
 

 

 

 

 

 
 

 

Route search problem considering travel 

time reliability and CO2 emission in road 

network 

 

 

 

 

 

 

 

 

 
ZENG, Weiliang 

 

 



 

 

  



 

 

Route search problem considering travel time 

reliability and CO2 emission in road network 

 

Doctoral Dissertation 

 

 

 

 

Submitted in Partial Fulfillment of the  

Requirements for the Degree of  

Doctor of Engineering 

 

 

 

 

 

by: 

ZENG, Weiliang 

 

 

 

 

 

Academic Adviser: 

Associate Professor MIWA, Tomio 

 

 

 

 

 

 

 

Department of Civil Engineering 

Nagoya University 

JAPAN 

February, 2016 

 

  



 

 

 

Acknowledgments 

I would like to say thank you for the kind people supporting my doctor course study 

and the dissertation. Without their encouragement and help, it is impossible to finish my 

doctor defense. 

First of all, I appreciate my supervisor MIWA, Tomio sensei so much. He is a very 

nice professor and always encourages his students. He takes care of me so much. Though I 

meet some difficulties at the beginning, he provide good research topic and help me 

develop my doctoral research as soon as possible. He also provides many opportunities to 

make presentation in the international conference and aid to write good papers. I learned 

how to conduct research from him. 

I am grateful to Professor MORIKAWA, Takayuki. He is so nice and every student 

likes him so much. His wide range of knowledge and great foresight inspires me so much. I 

always get much valuable information from his comments. Specially, his support for my 

new start gives me great encouragement  

I am appreciated for the kind suggestions from Professor YAMAMOTO, Toshiyuki. 

He is very serious to research and gives me many comments to my presentation and paper 

writing. He is also a member of my dissertation defense committee. His valuable 

comments help to improve my dissertation greatly. 

I would like to acknowledge associate professor KATO, Hirokazu, Professor 

MATSUMOTO, Yukimasa and Professor NAKANO, Masaki for serving as my 

dissertation defense committee members. I am grateful for the valuable comments of the 

committee members. 

Thank you for the help of assistant professor, SATO, Hitomi. She is so nice and helps 

me to prepare the data and software. Without her timely help, I cannot restart my research 

so fast. Moreover, I would like to say thank you to all members in MORIKWA & 

YAMAMOTO & MIWA Lab. Gong Lei, CHU Tien Dung, Ma Danpeng, Sun Xiaohui, 

MOTHAFER Ghasak, Xu Gang, Mu Rui, Li Yanyan and TOSA Cristia gave me many 

suggestions in my study and life. Moreover, I would like to say thank you to Mrs. 

KAWAHARA, Hiroko. Her support and encouragement make me go out the frustration. I 

also want to say thank you to Professor Mizutani, Norimi. His concern and support make 

me continue my research. 



 

 

 

Finally, deep thanks go to my parents. They always give me support without any 

complains. Their patience and understanding make me moving forward my goal. I will 

make effort to return for their love. 

  



 

I 

 

Abstract 

In an effort to provide better route guidance to travelers, this study investigates the 

route search problem considering travel time reliability and CO2 emission. This study adds 

to the emerging route guidance technology regarding reliable path finding and eco-routing 

in the following aspects. First, the α-reliable path problem in a stochastic network with 

correlated and truncated lognormal link travel times is addressed. The Lagrangian 

relaxation approach is applied to solve the nonlinear and non-additive problem. The 

Lagrangian relaxation based framework enables to handle the mean-variance α-reliable 

path problem, by which an intractable problem with a nonlinear and non-additive structure 

can be decomposed into several easy-to-solve problems. A subgradient algorithm is used to 

iteratively update the Lagrangian multipliers and find the approximate optimal solution. 

The availability of such reliable paths in a navigation system application would help 

travelers plan their travel time budgets with a specified on-time arrival probability 

efficiently. Then, travelers’ risk preferences to travel time reliability are explored. The 

degree of risk-averse preference is formulated by comparing the on-time arrival 

probabilities of the pre-defined α-reliable path and the observed path under the theory of 

stochastic dominance. As a parallel study, the experientially reliable routing considering 

travel time uncertainty and driving experience of local probe vehicle drivers is proposed. 

Second, considering the environmental benefit, this study investigates the eco-friendly path 

that results in minimum CO2 emissions while satisfying a specified budget of travel time. 

This eco-routing problem with travel time constraint is transformed into a bi-objective like 

optimization problem. Specifically, the benefit tradeoff between CO2 emissions reduction 

and the travel time buffer is discussed by carrying out sensitivity analysis on a network-

wide scale.  

Chapter 2 offers a comprehensive literature review related to reliable routing problem 

and eco-routing problem.  

Chapter 3 introduces the data collection method. The travel time distribution and 

variability at the link and path levels are analyzed based on GPS probe vehicle data. Travel 

time distributions at link level and path level are characterized. Several classical 

distributions (normal, lognormal, truncated normal, and truncated lognormal) are subjected 

to the K-S test, A-D test and χ^2 test. It is found that the truncated lognormal distribution 

enables to represents the link travel time distribution for about 90% of links. Because there 

is no closed-form expression for solving the joint probability distribution (sum of link 
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distribution) function for each path, a normal distribution is selected as a surrogate for path 

distribution. This is computationally tractable and shown to be acceptable in accuracy. 

Chapter 4 introduces the α-reliable path problem in a stochastic network with 

correlated travel time. The difficulties faced in finding a solution are twofold. First, the 

problem is non link separable due to the cross correlation of link pairs. The explicit 

unknown includes two variables, which makes the problem intractable. Second, sub-path 

optimality does not hold due to the nonlinear term. Such a problem cannot be computed by 

a standard shortest-path algorithm because additivity is violated. To overcome these 

problems, a Cholesky decomposition method for link separation in the variance-covariance 

matrix and a Lagrangian relaxation approach for problem decomposition are introduced. 

The Lagrangian relaxation approach is applied to approximate the α-reliable path solution 

by closing the duality gap. Specifically, the spatial correlation of link travel times is 

explicitly considered by introducing a correlation coefficient matrix. The Cholesky 

decomposition is proposed to separate the correlation coefficient matrix and make it 

tractable to the α-reliable path problem. The nonlinear and non-additive problem structure 

is decomposed into sub-problems that can be regarded as standard shortest-path problems 

and series of tractable convex or concave problems. In solving the problem, the relative 

gap between the upper bound and lower bound of the solution is shown to decrease at each 

iteration and 30 iterations of the algorithm yield a small relative gap of within 2%-7%. 

Chapter 5 investigated the traveler’s risk-averse preference for α-reliable path 

problem in a transportation network. A novel data collection method for travelers’ risk-

averse preferences is introduced. The observed risk-averse preference is defined by using 

the theory of stochastic dominance. Ordered Probit model is applied to estimate the 

parameters of the travelers’ risk preferences by considering variously individual properties 

(gender, age) and pre-trip information (OD distance, departure time, day of week).  

Chapter 6 investigated an experientially reliable path considering travel time 

uncertainty and driving experience of local probe vehicle drivers. Accordingly, a two-stage 

route-finding procedure is proposed. First, a candidate path set is built by using the 

hyperpath algorithm, where the choice probability is assigned to each link with uncertain 

travel time. Second, the shortest path algorithm is applied to search the experientially 

reliable path on the graph of hyperpath where the modified link cost is penalized based on 

the link choice probability derived from hyperpath algorithm and the driving experience of 

local drivers. Four kinds of optimal path in a real-world network are compared with the 

observed one. It is found that the proposed path has the most similarity with the observed 

path and it has a higher degree of familiarity and reasonable time and distance. 
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Chapter 7 introduces how to determine an eco-friendly path that results in minimum 

CO2 emissions while satisfying a specified budget for travel time. This eco-routing 

problem with travel time constraint is formulated to a bi-objective like optimization 

problem. The theory of Pareto-optimal optimization is then applied to solve this NP-

complete routing problem. Specifically, a heuristic approach combining the weighting 

method and k-shortest path algorithm is developed to search the optimal path along the 

Pareto frontier. The performance of the proposed eco-routing strategy is verified by 

comparing it against other routing strategies in a real world network using real travel time 

and CO2 emissions data collected by GPS-equipped probe vehicles. Specifically, the 

benefit tradeoff between CO2 emissions reduction and the travel time buffer is discussed 

by carrying out sensitivity analysis on a network-wide scale. We compare its computation 

efficiency against the classic Lagrangian relaxation approach over a set of real-world 

networks and demonstrate its advantage in solution quality and computation time. 

Finally, Chapter 8 summarizes this study and gives direction for future research. The 

route search problem considering travel time reliability and CO2 emission is promising to 

be applied to the current navigation system easily. This work might be a particular help in 

the design of a more effective navigation system for individuals with various preferences 

to travel time and environmental benefit. Potential directions for future study in this area 

include improvement of the path finding algorithm and consideration of the stochastic 

characteristics of travel time and CO2 emissions: (1) an efficient path-finding algorithm 

suitable for a real-time eco-routing navigation system needs to be developed; (2) 

considering that travel time and emissions are non-deterministic, the reliability of the eco-

algorithm routing should be considered further; (3) in addition to spatial link travel time 

correlation, temporal correlation should be considered in the finding algorithm and (4) a 

faster path finding algorithm suitable for real-time navigation systems needs to be 

developed. 
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Chapter 1 Introduction  

INTRODUCTION 

1.1 Background 

With the development of the communication technology and transportation service, 

many vehicles have been installed the GPS-based navigation system, which enables to 

provide route guidance services. Travelers are becoming relying on the routing service 

especially for planning unfamiliar trips. Today, the routing service not only provides a 

shortest path, but also estimates the travel time, costs, and fuel consumption for a specified 

trip. It helps travelers to avoid the congestion area and select a preferable path. Due to the 

increasing demand of traveling, congestion is a serious problem in many countries. Traffic 

jam becomes worse with the increasing number of cars and uncertain travel demands. How 

to provide a better routing service in an uncertain transportation network is a great 

challenge. 

1.1.1 Development of ITS 

As shown in Figure 1-1, with the development of modern transportation, Intelligent 

Transportation Systems (ITS) aims to improve the efficiency, safety and air quality via 

applying a wide range of advanced communication and information technologies. Peoples 

are not only concerned with the real time traffic information, but also the reliability and 

environmental protection. For example, we are concerned about whether the shortest path 

provides a reliable travel time and how many fuel consumption or emission by choosing 
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this path. ITS covers various areas related to people’s daily travel, commercial transport, 

and traffic management. There are some important areas that ITS focuses on: advanced 

navigation system, V2V and V2I communications, advanced traffic management system, 

application of big data, etc. In Japan, the milestone of ITS is shown in Figure 1-2 (Amano, 

2015). In the first stage, it mainly focuses on the establishment of different sub-systems 

such as car navigation system, ETC, driving safety system, traffic management system, 

road management system, commercial vehicle operation system, public transportation 

system, pedestrian assistance system, emergency vehicle operation system. In the second 

stage, these sub-systems are further improved and it pays more attention to traffic safety, 

convenience, and standardization. Nowadays, the new challenge is how to develop a 

sustainable transportation system. In Japan, it is necessary to consider the aging society, 

sustainable fuel supply and natural disasters.  

 

 
Modified from image source: www.its-jp.org 

Figure 1-1 Application of Intelligent Transportation System 
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Figure 1-2 Development of ITS in Japan (Amano, 2015) 

 

1.1.2 System-wide traffic data collection 

To provide a better transportation service, for example, navigation service, an 

effective data collection measure is important. As shown in Figure 1-3, various sensors are 

applied to transportation information collection, including inductive loop detector, 

microwave radar, image processing vehicle detector, GPS probes, cellular phone, etc. 

Generally, they can be classified into three categories, i.e., point sensor, point-to-point 

sensor, and probe sensor. For example, the point sensor such as microwave sensor is 

usually used to collect the traffic flow, but it is hard for travel time collection. The point-

to-point sensor such as video detector can provide the travel time estimation, but the 

accuracy is dependent on the identification of license plate. Recently, the probe sensor 

such as the probe vehicle is widely used to collect the system-wide traffic data because it 

enables to collect large amount of GPS data and provide reasonable travel time estimation. 

Probe vehicles are becoming more and more popular in transportation management and 

transportation research, because it has many advantages superior to other data collection 

methodologies. For example, the cost of installation and daily maintenance fee are 

relatively low. Without adding special infrastructure, any vehicles such as taxi, commercial 

fleet, and private cars can be used as probe vehicles. Considering the privacy, the private 

information such as the owner information and license plate will not be collected. The 

amounts of data are abundant and precise. The location, speed, time, and direction can be 

collected second-by-second. Then, the trajectory can be reproduced by using the GIS 
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(Geographic Information System) tool. Various analyses can be conducted by using the 

large-scale trajectory data. Some importation applications include the estimation of road 

speed, congestion prediction, OD estimation, and route guidance. Probe vehicle not only 

provides large-scale data in a wide area, but also has strong anti-interference ability. With 

the development of GPS, data collection by probe vehicle is robust and seldom disturbed 

by surrounding influences such as time of day and weather condition. Since there are many 

advantages by using probe vehicle, this study uses probe vehicle for data collection. 

 

 
Figure 1-3 Sensors for data collection in ITS 

 

1.1.3 Navigation system 

En-route vehicle navigation system has become a standard configuration in many car 

models. A typical vehicle navigation system usually includes an on-board GPS and 

displaces the vehicle’s position on a digital map (Lin and Lo, 2014).  Nowadays, not only 

the statistical information such as lengths of links and historical travel time, but also the 

real-time traffic information such as traffic flow and congestion level can be obtained from 

various channels. Users can vary the criteria to find preferable routes. That is, users may 

choose least travel time, minimum cost or to avoid certain links, route sections or areas. 

The navigation system can be classified into two types. One is called the centralized 

route guidance, and another one is called decentralized route guidance. For centralized 

route guidance, the large-scale data processing and computation is handled by servers in 
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transportation information center. Then, the optimal path is sent to the terminal device such 

as the cell phone and personal computer by 3G/4G wireless network. Most of the web-

based map services are centralized, such as Google map and Yahoo map. Decentralized 

routing system usually calculates the optimal path by the build-in computation unit. The 

vehicle navigation system with build-in GPS device is generally the decentralized system, 

which enables to collect the link costs such as real-time travel time and provide the optimal 

path by local calculation. Many field tests demonstrate that a navigation system enables to 

efficiently reduce the individual travel time and avoid the congestion. In March, 1998, the 

center area of Tokyo was used to test the route guidance performance (JTMTA, 1999). It is 

found that the tested cars with dynamic route guidance system (real-time) traveled 77s 

(2.3%) faster than taxies, 422s (12.4%) faster than the cars with static route guidance 

system (based on shortest path) on average.  

1.2 Problem statements 

The unexpected delay is usually caused by the traffic congestion. However, the traffic 

congestion is difficult to mitigate due to the increasing traffic demand. The traffic 

congestion may cause the uncertain delay for a planned trip. On the other hand, a lot of 

research found that traffic congestion also increases the vehicle emission significantly. For 

example, the CO2 emission for a truck will increase three times in congestion situation 

comparing to smooth situation. 

ITS is regarded as one of the efficient techniques mitigating the traffic congestion and 

provide an eco-friendly society. As an important application of ITS, vehicle navigation 

system becomes more and more popular in our daily life. For example, many travelers 

usually search a shortest path by using the google navigation or yahoo navigation before 

departure. As shown in Figure 1-4, web-based map services such as Yahoo map and 

Google map may provide static information of average travel time and shortest paths. 

However, users do not know the travel time reliability and it is difficult to decide a better 

route. Reliability has become an important factor when people make decision on choosing 

a path especially for commercial purpose. Unexpected delay may lead to serious penalties. 

As we know, peoples have different risk preference on travel time reliability. A risk-averse 

traveler prefer to choose a path with lower travel time variance, while a risk-taking traveler 

prefer an unreliable path that potentially provides shortest distance or minimum travel time. 

For example, the shortest path may have shortest length but low on-time arrival probability. 

This may cause late arrivals and high penalties from travelers. On the other hand, 

environment problems such as global warming have become a matter of worldwide 

concern. It has been noted that the transportation sector accounts for approximate 23% of 
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total global CO2 emissions, of which 73% are generated by road transport (JAMA, 2008; 

Birol, 2010). Even though alternative fuel vehicles such as all-electric vehicle will be the 

best solution in the future, mitigating emissions by existing gasoline vehicles is an 

alternative countermeasure in the near term. However, current navigation system seldom 

considers the travel time reliability and vehicle emission. There are questions when we use 

the google map or Yahoo map service. Is it really on-time arrival and is it eco-friendly? 

