Course II

Lesson 5 Derivatives of Logarithmic Functions and Exponential Functions

5A Derivative of logarithmic functions

Review of the Logarithmic Function

Exponential function

$$y = a^x \quad (a > 0, \ a \neq 1)$$

Logarithmic function

$$y = a^x$$

Fig.3

We replace the notation

$$x = a^y \iff y = \log_a x$$

 $y = \log_a x$ $\log_a x$ 0 x x

Derivative of the Logarithmic Function

From the definition

$$(\log_a x)' = \lim_{h \to 0} \frac{\log_a (x+h) - \log_a x}{h}$$
$$= \lim_{h \to 0} \frac{1}{h} \log_a \left(1 + \frac{h}{x}\right) = \lim_{h \to 0} \left\{\frac{1}{x} \cdot \frac{x}{h} \log_a \left(1 + \frac{h}{x}\right)\right\}$$
$$h$$

We put
$$\frac{n}{x} = k$$
. When $h \to 0, k \to 0$.
 $(\log_a x)' = \lim_{k \to 0} \left\{ \frac{1}{x} \cdot \frac{1}{k} \log_a (1+k) \right\}$?
 $= \frac{1}{x} \lim_{k \to 0} \log_a (1+k)^{\frac{1}{k}} = \frac{1}{x} \log_a \left[\lim_{k \to 0} (1+k)^{\frac{1}{k}} \right]$

Napier's Constant

Trial

k	$(1+k)^{\frac{1}{k}}$	k	$(1+k)^{\frac{1}{k}}$
0.1	2.59374 ·····	-0.1	2.86797
0.01	2.70481	-0.01	2.73199
0.001	2.71692	-0.001	2.71964 ······
0.0001	2.71814 ·····	-0.0001	2.71841
0.00001	2.71826	-0.00001	2.71829

We expect that $(1+k)^{\frac{1}{k}}$ approaches one value as $k \longrightarrow 0$

Napier's Constant

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2.718281828459045 \cdots$$

Important Mathematical Constants

"π=3.1415..." was known 4000 years ago "e=2.7182..." was found in 17th century

4

Natural Logarithm

Then

1

$$(\log_a x)' = \frac{1}{x} \log_a e = \frac{1}{x \log_e a}$$

If the base is \mathcal{C} , we have

$$(\log_e x)' = \frac{1}{x} \log_e e = \frac{1}{x}$$

Natural logarithm is the logarithm to the base *e*.

Notation:
$$\log_e x \rightarrow \ln x$$

Summary

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}, \qquad \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$$

Examples

[Example 5.1] Find the derivative of the following functions. (1) $y = \ln 2x$, (2) $y = \log_2(3x+2)$, (3) $y = x \ln 3x$

Ans.

(1)
$$y' = \frac{1}{2x} \cdot (2x)' = \frac{2}{2x} = \frac{1}{x}$$

(2)
$$y' = \frac{1}{(3x+2)\ln 2} \cdot (3x+2)' = \frac{3}{(3x+2)\ln 2}$$

(3)
$$y' = x' \ln 3x + x(\ln 3x)' = \ln 3x + x \cdot \frac{3}{3x} = \ln 3x + 1$$

Examples

[Example 5.2] Calculate the money which you can receive one year later using various compound systems. The principal is 10000 yen. (1) Annual interest is 100%. (2) Half a year interest is 50%, (3) Monthly interest is 100/12%, (4) Daily interest is 100/360%.

Ans.

(1)
$$10000 \times (1+1)^1 = 20,000$$
 yen

(2)
$$10000 \times (1 + 1/2)^2 = 22,500$$
 yen

(3)
$$10000 \times (1 + 1/12)^{12} = 26,130$$
 yen

(4)
$$10000 \times (1 + 1/365)^{365} = 27,148$$
 yen

[Note] Napier's Constant

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = 2.7182$$

Exercise

[Ex.5.1] Find the derivatives of the following functions. (1) $y = (\ln x)^2$, (2) $y = x \ln x$, (3) $y = \log_{10} x$

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex.5.1] Find the derivatives of (1) $y = (\ln x)^2$ and (2) $y = \ln(x^3 + 1)$

Ans.

