Course II

1

Lesson 11 Estimating Area by Rectangles

11A • Estimating Area by Rectangles

Estimation of Area by Rectangles

y

 $y = x^2 + 1$

Calculate the area A between $y = x^2 + 1$ and y = 0 on [0, 2]. (Suppose that we don't know the definite integral.)

Estimation of Area by Rectangles - Cont.

Sprit [0, 2] into 8 subintervals.

Theorem

If f(x) is continuous on [a, b] then the right and left endpoints approximations approach one and the same limit as $N \rightarrow \infty$

$$\lim_{N \to \infty} A_R = \lim_{N \to \infty} A_L = L$$

Example

Historical Definition of the Definite Integral

Historical definition of the definite integral

Left-endpoint approx.

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=0}^{n-1} f(x_{k}) \Delta x$$

 $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}) \Delta x$

Right-endpoint approx.

Course II

Lesson 11 Estimating Area by Rectangles

11B • Finding of the Limit Value of a Series

Finding the Limit Value of a Series by an Integral

If we put a = 0, b = 1, we have

$$\int_{0}^{1} f(x) dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)$$

Left-endpoint approx.

Right-endpoint approx.

This relationship is sometimes used to find the sum of infinite series.

Example

$$S = \int_{0}^{1} \frac{dx}{1+x} = \left[\log(1+x) \right]_{0}^{1} = \log 2$$

8

Exercise

Ex.11-1 Find the value of the following series. $S = \lim_{n \to \infty} \frac{1}{n} \left(\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \sin \frac{3\pi}{n} + \dots + \sin \frac{n\pi}{n} \right)$

Ans.

Pause the video and solve the problem by yourself.

Exercises

Ex.11-1 Find the value of $S = \lim_{n \to \infty} \frac{1}{n} \left(\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \sin \frac{3\pi}{n} + \dots + \sin \frac{n\pi}{n} \right)$

Ans.

$$S = \lim_{h \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sin\left(\frac{k}{n}\pi\right) = \int_{0}^{1} \sin(\pi x) dx = \left[-\frac{\cos(\pi x)}{\pi}\right]_{0}^{1}$$
$$= -\left(\frac{\cos\pi - 1}{\pi}\right) = \frac{2}{\pi}$$