Course II

Lesson 5
 Derivatives of Logarithmic Functions and Exponential Functions

5A

- Derivative of logarithmic functions

Review of the Logarithmic Function

Exponential function

$$
y=a^{x} \quad(a>0, \quad a \neq 1)
$$

Fig. 1

Logarithmic function

We replace the notation

$$
x=a^{y} \Longleftrightarrow y=\log _{a} x
$$

Fig. 3

Derivative of the Logarithmic Function

From the definition

$$
\begin{aligned}
\left(\log _{a} x\right)^{\prime} & =\lim _{h \rightarrow 0} \frac{\log _{a}(x+h)-\log _{a} x}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \log _{a}\left(1+\frac{h}{x}\right)=\lim _{h \rightarrow 0}\left\{\frac{1}{x} \cdot \frac{x}{h} \log _{a}\left(1+\frac{h}{x}\right)\right\}
\end{aligned}
$$

We put $\frac{h}{x}=k . \quad$ When $h \rightarrow 0, k \rightarrow 0$.

$$
\begin{aligned}
\left(\log _{a} x\right)^{\prime} & =\lim _{k \rightarrow 0}\left\{\frac{1}{x} \cdot \frac{1}{k} \log _{a}(1+k)\right\} \\
& =\frac{1}{x} \lim _{k \rightarrow 0} \log _{a}(1+k)^{\frac{1}{k}}=\frac{1}{x} \log _{a}\left[\lim _{k \rightarrow 0}(1+k)^{\frac{1}{k}}\right]
\end{aligned}
$$

Napier's Constant

Trial

k	$(1+k)^{\frac{1}{k}}$	k	$(1+k)^{\frac{1}{k}}$
0.1	$2.59374 \cdots \cdots$	-0.1	$2.86797 \cdots \cdots$
0.01	$2.70481 \cdots \cdots$	-0.01	$2.73199 \cdots \cdots$
0.001	$2.71692 \cdots \cdots$	-0.001	$2.71964 \cdots \cdots$
0.0001	$2.71814 \cdots \cdots$	-0.0001	$2.71841 \cdots \cdots$
0.00001	$2.71826 \cdots \cdots$	-0.00001	$2.71829 \cdots \cdots$

We expect that $(1+k)^{\frac{1}{k}}$ approaches one value as $k \longrightarrow 0$ Napier's Constant

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=2.718281828459045 \cdots \cdots
$$

Important Mathematical Constants " $\pi=3.1415 \ldots$..." was known 4000 years ago "e=2.7182..." was found in $17^{\text {th }}$ century

Natural Logarithm

Then

$$
\left(\log _{a} x\right)^{\prime}=\frac{1}{x} \log _{a} e=\frac{1}{x \log _{e} a}
$$

If the base is e, we have

$$
\left(\log _{e} x\right)^{\prime}=\frac{1}{x} \log _{e} e=\frac{1}{x}
$$

Natural logarithm is the logarithm to the base e.
Notation: $\quad \log _{e} x \rightarrow \ln x$

$$
\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}, \quad \frac{d}{d x}(\ln x)=\frac{1}{x}
$$

Examples

[Example 5.1] Find the derivative of the following functions.
(1) $y=\ln 2 x$,
(2) $y=\log _{2}(3 x+2)$,
(3) $y=x \ln 3 x$

Ans.
(1) $y^{\prime}=\frac{1}{2 x} \cdot(2 x)^{\prime}=\frac{2}{2 x}=\frac{1}{x}$
(2) $y^{\prime}=\frac{1}{(3 x+2) \ln 2} \cdot(3 x+2)^{\prime}=\frac{3}{(3 x+2) \ln 2}$
(3) $y^{\prime}=x^{\prime} \ln 3 x+x(\ln 3 x)^{\prime}=\ln 3 x+x \cdot \frac{3}{3 x}=\ln 3 x+1$

Examples

[Example 5.2] Calculate the money which you can receive one year later using various compound systems. The principal is 10000 yen. (1) Annual interest is 100%. (2) Half a year interest is 50%, (3) Monthly interest is $100 / 12 \%$, (4) Daily interest is $100 / 360 \%$.
Ans.
(1) $10000 \times(1+1)^{1}=20,000 \quad$ yen
(2) $10000 \times(1+1 / 2)^{2}=22,500 \quad$ yen
(3) $10000 \times(1+1 / 12)^{12}=26,130 \quad$ yen
(4) $10000 \times(1+1 / 365)^{365}=27,148 \quad$ yen
[Note] Napier's Constant

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e=2.7182
$$

Exercise

[Ex.5.1] Find the derivatives of the following functions.
(1) $y=(\ln x)^{2}$
(2) $y=x \ln x$
(3) $y=\log _{10} x$

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex.5.1] Find the derivatives of (1) $y=(\ln x)^{2} \quad$ and $\quad(2) y=\ln \left(x^{3}+1\right)$

Ans.

