

1

Lesson 10 Definite Integrals

10A • Area and Antiderivatives

Derivative of Area

Area and Indefinite integral

Let
$$F(x)$$
 be an arbitrary antiderivative.
 $S(x) = F(x) + C$
From the definition $S(a) = 0$ at $x = a$
 $\therefore 0 = F(a) + C$ $\therefore C = -F(a)$
Therefore $S(x) = F(x) - F(a)$
When $x = b$, the area is given by
 $S = F(b) - F(a)$
 y
 $S = F(b) - F(a)$

Definite Integral

F(b) - F(a) is called the definite integral of f(x) over [a, b]and written by $\int_{a}^{b} f(x) dx$ or $\left[F(x) \right]_{a}^{b}$

Definite integral $\int_{a}^{b} f(x)dx = \left[F(x)\right]_{a}^{b} = F(b) - F(a)$

S

Since
$$\begin{bmatrix} F(x) + C \end{bmatrix}_{a}^{b} = \{F(b) + C\} - \{F(a) + C\}$$
$$= F(b) - F(a)$$
$$= \begin{bmatrix} F(x) \end{bmatrix}_{a}^{b}$$

F(x) is an arbitrary antiderivative.

Properties of Definite Integrals

Linearity of the definite integrals

(1)
$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$$

(2)
$$\int_{a}^{b} \{f(x) + g(x)\}dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

Reversing the integration

(3)
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

Additivity for adjacent integrals

(4)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{0} \int_{a}^{0} f(x) dx + \int_{c}^{0} f(x) dx = \int_{a}^{0} \int_{a}^{0} f(x) dx + \int_{c}^{0} f(x) dx = \int_{a}^{0} \int_{a}^{0} f(x) dx + \int_{c}^{0} f(x) dx = \int_{a}^{0} \int_{a}^{0} f(x) dx + \int_{c}^{0} \int_{a}^{0} f(x) dx = \int_{a}^{0} \int_{a}^{0} f(x) dx + \int_{c}^{0} f(x) dx + \int_{c}^{0}$$

5

С

h

X

(x)

Y

 \mathbf{O}

Examples 13-1 Find the following definite integral $\int_{-2}^{4} (x^2 - 3x + 1) dx$

Ans.

6

Ans.

(1)
$$\int_{-1}^{3} x \, dx - \int_{-1}^{1} x \, dx = \int_{-1}^{3} x \, dx + \int_{1}^{-1} x \, dx$$
$$= \int_{1}^{3} x \, dx = \left[\frac{x^{2}}{2}\right]_{1}^{3} = 4$$

(2)
$$\int_{0}^{\frac{\pi}{2}} \sin 2\theta d\theta = \left[\frac{-\cos 2\theta}{2}\right]_{0}^{\frac{\pi}{2}} = \frac{-(-1)}{2} - \frac{(-1)}{2} = 1$$

7

Ans.

Pause the video and solve by yourself.

Answer to the Exercises

Ex.10-1 Find the following definite integrals $\int_{0}^{1} (x^{2} - x) dx + \int_{1}^{3} (x^{2} - x) dx$

Ans.

Lesson 10 Definite Integrals (1)

10B

- Integration by substitution
- Integration by parts

Integration by Substitution

Integration by Substitution (1)

For the function
$$x = g(t)$$

If
$$a = g(\alpha)$$
 and $b = g(\beta)$

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(g(t))g'(t) dt$$

Integration by Substitution (2)

If
$$\alpha = u(a)$$
 and $\beta = u(b)$
then $\int_{a}^{b} f(u(x))u'(x)dx = \int_{\alpha}^{\beta} f(u)du$

[Examples 13-4] Find the following definite integral by putting 2x+1 = t $\int_0^1 (2x+1)^3 dx$

Ans.

Therefore

$$\int_{0}^{1} (2x+1)^{3} dx = \int_{1}^{3} t^{3} \cdot \frac{1}{2} dt = \frac{1}{2} \int_{1}^{3} t^{3} dt = \frac{1}{2} \left[\frac{t^{4}}{4} \right]_{1}^{3} = 10$$

Examples 10-5 Evaluate the following integral $\int_{0}^{2} x^{2} \sqrt{x^{3} + 1} dx$

Ans.

We put $u = x^3 + 1$, then $du = 3x^2 dx$

Therefore,

$$\int_{0}^{2} x^{2} \sqrt{x^{3} + 1} dx = \int_{1}^{9} \sqrt{u} \left(\frac{1}{3} du\right) = \frac{1}{3} \int_{1}^{9} u^{\frac{1}{2}} du = \frac{1}{3} \left[\frac{2}{3} u^{\frac{3}{2}}\right]_{1}^{9} = \frac{52}{9}$$

Integration by Parts

We learned

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

In the case of definite integral

$$\int_a^b f(x)g'(x)dx = \left[f(x)g(x)\right]_a^b - \int_a^b f'(x)g(x)dx$$

Example

14

Ans.

Pause the video and solve by yourself.

Ex.13-2 Find the following definite integrals $\int_{-3}^{-1} \frac{dx}{(2x+1)^3}$

Ans. We can solve this as follows. Put 2x + 1 = t

then
$$x = \frac{t-1}{2}, \quad dx = \frac{1}{2}dt$$

The new limits of integration are

$$t(-3) = -5$$
 and $t(-1) = -1$

. Therefore,

$$\int_{-3}^{-1} \frac{dx}{(2x+1)^3} = \int_{-5}^{-1} t^{-3} \cdot \frac{1}{2} dt = \frac{1}{2} \int_{-5}^{-1} t^{-3} dt = \frac{1}{2} \left[\frac{t^{-2}}{-2} \right]_{-5}^{-1} = -\frac{6}{25}$$

Ans.

Pause the video and solve by yourself

Ex.13-3 Find the following definite integrals $\int_0^2 x^2 e^x dx$

Ans.

In this exercise, we apply the formula twice as follows.

$$\int_{0}^{2} x^{2} e^{x} dx = \left[x^{2} e^{x}\right]_{0}^{2} - \int_{0}^{2} 2x e^{x} dx = 4e^{2} - 2\left(\left[xe^{x}\right]_{0}^{2} - \int_{0}^{2} e^{x} dx\right)\right)$$
$$= 4e^{2} - 2\left(2e^{2} - \left[e^{x}\right]_{0}^{2}\right) = 4e^{2} - 4e^{2} + 2\left(e^{2} - 1\right) = 2\left(e^{2} - 1\right)$$