Course III

 UNIVERSITY
Lesson 06 Inverse Matrix and Simultaneous Equations

6A

- Inverse Matrix

Inverse Matrix

Inverse of a number

Original number $a \Longleftrightarrow$ The inverse number $x=\frac{1}{a}=a^{-1}$

$$
x a=1
$$

Inverse of a matrix

Original square matrix A
\Longrightarrow If X satisfies $A X=X A=I$, then X is an inverse of matrix

Notation: A^{-1}

How to Find the Inverse Matrix (2×2-matrix)

For 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

The inverse matrix is given as follows
When $|A|=a d-b c \neq 0$

$$
A^{-1}=\frac{1}{|A|}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

When $|A|=a d-b c=0$

$$
A^{-1} \text { does not exist }
$$

Proof : Refer to the next example

Example

[Example 6-1] Find the inverse matrix of

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Ans. Let the inverse matrix be $\quad X=\left(\begin{array}{ll}x & z \\ y & w\end{array}\right)$
From $A X=I$ we have
From $A X=I$, we have

$$
\left(\begin{array}{ll}
a & b \\
c & w
\end{array}\right)\left(\begin{array}{ll}
x & z \\
y & w
\end{array}\right)=\left(\begin{array}{ll}
a x+b y & a z+b w \\
c x+d y & c z+d w
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Therefore $a x+b y=1 \quad a z+d w=0$ then $x(a d-b c)=d \quad z(a d-b c)=-b$

$$
c x+d y=0 \quad c z+d w=1 \quad y(a d-b c)=-c \quad w(a d-b c)=a
$$

When $(a d-b c) \neq 0$

$$
x=\frac{d}{(a d-b c)}, \quad y=-\frac{c}{(a d-b c)}, \quad z=-\frac{b}{(a d-b c)}, \quad w=\frac{a}{(a d-b c)}
$$

When $(a d-b c)=0$

$$
a=b=c=d=0 \quad \text { This does not satisfy } \quad A X=I
$$

Example

[Example 6-2] Find the inverse matrix of

$$
A=\left(\begin{array}{ll}
2 & 1 \\
4 & 4
\end{array}\right)
$$

Ans. The determinant of matrix A

$$
|A|=\left|\begin{array}{ll}
2 & 1 \\
4 & 4
\end{array}\right|=2 \cdot 4-1 \cdot 4=4
$$

The inverse matrix

$$
A^{-1}=\frac{1}{4}\left|\begin{array}{cc}
4 & -1 \\
-4 & 2
\end{array}\right|=\left|\begin{array}{cc}
1 & -1 / 4 \\
-1 & 1 / 2
\end{array}\right|
$$

Exercise

[Ex.6-1] Find the inverse of the following matrices.
(1) $A=\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right)$
(2) $A=\left(\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right)$

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex.6-1] Find the inverse of the following matrices.
(1) $A=\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right)$
(2)

$$
A=\left(\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right)
$$

Ans.

(1) The determinant is $|A|=\left|\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right|=3 \times 3-4 \times 2=1 \neq 0$

Therefore

$$
A^{-1}=\frac{1}{1}\left|\begin{array}{cc}
3 & -4 \\
-2 & 3
\end{array}\right|=\left|\begin{array}{cc}
3 & -4 \\
-2 & 3
\end{array}\right|
$$

(2) The determinant is $|A|=\left|\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right|=2 \times 6-4 \times 3=0$

Therefore, the inverse does not exist

Course III

UNIVERSITY

Lesson 06 Inverse Matrix and Simultaneous Equations

6B

- Simultaneous equation -

Simultaneous Equations

Simultaneous equations

$$
\left.\begin{array}{l}
a x+b y=p \\
c x+d y=q
\end{array}\right\} \quad \longleftrightarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{p}{q}
$$

Using notations $\quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \quad X=\binom{x}{y}, \quad P=\binom{p}{q}$, we have

$$
A X=P
$$

If $a d-b c \neq 0$, we have $\quad A^{-1} A X=A^{-1} P \quad \therefore X=A^{-1} P$
If $a d-b c=0$, there exist infinite number of solutions
or there is no solution (refer to the example)

Example

[Examples 6-2] Solve the following simultaneous equations.

$$
\left.\begin{array}{c}
3 x-y=3 \\
-2 x+y=5
\end{array}\right\}
$$

Ans.
(1) The matrix form

$$
\left(\begin{array}{ll}
3 & 1 \\
9 & 4
\end{array}\right)\binom{x}{y}=\binom{3}{6}
$$

