Course II

Lesson 12 Application of Integrals (1)

12A

- Areas of plane regions

Area of a Plane Region

Area of the strp $\quad \Delta S=f(x) d x \quad$ where $\quad f(x)>0$
Total area over $[a, b]$

$$
S \approx \sum f(x) \Delta x \rightarrow \quad S=\int_{a}^{b} f(x) d x
$$

Area Between Two Graphs

When $f(x) \geq g(x)$ in $[\mathrm{a}, \mathrm{b}]$, area S is

$$
\mathrm{S}=\int_{a}^{b}\{f(x)-g(x)\} d x
$$

[Proof]

Consider $y=f(x)+k$ and $y=g(x)+k$
$S=S_{1}-S_{2}=\int_{a}^{b}\{f(x)+k\} d x-\int_{a}^{b}\{g(x)+k\} d x=\int_{a}^{b}\{f(x)-g(x)\} d x$

Case of a Negative Function

When $f(x)<0$ in the domain $[a, b]$

$$
S=\int_{a}^{b}\{0-f(x)\} d x=-\int_{a}^{b} f(x) d x
$$

Ahh! That's so easy!

Example

Example 12-1 Find the area between the graph of $y=x^{2}-x-2$ and the x-axis, from $x=-2$ to $x=3$.

Ans.

$$
y=x^{2}-x-2=(x-2)(x+1)=0
$$

Let the areas be S_{1}, S_{2} and S_{3}
$S_{1}=\int_{-2}^{-1}\left(x^{2}-x-2\right) d x=\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}-2 x\right]_{-2}^{-1}=1.833$

$S_{2}=-\int_{-1}^{2}\left(x^{2}-x-2\right) d x=4.5$
$S_{3}=-\int_{2}^{3}\left(x^{2}-x-2\right) d x=1.833$
Therefore, $S=S_{1}+S_{2}+S_{3} \approx 1.833+4.5+1.833=8.166$

Example

Example 12-2 Determine the area of the region enclosed by the functions and $\quad y=\sqrt{x} \quad y=x^{2}$

Ans.

The area is given by the blue region in the figure. Cross points :

$$
\sqrt{x}=x^{2}
$$

$$
\begin{gathered}
x=x^{4}, \therefore x(x-1)\left(x^{2}+x+1\right)=0 \\
(0,0),(1,1)
\end{gathered}
$$

$$
S=\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x=\left[\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{1}{3}
$$

Area Between the graph and the y-Axis

The area between the graph $x=g(y)$ and the y-axis

$$
S=\int_{c}^{d} g(y) d y
$$

Exercise

Ex.12-1 Find the area of the region enclosed by $y=\sin 2 x$ and $y=\cos x$ in the domain $0 \leq x \leq \frac{\pi}{2}$.

Ans.

Pause the video and solve by yourself.

Answer to the Exercise

Ex.12-1 Find the area of the region enclosed by $y=\sin 2 x$ and $y=\cos x$ in the domain $0 \leq x \leq \frac{\pi}{2}$.
Ans. We put $\sin 2 x=\cos x$
$\therefore \cos x(2 \sin x-1)=0$,
$\therefore \cos x=0$ or $\sin x=\frac{1}{2}$
$\therefore x=\frac{\pi}{2}, \frac{\pi}{6}$

$$
\begin{aligned}
S & =\int_{0}^{\frac{\pi}{6}}(\cos x-\sin 2 x) d x+\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}(\sin 2 x-\cos x) d x \\
& =\left[\sin x-\frac{1}{2} \cos 2 x\right]_{0}^{\frac{\pi}{6}}+\left[-\frac{1}{2} \cos 2 x-\sin x\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}=\frac{1}{2}
\end{aligned}
$$

Course II

Lesson 12 Application of Integrals (1)

12B

- Volumes of Solids

Volumes of Solids

Volume of the slab

$$
\Delta V \approx S(x) \Delta x
$$

Total volume of the solid between $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$

$$
V \approx \sum S(x) \Delta x \rightarrow \quad V=\int_{a}^{b} S(x) d x
$$

Example

[Example 12-2]

Find the volume of a cone with bottom radius r and height h.

Ans.

Set the x -axis as shown in the figure.
Area of the bottom

$$
S(h)=\pi r^{2}
$$

From $S(x): S(h)=x^{2}: h^{2}$, we have $S(x)=\frac{\pi r^{2}}{h^{2}} x^{2}$
Therefore

$$
V=\int_{0}^{h}\left(\frac{\pi r^{2}}{h^{2}} x^{2}\right) d x=\frac{\pi r^{2}}{h^{2}}\left[\frac{x^{3}}{3}\right]_{0}^{h}=\frac{\pi}{3} r^{2} h
$$

Exercise

Ex.12-2 Find the volume of the pyramid having a horizontal square cross section. The bottom side length is a and the height is h.

Ans.

Pause the video and solve by yourself.

Ex.12-2 Find the volume of the pyramid having a horizontal square cross section. The bottom side length is a and the height is .

Ans. We consider the z-axis vertically.
The horizontal cross section at z :

$$
\begin{gathered}
S(z): a^{2}=(h-z)^{2}: h^{2} \\
\therefore S(z)=\frac{a^{2}(h-z)^{2}}{h^{2}} \\
V=\int_{0}^{h} \frac{a^{2}(h-z)^{2}}{h^{2}} d z=\frac{a^{2}}{h^{2}} \int_{0}^{h}\left(h^{2}-2 h z+z^{2}\right. \\
=\frac{a^{2}}{h^{2}}\left[h^{2} z-h z^{2}+\frac{1}{3} z^{3}\right]_{0}^{h}=\frac{1}{3} a^{2} h
\end{gathered}
$$

Volumes of Solids of Revolution

When the solid is generated by revolving a region about the x-axis

$$
V=\int_{a}^{b} S(x) d x=\int_{a}^{b} \pi r^{2} d x=\int_{a}^{b} \pi f(x)^{2} d x
$$

Example

[Examples 12-3]

Find the volume of a sphere with radius r.

Ans.

The upper half of the circle .

$$
y=\sqrt{r^{2}-x^{2}}
$$

By rotating this blue area, we have a circle.

Volume of a circle

$$
\begin{aligned}
V & =\int_{-r}^{r} \pi y^{2} d x=\int_{-r}^{r} \pi\left(r^{2}-x^{2}\right) d x \\
& =\pi\left[r^{2} x-\frac{x^{3}}{3}\right]_{-r}^{r}=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

That makes sense!

Exercise

Ex.12-3 Find the volume of the solid made by rotating the region surrounded by $f(x)=\sqrt{x}$ and $\mathrm{y}=\mathrm{x}$.

Ans.

Pause the video and solve by yourself.

Exercise

Ex.12-3 Find the volume of the solid made

 by rotating the region surrounded by $y=\sqrt{x}$ and $\mathrm{y}=\mathrm{x}$.

This volume can be obtained by subtracting B from A , where .

$$
\begin{aligned}
& \text { A } V_{A}=\pi \int_{0}^{1}(\sqrt{x})^{2} d x=\pi\left[\frac{1}{2} x^{2}\right]_{0}^{1}=\frac{1}{2} \pi \\
& V_{B}=\pi \int_{0}^{1}(x)^{2} d x=\pi\left[\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{1}{3} \pi \\
& V=V_{B}-V_{A}=\frac{1}{3} \pi-\frac{1}{2} \pi=\frac{1}{6} \pi
\end{aligned}
$$

