

Lesson 7 Applications to Physics

7A

Velocity and Acceleration of a Particle

Motion in a Straight Line: Velocity

Motion in the x-axis

Average velocity

$$\overline{v} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$
 [m/s]

Instantaneous velocity

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$
 [m/s]

Motion in a Straight Line: Acceleration

Average acceleration

$$\overline{a} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$
[m/s²]

Instantaneous velocity

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$
[m/s²]

Velocity and Speed

Vector and Scalar

Vector --- A quantity that is described by both a magnitude and a direction.

Scalar --- A quantity that is described by a magnitude alone.

Velocity and Speed

Velocity --- A vector quantity that refer to how fast and in what direction an object is moving.

Speed --- A scalar quantity that refers to how fast an object is moving

"Velocity is speed with a direction."

Car A and car B have same speed but different velocity

Planner Motion

Velocity and Speed

Velocity of point Q: $\frac{dx}{dt}$,

Velocity of point R : $\frac{dy}{dt}$

Velocity of point P:
$$\vec{v} = \left(\frac{dx}{dt}, \frac{dy}{dt}\right)$$

Speed of point P:
$$v = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

Acceleration of point P: $\vec{a} = \left(\frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}\right)$

Magnitude of acceleration

$$a = \sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2}$$

Example: Case of Constant Acceleration

[Examples 7-1] A ball is tossed straight up with an initial speed of 25m/s. Take the *y*-axis upward with the origin at the ball's release point. If the time t is counted from the instant when the ball is released, the position of the ball is given by $y(t) = y_0 + v_0 t - \frac{1}{2} g t^2$

where $y_0 = 0$ m, $v_0 = 25$ m/s and g = 9.8 m/s². Determine the time when the ball reaches its highest position and what is its height?

Ans.

The velocity
$$v = \frac{dy}{dt} = v_0 - gt$$

At the top, we have $v_0 - gt_1 = 0$

$$\therefore t_1 = \frac{v_0}{g} = \frac{25\text{m/s}}{9.8\text{m/s}^2} = 2.6\text{s}$$

$$y(t_1) = 0 + 25 \times 2.6 - \frac{1}{2} \times 9.8 \times 2.6^2 = 32 \text{ m}$$

Exercises

[Ex.7-1] The position of a particle moving in the x-axis is given by

$$x(t) = t^3 - 6t^2 + 9t + 2$$

- (1) Find the velocity and the acceleration at t = 2.
- (2) Investigate the motion during $0 \le t \le 4$.

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercises

[Ex.7-1] The position of a particle moving in the x-axis is given by

$$x(t) = t^3 - 6t^2 + 9t + 2$$

- Find the velocity and the acceleration at t = 2.
- (2) Investigate the motion during $0 \le t \le 4$.

(1)
$$v(t) = \frac{dx}{dt} = 3t^2 - 12t + 9 = 3(x - 1)(x - 3)$$

 $a(t) = \frac{dv}{dt} = 6t - 12$ Therefore, $v(2) = -3$, $a(2) = 0$

$$a(t) = \frac{av}{dt} = 6t - 12$$

(2)

t	0		1		3		. 4	4
\overline{v}	+	+	0		(þ	+	+
X	2	*	6	/	2	7	6	6

Lesson 7 Applications to Physics

7B

Related Rates

Example

[Example 7-2] A man is pulling a boat from the top of quay using a rope. The height of a man is 9 m from the water surface and the rate of change of the rope length is 2 m/s. What is the speed of the boat when the rope length is 15m.

Ans.

Rope length l [m]

Distance between the quay and the boat u [m]

$$u^2 + 9^2 = l^2$$

Differentiate by t

$$2u\frac{du}{dt} = 2l\frac{dl}{dt}$$

$$\frac{dl}{dt}$$
 = -2 m/s, $l = 15$ m, $u = \sqrt{15^2 - 9^2} = 12$

Then

$$12 \times \frac{du}{dt} = 15 \times (-2) \qquad \therefore \frac{du}{dt} = -2.5 \quad \text{m/s}$$

Example

[Example 7-3] Water is poured into an inverted circular cone of base radius 8 cm and height 16 cm at the rate 3 cm³. What is the rate of increase of the height of the water level when the depth is 6cm?

Ans.

Volume of the water
$$V = \frac{1}{3}\pi r^2 h$$

Ratio 8:
$$r = 16$$
: h , Therefore $r = \frac{1}{2}h$

$$V = \frac{1}{12}\pi h^3$$

Differentiation by
$$t$$
: $\frac{dV}{dt} = \frac{1}{4}\pi h^2 \frac{dh}{dt}$

Condition:
$$\frac{dV}{dt} = 3 \text{ cm}^3/\text{s}$$
, $h = 6 \text{ cm}$

$$3 = \frac{1}{4}\pi \times 6^2 \times \frac{dh}{dt}$$
, $\therefore \frac{dh}{dt} = \frac{1}{3\pi}$ cm/s

Exercises

[Ex.7-2] A rectangular water tank is being filled at the constant rate of 20 liters/s. The dimensions of the tank are w = 1 m and l = 2 m. What is the rate of change of the height x of water in the tank?

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercises

[Ex.7-2] A rectsngulsr water tank is being filled at the constant rate of 20 liters/s. The dimensions of the tank are w = 1 m and and l = 2 m. What is the rate of change of the height x of water in the tank?

Ans.

$$V(t) = wlx(t)$$

$$\frac{dV}{dt} = wl\frac{dx}{dt} = \frac{1}{wl}\left(\frac{dV}{dt}\right) = \frac{20000}{100 \cdot 200} = 1$$
Differentiation by t :
$$\frac{dV}{dt} = wl\frac{dx}{dt}$$

Condition:
$$\frac{dV}{dt} = 201 \text{iter/s} = 20000 \text{ cm}^3/\text{s}$$

By substitution, we have

$$\frac{dx}{dt} = \frac{1}{wl} \left(\frac{dV}{dt} \right) = \frac{20000}{100 \cdot 200} = 1 \quad \text{cm/s}$$