The determinant $\quad|A|=\left|\begin{array}{ll}3 & 1 \\ 9 & 4\end{array}\right|=3$
The inverse is

$$
\left(\begin{array}{ll}
3 & 1 \\
9 & 4
\end{array}\right)^{-1}=\frac{1}{3}\left(\begin{array}{cc}
4 & -1 \\
-9 & 3
\end{array}\right)=\left(\begin{array}{cc}
4 / 3 & -1 / 3 \\
-3 & 1
\end{array}\right)
$$

Premultiplying this inverse

$$
\binom{x}{y}=\left(\begin{array}{cc}
4 / 3 & -1 / 3 \\
-3 & 1
\end{array}\right)\binom{3}{6}=\binom{2}{-3}
$$

Therefore

$$
x=2, y=3
$$

Example

[Examples 6-3] Solve the following simultaneous equations.
(1)

$$
\left.\begin{array}{c}
2 x-y=-5 \\
-6 x+3 y=15
\end{array}\right\}
$$

(2) $2 x+y=2$ $4 x+2 y=3\}$

Ans. (1) The determinant of coefficients $\quad|A|=\left|\begin{array}{cc}2 & -1 \\ -6 & 3\end{array}\right|=0$
Dividing the second equation by $(-3), \quad 2 x-y=-5$
This is the same as the first equation.
There are infinite number of solution (x, y) which satisfy $2 x-y=-5$
(2) The determinant of coefficients $\quad|A|=\left|\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right|=0$

Multiplying the first equation by 2 , we have $\quad 4 x+2 y=4$
This contradicts to the second equation.
So, there is no solution

Exercise

[Ex. 6-2] Solve the following simultaneous equation.

$$
\left.\begin{array}{c}
3 x-y=3 \\
-2 x+y=5
\end{array}\right\}
$$

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex. 6-2] Solve the following simultaneous equation.

$$
\left.\begin{array}{c}
3 x-y=3 \\
-2 x+3 y=5
\end{array}\right\}
$$

Ans. The matrix form is

$$
\left(\begin{array}{cc}
3 & -1 \\
-2 & 3
\end{array}\right)\binom{x}{y}=\binom{3}{5}
$$

The determinant of coefficients

$$
|A|=\left|\begin{array}{cc}
3 & -1 \\
-2 & 3
\end{array}\right|=7 \neq 0
$$

The inverse is

$$
\left(\begin{array}{cc}
3 & -1 \\
-2 & 3
\end{array}\right)^{-1}=\frac{1}{7}\left(\begin{array}{ll}
3 & 1 \\
2 & 3
\end{array}\right)=\left(\begin{array}{ll}
3 / 7 & 1 / 7 \\
2 / 7 & 3 / 7
\end{array}\right)
$$

By premultiplying this inverse matrix, we have

$$
\binom{x}{y}=\left(\begin{array}{ll}
3 / 7 & 1 / 7 \\
2 / 7 & 3 / 7
\end{array}\right)\binom{3}{5}=\binom{2}{3}
$$

Exercise

[Ex. 6-3] Solve the following simultaneous equation.
(1) $\left.\begin{array}{c}2 x-y=-5 \\ -6 x+3 y=15\end{array}\right\}$
(2)

$$
\left.\begin{array}{c}
2 x+y=2 \\
4 x+2 y=3
\end{array}\right\}
$$

Pause the video and solve the problem by yourself.

Exercise

[Ex. 6-3] Solve the following simultaneous equation.
(1)
$\left.\begin{array}{c}2 x-y=-5 \\ -6 x+3 y=15\end{array}\right\}$
(2) $\left.\begin{array}{c}2 x+y=2 \\ 4 x+2 y=3\end{array}\right\}$
(1) The determinant of coefficients $\quad|A|=\left|\begin{array}{cc}2 & -1 \\ -6 & 3\end{array}\right|=0$

Dividing the second equation by $(-3), \quad 2 x-y=-5$
This is the same as the first equation.
There are infinite number of solution (x, y) which satisfy $2 x-y=-5$
(2) The determinant of coefficients $|A|=\left|\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right|=0$

Multiplying the first equation by 2 , we have $\quad 4 x+2 y=4$
This contradicts to the second equation.
So, there is no solution

