Lesson 10 Definite Integrals

10A

- Area and Antiderivatives

Derivative of Area

Let the area of ABQP be $S(x)$
When x increases by h, the area increases by

$$
d S=S(x+h)-S(x) \approx h f(x)
$$

Derivative of $S(x)$

$$
\frac{d S}{d x}=\lim _{h \rightarrow 0} \frac{S(x+h)-S(x)}{h} \approx f(x)
$$

$$
S^{\prime}(x)=f(x)
$$

Area function $S(x)$ is one of antiderivatives of $f(x)$.

Area and Indefinite integral

Let $F(x)$ be an arbitrary antiderivative.

$$
S(x)=F(x)+C
$$

From the definition $S(a)=0$ at $x=a$

$$
\therefore 0=F(a)+C \quad \therefore \quad C=-F(a)
$$

Therefore

$$
S(x)=F(x)-F(a)
$$

When $x=b$, the area is given by

$$
S=F(b)-F(a)
$$

Definite Integral

$F(b)-F(a)$ is called the definite integral of $f(x)$ over $[a, b]$ and written by $\int_{a}^{b} f(x) d x$ or $[F(x)]_{a}^{b}$

Definite integral

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{p}=F(b)-F(a)
$$

Since

$$
\begin{aligned}
{[F(x)+C]_{a}^{b} } & =\{F(b)+C\}-\{F(a)+C\} \\
& =F(b)-F(a) \\
& =[F(x)]_{a}^{b}
\end{aligned}
$$

$F(x)$ is an arbitrary antiderivative.

Properties of Definite Integrals

Linearity of the definite integrals
(1)

$$
\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x
$$

(2)

$$
\int_{a}^{b}\{f(x)+g(x)\} d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Reversing the integration

$$
\begin{equation*}
\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x \tag{3}
\end{equation*}
$$

Additivity for adjacent integrals

(4)

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Example

Examples 13-1 Find the followina definite integral

$$
\int_{-2}^{4}\left(x^{2}-3 x+1\right) d x
$$

Ans.

$$
\begin{aligned}
\int_{-2}^{4}\left(x^{2}-3 x+1\right) d x & =\int_{-2}^{4} x^{2} d x-3 \int_{-2}^{4} x d x+\int_{-2}^{4} d x \\
& =\left[\frac{x^{3}}{3}\right]_{-2}^{4}-3\left[\frac{x^{2}}{2}\right]_{-2}^{4}+[x]_{-2}^{4} \\
& =\frac{4^{3}-(-2)^{3}}{3}-\frac{3\left\{4^{2}-(-2)^{2}\right\}}{2}+\{4-(-2)\} \\
& =12
\end{aligned}
$$

Example

Examples 13-2 Find the following definite integrals.
(1)

$$
\int_{-1}^{3} x d x-\int_{-1}^{1} x d x
$$

(2)

$$
\int_{0}^{\frac{\pi}{2}} \sin 2 \theta d \theta
$$

Ans.

(1) $\quad \int_{-1}^{3} x d x-\int_{-1}^{1} x d x=\int_{-1}^{3} x d x+\int_{1}^{-1} x d x$

$$
=\int_{1}^{3} x d x=\left[\frac{x^{2}}{2}\right]_{1}^{3}=4
$$

(2) $\int_{0}^{\frac{\pi}{2}} \sin 2 \theta d \theta=\left[\frac{-\cos 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}}=\frac{-(-1)}{2}-\frac{(-1)}{2}=1$

Exercises

Ex.10-1 Find the following definite integral.

$$
\int_{0}^{1}\left(x^{2}-x\right) d x+\int_{1}^{3}\left(x^{2}-x\right) d x
$$

Ans.

Pause the video and solve by yourself.

Answer to the Exercises

Ex.10-1 Find the following definite integrals

$$
\int_{0}^{1}\left(x^{2}-x\right) d x+\int_{1}^{3}\left(x^{2}-x\right) d x
$$

Ans.

$$
\begin{aligned}
\int_{0}^{1}\left(x^{2}-x\right) d x+\int_{1}^{3}\left(x^{2}-x\right) d x & =\int_{0}^{3}\left(x^{2}-x\right) d x \\
& =\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{0}^{3}=\frac{9}{2}
\end{aligned}
$$

Course II

Lesson 10 Definite Integrals (1)

10B

- Integration by substitution
- Integration by parts

Integration by Substitution

Integration by Substitution (1)

