Lesson 11
 Estimating Area by Rectangles

11A

- Estimating Area by Rectangles

Estimation of Area by Rectangles

Calculate the area A between $y=x^{2}+1$ and $y=0$ on $[0,2]$.
(Suppose that we don't know the definite integral.)

Sprit $[0,2]$ into 4 subintervals.

$$
\begin{aligned}
A_{R} & =\frac{1}{2} f\left(\frac{1}{2}\right)+\frac{1}{2} f(1)+\frac{1}{2} f\left(\frac{3}{2}\right)+\frac{1}{2} f(2) \\
& =\frac{1}{2}\left(\frac{5}{4}\right)+\frac{1}{2}(2)+\frac{1}{2}\left(\frac{13}{4}\right)+\frac{1}{2}(5)=5.75
\end{aligned}
$$

$$
\begin{aligned}
A_{L} & =\frac{1}{2} f(0)+\frac{1}{2} f\left(\frac{1}{2}\right)+\frac{1}{2} f(1)+\frac{1}{2} f\left(\frac{3}{2}\right) \\
& =\frac{1}{2}(1)+\frac{1}{2}\left(\frac{5}{4}\right)+\frac{1}{2}(2)+\frac{1}{2}\left(\frac{13}{4}\right)=3.75
\end{aligned}
$$

$$
3.75<A<5.75
$$

Estimation of Area by Rectangles

Sprit [0, 2] into 8 subintervals.

$$
4.1875<A<5.1875
$$

Exact value $\quad A=\int_{0}^{2}\left(x^{2}+1\right) d t=\left[\frac{x^{3}}{3}+x\right]_{0}^{2}=\frac{14}{3}=4.666$

Theorem

If $f(x)$ is continuous on $[a, b]$ then the right and left endpoints approximations approach one and the same limit as.$N \rightarrow \infty$

$$
\lim _{N \rightarrow \infty} A_{R}=\lim _{N \rightarrow \infty} A_{L}=L
$$

Example

Examples 11-1 Find the area between

$$
y=x^{2} \text { and } y=0 \text { on }[0,1] \text { by }
$$

making $n \rightarrow \infty$. Use the following formula.

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(n+2)}{6}
$$

Ans.

$$
\begin{aligned}
& S_{n}=\frac{1}{n}\left\{0+\left(\frac{1}{n}\right)^{2}+\left(\frac{2}{n}\right)^{2}+\ldots \ldots+\left(\frac{n+1}{n}\right)^{2}\right\} \\
& =\frac{1}{n^{3}}\left\{1^{2}+2^{2}+\ldots \ldots+(n-1)^{2}\right\} \\
& =\frac{1}{n^{3}} \cdot \frac{1}{6}(n-1) n(2 n-1) \\
& \text { Therofora } \lim S=
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty} S_{n}=\frac{1}{3}$
<Compare> $\quad S=\int_{0}^{1} x^{2} d t=\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{3}$

Historical Definition of the Definite Integral

$$
\begin{gathered}
a=x_{0}, x_{1}, x_{2}, \ldots \ldots, x_{n}=b \\
\text { Width } \Delta x=(b-a) / n
\end{gathered}
$$

The right-endpoint approximation:

$$
\begin{aligned}
A_{R n} & =f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots \ldots+f\left(x_{n}\right) \Delta x \\
& =\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x
\end{aligned}
$$

(Riemann sum of f over $[a, b]$).
Historical definition of the definite integral
Left-endpoint approx.

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} f\left(x_{k}\right) \Delta x
$$

Right-endpoint approx.

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x
$$

Lesson 11
 Estimating Area by Rectangles

11B

- Finding of the Limit Value of a Series

Finding the Limit Value of a Series by an Integral

If we put $\quad a=0, b=1$, we have

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) & & \text { Left-endpoint approx. } \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) & & \text { Right-endpoint approx. }
\end{aligned}
$$

This relationship is sometimes used to find the sum of infinite series.

Example

Examples 11-2 Find the limit value of

$$
S=\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots \cdots+\frac{1}{2 n}\right)
$$

Ans. Take out quantity $\frac{1}{n}$ from all terms.

$$
\begin{aligned}
& \qquad S=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{1}{1+\frac{1}{n}}+\frac{1}{1+\frac{2}{n}}+\frac{1}{1+\frac{3}{n}}+\cdots \cdots+\frac{1}{1+\frac{n}{n}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\frac{1}{1+\frac{k}{n}}\right) \\
& \text { Replace the part } \frac{k}{n} \text { by } x \text { and make the } \\
& \text { definite integral } \\
& \qquad S=\int_{0}^{1} \frac{d x}{1+x}=[\log (1+x)]_{0}^{1}=\log 2
\end{aligned}
$$

Exercise

Ex.11-1

Find the value of the following series.

$$
S=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sin \frac{\pi}{n}+\sin \frac{2 \pi}{n}+\sin \frac{3 \pi}{n}+\cdots \cdots+\sin \frac{n \pi}{n}\right)
$$

Ans.

Pause the video and solve the problem by yourself.

Exercises

Ex.11-1

Find the value of

$$
S=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sin \frac{\pi}{n}+\sin \frac{2 \pi}{n}+\sin \frac{3 \pi}{n}+\cdots \cdots+\sin \frac{n \pi}{n}\right)
$$

Ans.

$$
\begin{aligned}
& S=\lim _{h \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \sin \left(\frac{k}{n} \pi\right)=\int_{0}^{1} \sin (\pi x) d x=\left[-\frac{\cos (\pi x)}{\pi}\right]_{0}^{1} \\
& =-\left(\frac{\cos \pi-1}{\pi}\right)=\frac{2}{\pi}
\end{aligned}
$$

