

Lesson 03 Vector Equation

3A

Vector Equation

Vector Equation of a Line

Vector equation of a line

Line passing point A(\vec{a}) parallel to the vector \vec{d}

$$\vec{p} = \vec{a} + t\vec{d}$$

t: parameter

 \vec{d} : direction vector

Expression by components

When
$$\vec{a} = (x_0, y_0)$$
 , $\vec{p} = (x, y)$, and $\vec{d} = (d_x, d_y)$

$$(x,y) = (x_0, y_0) + t(d_x, d_y)$$

Parametric Equation of a Line

Vector equation

$$(x,y) = (x_0, y_0) + t(d_x, d_y)$$

Parametric equation

$$x = x_0 + td_x$$

$$y = y_0 + td_y$$

One more time?

Equation of a Line Passing A and B

Line passing two points $A(\vec{a})$ and $B(\vec{b})$

$$\vec{d} = \vec{b} - \vec{a}$$

$$\vec{p} = \vec{a} + t(\vec{b} - \vec{a})$$

Or

$$\vec{p} = (1 - t)\vec{a} + t\vec{b}$$

[Examples 3-1] Find the vector equation which passes through the points A=(1, 2) and B=(-2, 5)

Ans.

Since
$$\overrightarrow{AB} = (-2 - 1, 5 - 2) = (-3, 3)$$
 we have $(x, y) = (1, 2) + t(-3, 3)$

Straight Line and Normal Vector

Line Passing through Point A(\vec{a}) and normal to the vector \vec{n}

Since $\overrightarrow{AP} \perp \overrightarrow{n}$, we have

$$\vec{n} \cdot (\vec{p} - \vec{a}) = 0$$

Expression by components

When
$$\vec{a}=(x_0,y_0)$$
 , $\vec{p}=(x,y)$, and $\vec{n}=(n_x,n_y)$

$$n_x(x-x_0) + n_y(y-y_0) = 0$$

Exercise

- [Ex.3-1] Answer the following questions about the line which passes point A(3, 5) and is parallel to the vector
- (1) Find the vector equation.
- (2) Find the parametric equation
- (3) Derive the expression of the line by eliminating the parameter

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex.3-1] Answer the following questions about the line which passes point A(3, 5) and is parallel to the vector $\vec{d} = (-2,4)$. (1) Find the vector equation. (2) Find the parametric equation. (3) Derive the expression of the line by eliminating the parameter .

Ans.

Let the coordinates of the moving point on the line be (x, y).

(1)
$$(x, y) = (3, 5) + t(-2, 4)$$

(2)
$$x = 3 - 2t, y = 5 + 4t$$

(3)
$$2(3-x) = y-5$$
 $\therefore y = -2x+11$

Lesson 03 Vector Equation

3B

Vector Equation of a Circle

Vector Equation of a Circle (1)

Case: Radius \mathcal{V} and center \vec{c}

Vector equation

Definition of a Circle $|\overrightarrow{CP}| = r$ Therefore

$$\left| \vec{p} - \vec{c} \right| = r$$

Making the square

$$\left|\vec{p} - \vec{c}\right|^2 = r^2$$

Therefore, from the definition of the scalar product

$$(\vec{p} - \vec{c}) \cdot (\vec{p} - \vec{c}) = r^2$$

Vector Equation of a Circle (2)

Case: Diameter AB, where A(\vec{a}) and B(\vec{b})

Vector equation

Circumference angle for a diameter is 90°

$$(\vec{p} - \vec{a}) \cdot (\vec{p} - \vec{b}) = 0$$

Next, we show the radius explicitly

Since
$$(\vec{a} - \vec{c}) \cdot (\vec{a} - \vec{c}) = |\vec{a} - \vec{c}|^2 = r^2$$

 $(\vec{p} - \vec{a}) \cdot (\vec{a} - \vec{c}) = \{\vec{p} - \vec{c} - (\vec{a} - \vec{c})\} \cdot (\vec{a} - \vec{c})$
 $= (\vec{p} - \vec{c})(\vec{a} - \vec{c}) - |\vec{a} - \vec{c}|^2 = (\vec{p} - \vec{c})(\vec{a} - \vec{c}) - r^2 = 0$

$$(\vec{p} - \vec{c})(\vec{a} - \vec{c}) = r^2$$

Example

[Examples 3-2]

Find the vector equation of the tangent to the circle at A(\vec{a}). The radius of this circle is r and the center is located at C(\vec{c}).

Ans. Since the circumference angle for the diameter is 90°

$$(\vec{p} - \vec{a}) \cdot (\vec{a} - \vec{c}) = 0$$

Since the radius is \mathcal{V}

$$(\vec{a} - \vec{c}) \cdot (\vec{a} - \vec{c}) = |\vec{a} - \vec{c}|^2 = r^2$$

Substituting this, we have

$$(\vec{p} - \vec{a}) \cdot (\vec{a} - \vec{c}) = \{ \vec{p} - \vec{c} - (\vec{a} - \vec{c}) \} \cdot (\vec{a} - \vec{c}) \quad 0$$
$$= (\vec{p} - \vec{c})(\vec{a} - \vec{c}) - |\vec{a} - \vec{c}|^2 = (\vec{p} - \vec{c})(\vec{a} - \vec{c}) - r^2 = 0$$

Therefore

$$(\vec{p} - \vec{c})(\vec{a} - \vec{c}) = r^2$$

 χ

Exercise

[Ex3-2] What kind of figure does the following vector equation represent?

 $\left| 3\vec{p} - 2\vec{a} \right| = 3$

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex3-2] What kind of figure does the following vector equation represent?

$$\left| 3\vec{p} - 2\vec{a} \right| = 3$$

Ans.

This equation is rearranged as follows.

$$\left| 3\vec{p} - 2\vec{a} \right| = 3$$

$$\therefore \left| 3 \left(\vec{p} - \frac{2}{3} \vec{a} \right) \right| = 3$$

A circle with radius 1 and the center at the position $\frac{2}{3}$