 

 
Figure 1-4 Google map and Yahoo map 

 

1.3 Research objective 

Following the problem statement, the research objective is to explore the routing 

methodologies considering on-time arrival probability and vehicle emission. To complete 

the objective, the following research is conducted. 

(1) Develop a reliable routing model enabling to incorporate traveler’s risk-averse 

preference. 

(2) Explore travelers’ risk-averse preference to travel time from large-scale trip 

records. 

(3) Develop an eco-routing model considering travel time and CO2 emission. 
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1.4 Research outline  

The organization of this thesis is structured as follows. Chapter 1 introduces the 

development of ITS and navigation system. The problem statement and research objective 

are also given. Following this introduction, Chapter 2 offers a brief literature review 

related to the reliable routing problem and eco-routing problem. Chapter 3 introduces the 

data collection method and analyzes travel time distribution at link and path levels based 

on GPS probe vehicle data. Chapter 4 solves the α-reliable path problem with correlated 

link travel times as a nonlinear and non-additive programming problem. Chapter 5 

introduces a new method for estimating the risk-averse preference. Chapter 6 investigated 

an experientially reliable path considering travel time uncertainty and driving experience 

of local probe vehicle drivers. Chapter 7 introduces how to determine an eco-friendly path 

that results in minimum CO2 emissions while satisfying a specified budget for travel time. 

Finally, the achievements of this study and the recommendation for future research are 

outlined in Chapter 8. 
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Figure 1-5 Research flowchart 
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Chapter 2 Literature Reviews 

LITERATURE REVIEWS 

2.1 Measure of travel time reliability 

The studies for travel time reliability can be classified into two groups, i.e., network 

travel time reliability and path travel time reliability.   

The studies for network travel time reliability mainly account for congestion effects. 

Chen et al. (2002) combined reliability and network equilibrium models to analyze the 

performance of a degradable road network. Ng and Waller (2010) characterized the travel 

time reliability in road networks using the fast Fourier transform when the uncertainty was 

given by stochastic road capacities. A bi-objective network equilibrium models for travel 

time reliability by combining the travel time budget (Lo et al., 2006) and the late arrival 

penalty (Watling, 2006) is proposed by Wang et al. (2014). Bell (2000) defined network 

reliability in terms of two measures, i.e., connectivity and performance reliability. A game 

theoretical approach was used to assess the network reliability. 

The second group is the path travel time reliability. It has been recognized as a critical 

factor in enabling travelers to guarantee on-time journeys. There are various definitions of 

path travel time reliability and formulations for measuring it. It is usually represented by 

the probability that a trip can be made successfully within a certain travel time budget 

(Frank, 1969; Mirchandani, 1976). Hall (1983) measured travel reliability in terms of 

effective travel time, which was defined as the sum of the average travel time and a safety 
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margin that was the product of the standard deviation of travel time (Sivakumar and Batta, 

1994; Sen et al., 2001; Shao et al., 2006). Taking account into the fact that travelers often 

concern about how late and how early they can arrive at their destination, Kaparias et al 

(2008) used the earliness and lateness probabilities as the reliability measure. Rakha et al. 

(2010) pointed out those key variables in measuring path travel time reliability included 

not only the travel time mean but also the travel time variance. And five measurements for 

estimating path travel time variance from the component segment travel time variances is 

proposed. Other reliability measures include statistical range methods (Van Lint et al., 

2008; Bates et al., 2001), buffer time methods and tardy-trip measures (Lomax et al., 2003), 

and so on. The choice of measures usually depends on the context of study and ease of 

computation. In this study, the on-time arrival probability is adopted to measure the 

reliability because it reasonably captures empirical features of user behavior such as risk-

averse preference to late arrival and can be extracted from trip records of GPS probe 

vehicle data. 

When it goes to calculate the reliability of a path consisting of a number of links, it 

should be noted that the correlation among links can not be neglected, because it is likely 

that congestion on the downstream links will result in upstream links becoming congested. 

Gajewski and Rilett (2004) estimated the correlation of link travel time by using a 

nonparametric regression technique based on Bayesian neural cubic splines. It was found 

that heavier congestion reduces the correlation of travel times between links. Rachtan et al. 

(2013) developed three regression models to describe correlation variation by considering 

various combinations of variables such as spatial distance, temporal distance, traffic state 

and the number of lanes. They found that the primary factor in correlation is spatial 

distance. Jenelius and Koutsopoulos (2013) incorporated the spatial-temporal correlation of 

link travel times into traffic network analysis using GPS probe vehicle data with low 

sampling frequency. They found that attributes such as one-way streets, speed limits and 

signalized or non-signalized right turns and left turns had significant effects on travel time 

correlation.  

2.2 Path finding algorithm considering reliability 

Methods of finding the reliable path have attracted increasing attention recently 

among those investigating risk-averse navigation (Xiao and Lo, 2013) and transportation 

network analysis. Three categories of stochastic routing models have been proposed to 

present inherent travel time uncertainties and provide travelers with either pre-trip routing 

guidance (Samaranayake et al., 2012) or adaptive en-route guidance (Gao and Huang, 2012; 

Taş et al., 2014): 
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(1) The hyperpath model. Emanating from the study of transportation assignment 

(Nguyen and Pallotino, 1988; Spiess and Florian, 1989; Schmocker et al., 2013), the 

hyperpath represents a sequence of path selection strategies rather than a simple shortest 

path. Given uncertainty about link travel time, link usage probabilities are sought that 

minimize the driver’s maximum probability to unexpected delay on each node, leading to 

the determination of a pessimistic travel time of arrival at the destination (Bell, 2009; 

Schmocker et al., 2009). 

(2) The least expected travel time (LET) path model. The LET problem on stochastic 

and time dependent networks was first discussed by Hall (1986). Miller-Hooks and 

Mahmassani (1998) defined the optimal path in a stochastic and time-varying time 

dependent road network as the one that has the least possible travel time. Non-dominated 

paths under stochastic dominance rules are determined by label-correcting algorithms 

(Miller-Hooks and Mahmasssani, 2000; Miller-Hooks, 2001; Miller-Hooks and 

Mahmasssani, 2003). A heuristic algorithm based on the k-shortest path algorithm was 

proposed to find the LET path (Fu and Rilett, 1998). Based on the stochastic first-in-first-

out property, the multiple criteria A* algorithm can be used to determine the LET path in 

time-dependent networks efficiently (Chen et al., 2013a; Chen et al., 2014). The LET path 

problem describes the decision-making under uncertainty, but it fails to take into account 

the risk-averse behavior of travelers. 

(3) The stochastic on-time arrival or reliable a priori shortest-path model. The optimal 

path is defined as the one that either maximizes the reliability of arrival within a given time 

budget (Frank, 1969; Fan et al., 2005; Nie and Fan, 2006) or minimizes the travel time 

budget for a specified on-time arrival probability (Chen and Ji, 2005). However, these 

models usually neglect the correlation of link travel times.  

In this study, we aim to solve the α-reliable path problem in a stochastic road network 

with correlated link travel times. Due to the nonlinear and non-additive properties of this 

approach, there are few efficient routing algorithms that can contribute to solving such a 

problem. To date, the efficient methods for nonlinear and non-additive routing problems 

include: (1) the non-dominance based method (Chen et al., 2012; Chen et al., 2013b), (2) 

the simulation-based method (Ji et al., 2011; Zockaie, 2013; Prakash and Srinivasan, 2014), 

and (3) the Lagrangian relaxation approach (Xing and Zhou, 2011; Yang and Zhou, 2014; 

Xing and Zhou, 2013). The most reliable paths can be determined by enumerating all non-

dominated paths under the first order stochastic dominance (Nie and Wu, 2009). However, 

it might not be efficient enough for navigation operations on large-scale networks. Chen et 

al. (2013b) proposed the multiple criteria A∗ algorithms for finding the α-reliable path 

considering various dominance conditions, which is potential to determine the most 
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reliable path in a large-scale road network efficiently. The simulation based method is also 

computationally expensive and the accuracy of the result is relying on the maximum 

number of simulations. As for the Lagrangian relaxation approach, Xing and Zhou (2011) 

showed that 10-20 calculations of standard shortest-path algorithms for the reformulated 

models can achieve a preferable relative gap of about 2-6% on a large-scale transportation 

network with 53,124 nodes and 93,900 links. However, they only approximated the 

correlation of link travel time by using the Monte Carlo sampling-based method without 

taking account into the variance-covariance matrix explicitly, which may lead to a bias 

estimation due to limited samples. 

2.3 Eco-routing problem 

Traditional navigation systems primarily find the shortest or fastest path between 

origin and destination based on roadway length or travel time. Intuitively, one may think 

that the shortest path or fastest path would also be the most eco-friendly path. However, a 

shortest path may take a driver through a heavy congested area, resulting in high vehicle 

emissions. There may be cases where a fastest path results in longer travel distance, albeit 

on less congested roadways. Traveling on a path at a higher speed over a longer distance 

will also lead to more fuel consumption compared with a shorter path (Masikos et al., 

2015). Recent years have seen emergence of the eco-routing concept, in which fuel 

consumption or vehicle emissions are set as the objective of the routing problem, as a way 

to fill this gap. For example, Yao and Song (2013) developed a dynamic eco-routing model 

utilizing a Dijkstra shortest-path algorithm (Dijkstra, 1959) and incorporating a vehicle 

specific power (VSP) based model and a dynamic traffic information database. Similarly, a 

navigation system considering eco-route was developed and validated in the Los Angeles 

Metro area (Boriboonsomsin et al., 2012), in which multisource historical and real-time 

traffic information are integrated. Nie and Li (2013) introduced a multiple objective 

function to the constrained eco-routing problem where the price of travel time and fuel was 

considered, but no concrete method of solution was mentioned. Many studies point out that 

eco-routing could result in great reductions in emissions, but it naturally comes at the 

expense of increased travel time (Ahn and Rakha, 2008; Boriboonsomsin et al., 2012; 

Alam and McNabola, 2014). However, few studies on eco-routing have discussed the 

trade-off between emissions reduction and increased travel time (Guo et al., 2013; 

Boriboonsomsin et al., 2014; Aziz and Ukkusuri, 2014). Longer travel times may result in 

delayed travel plans, which may cause serious troubles such as missing a flight. In addition 

to shortest path problem, the eco-routing concept has been applied to other transportation 

problems such as pollution routing problem, traffic assignment problem, road pricing 

problem, and rail freight transports. For example, Tzeng and Chen (1993) introduced a 
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traffic assignment model taken into account travel time, travel distance and CO emission 

simultaneously. Bektas and Laporte (2011) addressed a pollution routing problem in which 

emissions were modelled as a function of vehicle speed and load. Koc et al. (2014) 

introduced a mix pollution routing problem taken into account heterogeneous vehicle fleet, 

which aimed to optimize the sum of vehicle fixed costs and routing cost. Franceschetti et al. 

(2013) proposed an integer linear programming formulation of the time-dependent 

pollution routing problem which taken into account traffic congestion at peak periods. 

Chen and Yang (2012) studied a Pareto-optimal pricing scheme that aims to take into 

account both vehicular congestion and CO emission. Kirschstein and Meisel (2015) 

developed mesoscopic GHG emission models for evaluating the ecological performance of 

rail freight transports. 

With the travel time restriction, the eco-routing problem falls into the class of NP-

hard problems (Garey and Johnson, 1979). Such NP-hard routing problems cannot be 

easily solved by shortest-path algorithms such as the Dijkstra algorithm (Dijkstra, 1959) 

and the A-star algorithm (Hart et al., 1968). Various versions of exact and approximate 

methods have been developed to solve this problem. The label-setting algorithms 

(Desrochers et al., 1988; Dumitrescu et al., 2003) or Lagrangian relaxation algorithms 

(Carlyle et al., 2008; Zeng et al., 2015) can be regarded as a heuristic method. Path ranking 

approach such as the k-shortest path algorithms (Yen, 1971; Azevedo et al., 1993; 

Eppstein., 1998), which enumerates all paths, can be regarded as an exact solution method 

(Handler and Zang, 1980). This method is applicable when the optimal path can be found 

for relative small k in a small-scale network. However, they are intractable for large-scale 

networks due to the exponential increase in computational effort required if k is a large 

number. Recently, Santos et al. (2007) introduced an improved approach based on the k-

shortest path algorithm by identifying a more effective search direction. Lagrangian 

relaxation approach can efficiently search the near optimal solution. However, the optimal 

solution may not be found if it falls into the duality gap. To fill this gap, some approaches 

to close the duality gap have been developed. For example, a Lagrangian relaxation 

approach and closed the duality gap by using the k-shortest path algorithm is developed by 

Handler and Zang (1980). Beasley and Christofides (1989) solved the constrained shortest 

path problem by using sub-gradient optimization and developed a branch-and-bound 

approach to close the duality gap. Similarly, Carlyle et al. (2008) proposed a depth first 

branch-and-bound approach to close the duality gap, and a bisection searching technique 

was applied to determine the Lagrangian multipliers. Mehlhorn and Ziegelmann (2000) 

developed a hull based approach to solve a linear relaxation of the constrained shortest 

path problem and applied three approaches to close the duality gap: Hassin’ algorithm 
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(Hassin, 1992), the k-shortest paths algorithm developed by Jimenez and Marzal (1999), 

and a dynamic programming algorithm.  

On the other hand, the constrained eco-routing problem is similar to the bi-objective 

routing problem, where the travel time can be regarded as the second objective. Various 

versions of bi-objective routing problem have been discussed in recent literatures 

(Coutinho-Rodrigues et al., 1999; Xie, and Waller, 2012a; Chen and Nie, 2013; Wang et 

al., 2014). It is noteworthy that the optimal solution of the constrained eco-routing problem 

should be one of the Pareto-optimal solutions to the bi-objective routing problem. 

Therefore, a number of efficient approaches for finding the Pareto-optimal solution set 

offer promise to help find the optimal solution to the constrained eco-routing problem. For 

example, the non-inferior set estimation (NISE) method (Cohon, 1978) in which the 

weighting parameters are updated iteratively, is usually used for solving multi-objective 

(including bi-objective) optimization problems, and has been successfully applied to 

routing problems with multiple objectives. Coutinho-Rodrigues et al. (1999) proposed a 

combination approach applying NISE-like weighting approach and k-shortest path 

algorithm to find the Pareto-optimal solution set. Pugliese and Guerriero (2013) addressed 

the resource constrained shortest path problem based on reference point methodology 

(Granat and Guerriero, 2003). Raith and Ehrgott (2009) proposed a hybrid solution strategy 

and two-phase algorithm in which a weighting approach is applied in combination with a 

label setting or path ranking approach. 
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Chapter 3 Data Collection Method 

DATA COLLECTION METHOD 

3.1 Data description 

3.1.1 GPS data 

Probe vehicles with GPS equipment have been proven to be one of the most efficient 

tools for traffic information collection, since they provide spatial-temporal information 

with high accuracy and reliability at a low cost. GPS data is therefore often used when 

analyzing travelers’ behavior and traffic patterns because much data exists. GPS data 

contain a vehicle’s latitude and longitude position, speed and direction with certain 

frequency. The coordinates can be matched to road segments on a digital map by using the 

map-matching technology (Miwa et al., 2012). With such information it is possible to 

analyze which route the driver chooses and the travel information (e.g., travel distance, 

average travel speed) along the trip.  

3.1.2 CAN Bus data 

A Controller Area Network (CAN) bus is a control network for the vehicle electronic 

equipment. It was designed as a communication medium of control units in vehicles (Voss, 

2005). A CAN bus connects actuators with sensors enabling to detect the health of vehicle 

from various vehicle-related information (Othman et al., 2006), e.g., engines RPM (rounds 
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per minute) and fuel consumption. Fuel consumption is available in different formats, e.g. 

the fuel level in the tank, the instantaneous fuel consumption and the accumulated fuel 

consumption. Instantaneous fuel consumption is estimated based on RPM and fuel flow. 

As shown in Figure 3-1, through the OBD device, CAN bus data are logged second-by-

second. To calculate the CO2 emission from fuel consumption, the carbon emission can be 

derived by multiplying the ratio of the molecular weight of CO2 by the molecular weight of 

carbon (Coe, 2005). According to the previous study by the U.S. Environmental Protection 

Agency, CO2 emission from a liter of gasoline is 2.32kg. The SD card can be used as the 

data logger which records the GPS data and OBD data. And then all the data can be 

uploaded to a central server. Considering the applicability and robustness of the routing 

model for a navigation system, we aggregate the emission data and travel time in a link-

based level after map-matching. 