For the function $\quad x=g(t)$
If $a=g(\alpha)$ and $b=g(\beta)$
then

$$
\int_{a}^{b} f(x) d x=\int_{\alpha}^{\beta} f(g(t)) g^{\prime}(t) d t
$$

Integration by Substitution (2)

If $\alpha=u(a)$ and $\beta=u(b)$
then

$$
\int_{a}^{b} f(u(x)) \mu^{\prime}(x) d x=\int_{\alpha}^{\beta} f(u) d u
$$

Example

[Examples 13-4] Find the followina definite integral by putting $2 x+1=t$

$$
\int_{0}^{1}(2 x+1)^{3} d x
$$

Ans.

$$
\text { Put } \quad 2 x+1=t
$$

Then

$$
x=\frac{t-1}{2}, \quad d x=\frac{1}{2} d t
$$

x	$0 \longrightarrow 1$
t	$1 \longrightarrow 3$

Therefore

$$
\int_{0}^{1}(2 x+1)^{3} d x=\int_{1}^{3} t^{3} \cdot \frac{1}{2} d t=\frac{1}{2} \int_{1}^{3} t^{3} d t=\frac{1}{2}\left[\frac{t^{4}}{4}\right]_{1}^{3}=10
$$

Example

Examples 10-5 Evaluate the following integral

$$
\int_{0}^{2} x^{2} \sqrt{x^{3}+1} d x
$$

Ans.
We put $u=x^{3}+1$, then $d u=3 x^{2} d x$
Therefore,

$$
\int_{0}^{2} x^{2} \sqrt{x^{3}+1} d x=\int_{1}^{9} \sqrt{u}\left(\frac{1}{3} d u\right)=\frac{1}{3} \int_{1}^{9} u^{\frac{1}{2}} d u=\frac{1}{3}\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{1}^{9}=\frac{52}{9}
$$

Integration by Parts

We learned

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x
$$

In the case of definite integral

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=[f(x) g(x)]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

Example

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} x \underline{\cos x} d x=\int_{0}^{\frac{\pi}{2}} x(\sin x)^{\prime} d x \\
&=[x \sin x]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}}(x)^{\prime} \underline{\sin x d x} \\
& g^{\prime}(x)=\frac{\pi}{2}-\int_{0}^{\frac{\pi}{2}} \sin x d x=\frac{\pi}{2}-[-\cos x]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}-1
\end{aligned}
$$

Exercises

Ex.13-2 Find the following definite integrals

$$
\int_{-3}^{-1} \frac{d x}{(2 x+1)^{3}}
$$

Ans.

Pause the video and solve by yourself.

Ex.13-2 Find the following definite integrals

$$
\int_{-3}^{-1} \frac{d x}{(2 x+1)^{3}}
$$

Ans. We can solve this as follows. Put $2 x+1=t$
then $\quad x=\frac{t-1}{2}, \quad d x=\frac{1}{2} d t$
The new limits of integration are

$$
t(-3)=-5 \quad \text { and } \quad t(-1)=-1
$$

Therefore,

$$
\int_{-3}^{-1} \frac{d x}{(2 x+1)^{3}}=\int_{-5}^{-1} t^{-3} \cdot \frac{1}{2} d t=\frac{1}{2} \int_{-5}^{-1} t^{-3} d t=\frac{1}{2}\left[\frac{t^{-2}}{-2}\right]_{-5}^{-1}=-\frac{6}{25}
$$

Exercises

Ex.13-3 Find the following definite integrals

$$
\int_{0}^{2} x^{2} e^{x} d x
$$

Ans.

Pause the video and solve by yourself

Ex.13-3 Find the following definite integrals

$$
\int_{0}^{2} x^{2} e^{x} d x
$$

Ans.

 In this exercise, we apply the formula twice as follows.$$
\begin{aligned}
& \int_{0}^{2} x^{2} e^{x} d x=\left[x^{2} e^{x}\right]^{2}-\int_{0}^{2} 2 x e^{x} d x=4 e^{2}-2\left(\left[x e^{x}\right]^{2}-\int_{0}^{2} e^{x} d x\right) \\
& =4 e^{2}-2\left(2 e^{2}-\left[e^{x}\right]^{2}\right)=4 e^{2}-4 e^{2}+2\left(e^{2}-1\right)=2\left(e^{2}-1\right)
\end{aligned}
$$

