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Abstract 
Introduction 

As respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and interstitial 
pneumonia (IP) advance, dyspnea on effort intensifies and patient activity of daily life (ADL) 
decreases. The onset of secondary pulmonary artery hypertension (PAH), in addition to respiratory 
insufficiency due to deterioration of the primary disease, is thought to aggravate symptoms. Clinicians 
specialized in respiratory and cardiovascular diseases have been increasingly focused on the 
evaluation of PAH.  

PAH, characterized by peripheral blood vessel contraction and vascular remodeling, is a 
pulmonary vascular disease that leads to a gradual increase in pulmonary vascular resistance (PVR), 
The current standard diagnostic technique is right heart catheterization (RHC). However, since the 
RHC method is invasive, analysis of hemodynamics measured by MRI has been reported in a number 
of studies as a diagnostic tool.  

Traditionally, with MR, the information of blood flow has been provided by phase contrast (PC) 
technique. Acceleration time (AT) and peak velocity (PV), are the standard parameters reflecting the 
severity of PAH, but recently derivatives of pulmonary artery flow velocity measured by PC have 
been used. Other derivatives such as wall shear stress (WSS) and oscillatory shear index (OSI) 
calculated with 3D data may be new hemodynamic parameters for evaluating PAH.  
Purpose  

The aim of this study was to assess hemodynamic parameters measured in potential PAH patients 
due to COPD and IP by 3D cine PC MR, and find new hemodynamic parameters for PAH that can be 
measured simply and objectively. 
Methods 

We optimized optimize the imaging parameters for pulmonary artery flow velocity using three 
dimensional (3D) cine PC MR by changing flip angle (FA) and view per segment (VPS).   

We then calculated and compared the flow parameters including AT, AV and PV based on the 
pulmonary arterial velocities obtained by both two dimensional (2D) of gold standard and 3D cine 
PC MR. We used Pearson product-moment correlation coefficient test and Bland-Altman plot for 
the statistical analysis.  

Right heart catheterization (RHC) was performed for all 17 patient with suspected PAH. 
According to the pulmonary arterial pressure (PAP) obtained by RHC data. We calculated and 
compared the hemodynamic parameters including spacially-averaged systolic wall shear stress 
(sWSS), diastolic WSS (dWSS), mean WSS (mWSS), oscillatory shear index (OSI) and blood 
vessel section area (BVSA) in the pulmonary artery trunk based on 3D cine PC MR for all patients. 
We then created streamline images in pulmonary arteries.  
Results 

FA influenced signal intensity, which was calculated from the magnitude images and smaller  
VPS improved the accuracy of PV. Consequently, an optimal setting of FA and VPS was important 
for hemodynamic analysis of pulmonary artery. 

The r-values of Pearson product-moment correlation coefficient test in comparison between 3D 



 

cine PC MR and 2D cine PC MR were 0.728 for AT, 0.804 for AV and 0.957 for PV. Results of AT, 
AV and PV obtained from 3D cine PC MR were quite close to those from 2D cine PC MR using 
Bland-Altman method. Hemodynamic analysis with the aid of 3D cine PC MR was equivalent to 2D 
and was thought to be promising for the evaluation of pulmonary diseases. 

The mean sWSS of PAH and non-PAH were significantly different (PAH: 0.594±0.067N/m2 
and non-PAH: 0.961±0.59N/m2; P=0.001), The mean mWSS of PAH and non-PAH were 
significantly different (PAH: 0.365±0.035N/m2 and non-PAH: 0.489±0.132N/m2; P=0.027). The 
mean OSIs of PAH and non-PAH were also significantly different (PAH: 0.214±0.026 and non-
PAH: 0.13±0.046; P=0.001). The r values of Spearman's rank-correlation coefficient test in 
comparison between hemodynamic parameters and mean PAP were -0.638 (p=0.005), -0.485 
(p=0.049), -0.643 (p=0.005) and 0.625 (p=0.007) for sWSS, dWSS, mWSS and OSI respectively. 
The r values of Spearman's rank-correlation coefficient test in comparison between hemodynamic 
parameters and systolic PAP were -0.622 (p=0.008), -0.484 (p=0.049), -0.629 (p=0.007) and 0.594 
(p=0.012) for sWSS, dWSS, mWSS and OSI respectively. The r values of Spearman's rank-
correlation coefficient test in comparison between the hemodynamic parameters and BVSA were -
0.488 (p=0.049) and 0.574 (P=0.016) for OSI. Vortex or helical flows were observed in three out of 
five PAH patients but not in any of the non-PAH patients. 
Conclusion 

The sWSS, mWSS and OSI, which can be measured simply and objectively with the aid of 3D 
cine PC MR were considered to be potential hemodynamic parameters for PAH diseases. 
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FIGURE LEGENDS 
 
Fig. 1-1 
Flow curve of pulmonary artery and definitions of parameters in our study.  
Acceleration Time (AT), Acceleration Area (AA) and Peak Velocity (PV) as parameters in our study 
are shown.  
 
Fig. 1-2 
Change in signal intensity volumes according to difference in flip angle (FA) with magnitude image 
(a) Case of healthy volunteer 1 
(b) Case of healthy volunteer 2 
 
Fig. 1-3 
Change in pulmonary arterial velocity according to difference in view per segment (VPS)  
(a) Case of healthy volunteer 1 
(b) Case of healthy volunteer 2 
(c) Case of healthy volunteer 3 
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(d) Case of healthy volunteer 4 
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FIGURE LEGENDS 
 
Figure. 2-1 
Double-oblique steady-state free precession cine MR images of right pulmonary artery for setting 
the location of 2D cine PC MR. The locations of two cross sections perpendicular to the right 
pulmonary artery 20 mm distal from the pulmonary artery bifurcation are represented by the white 
line. 
a. An axial section parallel to the right pulmonary artery at the level of the pulmonary bifurcation. 
b. An oblique coronal section parallel to the right pulmonary artery. 
 