 

 
Figure 3-1 Data collection for vehicle CO2 emission 
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3.1.3 Available data in transportation network 

The real-world network with 4072 nodes and 12,877 links in Toyota city, Japan is 

used as the test area. The study area that the drivers operate in and the link usage frequency 

can be seen in Figure 3-2. The probe data cover about 80% of all links in the tested 

network. Link usage frequency is higher than five per week in 43.5% of the links, while it 

is zero in 19.9% of the links. This could be explained by the fact that some of the links are 

not attractive due to small sample size of probe vehicles in the experiment. Another 

potential explanation for the links with zero usage frequency is that local drivers are not 

willing to choose unfamiliar paths for their commutes. 

Figure 3-3 gives an example of the dataset for trip records. A trip is composed by a 

group of links that the traveler selected from the origin to destination. The origin and 

destination can be usually defined from when the engine is turned on and turned off, 

respectively. To correct some unreasonable trips with very short travel time due to their 

temporal stopping at red signal, we connect adjacent trips with short stop less than 2 

minutes. Combining the GPS data, CAN bus data and vehicle type, the trip fuel 

consumption, trip distance, number of intersection, average travel speed, coefficient of 

variance (COV) of link speed, and engine displacement for each vehicle, can be obtained. 

Figure 3-4 gives a basic description of the collected dataset. About 64% of the trip 

OD distance is less than 5km, indicating that travelers are familiar with the road network in 

a relatively small activity range. The average travel speed of all the trips is 6.8m/s 

(24.5km/h) and normally distributed from 0 to 30m/s, indicating a medium delay level in 

the city. There are average 7.5 intersections per kilometer along one trip, indicating that 

travelers may need to stop due to the traffic light or conflicting traffic flow frequently. The 

average of COV of link speed is about 0.5 and 90% of the trips have a relatively low value 

of COV of link speed (less than 0.8), indicating a relatively stable traffic condition. The 

average engine displacement of 153 vehicles with 22 models is 1945cc. And the trip fuel 

consumption is distributed in a wide range from 0 to 2900ml with an average value of 

330ml. 
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Figure 3-2 Tested network with link usage frequency in Toyota city, Japan 

 

 

Figure 3-3 A trip record 
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Figure 3-4 Description of data set 

 

3.2 Link travel time distribution 

Links with sufficient travel time records (link usage frequency > 15 per week) are 

extracted for link travel time distribution analysis. The period of analysis is divided into 

four groups, i.e., peak hours (8:00-10:00 and 17:00-20:00) on weekday, off-peak hours 

(0:00-8:00, 10:00-17:00 and 20:00-24:00) on weekday, peak hours on holiday, and off-

peak hours on holiday. Since all influencing factors such as weather and traffic accident 

cannot be considered completely, we assume that link travel times are I.I.D. in each period. 
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among data in each period. Based on the prior literature, several classical distributions are 

considered: normal, lognormal, truncated normal, and truncated lognormal. The goodness 

of fit of each distribution is evaluated using standard statistical tests such as K-S test, A-D 

test, and χ2  test at 5% significance level. The χ2  test is sensitive to the choice of the 

number of intervals. However, there is no optimal choice for the width of the interval. In 

this study, the initial number of interval is set as ten (the default value in Matlab). For the 

χ2 to be valid, the expected count in each interval should be at least five (Croarkin and 

Tobias, 2006). The test may be not valid for small samples, and if some of the counts are 

less than five, some intervals will be combined to guarantee sufficient samples. As shown 

in Table 3-1, the truncated lognormal distribution is acceptable for modeling the travel 

time distribution for about 90% of the tested links, which outperforms the other three 

distributions. Therefore, it is reasonable to choose a truncated lognormal distribution to 

approximate the observed link travel time distribution. 

Table 3-1 Comparison of goodness-of-fit of distributions for link travel times 
Distribution Accepted by K-S Accepted by A-D Accepted by χ2 

Normal 65% 62% 70% 

Lognormal 72% 70% 75% 

Truncated normal 78% 75% 86% 

Truncated lognormal 91% 88% 92% 

 

 

Figure 3-5 Observed and estimated distributions of link travel time 
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Table 3-2 Parameter estimation result of truncated lognormal link travel time 

Period of Analysis 
Weekday 

(Off-peak hour) 

Weekday 

(Peak hour) 

Holiday 

(Off-peak hour) 

Holiday 

(Peak hour) 

Parameter Variable Coef. p-value Coef. p-value Coef. 
p-

value 
Coef. 

p-

value 

𝑢𝑖𝑗 

Length 

(𝑙𝑖𝑗) 
0.0052 0.00 0.0063 0.00 0.0049 0.00 0.0054 0.00 

LaneCount 

(𝑛𝑖𝑗) 
0.012 0.01 0.017 0.01 0.011 0.02 0.015 0.03 

Constant 

(𝑐1) 
1.45 0.02 1.55 0.02 1.41 0.01 1.52 0.02 

𝜎𝑖𝑗 

Length 

(𝑙𝑖𝑗) 
-0.00063 0.02 -0.00086 0.00 -0.00065 0.02 

-

0.00051 
0.02 

Constant 

(𝑐2) 
0.69 0.00 0.85 0.00 0.61 0.00 0.67 0.00 

Sample size 38976 16704 19448 8439 

Adjusted R-square 0.62 0.46 0.52 0.47 

 

To further illustrate the advantage of the truncated lognormal distribution, one of the 

tested links is extracted for analysis. As shown in Figure 3-5, the results of the K-S, A-D, 

and χ2 tests indicate that the hypotheses that the normal distribution for modeling travel 

time variability along the tested link should be rejected (𝑝 < 0.05). According to the p 

value, the lognormal, truncated normal and truncated lognormal distributions are 

acceptable for representing the observed link travel time distribution (𝑝 ≥ 0.05 ). As 

expected, the truncated lognormal distribution has the best result of goodness-of-fit, 

because it not only models the skewness characteristic of link travel time, but also limits 

travel time to a reasonable range. 

When no observations are available for certain links in the road network, we roughly 

estimate travel time distributions. Assuming that travel time in each link can be 

approximately fitted using the truncated lognormal distribution, we take the travel time 

mean and travel time variance on a link to be related to link length (𝑙𝑖𝑗) and lane count 

(𝑛𝑖𝑗). The simple linear regression model can be written as: 

𝑢𝑖𝑗 = 𝑎1𝑙𝑖𝑗 + 𝑏1𝑛𝑖𝑗 + 𝑐1                                                                     (3-1) 

𝜎𝑖𝑗 = 𝑎2𝑙𝑖𝑗 + 𝑏2𝑛𝑖𝑗 + 𝑐2                                                                     (3-2) 

where 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2 and 𝑐2 are coefficients to be estimated.  
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The estimation results are shown in Table 3-2. The positive signs of “Length” and 

“LaneCount” for uij suggest that link length and the number of lane have a positive effect 

on link travel time. A negative sign of “Length” for σij means that link travel time variance 

decreases with an increase in link length. By using this model, link travel times can be 

estimated for links with no observed data. 

3.3 Spatial correlation 

With abundant and sufficient probe data, the correlation coefficient matrix of link 

travel time can be obtained directly. However, the correlation coefficients of some link 

pairs cannot be calculated due to missing data. Here, we propose a regression model for 

correlation coefficient estimation. It is assumed that correlation coefficients follow the 

normal distribution. Link attributes such as connection dummy, movement direction 

dummy, link length, and lane count are considered in the regression model. Because the 

variance of the correlation coefficient depends on the sample size (so a smaller sample size 

may result in larger variance), the inverse of sample size is considered for variance 

estimation. The linear regression model can be written as: 

𝜌𝑖𝑗,𝑘𝑙 = 𝑎1𝑦1 + 𝑎2𝑦2 +⋯+ 𝑎𝑛−1𝑦𝑛−1 + 𝑎𝑛 + 𝑒                                           (3-3) 

𝑒~𝑁 (0, (𝜎𝑖𝑗,𝑘𝑙
𝜌

)
2
 )                                                                                           (3-4) 

𝜎𝑖𝑗,𝑘𝑙
𝜌

= 𝑏1
1

𝑁𝑖𝑗,𝑘𝑙
+ 𝑏2                                                                                         (3-5) 

where 𝑦1, 𝑦2, … , 𝑦𝑛−1 are independent variables of influence factors and  𝑎1, 𝑎2, … , 𝑎𝑛 and 

𝑏1, 𝑏2 are the model coefficients, while 𝑁𝑖𝑗,𝑘𝑙 is the sample size of the link pair. It should 

be noted that the correlation coefficients are bounded between -1 and 1 and are not exactly 

normally distributed. The tails of normal distribution may exceed the bound of the 

correlation coefficients. To make the normal distribution applicable to the estimation of 

correlation coefficient, we bound the estimated value with the range between -1 and 1. For 

example, if the estimated correlation coefficient exceeds 1, the estimated value is set to 1. 

According to our estimation, less than 1% of the estimated results exceed the range. 

Therefore, from a practical point of view, normal distribution is still reasonable to be 

applied to approximate the correlation coefficients. 
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Table 3-3 Parameter estimation result of correlation coefficient 
Parameters Variables Coef. p-value Note 

𝑢𝑖𝑗,𝑘𝑙
𝜌

 

Connected 0.0015 0.00 
Dummy, 1 if the link pair is connected, 0 

otherwise 

Straight 0.039 0.04 
Dummy, 1 if the traffic movement on the link 

pair is straight, 0 otherwise 

Left-turn 0.013 0.04 
Dummy, 1 if the traffic movement on the link 

pair is left-turn, 0 otherwise 

LengthSum 0.000076 0.01 The combined length of the two links 

LengthDiff -0.000060 0.00 The length difference of the two links 

LaneSum 0.0019 0.01 The total lane count of the two links 

LaneDiff -0.0039 0.00 The lane count difference of the two links 

Constant -0.017 0.02  

𝜎𝑖𝑗,𝑘𝑙
𝜌

 

Sample 

scale  
0.66 0.00 

Reciprocal of sample size of the 

corresponding link pair 

Constant 0.13 0.00  

Number of link pairs 417548 

Adjusted R-square value 0.44 

 

 

 

Figure 3-6 A path example for link travel time correlation analysis 
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Figure 3-7 Illustration of link travel time correlation for one path 

 

Various combinations of variables are used to estimate the regression model for link 

travel time correlation coefficients. As shown in Table 3-3, all the variables in the 

regression model are significant according to p-values at the 95% confidence level. A 

positive sign suggests that the correlation increases with an increase of the corresponding 

variable. As expected, the correlation increases if the link pair is connected. Link pairs 

with straight or left-turn traffic movement may have higher correlation because they share 

a common signal phase in Japan (where driving is on the left). The estimation results also 

show that more lanes and longer links increase the correlation of the link pair. This 

suggests that link pairs consisting of high quality roads may have stronger correlation. 

However, the correlation decreases if the length or lane difference of the two links in the 

pair increases. This suggests that link pair heterogeneity may decrease their correlation. 

As shown in Figure 3-6, one of the paths extracted from the probe vehicle trips is used 

for spatial correlation analysis. The tested path comprises 45 links and covers both urban 
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and suburban areas. The observed and estimated link correlation coefficients are shown in 

Figure 3-7, where the axis x and y coordinates represent the number of link sequence along 

the path and the axis z represents the value of link correlation coefficient. This 

demonstrates that correlation coefficients are indeed associated with spatial distance. A 

larger spatial distance between two links tends to decrease the correlation effect. On the 

other hand, the estimated results do roughly represent the link correlation when no 

observations are available. However, more extensive is still needed to reveal the true 

correlation. 

3.4 Path travel time 

Given the distribution of link travel time, the distribution of path travel time could be 

derived theoretically by computing the sum of link travel time distribution. However, a 

tractable solution for the PDF or CDF of the truncated lognormal sum is not available. To 

make the computation of the α-reliable paths tractable, we assume that the normal 

distribution can be used to approximate the distribution of path travel times as composed of 

truncated lognormal link travel times.  

Though versions of the central limit theorem (CLT) exist for independent stochastic 

variables, there is no CLT for the sum of dependent truncated or non-truncated lognormal 

distribution. Actually, the shape of path travel time distribution is relying on the variance-

covariance matrix of link travel times. However, there is no tractable solution for the sum 

of dependent variables with arbitrary distributions except normal distribution. In such case, 

Monte-Carlo simulation can be regarded as an alternative tool for conducting sampling 

experiments on stochastic analysis. In this study, we use Monte-Carlo simulation to justify 

our assumption. The essential role of the simulation procedure is to generate a number of 

sets of scenarios (travel time realization) so that in each network scenario, the link travel 

time can be sampled and the path travel time can be obtained by summating the link travel 

times on the selected path. The travel time on each link follows a predefined truncated 

lognormal distribution (𝐿𝑁(𝜇, 𝜎) ,  𝐸(𝑥) = 𝑒𝜇+
𝜎2

2 , 𝑉𝑎𝑟(𝑥) = 𝑒2𝜇+𝜎
2
(𝑒𝜎

2
− 1)). Without 

loss of generality, the lognormal distribution is truncated by 5% and 95% confidence level 

in this simulation study. We use the following Matlab function to generate link travel time 

samples from multivariate lognormal distribution: 

𝚺 = [

𝜎12
2 𝜌12,23𝜎12𝜎23 𝜌12,34𝜎12𝜎34

𝜌12,23𝜎12𝜎23 𝜎23
2 𝜌23,34𝜎23𝜎34

𝜌12,34𝜎12𝜎34 𝜌23,34𝜎23𝜎34 𝜎34
2

]                                   (3-6) 
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𝐗𝑁 = mvnrnd([𝜇12 𝜇23 𝜇34], 𝚺, 𝑛)                                                     (3-7) 

𝐗𝐿𝑁 = exp(𝐗𝑁)                                                                                         (3-8) 

where 𝚺 is the variance-covariance matrix, 𝜌 is the correlation coefficient for each link pair, 

𝜎 is the standard deviation, 𝑢 is the mean, the subscript denotes the link index, 𝑛 is the 

sample size, 𝐗𝑁 is the matrix of dependent random variables with normal distribution, 𝐗𝐿𝑁 

is the matrix of dependent random variables with lognormal distribution. 

