

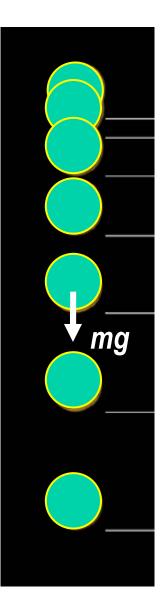
1

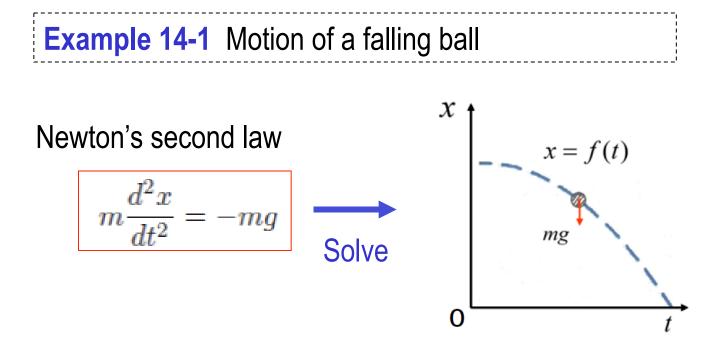
Lesson 14 Differential Equations (1)

14A

General introduction

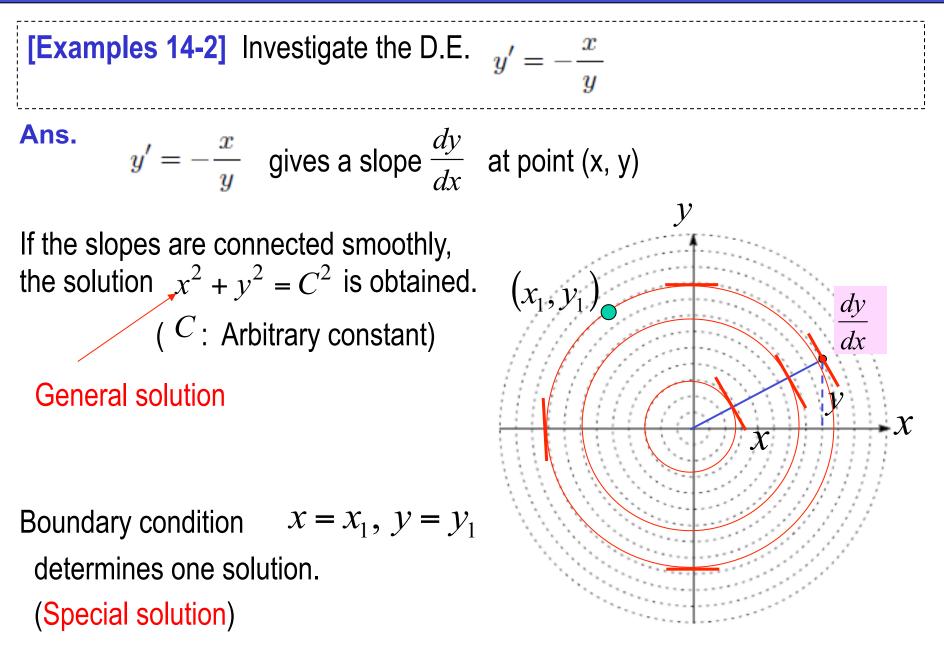
Example : Free Falling Body





Differential equation relates the values of the function itself and its derivatives of various orders.

Meaning of Differential Equation



Some Terminologies on Differential Equations

First order D.E.

D.E. which contains only first derivatives. (Ex.)

(Ex.)
$$y' = y + x$$

Second order D.E.

D.E. which contains second derivatives (and possibly first derivatives also.) (Ex.) $y'' + y = 1 + y^2 + x$

Linear D.E.

The general n-th order linear D.E. of the form

$$y^{(n)} + P_n(x)y^{(n-1)} + \dots + P_2(x)y' + P_1(x)y = Q(x)$$

Nonlinear D.E.

