Lesson 7 Applications to Physics

7A

- Velocity and Acceleration of a Particle

Motion in a Straight Line : Velocity

Motion in the x-axis

Average velocity

$$
\bar{v}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=\frac{\Delta x}{\Delta t} \quad[\mathrm{~m} / \mathrm{s}]
$$

Instantaneous velocity

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t} \quad[\mathrm{~m} / \mathrm{s}]
$$

Motion in a Straight Line : Acceleration

Average acceleration

$$
\begin{gathered}
\bar{a}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{\Delta v}{\Delta t} \\
{\left[\mathrm{~m} / \mathrm{s}^{2}\right]}
\end{gathered}
$$

Instantaneous velocity

$$
\begin{gathered}
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t} \\
{\left[\mathrm{~m} / \mathrm{s}^{2}\right]}
\end{gathered}
$$

Velocity and Speed

Vector and Scalar

Vector --- A quantity that is described by both a magnitude and a direction. Scalar --- A quantity that is described by a magnitude alone.

Velocity and Speed

Velocity --- A vector quantity that refer to how fast and in what direction an object is moving.
Speed --- A scalar quantity that refers to how fast an object is moving
"Velocity is speed with a direction."

Planner Motion

Velocity and Speed

Velocity of point $\mathrm{Q}: \frac{d x}{d t}$,
Velocity of point $\mathrm{R}: \frac{d y}{d t}$
Velocity of point $\mathrm{P}: \quad \vec{v}=\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$
Speed of point P: $v=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$

Acceleration

Example : Case of Constant Acceleration

[Examples 7-1] A ball is tossed straight up with an initial speed of $25 \mathrm{~m} / \mathrm{s}$. Take the y-axis upward with the origin at the ball's release point. If the time t is counted from the instant when the ball is released, the position of the ball is given by

$$
y(t)=y_{0}+v_{0} t-\frac{1}{2} g t^{2}
$$

where $y_{0}=0 \mathrm{~m}, v_{0}=25 \mathrm{~m} / \mathrm{s}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Determine the time when the ball reaches its highest position and what is its height ?

Ans.

The velocity $v=\frac{d y}{d t}=v_{0}-g t$
At the top, we have

$$
v_{0}-g t_{1}=0
$$

$$
\begin{aligned}
& \therefore t_{1}=\frac{v_{0}}{g}=\frac{25 \mathrm{~m} / \mathrm{s}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=2.6 \mathrm{~s} \\
& y\left(t_{1}\right)=0+25 \times 2.6-\frac{1}{2} \times 9.8 \times 2.6^{2}=32 \mathrm{~m}
\end{aligned}
$$

Exercises

[Ex.7-1] The position of a particle moving in the x-axis is given by

$$
x(t)=t^{3}-6 t^{2}+9 t+2
$$

(1) Find the velocity and the acceleration at $t=2$
(2) Investigate the motion during $0 \leq t \leq 4$.

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercises

[Ex.7-1] The position of a particle moving in the x-axis is given by

$$
x(t)=t^{3}-6 t^{2}+9 t+2
$$

(1) Find the velocity and the acceleration at $t=2$.
(2) Investigate the motion during $0 \leq t \leq 4$.

Ans.
(1) $v(t)=\frac{d x}{d t}=3 t^{2}-12 t+9=3(x-1)(x-3)$

$$
a(t)=\frac{d v}{d t}=6 t-12 \quad \text { Therefore, } v(2)=-3, \quad a(2)=0
$$

(2)							
t	0	\ldots	1	\ldots	3		\ldots
44							
v	+	+	0	-		0	
+							
x	2	\nearrow	6	\searrow	2	\nearrow	6

Lesson 7 Applications to Physics

7B

- Related Rates

Example

[Example 7-2] A man is pulling a boat from the top of quay using a rope. The height of a man is 9 m from the water surface and the rate of change of the rope length is $2 \mathrm{~m} / \mathrm{s}$. What is the speed of the boat when the rope length is 15 m .

Ans.

Rope length $l[\mathrm{~m}]$

Distance between the quay and the boat u [m$]$

$$
u^{2}+9^{2}=l^{2}
$$

Differentiate by t

$$
2 u \frac{d u}{d t}=2 l \frac{d l}{d t}
$$

Conditions

$$
\frac{d l}{d t}=-2 \mathrm{~m} / \mathrm{s}, l=15 \mathrm{~m}, u=\sqrt{15^{2}-9^{2}}=12
$$

Then

$$
12 \times \frac{d u}{d t}=15 \times(-2) \quad \therefore \frac{d u}{d t}=-2.5 \mathrm{~m} / \mathrm{s}
$$

Example

[Example 7-3] Water is poured into an inverted circular cone of base radius 8 cm and height 16 cm at the rate $3 \mathrm{~cm}^{3}$. What is the rate of increase of the height of the water level when the depth is 6 cm ?
Ans.
Volume of the water $V=\frac{1}{3} \pi r^{2} h$
Ratio 8:r=16:h, Therefore $r=\frac{1}{2} h$

$$
V=\frac{1}{12} \pi h^{3}
$$

Differentiation by $t: \frac{d V}{d t}=\frac{1}{4} \pi h^{2} \frac{d h}{d t}$
Condition : $\frac{d V}{d t}=3 \mathrm{~cm}^{3} / \mathrm{s}, h=6 \mathrm{~cm}$
Substitution

$$
3=\frac{1}{4} \pi \times 6^{2} \times \frac{d h}{d t}, \therefore \frac{d h}{d t}=\frac{1}{3 \pi} \mathrm{~cm} / \mathrm{s}
$$

[Ex.7-2] A rectangular water tank is being filled at the constant rate of 20 liters/s. The dimensions of the tank are $w=1 \mathrm{~m}$ and $l=2 \mathrm{~m}$. What is the rate of change of the height x of water in the tank?

Ans.
Pause the video and solve the problem by yourself.

Answer to the Exercises

[Ex.7-2] A rectsngulsr water tank is being filled at the constant rate of 20 liters/s. The dimensions of the tank are $w=1 \mathrm{~m}$ and and $l=2 \mathrm{~m}$. What is the rate of change of the height x of water in the tank ?

Ans.

$$
V(t)=w l x(t)
$$

$$
\frac{d V}{d t}=w l \frac{d x}{d t}=\frac{1}{w l}\left(\frac{d V}{d t}\right)=\frac{20000}{100 \cdot 200}=1
$$

Differentiation by t :

$$
\frac{d V}{d t}=w l \frac{d x}{d t}
$$

Condition: $\frac{d V}{d t}=201$ liter $/ \mathrm{s}=20000 \mathrm{~cm}^{3} / \mathrm{s}$
By substitution, we have

$$
\frac{d x}{d t}=\frac{1}{w l}\left(\frac{d V}{d t}\right)=\frac{20000}{100 \cdot 200}=1 \quad \mathrm{~cm} / \mathrm{s}
$$