To verify our assumption that the normal distribution can be applied to approximate 

the sum of dependent lognormal distribution, we compare two paths in which link travel 

times have smaller correlation and larger correlation, respectively. As shown in Figure 3-8, 

Path 1 and Path 2 have the same link count and average link travel time, while their travel 

time variances and link travel time correlations are different. Table 3-4 and Table 3-5 show 

the link travel time correlation coefficient matrix for Path 1 and Path 2, respectively. Path 1 

is set to have smaller link travel time correlation coefficients which are less than 0.5, while 

Path 2 is set to have larger link travel time correlation where certain links can have larger 

correlation coefficients than others. The larger link travel time correlation coefficients are 

highlighted in Table 3-5. To estimate the distribution of path travel time, 1000 random 

draws dependent on the setting of average link travel time and the correlation coefficient 

matrix are extracted for each link. The travel time distribution for each link is shown in 

Figure 3-9. Then, 1000 samples of path travel time are obtained by summating the link 

travel times. Figure 3-10 shows the comparison of the curves of the probability density 

function between Monte-Carlo simulation and normal approximation. The K-S, A-D and 

χ2  tests are used to determine whether the normal distribution can approximate the 

simulated distribution. The statistical results show that the normal distribution can be 

acceptable for approximating the path travel time distribution with correlated link travel 

time in two cases. Comparing Path 1 and Path 2, it is found that the goodness-of-fit for 

Path 1 is better than that for Path 2. It indicates that larger correlation among links may 

cause certain bias of normal approximation. However, we found that most of the links are 

weak dependent (ρ<0.2) except the neighboring links in the real-world transportation 

network as shown in Figure 3-7. Therefore, it is reasonable to apply the normal distribution 

to approximate the sum of link travel times. 
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Figure 3-8 Tested network for simulation study 

 

 

Figure 3-9 Link travel time distributions by Monte-Carlo simulation 

 

 

Figure 3-10 Path travel time distribution by Monte-Carlo simulation and normal 

approximation 

 

 



 

 

36 

 

Table 3-4 Correlation coefficient matrix for path 1 
Coefficient 

correlation 
L1 L2 L3 L4 L5 L6 

L1 1.00 0.05 0.10 0.24 0.26 0.20 

L2 0.05 1.00 0.17 0.07 -0.21 -0.04 

L3 0.11 0.17 1.00 0.12 0.07 -0.23 

L4 0.24 0.07 0.12 1.00 0.10 0.10 

L5 0.26 -0.21 0.07 0.10 1.00 -0.42 

L6 0.20 -0.04 -0.23 0.10 -0.42 1.00 

 

Table 3-5 Correlation coefficient matrix for path 2 
Coefficient 

correlation 
L7 L8 L9 L10 L11 L12 

L7 1.00 0.90 0.59 -0.12 0.20 0.30 

L8 0.90 1.00 0.43 0.23 0.43 0.01 

L9 0.59 0.43 1.00 -0.30 -0.33 0.01 

L10 -0.12 0.23 -0.30 1.00 0.54 -0.78 

L11 0.20 0.43 -0.33 0.54 1.00 -0.22 

L12 0.30 0.01 0.01 -0.78 -0.22 1.00 

 

Table 3-6 Goodness-of-fit of normal distribution for path travel time 

Length (km) Sample Mean γ 
Accepted percentage 

K-S test A-D test χ2 test 

<5 15 0.52 62% 54% 62% 

5-10 25 0.35 76% 72% 72% 

>10 21 0.21 81% 81% 81% 

 

To further test the accuracy of this approximation, 61 paths with more than 50 trip 

records each are extracted for travel time analysis. First, we use a skewness index to 

evaluate the symmetry of the observed distribution. Then, the K-S, A-D and χ2 tests are 

used to determine whether the normal distribution can approximate the observed 

distribution. Skewness measures the asymmetry about its mean for a given distribution 

with random variables. A positive statistic indicates that the tail of the distribution on the 

right side is longer than that on the left side. The skewness index can be written as: 

𝛾 = E [(
𝐓𝑝−𝑢𝑝

𝜎𝑝
)
3

] =
𝐸[𝐓𝑝

3]−3𝑢𝑝𝜎𝑝
2−𝑢𝑝

3

𝜎𝑝
3                                                           (3-9) 

As indicated by the mean value of 𝛾, as given in Table 3-6, the observed path travel 

time distributions usually have skewness on the right side, while travel times along shorter 

paths have more significant skewness than those along longer paths. A normal distribution 



 

 

37 

 

would be acceptable for modeling the path travel time distribution for about 62% of tested 

paths that are less than 5km length, about 76% of tested paths with a length of 5-10km, and 

about 81% of tested paths longer than 10km. Despite some studies that assume a lognormal 

distribution for path travel time modeling for reasons of the skewness of the distribution, 

obtaining the sum of dependent lognormal distribution functions for each path is an 

intractable problem. According to the literature reviews, there are no adequate methods for 

solving such an intractable problem in the transportation field or in fact in any other fields. 

Therefore, we select a normal distribution as a surrogate for path travel time distribution. 

According to the empirical test results above, the normal distribution is acceptable for most 

of the path travel time distributions, which indicates that the assumption is reasonable and 

practical for the routing problem. 

 

3.5 Summary 

In this chapter, the data collection for travel time and fuel consumption is introduced. 

Link travel time and path travel time distributions are characterized using empirical probe 

vehicle data. Several classical distributions (normal, lognormal, truncated normal, and 

truncated lognormal) are subjected to K-S test, A-D test and χ2 test. It is found that the 

truncated lognormal distribution enables to approximate the link travel time distribution for 

about 90% of the links. Because there is no tractable method for solving the sum of link 

distribution function, the normal distribution is chosen as a surrogate for path travel time 

distribution. This is computationally tractable and shown to be acceptable in accuracy. 

Regression models are established for link correlation and link travel time estimation for 

cases where insufficient probe vehicle data are available. A number of variables, including 

link length, lane count, movement direction, and connection relationship, are considered in 

the regression models. The results demonstrate that correlation coefficients are indeed 

associated with spatial distance. A larger spatial distance between two links tends to 

decrease the correlation effect. 
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Chapter 4 Alpha-reliable path finding problem 

ΑLPHA-RELIABLE PATH FINDING 

PROBELM 

4.1 Introduction 

In-vehicle navigation systems, as important applications in the field of intelligent 

transportation systems, have made great advances in recent years. Current systems allow 

users to vary the criteria used to build routes (that is, users may choose least travel time, 

minimum cost or to avoid certain links, route sections or areas). In developing a better trip 

plan, a reliable path within a given travel time budget seems more attractive than the 

shortest path in a stochastic network. It is widely recognized that transportation users place 

a high value on reliability when making their travel decisions (Lam and Small, 2001; Bates 

et al, 2001). For example, large travel time variations may lead to late arrivals and 

unexpected penalties from travelers (such as a missed a job interview). Therefore, there is 

an increasing demand for measuring, modeling and optimizing the reliability of travel time 

in developing a reliable navigation system.  

For traditional routing criteria, such as average travel time and distance, the 

generalized objective functions are linear and additive for all the links. Such deterministic 

optimization problems can be efficiently solved by shortest-path algorithms such as 

Dijkstra algorithm and A-star algorithm. However, road networks usually have significant 

degree of uncertainty attributed to various factors such as varied traffic demand, signal 

control, and physical bottlenecks. These uncertainties lead to a non-deterministic cost on a 
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path. Though the shortest-path algorithms for deterministic road networks can be applied 

to find the least expected travel time path in an uncertain network efficiently, it may not be 

optimal for users who pay more attention to the travel time reliability. To find a reliable 

path in a stochastic network, the uncertainty of link travel times and their associated 

distribution functions need to be taken into account explicitly. In an early study, Frank 

(1969) proposed finding a reliable path by maximizing the on-time arrival probability for a 

given travel time budget. Mirchandani (1976) introduced a recursive algorithm that 

enumerated all paths and all travel time possibilities to solve Frank’s problem by 

discretizing the travel time. By considering the variance, the reliable path problem can be 

formulated as a multi-objective path finding problem with a combination of travel time 

mean and variance (Sivakumar and Batta, 1994; Sen et al, 2001; Chang et al., 2005). Chen 

and Ji (2005) proposed the concept of α-reliable path. It provides a reliable path with the 

minimum travel time budget allowing travelers specifying a confidence level α of travel 

time. However, path travel time reliability measures usually lead to nonlinear and non-

additive objective functions because variance is involved and there is a spatio-temporal 

correlation. These problems greatly increase the computational difficulty and impose 

challenges for the routing procedure.  

The stochastic routing problem addressed in this study aims to search the α-reliable 

path in a stochastic transportation network with link travel time correlation. The spatial 

correlation of link travel time is explicitly considered by using a variance-covariance 

matrix, which is incorporated into the α-reliable path problem by Cholesky decomposition. 

The criterion for the α-reliable path problem with a given on-time probability is established. 

The Lagrangian relaxation is applied to calculate the lower bound of the α-reliable path 

solution. Specifically, the nonlinear and non-additive problem structure is decomposed into 

sub-problems that can be efficiently solved as a standard shortest-path problem, a series of 

univariate convex minimization problems and a univariate concave minimization problem, 

respectively. A sub-gradient algorithm is used to iteratively update the Lagrangian 

multipliers and find approximate optimal solutions by reducing the relative gap between 

upper bound and lower bound of each solution. 

4.2 Problem statement 

We wish to find a path with minimal travel time within a specified on-time arrival 

probability between two nodes in a stochastic network. In this section, we first formulate 

the problem and then, in the remainder of the section, discuss our motivation for solving it. 
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4.2.1 Variable definition 

Throughout this chapter, the following notation will be used: 

N: Set of nodes in the whole network; 

A: Set of links in the whole network; 

r: Origin node; 

s: Destination node; 

𝑚: Number of links in the whole network; 

𝑎𝑖𝑗: Directed link from node 𝑖 to 𝑗; 

𝑥𝑖𝑗: Binary variable that indicates the selection of link 𝑎𝑖𝑗; 

α: On-time arrival probability; 

𝑤𝑘𝑙: Sum of the column value of link 𝑎𝑘𝑙 in the Cholesky matrix; 

y: Travel time variance of the candidate path; 

𝑇𝑝: Stochastic travel time of path 𝑝; 

𝑢𝑝: Average travel time of path 𝑝; 

𝜎𝑝: Standard deviation of the travel time of path 𝑝; 

𝑢𝑖𝑗: Mean of the link travel time with truncated lognormal distribution; 

𝜎𝑖𝑗: Standard deviation of the link travel time with truncated lognormal distribution; 

𝜌𝑖𝑗,𝑘𝑙: Correlation coefficient of the link pair (𝑎𝑖𝑗, 𝑎𝑘𝑙). 

𝐐: Variance-covariance matrix of link travel times; 

𝐋: Lower triangular matrix of 𝐐; 

𝑍(𝛼) : Inverse cumulative density function of standard normal distribution at 𝛼 

confidence level; 

𝜀′: Relative gap between upper bound and lower bound of the candidate solution. 



 

 

42 

 

4.2.2 Problem formulation 

Given the link travel time distribution, the path travel time distribution could be 

derived theoretically by computing the sum of link travel time distribution. However, a 

tractable solution for the PDF or CDF of the truncated lognormal sum is not available. To 

make the computation of the α-reliable paths tractable, we assume that the normal 

distribution can be used to approximate the distribution of path travel times as composed of 

truncated lognormal link travel times. The assumption is justified by simulation study 

shown in Chapter 3. Accordingly, the reliability of path travel time can be represented by 

the probability that the trip travel time is less than a given travel time (𝑇𝑝) as follows. 

𝛼(𝑇𝑝) = Φ(
𝑇𝑝−𝑢𝑝

𝜎𝑝
)                                                                                          (4-1) 

𝑢𝑝 = ∑ 𝑢𝑖𝑗𝑖𝑗∈𝑝                                                                                                   (4-2) 

𝜎𝑝 = √∑ 𝜎𝑖𝑗
2

𝑖𝑗∈𝑝 + ∑ 𝜌𝑖𝑗,𝑘𝑙𝜎𝑖𝑗𝜎𝑘𝑙𝑖𝑗∈𝑝,𝑘𝑙∈𝑝,𝑖𝑗≠𝑘𝑙                                                (4-3) 

where, 

𝛼(𝑇𝑝): Reliability of path travel time; 

𝑇𝑝: Stochastic travel time of path 𝑝; 

𝑢𝑝: Mean travel time of path 𝑝; 

𝜎𝑝: Standard deviation of travel time of path 𝑝; 

𝑢𝑖𝑗: Modified mean of the link travel time with truncated lognormal distribution; 

𝜎𝑖𝑗 , 𝜎𝑘𝑙 : Modified standard deviation of the link travel time with truncated lognormal 

distribution; 

𝜌𝑖𝑗,𝑘𝑙: Correlation coefficient of the link pair (𝑎𝑖𝑗, 𝑎𝑘𝑙). 

The transportation network is modeled as a directed graph 𝐺(𝑁, 𝐴) , where  𝑁 =

{1,2, … , 𝑛} denotes the node set and A={𝑎12, 𝑎23 ,…,  𝑎𝑚𝑛} represents the link set. This 

study addresses a time-invariant context, and the α-reliable path is considered to be a pre-

trip path.  



 

 

43 

 

Given an on-time arrival probability α, a path 𝑝𝑟𝑠
∗ ∈ 𝑃𝑟𝑠 is defined as the α-reliable 

path if Φ𝑇𝑟𝑠
∗
−1(𝛼) < Φ𝑇𝑟𝑠

−1(𝛼) for any other path 𝑝𝑟𝑠 ∈ 𝑃𝑟𝑠 (Chen and Ji, 2005). 𝑃𝑟𝑠 is the path 

set from origin r to destination s. Φ𝑇𝑟𝑠
∗
−1(𝛼) and Φ𝑇𝑟𝑠

−1(𝛼) are the inverse functions of Eq.(4-1) 

for paths 𝑝𝑟𝑠 and 𝑝𝑟𝑠
∗ , respectively. Therefore, the α-reliable path problem for a specified 

OD pair can be represented as: 

P1: z
∗ = Min{∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 + 𝑍(𝛼)𝜎𝑝}                                                                              

= Min {∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 + 𝑍(𝛼)√∑ 𝜎𝑖𝑗
2𝑥𝑖𝑗𝑖𝑗∈𝐴 + ∑ 𝜌𝑖𝑗,𝑘𝑙𝜎𝑖𝑗𝜎𝑘𝑙𝑖𝑗∈𝐴,𝑘𝑙∈𝐴,𝑖𝑗≠𝑘𝑙 𝑥𝑖𝑗𝑥𝑘𝑙}   (4-4) 

          Subject to 

∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 − ∑ 𝑥𝑗𝑖(𝑗,𝑖)∈𝐴 = 𝑔                                                                                 (4-5) 

𝑔 = {
1                   𝑖 = 𝑟
0   𝑖 ∈ 𝑁 − {𝑟, 𝑠}
−1               𝑖 = 𝑠

                                                                                          (4-6) 

where 𝑥𝑖𝑗 ∈ {0,1} indicates a link on the selected path, 𝑔 denotes the direction of flow for 

each node, and 𝑍(𝛼) denotes the inverse CDF of the standard normal distribution at 𝛼 

confidence level, which can be obtained from the standard normal table. 

4.2.3 Sources of difficulty 

As shown in Eq.(4-4), the α-reliable path problem is a nonlinear problem because of 

the standard deviation term. The difficulties faced in finding a solution are twofold. First, 

the problem is non link separable due to the cross correlation of link pairs. The explicit 

unknown variables include 𝑥𝑖𝑗 and 𝑥𝑘𝑙, which makes the problem intractable. Second, sub-

path optimality does not hold due to the nonlinear term. Such a problem cannot be 

computed by a standard shortest-path algorithm because additivity is violated. To 

overcome these problems, a Cholesky decomposition method for link separation in the 

variance-covariance matrix and a Lagrangian relaxation approach for problem 

decomposition are introduced in the following section. 
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4.3 Methodology for finding the α-reliable path  

4.3.1 Covariance matrix reformulation using Cholesky decomposition 

The variance-covariance matrix of link travel time can be written as follows: 

                    𝐐 =

[
 
 
 
 
Q𝑎𝑖1,𝑎𝑖1

Q𝑎𝑗1 ,𝑎𝑗2 … Q𝑎𝑘𝑛,𝑎𝑘𝑚
Q𝑎𝑗1,𝑎𝑗2

⋮
⋱ ⋮

Q𝑎𝑘𝑛,𝑎𝑘𝑚 ⋯ Q𝑎𝑚𝑛 ,𝑎𝑚𝑛]
 
 
 
 

       

=

[
 
 
 

𝜎𝑎𝑖1,𝑎𝑖1
2 𝜌𝑎𝑗1 ,𝑎𝑗2𝜎𝑎𝑗1𝜎𝑎𝑗2 … 𝜌𝑎𝑘𝑛,𝑎𝑘𝑚𝜎𝑎𝑘𝑛𝜎𝑎𝑘𝑚

𝜌𝑎𝑗1 ,𝑎𝑗2𝜎𝑎𝑗1𝜎𝑎𝑗2
⋮

⋱ ⋮

𝜌𝑎𝑘𝑛,𝑎𝑘𝑚𝜎𝑎𝑘𝑛𝜎𝑎𝑘𝑚 ⋯ 𝜎𝑎𝑚𝑛,𝑎𝑚𝑛
2

]
 
 
 

          (4-7) 

where, 

𝜎𝑎𝑘𝑛: Standard deviation of travel time of link 𝑎𝑘𝑛; 

𝜌𝑎𝑘𝑛,𝑎𝑘𝑚: Correlation coefficient of travel time for link 𝑎𝑘𝑛 and link 𝑎𝑘𝑚. 

Since the link travel time variance-covariance matrix (𝐐) is a positive semi-definite 

matrix (Ng et al., 2010), it can be decomposed to a lower triangle matrix (𝐋) and an upper 

triangle matrix by Cholesky decomposition (Golub and Loan, 1989). The Cholesky 

decomposition can be applied to decompose the correlations between variables and to 

efficiently solve the linear problems that contain a covariance matrix. 

