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【Review】　Area of a Plane Region 
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Case of a Negative Function 
When                   in the domain                        0)( <xf ],[ ba
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Ahh!  That’s so easy! 
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Example   

Example 12-1  Find the area between the graph of                           and 
the    -axis, from             to           .                

Ans. 
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Example 

Ans. 

Example 12-2  Determine the area of the region enclosed by the functions                 

and               .                       xy = 2xy =

The area is given by the blue region in the figure. 
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Area Between the graph and the y-Axis 

The area between the graph                    and the     -axis 
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Exercise 

Ex.12-1 　Find the area of the region enclosed by                          and   

                      in the domain                    .  

                                                
Ans. 

Pause the video and solve by yourself. 
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Answer to the Exercise 

Ex.12-1 　Find the area of the region enclosed by                          and   

                      in the domain                    .  

Ans. 
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Volume of the slab  

　Volumes of Solids 
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Example 

[Example 12-2]   
    Find the volume of a cone with bottom radius      and height    .        hr
Ans. 

Set the x-axis as shown in the figure. 

Area of the bottom 

From                                       , we have 

Therefore 
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Exercise 

Ex.12-2 　Find the volume of the pyramid having 

 a horizontal square cross section.  The bottom  

side length is a and the height is h.  

 

Ans. 

Pause the video and solve by yourself. 
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Exercise 

Ex.12-2 　Find the volume of the pyramid having a horizontal square cross 

section.  The bottom side length is a and the height is .  

Ans. We consider the z-axis vertically. 

The horizontal cross section at z :  
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　Volumes of Solids of Revolution 

When the solid is  generated by revolving a region 
 about the x-axis  
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Example 

[Examples 12-3]   
    Find the volume of a sphere with radius    .        
Ans. 

The upper half of the circle . 

By rotating this blue area, we have a circle. 
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That makes sense! 
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Exercise 

Ex.12-3 　Find the volume of the solid made by rotating the region  

surrounded by                        and y=x.  

Ans. 

Pause the video and solve by yourself. 

xxf =)(
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Exercise 

Ex.12-3 　Find the volume of the solid made  

by rotating the region surrounded by                

and y=x.  

 
Ans. 

This volume can be obtained by subtracting B from A, where . 
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