Figure. 2-2a 
Correlation coefficients of acceleration time between 2D cine PC MR and 3D cine PC MR. 
a, Acceleration time; b, Acceleration volume; c, Peak velocity; 
2D cine PC, two-dimensional cine phase-contrast; 3D cine PC, three-dimensional cine phase-
contrast 
 
Figure. 2-2b 
Correlation coefficients of acceleration volume between 2D cine PC MR and 3D cine PC MR. 
a, Acceleration time; b, Acceleration volume; c, Peak velocity; 
2D cine PC, two-dimensional cine phase-contrast; 3D cine PC, three-dimensional cine phase-
contrast 
 
igure. 2-2c 
Correlation coefficients of peak velocity between 2D cine PC MR and 3D cine PC MR 
a, Acceleration time; b, Acceleration volume; c, Peak velocity; 
2D cine PC, two-dimensional cine phase-contrast; 3D cine PC, three-dimensional cine phase-
contrast 
 
Figure. 2-3a 
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Bland-Altman plots of acceleration time measured in 3D cine PC MR compared to 2D cine PC MR 
as the reference standard.  
a, Acceleration time; b, Acceleration volume; c, Peak velocity; 
2D cine PC, two-dimensional cine phase-contrast; 3D cine PC, three-dimensional cine phase-
contrast 
 
Figure. 2-3b 
Bland-Altman plots of acceleration volume measured in 3D cine PC MR compared to 2D cine PC 
MR as the reference standard.  
a, Acceleration time; b, Acceleration volume; c, Peak velocity; 
2D cine PC, two-dimensional cine phase-contrast; 3D cine PC, three-dimensional cine phase-
contrast 
 
Figure. 2-3c 
Bland-Altman plots of peak velocity measured in 3D cine PC MR compared to 2D cine PC MR as 
the reference standard.  
a, Acceleration time; b, Acceleration volume; c, Peak velocity; 
2D cine PC, two-dimensional cine phase-contrast; 3D cine PC, three-dimensional cine phase-
contrast 
 
Figure. 2-4 
A 88-year-old female with PAH 
a. Velocity vectors on a plane placed in the right pulmonary artery. 
b. Streamlines through a plane placed in the right pulmonary artery. 
c. Velocity vectors map of the pulmonary artery. 
d. Temporal changes of spatially-average flow velocity of the right pulmonary artery. 
PAH, pulmonary arterial hypertension 
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FIGURE LEGENDS 
 
Figure. 3-1 
Bland-Altman analysis plotted for intraoperator and interoperator agreement concerning the 
measurements of sWSS, mWSS and OSI. The bias for each measurement was within the acceptable 
ranges. 
a: Intraoperator agreement on sWSS for operator 1 
b: Intraoperator agreement on mWSS for operator 1 
c: Intraoperator agreement on OSI for operator 1 
d: Intraoperator agreement on sWSS for operator 2 
e: Intraoperator agreement on mWSS for operator 2 
f: Intraoperator agreement on OSI for operator 2 
g: Interoperator agreement on sWSS 
h: Interoperator agreement on mWSS 
i: Interoperator agreement on OSI 
 
Figure. 3-2 
Representative streamline analysis (a), WSS map (b), time course changes of the WSS values of the 
main pulmonary arterial wall and hemodynamic values (c) acquired in a 77-year-old male with non-
PAH.  
Systolic streamlines of the pulmonary artery (a) show laminar, but no vortex flow. WSS in the time-
averaged WSS-contour image of the pulmonary artery (b) is about 3 N/m2 or more. Spatially-averaged 
temporal WSS change in the pulmonary artery (c) show its peak at 166 ms from R wave. Patient’s 
data with non-PAH (d) demonstrates a high value of BNP, and normal PAP. The error bars represent 
the SD.  
PAH: pulmonary arterial hypertension, WSS: wall shear stress, sPAP: systolic pulmonary arterial 
pressure, UCG: ultrasound cardiography, PAP: pulmonary arterial pressure, RHC: right heart 
catheterization, s/d/m: systole/diastole/mean, BNP: brain natriuretic peptide, AT: acceleration time, 
PV: peak velocity 
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Figure. 3-3 
Representative streamline analysis (a), WSS map (b), time course changes of the WSS values of the 
main pulmonary arterial wall and hemodynamic values (c) acquired in a 75-year-old female with PAH.  
Streamlines of the pulmonary artery (a) show vortex flow (arrows) from the trunk to right pulmonary 
artery. WSS in the time-averaged WSS-contour image of the pulmonary artery (b) is about 1.5 N/m2 
or less. Spatially-averaged temporal WSS changes in the pulmonary artery (c) show its peak at systole 
(244 ms from R wave), which is lower than non-PAH (Fig3-2c). The error bars represent the SD. 
Patient’s data with PAH (d) demonstrates that PAP is higher, BNP is lower, AT is higher and PA is 
lower as compared with non PAH patients.  
PAH: pulmonary arterial hypertension, WSS: wall shear stress, sPAP: systolic pulmonary arterial 
pressure, UCG: ultrasound cardiography, PAP: pulmonary arterial pressure, RHC: right heart 
catheterization, s/d/m: systole/diastole/mean, BNP: brain natriuretic peptide, AT: acceleration time, 
PV: peak velocity 
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