𝐐 = 𝐋𝐋T = [

𝑙1,1 0 … 0

𝑙2,1
⋮

⋱ ⋮

𝑙𝑚,1 ⋯ 𝑙𝑚,𝑚

] [

𝑙1,1 𝑙2,1 … 𝑙𝑚,1
0
⋮

⋱ ⋮

0 ⋯ 𝑙𝑚,𝑚

]                           (4-8) 

where 𝐐 represents the variance-covariance matrix of link travel time. It is symmetric so 

that 𝐐T = 𝐐. The diagonal elements of 𝐐 satisfy Q𝑖,𝑖 ≥ 0. It is positive semi-definite so 

that 𝐛T𝐐𝐛 ≥ 0  for all 𝐛 ∈ 𝐑𝑛 . 𝐋  is the lower triangular matrix with positive diagonal 

entries. 𝐋 is also called the square root of the variance-covariance matrix. The elements of 

𝐋  can be obtained by the Cholesky-Banachiewicz algorithm (Golub and Loan, 1989) 

recursively starting from the upper left corner of the lower triangular matrix 𝐋. 

𝑙𝑖,𝑖 = √𝑄𝑖,𝑖 − ∑ 𝑙𝑘,𝑖
2𝑖−1

𝑘=1                                                                        (4-9) 
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𝑙𝑖,𝑗 =
𝑄𝑖,𝑗−∑ 𝑙𝑘,𝑖𝑙𝑘,𝑗

𝑖−1
𝑘=1

𝑙𝑖,𝑖
                                                                            (4-10) 

This algorithm is sometimes called the inner product formulation because the sums in 

step 3 of the following solution procedure are inner product. 

Step 1: Let 𝑙1,1 = 𝑄1,1 (the first coefficient in the upper left corner); 

Step 2: For j=2,…, m, let 𝑙1,𝑗 =
𝑄1,𝑗

𝑙1,1
 

Step 3: For i=2,…, m, 

            { 

                 Let 𝑙𝑖,𝑖 = √𝑄𝑖,𝑖 − ∑ 𝑙𝑘,𝑖
2𝑖−1

𝑘=1  

                 For j=i+1,…, m 

                 { 

                      Let 𝑙𝑖,𝑗 =
𝑄𝑖,𝑗−∑ 𝑙𝑘,𝑖𝑙𝑘,𝑗

𝑖−1
𝑘=1

𝑙𝑖,𝑖
 

                 } 

            } 

The variance of path travel time σp
2  can be expressed as: 

𝜎𝑝
2 = 𝐗T𝐐𝐗 = 𝐗T𝐋𝐋T𝐗 = ∑ (∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗𝑖𝑗∈𝐴 )

2
𝑘𝑙∈𝐴                                         (4-11) 

𝐗 = [𝑥12, 𝑥23, … , 𝑥𝑖𝑗]
T
                                                                                 (4-12) 

For example, considering a path (𝑝0) consisting of three links 𝑎12, 𝑎23, and 𝑎34. The 

path travel time variance is given by: 

𝜎𝑝0
2 = 𝜎12

2 + 𝜎23
2 + 𝜎34

2 + 2𝜌12,23𝜎12𝜎23 + 2𝜌12,34𝜎12𝜎34 + 2𝜌23,34𝜎23𝜎34           (4-13) 

And the variance-covariance matrix for the link travel time is given by: 

𝐐0 = 𝐋0𝐋0
T    
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= [

𝑙𝑎12,𝑎12 0 0

𝑙𝑎12,𝑎23 𝑙𝑎23,𝑎23 0

𝑙𝑎12,𝑎34 𝑙𝑎23,𝑎34 𝑙𝑎34,𝑎34

] [

𝑙𝑎12,𝑎12 𝑙𝑎23,𝑎12 𝑙𝑎34,𝑎12
0 𝑙𝑎23,𝑎23 𝑙𝑎34,𝑎23
0 0 𝑙𝑎34,𝑎34

]                 (4-14) 

According to the relation between the variance-covariance matrix and the associated 

Cholesky coefficients, the variance of path travel time can be expressed as: 

𝜎𝑝0
2 = (𝑙𝑎12,𝑎12 + 𝑙𝑎12,𝑎23 + 𝑙𝑎12,𝑎34)

2
+ (𝑙𝑎23,𝑎23 + 𝑙𝑎23,𝑎34)

2
+ (𝑙𝑎34,𝑎34)

2
      (4-15) 

The above expression indicates that the path travel time variance can be presented by 

the sum of squares of the Cholesky coefficients in each column of the lower triangle matrix. 

Following this simplification, the α-reliable path problem with correlation term can be 

expressed as: 

P1: z
∗ = Min{∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 + 𝑍(𝛼)√∑ (∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗𝑖𝑗∈𝐴 )

2
𝑘𝑙∈𝐴 }                             (4-16) 

With the Cholesky composition of the variance-covariance matrix, P1 is simplified in 

terms of link separable components.  

4.3.2 Lagrangian relaxation 

In this section, the Lagrangian relaxation method is applied to solve the nonlinear and 

non-additive objective function in Eq.(4-16). The Lagrangian relaxation method has been 

applied to various integer programming problems (Fisher, 1981). It is a well-known 

solution to address the computational problems caused by nonlinear function in 

constrained shortest-path problems (Sivakumar and Batta, 1994; Handler and Zang, 1980; 

Xing and Zhou, 2011). One of the important application using Lagrangian relaxation 

decomposition is the variable splitting (Guignard and Kim, 1987; Joernsten and Naesberg, 

1986), which enables to split the original variable x into a pair of variables (x, y), and then 

link the auxiliary variable y with x via a constraint 𝑏𝑥 = 𝑦. To solve the α-reliable path 

problem 𝑃1  with a linear function, a three-step Lagrangian relaxation method is 

implemented. 

Step 1: Substitute nonlinear and non-additive term by auxiliary variables 

Let 𝑦 = ∑ (∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗𝑖𝑗∈𝐴 )
2

𝑘𝑙∈𝐴  and 𝑤𝑘𝑙 = ∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗𝑖𝑗∈𝐴 , ∀𝑘𝑙 ∈ 𝐴 . 1 +𝑚  auxiliary 

variables are introduced. The variable y denotes the variance of path travel time. The 

variable 𝑤𝑘𝑙  represents the sum of the coefficients for link 𝑎𝑘𝑙  (the sum of the column 

value of link 𝑎𝑘𝑙 in the Cholesky matrix). P1 can be expressed as: 
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P2: z
∗ = Min{∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 + 𝑍(𝛼)√𝑦}                                                       (4-17) 

            Subject to 

∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 − ∑ 𝑥𝑗𝑖(𝑗,𝑖)∈𝐴 = 𝑔                                                                    (4-18) 

∑ (∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗𝑖𝑗∈𝐴 )
2

𝑘𝑙∈𝐴 = 𝑦                                                                       (4-19) 

∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗𝑖𝑗∈𝐴 = 𝑤𝑘𝑙,   ∀𝑘𝑙 ∈ 𝐴                                                                  (4-20) 

0 ≤ 𝑦 ≤ 𝑦′                                                                                                 (4-21) 

where 𝑦′ is the variance of travel time of the shortest distance path. 

Lemma 1. The variance of the optimal path travel time is between 0 and the variance of the 

shortest distance path (SP). 

Proof. We assume that the maximum travel speed in the network is a constant (e.g., 

100km/h), SP has the potential of becoming the least travel time path if the driving speed 

can achieve to the maximum travel speed in the network. Therefore, the global lower 

bound (GLB) of the path travel time for a specified OD may occur in SP rather than other 

paths. The next step is to justify whether the travel time variance of SP is the boundary 

value of the variance for the α-reliable path. For any candidate solution to the α-reliable 

path problem, the path travel time variances for two cases need to be justified. The first 

case is shown in Figure 4-1 (a). If the mean travel time of the candidate α-reliable path 

(e.g., Path 2) is less than that of SP (Path 1), the travel time variance of the candidate (e.g., 

variance of Path 2) must be less than that of SP. Otherwise, the candidate path is invalid or 

nonexistent (e.g., Path 3 in Figure 4-1 (a)), because the minimum travel time of this path 

will be less than the GLB. The second case is shown in Figure 4-1 (b). If the mean travel 

time of the α-reliable path is no less than that of SP, the variance of path travel time also 

must be less than that of SP (Path 1 in Figure 4-1 (b)). Otherwise, this path (e.g., Path 3 in 

Figure 4-1 (b)) has larger average travel time and larger travel time variance compared to 

SP, which means that it is totally dominated by SP and cannot be the solution for the α-

reliable path problem (Min{𝑢𝑝 + 𝑍(𝛼)𝜎𝑝}). In summary, the above cases indicate that the 

variance of the travel time of the α-reliable path should be less than that of SP. Since the 

variance of the path travel time is always larger than or equal to zero, the feasible solution 

of y is between zero and the variance (𝑦′) of the SP. 
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Figure 4-1 Illustration of stochastic dominance 

 

Lemma 2. If α is more than 0.5, the travel time variance of the optimal path is between zero 

and the variance of the least expected time path. 

Proof. See Lemma 1 in Xing and Zhou (2011) and Proposition 2 in Chen et al (2013). 

 

Step 2: Remove constraints by Lagrangian relaxation 

To further relax the constraints in Eqs.(4-19) and (4-20), a set of Lagrangian 

multipliers, represented by 𝝀 and 𝜐, is incorporated into the objective function (Eq.(4-17)). 

𝐿(𝝀, 𝜐) = Min{∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 + 𝑍(𝛼)√𝑦 + ∑ 𝜆𝑘𝑙(∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗 − 𝑤𝑘𝑙𝑖𝑗∈𝐴 )𝑘𝑙∈𝐴 + 𝜐(∑ 𝑤𝑘𝑙
2

𝑘𝑙∈𝐴 −

𝑦)}                                                              (4-22) 

Subject to Eqs.(4-5) and (4-21). 

Lemma 3 (Principle of Lagrangian bounding). Given a set of Lagrangian multipliers (𝝀, 𝜐), 

the value of the Lagrangian function 𝐿(𝝀, 𝜐) is a lower bound on the value of the objective 

function (z∗) for the primal problem (P2). 

Proof. For every feasible solution to (P2), we have 

z∗ = Min {∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 + 𝑍(𝛼)√𝑦: ∑ (∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗𝑖𝑗∈𝐴 )
2

𝑘𝑙∈𝐴 = y;∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗𝑖𝑗∈𝐴 =

𝑤𝑘𝑙, ∀𝑘𝑙 ∈ 𝐴;  ∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 − ∑ 𝑥𝑗𝑖(𝑗,𝑖)∈𝐴 = 𝑔;  0 ≤ 𝑦 ≤ 𝑦′ }   
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= Min {∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 + 𝑍(𝛼)√𝑦 + ∑ 𝜆𝑘𝑙(∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗 − 𝑤𝑘𝑙𝑖𝑗∈𝐴 )𝑘𝑙∈𝐴 + 𝜐(∑ 𝑤𝑘𝑙
2

𝑘𝑙∈𝐴 − 𝑦) ∶

 ∑ (∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗𝑖𝑗∈𝐴 )
2

𝑘𝑙∈𝐴 = y;∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗𝑖𝑗∈𝐴 = 𝑤𝑘𝑙, ∀𝑘𝑙 ∈ 𝐴;∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 − ∑ 𝑥𝑗𝑖(𝑗,𝑖)∈𝐴 =

𝑔; 0 ≤ 𝑦 ≤ 𝑦′}   

Since removing the constraints ∑ (∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗𝑖𝑗∈𝐴 )
2

𝑘𝑙∈𝐴 = 𝑦 and ∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗𝑖𝑗∈𝐴 = 𝑤𝑘𝑙, ∀𝑘𝑙 ∈

𝐴 from the second equation cannot result in an increasing value of the objective function, 

i.e., 

z∗ ≥ Min{∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 + 𝑍(𝛼)√𝑦 + ∑ 𝜆𝑘𝑙(∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗 − 𝑤𝑘𝑙𝑖𝑗∈𝐴 )𝑘𝑙∈𝐴 + 𝜐(∑ 𝑤𝑘𝑙
2

𝑘𝑙∈𝐴 − 𝑦) ∶

 ∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 − ∑ 𝑥𝑗𝑖(𝑗,𝑖)∈𝐴 = 𝑔;  0 ≤ y ≤ y′} = 𝐿(𝝀, 𝜐)   

Therefore, the value of the Lagrangian function can be seen as a lower bound for solution 

of the primal problem. 

Step 3: Problem decomposition 

By regrouping the variables in Eq.(4-22), a clear view of the components of the dual 

problem can be given as: 

𝐿(𝝀, 𝜐) = Min{∑ (𝑢𝑖𝑗 + ∑ 𝜆𝑘𝑙𝑙𝑖𝑗,𝑘𝑙𝑘𝑙∈𝐴 )𝑥𝑖𝑗𝑖𝑗∈𝐴 + ∑ (𝜐𝑤𝑘𝑙
2 − 𝜆𝑘𝑙𝑤𝑘𝑙)𝑘𝑙∈𝐴 + 𝑍(𝛼)√𝑦 − 𝜈𝑦}     

(4-23) 

Noting that 𝑥𝑖𝑗 , 𝑤𝑘𝑙  and 𝑦  in Eq.(4-23) are subject to independent constraints. 

Therefore, the dual function 𝐿(𝝀, 𝜐) can be decomposed and separately solved by the three 

independent sub-functions. 

𝐿𝑥(𝝀, 𝜐) = Min {∑ (𝑢𝑖𝑗 + ∑ 𝜆𝑘𝑙𝑙𝑖𝑗,𝑘𝑙𝑘𝑙∈𝐴 )𝑥𝑖𝑗𝑖𝑗∈𝐴 : ∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 − ∑ 𝑥𝑗𝑖(𝑗,𝑖)∈𝐴 = 𝑔}  (4-24) 

𝐿𝑤(𝝀, 𝜐) = Min {∑ (𝜐𝑤𝑘𝑙
2 − 𝜆𝑘𝑙𝑤𝑘𝑙)𝑘𝑙∈𝐴 }  ∀𝑘𝑙 ∈ 𝐴                                                 (4-25) 

𝐿𝑦(𝝀, 𝜐) = Min {𝑍(𝛼)√𝑦 − 𝜈𝑦: 0 ≤ 𝑦 ≤ 𝑦′}                                                          (4-26) 

Solution for Eq.(4-24): this equation can be solved using the shortest-path algorithm. The 

cost function for each link is a combination of average link travel time and the weighted 

sum of the components of the Cholesky matrix. 

Solution for Eq.(4-25): the auxiliary variable 𝑤𝑘𝑙 can be easily obtained by implementing 

the first order gradient. 
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𝜕𝐿𝑤(𝝀𝑘𝑙,𝜐)

𝜕𝑤𝑘𝑙
= 2𝜐𝑤𝑘𝑙 − 𝜆𝑘𝑙 = 0                                                                     (4-27) 

𝑤𝑘𝑙 =
𝜆𝑘𝑙

2𝜐
                                                                                                    (4-28) 

Solution for Eq.(4-26): the minimum of this concave function is Min {0, 𝑍(𝛼)√𝑦′ − 𝜈𝑦′} 

since the minimum of a concave function can be obtained at one of the extreme points in 

the feasible region. 

4.3.3 Determining the Lagrangian multiplier 

To optimize the primal problem (P2), we need to obtain the maximum lower bound of 

the Lagrangian multiplier problem: 

𝐿∗ = 𝑚𝑎𝑥 𝐿(𝝀, 𝜐)                                                                                   (4-29) 

According to the Lagrangian bounding principle, 𝐿∗ is always a lower bound of the 

objective function value for the primal problem (P2), i.e., 𝐿∗ ≤ 𝑧∗. Based on Eqs.(4-17) and 

(4-29) and the Lagrangian bounding principle, an inequality can be obtained as follows: 

𝐿(𝝀, 𝜐) ≤ 𝐿∗ ≤ 𝑧∗ ≤ ∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 + 𝑍(𝛼)√𝑦                                             (4-30) 

This inequality provides us with valid bounds for comparing objective function values 

of the Lagrange problem and optimization for any given Lagrange multipliers (𝝀, 𝜐) and 

any feasible solutions to the primal problem. Even if 𝐿(𝝀, 𝜐) ≤ ∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 + 𝑍(𝛼)√𝑦, the 

lower bound allows to estimate a bound on how far a candidate solution is from the actual 

optimality. For example, if  
∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 +𝑍(𝛼)√𝑦−𝐿(𝝀,𝜐)

∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 +𝑍(𝛼)√𝑦
< 0.1, we know that the value of the 

objective function for the candidate solution is less than 10% from the optimality. This 

property permits us to assess the degree of sub-optimality of given solutions and it permits 

us to terminate the search for an optimal solution when the gap from optimality is small 

enough. 

