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Graphs and Equations (Case with No Parameter) 

The roots of this equation are given by the  
coordinates of the cross points of  the  
following graphs. 
                             and 

Technique 

                      )()( xgxf =

Equation 

)(xfy = )(xgy =

•  When the equation                         does not include a parameter, 
  we investigate the cross points of the graph  
  and the     -axis.  
•  In other words, we solve for the zeros of                        . 

x
)()( xgxfy −=

)()( xgxf −

)()( xgxf =

xO  

)(xfy =

)(xgy =

y

1x 2x
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Intermediate Value Theorem 

Intermediate Value Theorem  
Let the curve represented by                    be continuous on the interval 
[          ] and         be a number between             and           .   
Then, there　must be at least one value      within [          ]  
such that                    .  

)(xfy =
ba, m

mcf =)(
ba,

)(af )(bf
c

[Note]  
In case that the function increases or 
decreases monotonically in [         ],  
then the number     is unique. 

ba,
c

Got it 

m

xO  

)(xfy =

y

a bc

)(af

)(bf
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Example  

[Examples 6-1] Find the number of the real roots of the following equation.  
  
 

We put 

133 −= xx
Ans. 

133 +−= xxy
Then )1)(1(333 2 −+=−=ʹ xxxy

0=ʹy at 1,1 +−=x

x
yʹ
y

1− 1+
0 0

3 1−

・ ・ ・	 ・ ・ ・	 ・ ・ ・	

＋	 ＋	－	

This graph crosses     -axis at three points. 
Therefore, this equation has three real roots 

x
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Graphs and Equations (Case with a Parameter) 

Technique 

Rearrange 
Suppose that the equation has the form 

Equation                      
),()( kxgxf =

)()( xgkxf ⋅= k
xg
xf
=−
)(
)( ( )0)( ≠xg

Illustrate graphs 

)(
)(
xg
xfy −=

ky = } Find cross-points 

x

),( kxgy =

xO  

)(xfy =y

1x 2x



6 

Example 

[Examples 6-2] Find the range of parameter     when the following a cubic  
equation has three real roots. 

a

L.Max L.Min. 

From the graph, we have  

After rearrarngement Ans. 

About the function  
axx =+ 23 3

23 3xxy +=

)2(363 2 +=+=ʹ xxxxy
ay =
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Example 
[Examples 6-3] Investigate the number of the roots of the following equation.  
 axex +=
Ans. xey x −=

1−=ʹ∴ xey
at  00 ==ʹ xy

x
yʹ
y 1+

0
0

・ ・ ・	 ・ ・ ・	

＋	－	

Number of roots 
    Zero when  
    One when 
    Two when  1

1
0

>
=
<

a
a
a

4

2

2−

1 22− 1− O  

xey x −=

xey =

xy −=

1

x

y

ay =
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Exercises	

[ Ex.6-1 ] Let　　　be a real constant.  Investigate the relationship between 　	
              and the number of the cross points of                               and 
             
Ans. 

Pause the video and solve the problem by yourself. 

13 −−= xxy
mxy += 2

m
m
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Exercises	

[ Ex.6-1 ] Let　　　be a real constant.  Investigate the relationship between 　	
 and the number of the cross points of                               and             13 −−= xxy mxy += 2

m

Ans. Put    mxxx +=−− 213

mxx =−−∴ 133

We consider two functions.  
133 −−= xxy and my =

From the former  
)1)(1(333 2 +−=−=ʹ xxxy

x
yʹ
y

1− 1+
0 0

・ ・ ・	 ・ ・ ・	 ・ ・ ・	

＋	 ＋	－	

3−1+

Number of roots 
    One when  
    Two when 
    Three when  13

1,3
1,3

<<−
−=

<−<

m
m

mm

1>m

1=m

m 13 <<− m

3−=m

3－<m
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Graphs and Inequality (Case with No Parameter) 

Technique 

Inequality                       
)()( xgxf >

x
)(xfy = )(xgy =

The solutions of this inequality are given by  
the domain in the     -axis where the graphs of  
                    is larger than that of                    . 

.  

)()( xgxfy −=
0>y

Illustrate the graph  of                                   and find the domain  
where              holds. 

.               

1x 2x

)(xfy =

)(xgy =
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Example  
[Examples 6-5] Prove the following inequality.  
 
 where  

Ans. Put 
∴

This function                            has the minimum value      at           . 
Since           in the domain             , we find  

3

3
11 xx <− 0>x

1
3
1 3 +−= xxy

)1)(1(12 +−=−=ʹ xxxy

1=x1
3
1 3 +−= xxy 3

1

0>x0>y
3

3
11 xx <− in  0>x

x
yʹ
y

1+
0

・ ・ ・	 ・ ・ ・	

＋	－	

3
11

－	

0
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 Example   

[Examples 6-6] Prove the following inequality.  
 
 where  

Put )1( xey x +−=

for 0>x

increases monotonically. 

01>−=ʹ∴ xey

xex +>1 0>x

Ans. 

y
0=y at 0=x

x
yʹ
y

0 ・ ・ ・	

＋	0

0

From this table                       in                    xex +>1 0>x

x

y

O  

xy +=1

xey =
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Graphs and Equations (Case with a Parameter) 

Technique 
Rearrange 

In case of  

Problem and Equation                      

Illustrate graphs of 

ky =
} Determine      which satisfy  

),()( kxgxf >

)()( xkgxf > k
xg
xf
>
)(
)(

)(
)(
xg
xfy =

k
xg
xf
>
)(
)(

( )0)( >xg

k

PROBLEM: Find value of       which satisfy  
                   this equation. 

k

xO  

)(xfy =y

),( kxgy =
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Example 
[Examples 6-7] Find the range of the parameter       which satisfy  the  
                   following inequality.  xax ln≥

 0 

x ex <<0 e xe <
yʹ
y

+ －	

e/1

a

Ans. Rearrangement. 

∴

x
xa ln

≥

x
xy ln

=

22
ln11ln1

x
x

x

xx
xy −

=
⋅−

=ʹ

0=ʹy at ex =

Plot 

xy ln=

xey )/1(=

axy =

x

y

e
a 1
≥

ay =

x
xy ln

=

ay =

e/1

e

a

Answer 
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Exercises 

[ Ex.6-2 ]　Prove the following inequality                               
             
 

Ans. 

where 

Pause the video and solve the problem by yourself. 

0≥x23 3279 xxx ≥+−
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Answer to the Exercises	

[ Ex.6-2 ]　Prove the following inequality                               
             
 

Ans. 

where 0≥x23 3279 xxx ≥+−

2793 23 +−−= xxxyWe put 
Then )3)(1(3963 2 −+=−−=ʹ xxxxy

0=ʹy at 3,1−=x x
yʹ
y

0
・ ・ ・	 ・ ・ ・	

＋	－	－	

0 3

27 0

From this table                                     , that is,                             
 in the domain  

02793 23 ≥+−− xxx 23 3279 xxx ≥+−
0≥x