Differential equations which are not linear are called nonlinear D.E. (Ex.) yy' + 5x = 0 $\theta'' + 5\sin\theta = 0$ 4

How to Solve D.E.: Simplest Case

Simplest differential equations y' = f(x)

 \implies The solution is an antiderivative of f(x),

$$y = \int f(x) dx$$
 : General solution

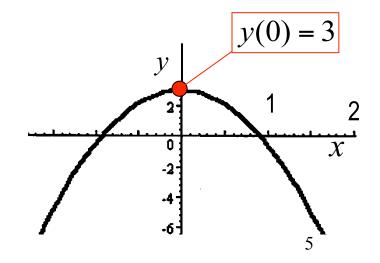
[Examples 14-3] Answer the following questions (1) Find the general solution of y' = -7x. (2) Find the particular solution satisfying the boundary condition y(0) = 3.

Ans.

(a)
$$y = \int (-7x) dx = -\frac{7}{2}x^2 + C$$

(b) The boundary condition is x = 0, y = 3.

$$\therefore 3 = 0 + C$$
 $\therefore y = -\frac{7}{2}x^2 + 3$



[Ex.14-1] Find the particular solution of the following D.E.

(1) y' = 5 , Boundary condition x = 0, y = 2

(2) $y' = \cos 3x$, Boundary condition x = 0, y = 0

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex.14-1] Find the particular solution of the following D.E.

(1) y' = 5, Boundary condition x = 0, y = 2

(2) $y' = \cos 3x$, Boundary condition x = 0, y = 0

Ans.

(1) Integrating both sides by x, we have $y = \int 5dx$ \therefore y = 5x + C

Applying the boundary condition $2 = 5 \times 0 + C$ \therefore y = 5x + 2

(2)
$$y' = \cos 3x$$
 \therefore $y = \int \cos 3x dx + C$ \therefore $y = \frac{1}{3}\sin 3x + C$
Applying the boundary condition $x = 0, y = 0$

$$y = \frac{1}{3}\sin 3x$$

Lesson 14 Differential Equations

14B • Some Types of the First Order D.E.

Separable Differential Equations

Separable D.E.

$$\frac{dy}{dx} = f(x)g(y)$$

Rewriting this, we have

$$\frac{1}{g(y)}dy = f(x)dx$$

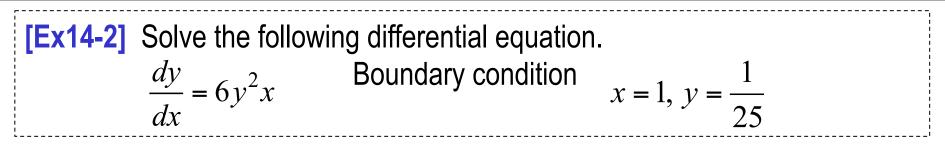
Integrating both sides, we have

$$\int \frac{1}{g(y)} dy = \int f(x) dx$$

After integration, we have the solution (in the implicit expression)

Example

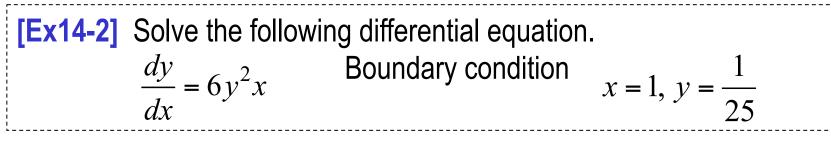
[Examples 14-4] Answer the following questions concerning $\frac{dy}{dy} = -\frac{x}{dy}$ dx v(1) Find the general solution. (2) Find the particular solution which passes x = 0, y = 1. Ans. (1) Rewriting the given equation, we have ydy = -xdx $\therefore \int y dy = -\int x dx$ $\therefore \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$ If we put $C = 2C_1$, we have the general solution $x^2 + v^2 = C$ (2) Substituting x = 0, y = 1, we have C = 2. Therefore, $x^2 + y^2 = 1$



Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise



Ans. Rewriting the given equation, we have

$$\frac{1}{y^2}dy = 6xdx$$

By integrating this, we have

$$\int \frac{1}{y^2} dy = \int 6x dx$$

$$\therefore \quad -\frac{1}{y} = 3x^2 + C$$

Substituting the boundary condition, we have C = -28

The particular solution is

$$-\frac{1}{y} = 3x^2 - 28 \qquad \therefore \qquad y = \frac{1}{28 - 3x^2}$$

Homogeneous Differential Equations

Homogeneous D.E.

$$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$$

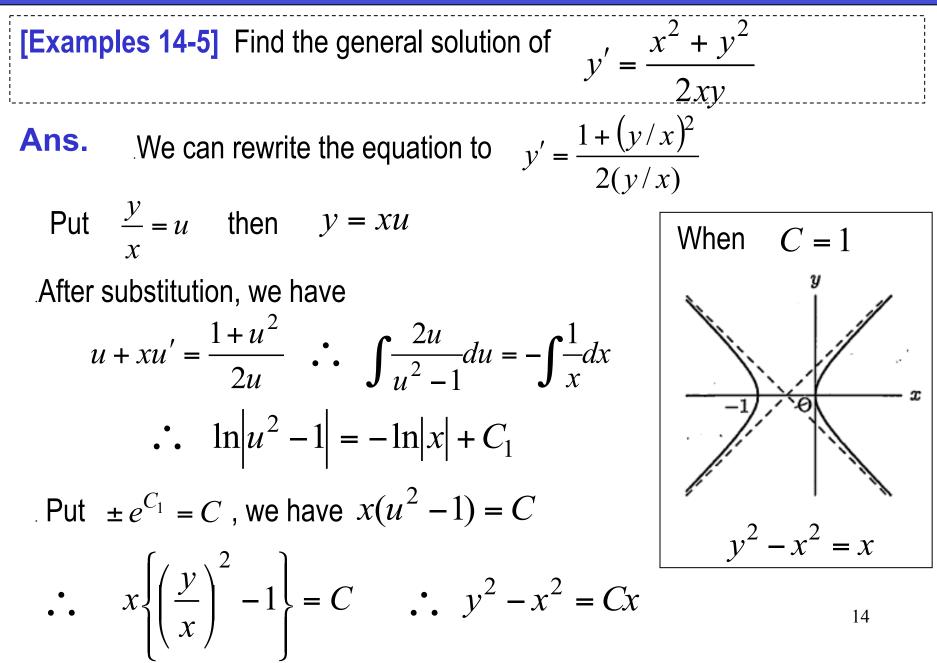
If we put $\frac{y}{x} = u$ then y = ux $\therefore \quad \frac{dy}{dx} = u + x \frac{du}{dx}$

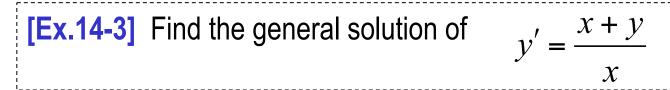
I am getting confused.

By substitution, we have $u + x \frac{du}{dx} = f(u)$ Therefore, $\frac{du}{f(u)-u} = \frac{dx}{x}$ \leftarrow A separable form

[Note] The following ordinary D.E. which has no term containing *x* alone is also called a homogeneous equation. Their meanings are entirely different. $v^{(n)} + P_n(x)v^{(n-1)} + \dots + P_2(x)v' + P_1(x)v = 0$ 13

Example





Ans.

Pause the video and solve the problem by yourself.

 $\boldsymbol{\chi}$

[Ex.14-3] Find the general solution of $y' = \frac{x + y}{-}$ _____

Ans.

Put
$$\frac{y}{x} = u$$
 then $y = xu$

After substitution, we have

$$u + xu' = 1 + u$$
 \therefore $x\frac{du}{dx} = 1$ \therefore $\int du = \int \frac{1}{x} dx$

. By integrating this, we have

$$u = \ln|x| + C$$
 \therefore $\frac{y}{x} = \ln|x| + C$