𝜀 is defined as the gap between the lower bound (LB) and the upper bound (UB) of 

the actual optimal solution, where UB is calculated by the feasible solution. Because the 

value of the actual optimal solution must be between the value of LB and UB, the error of 

the candidate solution (corresponding to UB) will be no larger than the 𝜀 associated to the 

primal optimal value (𝑧∗). For each feasible solution, LB, UB and the relative value of the 

approximation error (𝜀′) can be written as: 
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𝐿𝐵 = 𝐿(𝝀, 𝜐)                                                                                           (4-31) 

𝑈𝐵 = ∑ 𝑢𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 + 𝑍(𝛼)√𝑦                                                                 (4-32) 

𝜀′ =
𝑈𝐵−𝐿𝐵

𝑈𝐵
                                                                                              (4-33) 

To minimize the estimation error (𝜀 ), the Lagrangian multipliers (𝝀, 𝜐 ) and the 

auxiliary variable (y) are computed iteratively. The search direction for each Lagrangian 

multiplier is found by the sub-gradient optimization technique (Held et al; 1974; Ahuja et 

al, 1993). For solving the optimization problem 𝐿(𝝀, 𝜐) with 𝑚+ 1  dimensional vector 

(𝝀, 𝜐), the following classical idea is applied: forming the gradient ∇𝐿(𝝀, 𝜐) of 𝐿 defined as 

a row vector with components (
𝜕𝐿(𝝀,𝜐)

𝑑𝜆1
, 
𝜕𝐿(𝝀,𝜐)

𝑑𝜆2
,…, 

𝜕𝐿(𝝀,𝜐)

𝑑𝜆𝑚
, 
𝜕𝐿(𝝀,𝜐)

𝑑𝜐
). 

∇𝐿(𝝀, 𝜐) = {(∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗 − 𝑤𝑘𝑙𝑖𝑗∈𝐴 , ∀𝑘𝑙 ∈ 𝐴), ∑ 𝑤𝑘𝑙
2

𝑘𝑙∈𝐴 − 𝑦}                      (4-34) 

Initializing from any feasible Lagrangian multipliers, the sub-function (4-24), (4-25) 

and (4-26) must be solved orderly to update the Lagrangian multipliers (𝝀, 𝜐) at iteration k. 

After obtaining solutions, 𝑤𝑘𝑙  and 𝑦  at iteration k, and the Lagrangian multipliers, are 

updated as follows. 

𝜆𝑘𝑙
𝑘+1 = 𝜆𝑘𝑙

𝑘 + 𝜃𝝀𝑘𝑙
𝑘 (∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗

𝑘 − 𝑤𝑘𝑙
𝑘

𝑖𝑗∈𝐴 ), ∀𝑘𝑙 ∈ 𝐴                                           (4-35) 

𝜐𝑘+1 = 𝜐𝑘 + 𝜃𝜐
𝑘 [∑ (𝑤𝑘𝑙

𝑘 )
2

𝑘𝑙∈𝐴 − 𝑦𝑘]                                                               (4-36) 

We update the step of each iteration k by using the following heuristic algorithm: 

𝜃𝝀𝑘𝑙
𝑘 =

𝛿𝑘𝑙
𝑘 (𝑈𝐵−𝐿𝐵)

‖∑ 𝑙𝑖𝑗,𝑘𝑙𝑥𝑖𝑗
𝑘−𝑤𝑘𝑙

𝑘
𝑖𝑗∈𝐴 ‖

2                                                                      (4-37) 

𝜃𝜐
𝑘 =

𝛿𝜐
𝑘(𝑈𝐵−𝐿𝐵)

‖∑ (𝑤𝑘𝑙
𝑘 )

2
𝑘𝑙∈𝐴 −𝑦𝑘‖

2                                                                          (4-38) 

where 𝛿𝑘𝑙
𝑘  is a scalar chosen between 0 and 2 (Ahuja et al, 1993). At the beginning, UB is 

the objective function value of any known feasible solution to P2, e.g., the solution of the 

shortest path. As the algorithm proceeds, when a better feasible solution is generated, we 

use the objective function value of this solution to replace UB. 
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4.3.4 Solution algorithm 

Based on the discussion presented from section 4.3.1 to section 4.3.3, pseudo code for 

the solution algorithm is presented as follows.  

Step 1: Initialization 

Randomly generate the initial values for Lagrangian multipliers (𝝀, 𝜐); 

Initialize iteration number k=1; 

Set the maximum speed as the regulation speed for each link; 

Solve the static shortest-path problem with minimum link travel time; 

Set 𝑦′ as the travel time variance of the shortest path; 

Calculate UB using Eq.(4-32). 

Step 2: Solve the decomposed dual problems 

Obtain the solution of the first sub-function (4-24) using A-star algorithm; 

Obtain the solution of the second sub-function (4-25) using Eq.(4-28); 

Obtain the solution of the third sub-function (4-26) with Min {0, 𝑍(𝛼)√𝑦′ − 𝜈𝑦′}; 

Calculate LB, UB and 𝜀′ using Eqs.(4-31), (4-32) and (4-33), respectively. 

Step 3: Update the Lagrangian multipliers 

Update Lagrangian multipliers with Eqs.(4-35)-(4-38) 

Step 4: Termination condition test 

If 𝑘 > 𝑘𝑚𝑎𝑥 or the relative gap is no larger than the specified tolerable gap, stop the 

algorithm, otherwise go back to the second step. 
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4.4 Numerical experiment 

4.4.1 Illustrative example 

To demonstrate the solution algorithm presented in section 5.4, a simple network with 

only four links is used as an example. As shown in Figure 4-2, there are only two paths 

from node 1 to node 4 in this network: Path 1 (1-2-4) and Path 2 (1-2-3-4). The calculation 

result of the algorithm is shown in Table 4-1. The intermediate computational procedures 

in the first few interactions are illustrated as follows.  

Initialization. 

Randomly generate multipliers ( 𝜆12 , 𝜆24 , 𝜆23 , 𝜆34 ,  𝜐 ), set the on-time arrival 

probability α, and set the scalar of step 𝛿𝑘𝑙
𝑘 . 

𝜆12 =  0.718; 𝜆24 =  0.958; 𝜆23 =  0.957; 𝜆34 = 0.852; 𝜐 = 0.055; 

α=0.841 or 𝑍(𝛼) = 1; 𝛿𝑘𝑙
𝑘 = 0.1 

Since α>0.5, set 𝑦′ as the variance of the travel time of the least expected time path 

(Path 2) 

𝑦′ = 0.37  

Calculate UB using Eq.( 4-32) 

𝑈𝐵 = 3.7 + √0.37 = 4.308  

Iteration 1. 

(1) Calculate 𝐿𝑥 = 𝑀𝑖𝑛{𝐿𝑥(𝑃1), 𝐿𝑥(𝑃2)} using Eq.( 4-24). 

𝐿𝑥(𝑃1) = 3.7 + (0.718 × 0.4 + 0.958 × 0.15 + 0.957 × 0.2 + 0.852 × 0.06) +

(0.718 × 0 + 0.958 × 0.26 + 0.957 × 0.115 + 0.852 × 0.012) = 4.742  

𝐿𝑥(𝑃2) = 3.6 + (0.718 × 0.4 + 0.958 × 0.15 + 0.957 × 0.2 + 0.852 × 0.06) +

(0.718 × 0 + 0.958 × 0 + 0.957 × 0.443 + 0.852 × 0.083) + (0.718 × 0 + 0.958 ×

0 + 0.957 × 0 + 0.852 × 0.172) = 4.914   

Because 𝐿𝑥(𝑃1) < 𝐿𝑥(𝑃2), Path 1 is the candidate optimal, 𝐿𝑥 = 4.742  

(2) Calculate 𝑤12, 𝑤24, 𝑤23, and 𝑤34 using Eq.( 4-28). 

𝑤12 =
𝜆12

2𝜐
= 6.539  

𝑤24 =
𝜆24

2𝜐
= 8.732  

𝑤23 =
𝜆23

2𝜐
= 8.722  

𝑤34 =
𝜆34

2𝜐
= 7.765  

(3) Calculate 𝐿𝑤 using Eq.( 4-25) 

𝐿𝑤 = 𝜐𝑤12
2 − 𝜆12𝑤12 + 𝜐𝑤24

2 − 𝜆24𝑤24 + 𝜐𝑤23
2 − 𝜆23𝑤23 + 𝜐𝑤34

2 − 𝜆34𝑤34 =

−14.010  
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Figure 4-2 A simple network for algorithm illustration 

 

  

Figure 4-3 Evolution of the gap value 

 



 

 

55 

 

Table 4-1 Calculation result of each iteration 

Iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 

𝜆12 0.718  0.667  0.618  0.571  0.526  0.481  0.439  0.397  0.357  0.319  0.283  0.250  0.225  

𝜆24 0.958  0.919  0.881  0.846  0.813  0.782  0.753  0.725  0.699  0.674  0.651  0.629  0.608  

𝜆23 0.957  0.916  0.878  0.841  0.806  0.773  0.742  0.711  0.683  0.655  0.628  0.602  0.577  

𝜆34 0.852  0.806  0.762  0.719  0.678  0.638  0.599  0.561  0.523  0.486  0.448  0.408  0.367  

𝜐 0.055  0.060  0.066  0.072  0.079  0.087  0.096  0.105  0.115  0.126  0.139  0.153  0.170  

𝐿𝑥(𝑃1) 4.742  4.690  4.640  4.592  4.546  4.503  4.461  4.421  4.382  4.345  4.310  4.277  4.247  

𝐿𝑥(𝑃2) 4.914  4.847  4.784  4.722  4.664  4.608  4.554  4.502  4.451  4.403  4.356  4.310  4.268  

𝐿𝑥 4.742  4.690  4.640  4.592  4.546  4.503  4.461  4.421  4.382  4.345  4.310  4.277  4.247  

𝑤12 6.539  5.541  4.682  3.944  3.309  2.764  2.296  1.894  1.551  1.260  1.015  0.816  0.663  

𝑤24 8.732  7.631  6.676  5.844  5.121  4.491  3.941  3.459  3.037  2.667  2.339  2.049  1.791  

𝑤23 8.722  7.612  6.647  5.807  5.076  4.438  3.881  3.394  2.966  2.589  2.257  1.962  1.699  

𝑤34 7.765  6.696  5.769  4.966  4.269  3.663  3.136  2.676  2.273  1.920  1.608  1.331  1.082  

y 0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  

𝜃12 0.008  0.010  0.011  0.013  0.016  0.019  0.024  0.030  0.038  0.051  0.069  0.096  0.130  

𝜃24 0.005  0.005  0.005  0.006  0.006  0.007  0.008  0.008  0.009  0.010  0.011  0.012  0.013  

𝜃23 0.005  0.005  0.006  0.006  0.007  0.007  0.008  0.008  0.009  0.010  0.012  0.013  0.015  

𝜃34 0.006  0.007  0.007  0.008  0.009  0.011  0.012  0.014  0.017  0.020  0.024  0.031  0.041  

𝜃𝜐 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.001  0.001  0.002  0.003  

𝐿𝑤 -14.010  -11.538  -9.503  -7.827  -6.445  -5.306  -4.365  -3.588  -2.946  -2.414  -1.974  -1.609  -1.307  

𝐿𝑦 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

LB -9.268  -6.848  -4.863  -3.235  -1.899  -0.803  0.096  0.833  1.436  1.931  2.336  2.668  2.940  

UB 4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  

gap 13.576  11.156  9.171  7.543  6.207  5.111  4.213  3.476  2.872  2.377  1.972  1.640  1.368  

𝜀′ 3.151  2.590  2.129  1.751  1.441  1.186  0.978  0.807  0.667  0.552  0.458  0.381  0.318  

 

𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 14 15 16 17 18 19 20 21 22 23 24 25 26 

𝜆12 0.210  0.209  0.242  0.271  0.306  0.354  0.448  0.483  0.472  0.467  0.477  0.491  0.504  

𝜆24 0.587  0.568  0.543  0.515  0.484  0.447  0.407  0.364  0.338  0.291  0.244  0.252  0.259  

𝜆23 0.551  0.526  0.508  0.491  0.477  0.469  0.500  0.507  0.479  0.467  0.465  0.467  0.468  

𝜆34 0.322  0.271  0.217  0.157  0.121  0.125  0.141  0.151  0.068  0.088  0.105  0.106  0.106  

𝜐 0.188  0.210  0.244  0.293  0.376  0.661  0.539  0.275  0.314  0.423  -2.870  -2.903  -2.934  

𝐿𝑥(𝑃1) 4.222  4.201  4.195  4.186  4.180  4.182  4.214  4.213  4.184  4.160  4.145  4.154  4.163  

𝐿𝑥(𝑃2) 4.228  4.192  4.173  4.151  4.140  4.150  4.206  4.222  4.170  4.159  4.159  4.168  4.175  

𝐿𝑥 4.222  4.192  4.173  4.151  4.140  4.150  4.206  4.213  4.170  4.159  4.145  4.154  4.163  

𝑤12 0.558  0.497  0.495  0.463  0.406  0.268  0.415  0.878  0.752  0.552  -0.083  -0.085  -0.086  

𝑤24 1.560  1.351  1.110  0.879  0.644  0.338  0.377  0.662  0.539  0.344  -0.042  -0.043  -0.044  

𝑤23 1.463  1.251  1.039  0.838  0.634  0.355  0.463  0.921  0.764  0.552  -0.081  -0.080  -0.080  

𝑤34 0.856  0.646  0.444  0.268  0.161  0.094  0.131  0.274  0.109  0.104  -0.018  -0.018  -0.018  

𝑦 0.370  0.758  0.758  0.758  0.758  0.758  0.758  0.370  0.758  0.758  0.370  0.370  0.370  

𝜃12 0.161  0.204  0.177  0.175  0.191  0.239  0.145  0.034  0.053  0.090  0.022  0.020  0.018  

𝜃24 0.015  0.021  0.028  0.041  0.072  0.191  0.170  0.065  0.115  0.218  0.027  0.024  0.022  

𝜃23 0.017  0.025  0.032  0.046  0.075  0.178  0.117  0.030  0.052  0.090  0.023  0.021  0.019  

𝜃34 0.060  0.114  0.220  0.374  0.333  0.211  0.247  0.301  0.314  0.255  0.030  0.027  0.025  

𝜃𝜐 0.004  0.010  0.024  0.083  1.144  0.279  1.248  0.022  0.157  173.636  0.095  0.086  0.078  

𝐿𝑤 -1.058  -0.852  -0.673  -0.516  -0.379  -0.212  -0.295  -0.587  -0.455  -0.313  0.045  0.046  0.047  

𝐿𝑦 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

𝐿𝐵 3.164  3.340  3.500  3.635  3.761  3.938  3.911  3.626  3.714  3.846  4.189  4.200  4.210  

𝑈𝐵 4.308  4.471  4.471  4.471  4.471  4.471  4.471  4.308  4.471  4.471  4.308  4.308  4.308  

𝑔𝑎𝑝 1.145  1.130  0.970  0.836  0.710  0.533  0.559  0.682  0.757  0.624  0.119  0.108  0.098  

𝜀′ 0.266  0.253  0.217  0.187  0.159  0.119  0.125  0.158  0.169  0.140  0.028  0.025  0.023  

 



 

 

56 

 

𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 27 28 29 30 31 32 33 34 35 36 37 38 39 

𝜆12 0.515  0.526  0.536  0.544  0.552  0.559  0.566  0.572  0.577  0.582  0.586  0.590  0.594  

𝜆24 0.266  0.272  0.277  0.282  0.287  0.291  0.295  0.298  0.301  0.304  0.307  0.309  0.311  

𝜆23 0.470  0.471  0.472  0.473  0.474  0.475  0.476  0.477  0.478  0.478  0.479  0.479  0.480  

𝜆34 0.107  0.107  0.108  0.108  0.108  0.108  0.109  0.109  0.109  0.109  0.109  0.110  0.110  

𝜐 -2.962  -2.987  -3.010  -3.031  -3.050  -3.067  -3.083  -3.098  -3.111  -3.123  -3.134  -3.144  -3.153  

𝐿𝑥(𝑃1) 4.171  4.178  4.184  4.190  4.196  4.201  4.205  4.209  4.213  4.216  4.219  4.222  4.224  

𝐿𝑥(𝑃2) 4.182  4.188  4.193  4.199  4.203  4.207  4.211  4.214  4.218  4.220  4.223  4.225  4.228  

𝐿𝑥 4.171  4.178  4.184  4.190  4.196  4.201  4.205  4.209  4.213  4.216  4.219  4.222  4.224  

𝑤12 -0.087  -0.088  -0.089  -0.090  -0.091  -0.091  -0.092  -0.092  -0.093  -0.093  -0.094  -0.094  -0.094  

