velocity and the acceleration at $t=2$.
(2) Investigate the motion during $-2 \leq t \leq 4$

Ans. (1) Velocity : $v=\frac{d s}{d t}=3 t^{2}-6 t-9=3(t+1)(t-3) \quad \therefore v(2)=-9$
Acceleration : $a=\frac{d v}{d t}=6(t-1) \quad \therefore a(2)=6$
(2)

t	-2	$\cdots \cdots$	-1	$\cdots \cdots$	3	$\cdots \cdots$	4
v		+	0	-	0	+	
s	8	\nearrow	15	\searrow	-17	\nearrow	-10

Vertical position : $\quad y=A \sin (\omega t+\alpha)$
Velocity :

$$
v=\frac{d y}{d t}=A \omega \cos (\omega t+\alpha)
$$

Acceleration: $\quad a=\frac{d v}{d t}=\frac{d^{2} v}{d t^{2}}=-A \omega^{2} \sin (\omega t+\alpha)$

Exercise

[Exercise.4.2] Point P is moving on the x -axis. Its position is given by $x=2 t+\cos t \quad$. Find the time when the point has the maximum velocity and its maximum velocity.

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Exercise.4.2] Point P is moving on the x -axis. Its position is given by $x=2 t+\cos t \quad$. Find the time when the point has the maximum velocity and its maximum velocity.

Ans.
Velocity $\quad v=\frac{d x}{d t}=2-\sin t$
Maximum velocity occurs at

$$
\sin t=-1
$$

Therefore

$$
t=\frac{3}{2} \pi+2 n \pi
$$

Maximum velocity is 3 .