(1)

$$
\frac{d}{d x}(\ln x)^{2}=2 \ln x \cdot \frac{d}{d x} \ln x=\frac{2 \ln x}{x}
$$

$$
\begin{equation*}
\frac{d}{d x}(x \ln x)=(x)^{\prime} \cdot \ln x+x \cdot(\ln x)^{\prime}=\ln x+x \cdot \frac{1}{x}=\ln x+1 \tag{2}
\end{equation*}
$$

(3) $\quad \log _{10} x=\frac{\ln x}{\ln 10}$

$$
\frac{d}{d x} \log _{10} x=\frac{d}{d x} \frac{\ln x}{\ln 10}=\frac{1}{\ln 10} \frac{d}{d x} \ln x=\frac{1}{(\ln 10) x}
$$

Course II

Lesson 5
 Derivatives of Logarithmic Functions and Exponential Functions

5B

- Derivative of exponential functions

Derivative of Inverse Functions

Let f and g be inverse functions. Then

$$
y=f(x) \quad \longleftrightarrow x=g(y)
$$

Differentiate both sides of (1) by y and from the chain rule, we have

$$
1=\frac{d f(x)}{d y}=\frac{d f(x)}{d x} \frac{d x}{d y}=\frac{d f(x)}{d x} \frac{d g(y)}{d y} \quad 1=\frac{d f(x)}{d x} \frac{d g(y)}{d y}
$$

Therefore

$$
\frac{d f(x)}{d x}=\frac{1}{\left(\frac{d g(y)}{d y}\right)} \quad \text { or } \quad \frac{d y}{d x}=\frac{1}{\left(\frac{d x}{d y}\right)}
$$

Derivative of the Exponential Function

Exponential function of base e

$$
y=f(x)=e^{x} \longleftrightarrow x=g(y)=\ln y
$$

Therefore, from the previous slide we have

$$
\frac{d y}{d x}=\frac{d f(x)}{d x}=\frac{1}{\left(\frac{d g(y)}{d y}\right)}=\frac{1}{\left(\frac{1}{y}\right)}=y \quad \frac{d}{d x}\left(e^{x}\right)=e^{x}
$$

Case $y=a^{x}$
If $a=e^{x}$, then $x=\ln a$. Therefore

$$
y=a^{x}=\left(e^{\ln a)^{x}}=e^{x \ln a}\right.
$$

From the Chain Rule

$$
\frac{d}{d t}\left(a^{x}\right)=a^{x} \ln a
$$

$$
\frac{d}{d t}\left(a^{x}\right)=\frac{d}{d t}\left(e^{x \ln a}\right)=e^{x \ln a} \frac{d}{d t}(x \ln a)=a^{x} \ln a
$$

Examples

[Example 5.3] Find the derivative of the following functions.

$$
\text { (1) } y=e^{2 x}, \quad \text { (2) } y=a^{-2 x}
$$

Ans.
(1) Chain rule

$$
y^{\prime}=e^{2 x} \cdot(2 x)^{\prime}=2 e^{2 x}
$$

(2) Chain rule

$$
y^{\prime}=\left(a^{-2 x} \log a\right) \cdot(-2 x)^{\prime}=-2 a^{-2 x} \log a
$$

Exercise

[Ex.5.2] Find the derivatives of the following functions.
(1) $y=x a^{x}$
(2) $y=2^{\ln x}$
(3) $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex.5.2] Find the derivatives of the following functions.
(1) $y=x a^{x}$
(2) $y=2^{\ln x}$
(3) $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
(1) Product rule

$$
y^{\prime}=(x)^{\prime} a^{x}+x\left(a^{x}\right)^{\prime}=a^{x}+x \cdot a^{x} \log a=a^{x}(1+x \log a)
$$

(2) Chain rule

$$
y^{\prime}=2^{\ln x} \ln 2 \cdot\left(\frac{1}{x}\right)=\frac{2^{\ln x} \ln 2}{x}
$$

(3) Quotient rule

$$
y^{\prime}=\frac{\left(e^{x}+e^{-x}\right)^{2}-\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}=\frac{4}{\left(e^{x}+e^{-x}\right)^{2}}
$$