𝑤24 -0.045  -0.045  -0.046  -0.047  -0.047  -0.047  -0.048  -0.048  -0.048  -0.049  -0.049  -0.049  -0.049  

𝑤23 -0.079  -0.079  -0.078  -0.078  -0.078  -0.077  -0.077  -0.077  -0.077  -0.077  -0.076  -0.076  -0.076  

𝑤34 -0.018  -0.018  -0.018  -0.018  -0.018  -0.018  -0.018  -0.018  -0.018  -0.018  -0.017  -0.017  -0.017  

𝑦 0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  

𝜃12 0.017  0.015  0.014  0.012  0.011  0.010  0.009  0.008  0.008  0.007  0.006  0.006  0.005  

𝜃24 0.020  0.018  0.016  0.015  0.013  0.012  0.011  0.010  0.009  0.008  0.008  0.007  0.006  

𝜃23 0.017  0.016  0.014  0.013  0.012  0.011  0.010  0.009  0.008  0.007  0.007  0.006  0.006  

𝜃34 0.022  0.020  0.019  0.017  0.015  0.014  0.013  0.012  0.011  0.010  0.009  0.008  0.007  

𝜃𝜐 0.071  0.065  0.059  0.054  0.049  0.045  0.041  0.037  0.034  0.031  0.028  0.026  0.023  

𝐿𝑤 0.048  0.049  0.050  0.050  0.051  0.052  0.052  0.053  0.053  0.054  0.054  0.055  0.055  

𝐿𝑦 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

𝐿𝐵 4.219  4.227  4.234  4.241  4.247  4.252  4.257  4.262  4.266  4.270  4.273  4.276  4.279  

𝑈𝐵 4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  

𝑔𝑎𝑝 0.089  0.081  0.074  0.067  0.061  0.056  0.051  0.046  0.042  0.038  0.035  0.032  0.029  

𝜀′ 0.021  0.019  0.017  0.016  0.014  0.013  0.012  0.011  0.010  0.009  0.008  0.007  0.007  

 

𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 40 41 42 43 44 45 46 47 48 49 50 51 52 

𝜆12 0.598  0.601  0.603  0.606  0.608  0.610  0.612  0.614  0.615  0.617  0.618  0.619  0.621  

𝜆24 0.313  0.315  0.316  0.318  0.319  0.320  0.322  0.323  0.324  0.324  0.325  0.326  0.326  

𝜆23 0.480  0.481  0.481  0.481  0.482  0.482  0.482  0.482  0.483  0.483  0.483  0.483  0.483  

𝜆34 0.110  0.110  0.110  0.110  0.110  0.110  0.110  0.111  0.111  0.111  0.111  0.111  0.111  

𝜐 -3.161  -3.168  -3.175  -3.181  -3.187  -3.192  -3.197  -3.201  -3.205  -3.209  -3.212  -3.215  -3.218  

𝐿𝑥(𝑃1) 4.227  4.229  4.231  4.232  4.234  4.235  4.237  4.238  4.239  4.240  4.241  4.242  4.242  

𝐿𝑥(𝑃2) 4.229  4.231  4.233  4.234  4.236  4.237  4.238  4.239  4.240  4.241  4.242  4.242  4.243  

𝐿𝑥 4.227  4.229  4.231  4.232  4.234  4.235  4.237  4.238  4.239  4.240  4.241  4.242  4.242  

𝑤12 -0.095  -0.095  -0.095  -0.095  -0.095  -0.096  -0.096  -0.096  -0.096  -0.096  -0.096  -0.096  -0.096  

𝑤24 -0.050  -0.050  -0.050  -0.050  -0.050  -0.050  -0.050  -0.050  -0.050  -0.051  -0.051  -0.051  -0.051  

𝑤23 -0.076  -0.076  -0.076  -0.076  -0.076  -0.075  -0.075  -0.075  -0.075  -0.075  -0.075  -0.075  -0.075  

𝑤34 -0.017  -0.017  -0.017  -0.017  -0.017  -0.017  -0.017  -0.017  -0.017  -0.017  -0.017  -0.017  -0.017  

𝑦 0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  0.370  

𝜃12 0.005  0.004  0.004  0.004  0.003  0.003  0.003  0.002  0.002  0.002  0.002  0.002  0.002  

𝜃24 0.006  0.005  0.005  0.004  0.004  0.004  0.003  0.003  0.003  0.002  0.002  0.002  0.002  

𝜃23 0.005  0.005  0.004  0.004  0.004  0.003  0.003  0.003  0.002  0.002  0.002  0.002  0.002  

𝜃34 0.007  0.006  0.005  0.005  0.005  0.004  0.004  0.003  0.003  0.003  0.003  0.002  0.002  

𝜃𝜐 0.021  0.019  0.018  0.016  0.015  0.013  0.012  0.011  0.010  0.009  0.008  0.008  0.007  

𝐿𝑤 0.055  0.055  0.056  0.056  0.056  0.056  0.057  0.057  0.057  0.057  0.057  0.057  0.057  

𝐿𝑦 0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  

𝐿𝐵 4.282  4.284  4.286  4.288  4.290  4.292  4.293  4.295  4.296  4.297  4.298  4.299  4.300  

𝑈𝐵 4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  4.308  

𝑔𝑎𝑝 0.026  0.024  0.022  0.020  0.018  0.017  0.015  0.014  0.013  0.011  0.010  0.009  0.009  

𝜀′ 0.006  0.006  0.005  0.005  0.004  0.004  0.004  0.003  0.003  0.003  0.002  0.002  0.002  
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(4) Calculate 𝑦 using Eq.(4-19). 

𝑦 = 0.5502 + 0.2602 = 0.370  

(5) Calculate 𝐿𝑦 using Eq.(4-26). 

𝐿𝑦 = Min {0, 𝑍(𝛼)√𝑦′ − 𝜈𝑦
′} = 0    

(6) Update LB, UB, and 𝜀′ using Eqs.(4-31)-(4-33) 

LB = 𝐿𝑥 + 𝐿𝑤 + 𝐿𝑦 = −9.268  

𝑈𝐵 = 3.7 + √0.37 = 4.308  

𝜀′ =
𝑈𝐵−𝐿𝐵

𝑈𝐵
= 3.151  

(7) Calculate iteration steps 𝜃12, 𝜃24, 𝜃23, 𝜃34, and 𝜃𝜐 using Eqs.(4-37) and (4-38) 

𝜃12 =
𝛿𝑘𝑙
𝑘 (𝑈𝐵−𝐿𝐵)

(0.550−𝑤12)2+(0.260−𝑤12)2+(0.000−𝑤12)2+(0.000−𝑤12)2
= 0.008  

𝜃24 =
𝛿𝑘𝑙
𝑘 (𝑈𝐵−𝐿𝐵)

(0.550−𝑤24)2+(0.260−𝑤24)2+(0.000−𝑤24)2+(0.000−𝑤24)2
= 0.005  

𝜃23 =
𝛿𝑘𝑙
𝑘 (𝑈𝐵−𝐿𝐵)

(0.550−𝑤23)2+(0.260−𝑤23)2+(0.000−𝑤23)2+(0.000−𝑤23)2
= 0.005  

𝜃34 =
𝛿𝑘𝑙
𝑘 (𝑈𝐵−𝐿𝐵)

(0.550−𝑤34)2+(0.260−𝑤34)2+(0.000−𝑤34)2+(0.000−𝑤34)2
= 0.006  

𝜃𝜐 =
𝛿𝑘𝑙
𝑘 (𝑈𝐵−𝐿𝐵)

(𝑤12
2 +𝑤24

2 +𝑤23
2 +𝑤34

2 − 𝑦)
2 = 0.000  

Iteration 2. 

(1) Update multipliers 𝜆12, 𝜆24, 𝜆23, 𝜆34, and 𝜐 by using Eqs.(4-35) and (4-36) 

𝜆12 = 𝜆12 + 𝜃12(0.550 − 𝑤12) = 0.667  

𝜆24 = 𝜆24 + 𝜃24 × (0.260 − 𝑤24) = 0.919  

𝜆23 = 𝜆23 + 𝜃23 × (0.000 − 𝑤23) = 0.916  

𝜆34 = 𝜆34 + 𝜃34 × (0.000 − 𝑤34) = 0.806  

𝜐 = 𝜐 + 𝜃𝜐(𝑤12
2 + 𝑤24

2 +𝑤23
2 + 𝑤34

2 ) = 0.060  

(2) Calculate 𝐿𝑥 = 𝑀𝑖𝑛{𝐿𝑥(𝑃1), 𝐿𝑥(𝑃2)} using Eq.( 4-24). 

𝐿𝑥(𝑃1) = 4.690  

𝐿𝑥(𝑃2) = 4.847  

Hence, Path 1 is the candidate optimal, 𝐿𝑥 = 4.690 

(3) Calculate 𝑤12, 𝑤24, 𝑤23, and 𝑤34 using Eq.( 4-28). 

𝑤12 =
𝜆12

2𝜐
= 5.541  

𝑤24 =
𝜆24

2𝜐
= 7.631  

𝑤23 =
𝜆23

2𝜐
= 7.612  

𝑤34 =
𝜆34

2𝜐
= 6.696  

(4) Calculate 𝐿𝑤 using Eq.( 4-25) 
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𝐿𝑤 = 𝜐𝑤12
2 − 𝜆12𝑤12 + 𝜐𝑤24

2 − 𝜆24𝑤24 + 𝜐𝑤23
2 − 𝜆23𝑤23 + 𝜐𝑤34

2 − 𝜆34𝑤34

= −11.538 

(5) Calculate 𝑦 using Eq.( 4-19). 

𝑦 = 0.5502 + 0.2602 = 0.37  

(6) Calculate 𝐿𝑦 using Eq.( 4-26). 

𝐿𝑦 = Min {0, 𝑍(𝛼)√𝑦′ − 𝜈𝑦
′} = 0   

(7) Update LB, UB, and 𝜀′ using Eqs.(4-31)-(4-33) 

LB = 𝐿𝑥 + 𝐿𝑤 + 𝐿𝑦 = −6.848  

𝑈𝐵 = 3.7 + √0.37 = 4.308  

𝜀′ =
𝑈𝐵−𝐿𝐵

𝑈𝐵
= 2.590  

(8) Calculate iteration steps 𝜃12, 𝜃24, 𝜃23, 𝜃34, and 𝜃𝜐 using Eqs.(4-37) and (4-38) 

𝜃12 =
𝛿𝑘𝑙
𝑘 (𝑈𝐵−𝐿𝐵)

(0.550−𝑤12)2+(0.260−𝑤12)2+(0.000−𝑤12)2+(0.000−𝑤12)2
= 0.010  

𝜃24 =
𝛿𝑘𝑙
𝑘 (𝑈𝐵−𝐿𝐵)

(0.550−𝑤24)2+(0.260−𝑤24)2+(0.000−𝑤24)2+(0.000−𝑤24)2
= 0.005  

𝜃23 =
𝛿𝑘𝑙
𝑘 (𝑈𝐵−𝐿𝐵)

(0.550−𝑤23)2+(0.260−𝑤23)2+(0.000−𝑤23)2+(0.000−𝑤23)2
= 0.005  

𝜃34 =
𝛿𝑘𝑙
𝑘 (𝑈𝐵−𝐿𝐵)

(0.550−𝑤34)2+(0.260−𝑤34)2+(0.000−𝑤34)2+(0.000−𝑤34)2
= 0.007  

𝜃𝜐 =
𝛿𝑘𝑙
𝑘 (𝑈𝐵−𝐿𝐵)

(𝑤12
2 +𝑤24

2 +𝑤23
2 +𝑤34

2 − 𝑦)
2 = 0.000 

 

Thereafter, the computational procedure for iterations 3-52 is similar to that of 

iteration 2. In this example, the proposed algorithm successfully finds the optimal solution 

(Path 1). Starting with random positive values, the Lagrangian multipliers are iteratively 

updated to increase the lower bound of the primal problem. As shown in Table 4-1, Path 1 

is regarded as the optimal solution with the lowest upper bound. Figure 4-3 shows the 

convergent trend of the upper and lower bounds at the various iterations of the sub-gradient 

algorithm. This clearly shows that the relative gap gradually reduces to a very small value 

as the iteration proceeds, demonstrating that the optimal path is determined. 

4.4.2 Implementation in a real-world network 

(1) Convergence analysis 

To verify the convergence of the α-reliable path-finding algorithm, 1000 random OD 

pairs are extracted from the observed trips for testing. These extracted OD pairs satisfy two 

rules: (1) the linear distance separating the OD pair is 5km or more; (2) the percentage of 

links with a usage frequency of 10 times per week or more is higher than 30% in the 
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potential path searching sphere, which is shown in Figure 3-2. These extraction rules can 

decrease the path-finding bias due to the insufficiency of link travel time records. The 

performance of the proposed algorithm is evaluated by the convergence of average relative 

gap (𝜀̅′ =
1

100
∑ 𝜀𝑛

′100
𝑛=1 ), which is the average value for all 100 OD pairs under a pre-

specified maximum iteration number and on-time arrival probability (𝛼). As shown in 

Figure 4-4, the average relative gap between the upper and lower bounds decreases as the 

number of iterations increases. It is found that 30 iterations are sufficient for the algorithm 

to converge to a relatively small gap (2%-7%) under different reliability settings. However, 

a significant pattern in the relationship between reliability setting and convergence could 

not be determined. 

 

Figure 4-4 Average relative gap for different on-time arrival probability settings 

 

Table 4-2 Computation time 
OD Distance <5 km 5-10 km 10-15km >15km 

Sample size 25 25 25 25 

Average link number 30 51 74 152 

Average running time 2.5s 6.3s 9.8s 19.2s 

 

Table 4-3 Properties of the examined paths 
Path Path 1 Path 2 Path 3 Path 4 

Expected travel time (s) 850 832 780 800 

Variance of travel time (s
2
) 9025 13556 40023 62501 

Path length (m) 9280 9366 8705 8239 

Link usage frequency per week 9.2 9.1 3.5 5.2 



 

 

60 

 

(2) Running time analysis 

The algorithm is programmed by C# program on the Windows 7 platform and run on 

a PC with Intel Dual-Core 2.1GHz CPU and 4GB memory. The large-scale network with 

4072 nodes and 12,877 links is the one shown in Figure 3-2. The most computationally 

expensive step of the proposed algorithm is the shortest-path computation at each iteration. 

Therefore, the time complexity of the proposed algorithm approximates to O[𝑘𝑚log(𝑚)], 

where k is the maximum iteration number and m is the link count of the graph. As shown 

in Table 4-2, the average running time increases as the OD distance increases because 

more links will be considered in the shortest-path algorithm. For different OD settings, the 

average running time is about 9.5 seconds, which can be considered acceptable for path 

finding in a large-scale network. 

(3) Case study 

In Figure 4-5, one real-world OD is extracted to demonstrate the applicability of the 

α-reliable path finding method. Three on-time arrival probabilities (α=0.2, 0.5, 0.8) are set, 

representing the decision-making strategies of risk-taking, risk-neutral, and risk-averse 

travelers, respectively. Accordingly, three paths are found, one corresponding to each 

strategy. Figure 4-6 shows the probability cumulative function curves of the three 

estimated paths and the observed path. Each curve represents the optimal path under a 

certain reliability setting. For example, when the on-time arrival probability is set to 0.2, 

the travel time budgets for the four paths are 𝑇1
0.2, 𝑇2

0.2, 𝑇3
0.2 and 𝑇4

0.2, respectively. Path 4 

is recommended because its travel time budget is less than that of the other paths (𝑇4
0.2 <

𝑇3
0.2 < 𝑇2

0.2 < 𝑇1
0.2). However, if a traveler is more concerned with the variability of the 

risk of path travel time (i.e., the probability that the path travel time will exceed a given 

travel time budget), Path 1 and Path 2 are recommended. Actually, Path 1 and Path 2 are 

very similar because they share 80% of the links, as shown in Figure 4-5. If the on-time 

arrival probability is set to 0.85 or above, Path 1 dominates Path 2. This example 

demonstrates that the observed traveler was risk-averse to on-time arrival. That is, as 

shown in Table 4-3, though Path 1 has the maximum expected travel time among the 

examined paths, it has the least variance of travel time. That means the traveler preferred a 

highly reliable path though it may be longer. Further, it is found that the component links 

of Path 1 have the highest average link usage frequency. This indirectly indicates that Path 

1 is the most reliable path because rational drivers usually do not choose unreliable links 

frequently. 
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Figure 4-5 Path finding for three settings of on-time arrival probability 
 

 

Figure 4-6 On-time arrival probabilities of four paths with different time budgets 
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4.5 Summary 

This study discussed the α-reliable path problem in a stochastic network with 

correlated and truncated lognormal link travel times. The Lagrangian relaxation approach 

is applied to solve the nonlinear and non-additive problem. The availability of such reliable 

paths in a navigation system application would help travelers plan their travel time budgets 

with a given on-time arrival probability efficiently. The proposed α-reliable path-finding 

algorithm was applied to a large-scale real-world network in Toyota city, Japan. The 

performance of the proposed method was shown to be accurate within a reasonable 

computation time. The major achievements of this study are summarized as follows. 