(1)
$$\frac{d}{dx}(\ln x)^2 = 2\ln x \cdot \frac{d}{dx}\ln x = \frac{2\ln x}{x}$$

(2)
$$\frac{d}{dx}(x\ln x) = (x)' \cdot \ln x + x \cdot (\ln x)' = \ln x + x \cdot \frac{1}{x} = \ln x + 1$$

(3)
$$\log_{10} x = \frac{\ln x}{\ln 10}$$

$$\frac{d}{dx}\log_{10} x = \frac{d}{dx}\frac{\ln x}{\ln 10} = \frac{1}{\ln 10}\frac{d}{dx}\ln x = \frac{1}{(\ln 10)x}$$

9

Lesson 5 Derivatives of Logarithmic Functions and Exponential Functions

Derivative of Inverse Functions

Let
$$f$$
 and g be inverse functions. Then
 $y = f(x) \quad \longleftrightarrow \quad x = g(y)$

Differentiate both sides of (1) by \mathcal{Y} and from the chain rule, we have

$$1 = \frac{df(x)}{dy} = \frac{df(x)}{dx}\frac{dx}{dy} = \frac{df(x)}{dx}\frac{dg(y)}{dy} \qquad \qquad 1 = \frac{df(x)}{dx}\frac{dg(y)}{dy}$$

Therefore

$$\frac{df(x)}{dx} = \frac{1}{\left(\frac{dg(y)}{dy}\right)} \quad \text{or} \quad \frac{dy}{dx} = \frac{1}{\left(\frac{dx}{dy}\right)}$$

Derivative of the Exponential Function

Exponential function of base e

$$y = f(x) = e^x \iff x = g(y) = \ln y$$

Therefore, from the previous slide we have

$$\frac{dy}{dx} = \frac{df(x)}{dx} = \frac{1}{\left(\frac{dg(y)}{dy}\right)} = \frac{1}{\left(\frac{1}{y}\right)} = y$$

 $\frac{d}{dt}(a^x) = a^x \ln a$

12

Case $y = a^x$

If
$$a = e^x$$
, then $x = \ln a$. Therefore
 $y = a^x = (e^{\ln a})^x = e^{x \ln a}$

From the Chain Rule

$$\frac{d}{dt}(a^x) = \frac{d}{dt}(e^{x\ln a}) = e^{x\ln a}\frac{d}{dt}(x\ln a) = a^x\ln a$$

Examples

[Example 5.3] Find the derivative of the following functions.

(1)
$$y = e^{2x}$$
, (2) $y = a^{-2x}$

Ans.

(1) Chain rule

$$y' = e^{2x} \cdot (2x)' = 2e^{2x}$$

(2) Chain rule

$$y' = (a^{-2x} \log a) \cdot (-2x)' = -2a^{-2x} \log a$$

Exercise

[Ex.5.2] Find the derivatives of the following functions. (1) $y = x a^{x}$ (2) $y = 2^{\ln x}$ (3) $y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex.5.2] Find the derivatives of the following functions. (1) $y = x a^{x}$ (2) $y = 2^{\ln x}$ (3) $y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$

(1) Product rule

$$y' = (x)'a^{x} + x(a^{x})' = a^{x} + x \cdot a^{x} \log a = a^{x}(1 + x \log a)$$

(2) Chain rule

$$y' = 2^{\ln x} \ln 2 \cdot (\frac{1}{x}) = \frac{2^{\ln x} \ln 2}{x}$$

(3) Quotient rule

$$y' = \frac{(e^{x} + e^{-x})^{2} - (e^{x} - e^{-x})^{2}}{(e^{x} + e^{-x})^{2}} = \frac{4}{(e^{x} + e^{-x})^{2}}$$

5