Lesson 6
 Applications of Derivatives to Equations and Inequality

6A

－Graphs and Equations

Graphs and Equations (Case with No Parameter)

Equation

$$
f(x)=g(x)
$$

The roots of this equation are given by the coordinates of the cross points of the following graphs.

$$
y=f(x) \text { and } y=g(x)
$$

Technique

- When the equation $f(x)=g(x)$ does not include a parameter, we investigate the cross points of the graph $y=f(x)-g(x)$ and the X-axis.
- In other words, we solve for the zeros of $f(x)-g(x)$.

Intermediate Value Theorem

Intermediate Value Theorem

Let the curve represented by $y=f(x)$ be continuous on the interval [a, b] and m be a number between $f(a)$ and $f(b)$. Then, there must be at least one value c within $[a, b]$ such that $f(c)=m$.

[Note]

In case that the function increases or decreases monotonically in $[a, b]$, then the number c is unique.

Example

[Examples 6-1] Find the number of the real roots of the following equation.

$$
x^{3}=3 x-1
$$

Ans.
We put $y=x^{3}-3 x+1$
Then $y^{\prime}=3 x^{2}-3=3(x+1)(x-1)$

$$
y^{\prime}=0 \quad \text { at } \quad x=-1,+1
$$

x	\cdots	-1	\cdots	+1	\cdots
y^{\prime}	+	0	-	0	+
y	\nearrow	3	\searrow	-1	\nearrow

This graph crosses x-axis at three points.

Therefore, this equation has three real roots

Graphs and Equations (Case with a Parameter)

Equation

$$
f(x)=g(x, k)
$$

Technique

Suppose that the equation has the form

$$
f(x)=k \cdot g(x) \stackrel{\text { Rearrange }}{\Longrightarrow}-\frac{f(x)}{g(x)}=k \quad(g(x) \neq 0)
$$

Illustrate graphs

$$
\left.y=-\frac{f(x)}{g(x)} \quad\right\} \quad \text { Find cross-points }
$$

Example

[Examples 6-2] Find the range of parameter a when the following a cubic equation has three real roots. $\quad x^{3}+3 x^{2}-a=0$

Ans. After rearrarngement

$$
x^{3}+3 x^{2}=a
$$

About the function

$$
\begin{gathered}
y=x^{3}+3 x^{2} \\
y^{\prime}=3 x^{2}+6 x=3 x(x+2)
\end{gathered}
$$

x	$\cdots \cdots$	-2	$\cdots \cdots$	0	$\cdots \cdots$
y^{\prime}	+	0	-	0	+
y		L.Max			L.Min. y

From the graph, we have $0<a<4$

Example

[Examples 6-3] Investigate the number of the roots of the following equation.

$$
e^{x}=x+a
$$

Ans. $y=e^{x}-x$
$\therefore y^{\prime}=e^{x}-1$
$y^{\prime}=0$ at $x=0$

Number of roots
Zero when $a<0$

One when $a=1$
Two when $a>1$

Exercises

[Ex.6-1] Let m be a real constant. Investigate the relationship between m and the number of the cross points of $=x^{3}-x-1$ and $y=2 x+m$

Ans.

Pause the video and solve the problem by yourself.

Exercises

[Ex.6-1] Let m be a real constant. Investigate the relationship between and the number of the cross points of $y=x^{3}-x-1$ and $y=2 x+m$

Ans. Put $x^{3}-x-1=2 x+m$

$$
\therefore \quad x^{3}-3 x-1=m
$$

We consider two functions.

$$
y=x^{3}-3 x-1 \text { and } y=m
$$

From the former

$$
y^{\prime}=3 x^{2}-3=3(x-1)(x+1)
$$

x	\ldots	-1	\ldots	+1	\ldots
y^{\prime}	+	0	-	0	+
y	\nearrow	+1	\searrow	-3	\nearrow

Number of roots
One when $m<-3,1<m$
Two when $m=-3$, 1
Three when $-3<m \otimes 1$

Lesson 6
 Applications of Derivatives to Equations and Inequality

6B

－Graphs and Inequalities

Graphs and Inequality (Case with No Parameter)

Inequality

$$
f(x)>g(x)
$$

The solutions of this inequality are given by the domain in the x-axis where the graphs of $y=f(x)$ is larger than that of $y=g(x)$.

Technique

Illustrate the graph of $y=f(x)-g(x)$ and find the domain where $y>0$ holds.

Example

[Examples 6-5] Prove the following inequality.

$$
x-1<\frac{1}{3} x^{3} \quad \text { where } \quad x>0
$$

Ans. Put $y=\frac{1}{3} x^{3}-x+1$

$$
\therefore \quad y^{\prime}=x^{2}-1=(x-1)(x+1)
$$

x	0	\cdots	+1	\cdots
y^{\prime}	-	-	0	+
y	1	\searrow	$\frac{1}{3}$	

This function $y=\frac{1}{3} x^{3}-x+1$ has the minimum value $\frac{1}{3}$ at $x=1$.
Since $y>0$ in the domain $x>0$, we find

$$
x-1<\frac{1}{3} x^{3} \quad \text { in } \quad x>0
$$

Example

[Examples 6-6] Prove the following inequality.

$$
e^{x}>1+x \quad \text { where } \quad x>0
$$

Ans.
Put $y=e^{x}-(1+x)$
$\therefore y^{\prime}=e^{x}-1>0 \quad$ for $\quad x>0$
y increases monotonically.
$y=0$ at $x=0$

x	0	\cdots
y^{\prime}	0	+
y	0	\nearrow

From this table $e^{x}>1+x$ in $x>0$

Graphs and Equations (Case with a Parameter)

Problem and Equation

$$
f(x)>g(x, k)
$$

PROBLEM: Find value of k which satisfy this equation.

Technique

In case of $\quad f(x)>k g(x) \stackrel{\text { Rearrange }}{\Rightarrow} \frac{f(x)}{g(x)}>k \quad(g(x)>0)$
Illustrate graphs of

$$
\left.\begin{array}{l}
y=\frac{f(x)}{g(x)} \\
y=k
\end{array}\right\} \quad \text { Determine } k \text { which satisfy } \frac{f(x)}{g(x)}>k
$$

Example

[Examples 6-7] Find the range of the parameter a which satisfy the following inequality. $a x \geq \ln x \quad(x>0)$
Ans. Rearrangement. $a \geq \frac{\ln x}{x}$

$$
\text { Plot } y=\frac{\ln x}{x}
$$

$$
y^{\prime}=0 \quad \text { at } \quad x=e
$$

x	$0<x<e$	e	$e<x$
y^{\prime}	+	0	-
y	-	$1 / e$	-

Answer

$$
a \geq \frac{1}{e}
$$

Exercises

[Ex.6-2] Prove the following inequality

$$
x^{3}-9 x+27 \geq 3 x^{2} \quad \text { where } \quad x \geq 0
$$

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercises

[Ex.6-2] Prove the following inequality

$$
x^{3}-9 x+27 \geq 3 x^{2} \quad \text { where } \quad x \geq 0
$$

Ans.

We put $\quad y=x^{3}-3 x^{2}-9 x+27$
Then $\quad y^{\prime}=3 x^{2}-6 x-9=3(x+1)(x-3)$

$$
y^{\prime}=0 \text { at } x=-1,3
$$

x	0	\cdots	3	\cdots
y^{\prime}	-	-	0	+
y	27	\searrow	0	

From this table $x^{3}-3 x^{2}-9 x+27 \geq 0$, that is, $x^{3}-9 x+27 \geq 3 x^{2}$ in the domain $x \geq 0$