(1) The spatial correlation of link travel times is explicitly considered by introducing a 

correlation coefficient matrix. The Cholesky decomposition is proposed to separate the 

correlation coefficient matrix and make it tractable to the α-reliable path problem. 

(2) The Lagrangian relaxation approach is applied to estimate the lower bound of the 

α-reliable path solution. Specifically, the nonlinear and non-additive problem structure is 

decomposed into sub-problems that can be solved as standard shortest-path problems and 

series of tractable convex or concave problems. In solving the problem, the relative gap 

between the upper and lower bound of the solution is shown to decrease at every iteration 

and 30 iterations of the algorithm yield a small relative gap of within 2%-7%. 

(3) A case study using the probe vehicle data is carried out with the assumption of 

pre-trip navigation planning under different reliability settings. This demonstrates that the 

proposed α-reliable path finding algorithm enables the decision-making strategies of risk-

taking, risk-neutral and risk-averse travelers to be modeled. 

Potential directions for further study include extending the proposed algorithm, 

improvement of path travel time estimation, and link travel time correlation estimation: (1) 

α-reliable path finding could be extended to a time-varying stochastic network; (2) a more 

accurate approximation method for path travel time distribution estimation could be 

developed by considering the skewness characteristic; (3) in addition to spatial link travel 

time correlation, temporal correlation should be considered in the finding algorithm and (4) 

a faster path finding algorithm suitable for real-time navigation systems needs to be 

developed. 
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Chapter 5 Modeling traveler’s risk preference to travel time reliability 

MODELING TRAVELER’S RISK 

PREFERENCE TO TRAVEL TIME 

RELIABILITY 

5.1 Introduction 

Travel time reliability has been regarded as an important factor in traveler’s route 

choice decisions. In general, learning travelers’ risk preferences requires repeated 

interaction with the travelers. Although revealed or stated preference surveys are possible 

to obtain user preferences directly, data collection and analysis for large-scale SP and RP 

surveys are time-consuming and expensive. This study explores travelers’ risk preferences 

to travel time from GPS trip data.  

Methods of finding the reliable path have attracted increasing attention for risk-averse 

navigation. In developing a better trip plan, the most reliable shortest path (Nie and Wu, 

2009) within a given travel time budget seems more attractive than the shortest path in a 

stochastic network. However, travelers could exhibit different route choice behaviors when 

face with the stochastic transportation network depending on their risk preferences. Risk-

averse travelers are likely to choose a more reliable path with lower travel time variance. 

And risk-taking travelers are likely to prefer an unreliable path that potentially provides a 

shortest distance or minimum travel time (Ben-Elia et al, 2013). To our knowledge, most 

of the current studies about the most reliable shortest path problem assumed that travelers 
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are rational and homogeneous. The varied nature of travelers’ risk-averse preferences is 

seldom taken into account. Alternatively, Chen and Ji (2005) proposed the concept of the 

α-reliable path that allows travelers to specify a confidence level α for finding a reliable 

path with the minimum travel time budget. The confidence level α can be regarded as a 

surrogate index of travelers’ risk-averse preferences. The α-reliable path definition requires 

the travelers to express their expected risk-averse preference toward travel time uncertainty 

(Chen et al, 2013). However, travelers may feel confused to define a suitable confidence 

level α prior to their trips without any references or default value provided by the 

navigation system. However, if the traveler does not have an idea of how to specify the α 

value, the α reliable-path based navigation system may provide a sub-optimal or 

dissatisfactory path to the traveler by using a random α value. 

A reasonable approach in improving the automatic routing for risk-averse navigation 

is to incorporate travelers’ risk-averse preferences into the routing processes. This study 

aims to acquire knowledge on travelers’ risk-averse preferences by learning repeated route 

choice behavior from large-scale trip records of probe vehicles. The probe vehicles with 

GPS devices can effectively provide detailed travel information on start and end time, 

precise observation of route, and OD information. With the investigation of the travelers’ 

personal information, an ordered probit model is applied to learn and predict the travelers’ 

risk preferences by considering various individual properties (gender, age) and pre-trip 

information (OD distance, departure time). 

Route choice data for travelers’ preference analysis can be collected by using revealed 

or stated preference surveys or through GPS record. Using stated preference, Abdel-Aty et 

al. (1995) investigated the effect of travel time variability on route choice. The results 

indicated the significance of the degree of travel time reliability on decision-making 

process for route selection. Small et al. (2005) identified the varied nature of travels’ 

preferences for both travel time and reliability by combining both stated preference (SP) 

and reveal preference (RP) survey on the observed behavior of commuters. The study 

indicated that travelers had substantial heterogeneity in their preferences of travel time 

reliability. However, both SP and RP survey have limitations. For example, respondents 

have to assume choice set instead of experiencing the route choice practically in SP survey. 

They may simply answer questions that they would not realistically pursue. Though RP 

survey could reflect the decision-making preference more realistically, few studies use RP 

data investigating travel time reliability because almost no examples of the investigation 

settings with significant difference of the variation of travel time across at least two 

choices (Carrion and Levinson, 2012). On the other hand, data collection and analysis for 

SP and RP surveys are time-consuming and expensive. Alternatively, advancements in 

traffic information collection technologies, including trip records from probe vehicles, can 
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facilitate the investigation of influences dominates route choice decisions. Li et al. (2005) 

showed how GPS enables to record observed route choice information effectively by 

collecting 182 travelers over a 10 day period. Papinski et al. (2009) explored the decision-

making process of route choice by comparing the observed and planned routes obtained 

from personal based GPS. Papinski and Scott (2011) developed a GIS-based toolkit for 

route choice analysis based on GPS data. Even though traffic information such as travel 

time and average speed can be collected in an economical and timely way, concerns of 

GPS data include the device reliability, respondent accuracy, and urban canyon effects 

(Wolf and Thompson, 2003). To fill this gap, map-matching technology for GPS points 

can be regarded as a powerful tool to provide the precise route in terms of junctions and 

links. The map-matching algorithm of Miwa et al. (2012) resulted in an 80% correct 

identification of routes traveled.  

A practical way to discover users’ preferences is to find regularities by observing 

substantial route choice behavior. Previous studies showed that both discrete choice 

models based on random utility theory (Ben-Akiva and Lerman, 1985) and machine 

learning (Dougherty, 1995; Yamamoto et al., 2002) are available to reveal the route choice 

preferences. Machine learning requires neither estimating any parameters describing the 

distribution of variables nor assuming any particular form of functions (Yamamoto et al., 

2002). Park et al (2007) developed a decision tree model in the C4.5 algorithm to learn 

user preferences of route choice behavior by considering travel distance, travel time, travel 

time reliability, and so on. They concluded that the decision tree learning algorithm can 

outperform random utility models. 

In summary, there is growing interest in analyzing route choice behavior by using the 

emerging techniques such as probe vehicle. However, few studies discuss how to quantify 

travelers’ risk-averse preferences. The measure of risk-averse preference to travel time 

reliability is quite new to the field of reliable path finding problem for risk-averse 

navigation. This study attempts to address this gap by proposing a new method for 

measuring the degree of risk-averse preference and applying ordered probit model to learn 

travelers’ risk preferences to travel time reliability from large-scale GPS trip records. 

5.2 Problem statement 

This section postulates that a rational traveler chooses the α-reliable shortest path 

based on the desired risk-averse attitude. Given an on-time arrival probability α, a path 

𝑝𝑟𝑠
∗ ∈ 𝑃𝑟𝑠 is defined as the α-reliable shortest path if Φ𝑇𝑟𝑠

∗
−1(𝛼) < Φ𝑇𝑟𝑠

−1(𝛼) for any other path 

𝑝𝑟𝑠 ∈ 𝑃𝑟𝑠  (Chapter 4). 𝑃𝑟𝑠  is the path set from origin r to destination s. Φ𝑇𝑟𝑠
∗
−1(𝛼)  and 
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Φ𝑇𝑟𝑠
−1(𝛼) are the inverse cumulative distribution functions (CDF) of travel time for paths 

𝑝𝑟𝑠 and 𝑝𝑟𝑠
∗ , respectively. It is assumed that path travel time follow normal distribution. 

Consequently, the α-reliable path problem can be described as below: 

Φ𝑇𝑟𝑠
∗
−1(𝛼)  = Min{𝑢𝑝 + 𝑍𝛼𝜎𝑝}                                                     (5-1) 

where 𝑍𝛼 is the inverse CDF of the standard normal distribution at 𝛼 confidence level, 𝑢𝑝 

is the path mean travel time, and 𝜎𝑝 is the standard deviation of path travel time. To find 

the α-reliable shortest path, it is necessary to specify the confidence level (α) by the 

traveler. Here, the variable α can be explained as the on-time arrival probability of a certain 

travel time budget. Eq.(5-1) is the objective function that travelers want to minimize the 

travel time on a given on-time arrival probability.  

Definition 1: The degree of traveler’s risk-averse preference (DR) toward travel time is 

defined as the value of on-time arrival probability of the selected path under a specified 

travel time budget.  

As shown in Figure 5-1, assumed that the travel time budget is 800s, the DR is 0.94 if 

Path 2 is chosen. Noted that the DR is related to the travel time distribution and the 

specified travel time budget, it is necessary to understand the path travel time distribution 

and the individual travel time budget. The distribution of path travel time can be estimated 

from the observed dataset. However, it is quite difficult to get the travel time budget 

exactly through the observed trip travel time. Actually, the travel time budget is usually 

larger than the actual travel time, but it can not be derived without asking the traveler. Such 

problem makes the estimation of DR intractable. Alternatively, the bound value of DR can 

be estimated by comparing a series of α-reliable paths if travelers are rational (never 

choose the inferior paths dominated by other paths). 
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Figure 5-1 Illustration of degree of risk-averse preference 

 

 

Figure 5-2 Stochastic dominance 

5.3 Methodology for data collection 

In this study, we propose a novel method to collect the travelers’ risk-averse 

preferences by applying the method of stochastic dominance.  
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Definition 2 (First order stochastic dominance): given two paths 𝑝𝑟𝑠
𝑎 ≠ 𝑝𝑟𝑠

𝑏 ∈ 𝑷𝑟𝑠 where r 

is origin and s is destination,  𝑝𝑟𝑠
𝑎  dominates 𝑝𝑟𝑠

𝑏  (denoted by 𝑝𝑟𝑠
𝑎 ≻ 𝑝𝑟𝑠

𝑏 ) if Φ𝑇𝑟𝑠
𝑎
−1(𝛼) <

Φ
𝑇𝑟𝑠
𝑏
−1(𝛼) for any confidence level 0 < 𝛼 < 1. 

Definition 3 (Mean-Variance dominance): Given an on-time arrival probability α and two 

paths (𝑝𝑟𝑠
𝑎 ≠ 𝑝𝑟𝑠

𝑏 ∈ 𝑷𝑟𝑠), 𝑝𝑟𝑠
𝑎 ≻ 𝑝𝑟𝑠

𝑏  if 𝑝𝑟𝑠
𝑎  and 𝑝𝑟𝑠

𝑏  satisfy one of the following conditions: 

(1) 𝑢𝑎 ≤ 𝑢𝑏 and 𝑍𝛼𝜎𝑎 < 𝑍𝛼𝜎𝑏 or 

(2) 𝑢𝑎 < 𝑢𝑏 and 𝑍𝛼𝜎𝑎 ≤ 𝑍𝛼𝜎𝑏 

where 

𝑢𝑎, 𝑢𝑏: Path travel time mean for 𝑝𝑟𝑠
𝑎  and 𝑝𝑟𝑠

𝑏 , respectively. 

𝜎𝑎, 𝜎𝑏: Standard deviation of path travel time for 𝑝𝑟𝑠
𝑎  and 𝑝𝑟𝑠

𝑏 , respectively. 

𝑍𝛼: Inverse CDF of the standard normal distribution at 𝛼 confidence level. 

Figure 5-2 shows an example of stochastic dominance. Path 𝑝𝑟𝑠
𝑎  and path 𝑝𝑟𝑠

𝑏  

dominate path 𝑝𝑟𝑠
𝑐 , but path 𝑝𝑟𝑠

𝑏  is not dominated by path 𝑝𝑟𝑠
𝑎  for any confidence level 

0 < 𝛼 < 1. 𝑝𝑟𝑠
𝑎  and path 𝑝𝑟𝑠

𝑏  are called the non-dominated paths (NDP), and path 𝑝𝑟𝑠
𝑐  is 

called the dominated path or inferior path. A rational traveler will never choose path 𝑝𝑟𝑠
𝑐  as 

the preferable path. There is a cross point (𝑇∗, 𝜆) between the CDF curves of the two NDPs. 

If the degree of traveler’s risk-averse preference (𝛼) is less than 𝜆 (0 < 𝛼 < 𝜆), then path 

𝑝𝑟𝑠
𝑎  is selected, while path 𝑝𝑟𝑠

𝑏  is selected if the degree of traveler’s risk-averse preference 

is more than 𝜆 (𝜆 < 𝛼 < 1). Consequently, the chosen paths can reflect the travelers’ risk-

averse preferences.  

Both first order stochastic dominance (FSD) and Mean-Variance dominance (MVD) 

can be used to identify the non-dominated path between two paths, but it is difficult to 

apply FSD to identify the non-dominated path in a path set (more than three paths). Figure 

5-3 shows an example of the limitation of FSD in a path set. According to FSD, Path 2 

dominates Path 1 if α < 0.09 and Path 2 dominates Path 3 if α > 0.16. That is, Path 2 is a 

non-dominated path with respect to Path 1 or Path 3. However, it is also found that Path 2 

is dominated by Path 1 if α > 0.09 and it is dominated by Path 3 if α < 0.16. That is, Path 

2 is dominated by Path 1 or Path 3 in the whole range of 𝛼 (0 ≤ α ≤ 1). Consequently, a 

rational traveler will not choose Path 2 regardless of the degree of desired risk-averse 

preference.  
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Definition 4 (Non-dominated path): A path 𝑝𝑟𝑠
𝑎 ∈ 𝑷𝑟𝑠 is a non-dominated path, if and only 

if 𝑝𝑟𝑠
𝑎  dominates any paths ∀𝑝𝑟𝑠

𝑖 ∈ 𝑷𝑟𝑠 at certain confidence level 0 < λ1 < 𝛼 < λ2 < 1. 

 

 

Figure 5-3 Limitation of FSD 

 

Here, we use Definition 4 to judge whether the observed path is non-dominated path 

in a path set. Since the 𝛼-reliable paths are the non-dominated paths between OD nodes 

based on Definition 4, we don’t need to generate all paths between OD nodes. Instead, the 

𝛼-reliable paths can be used as the path set (𝒑𝑟𝑠
𝛼 ). And then, Mean-Variance dominance is 

used to judge whether the observed path is dominated by the 𝛼-reliable paths.  

First, we check whether the observed path 𝑝𝑟𝑠
𝑜𝑏𝑠  (with mean travel time 𝑢𝑜𝑏𝑠  and 

standard deviation of travel time 𝜎𝑜𝑏𝑠) is dominated by any of the 𝛼-reliable paths (∀𝑝𝑟𝑠
𝛼 ∈

𝒑𝑟𝑠
𝛼 ) in risk-averse condition (𝛼 > 0.5). Since 𝛼 > 0.5, 𝑍𝛼 > 0, we need to check whether 

any 𝛼-reliable paths (with mean travel time 𝑢𝛼 and standard deviation of travel time 𝜎𝛼) 

exist satisfy: (1) 𝑢𝛼 ≤ 𝑢𝑜𝑏𝑠 and 𝜎𝛼 < 𝜎𝑜𝑏𝑠 or (2) 𝑢𝛼 < 𝑢𝑜𝑏𝑠 and 𝜎𝛼 ≤ 𝜎𝑜𝑏𝑠. If any of the 

two conditions satisfy, the observed path is regarded as the dominated path in risk-averse 

condition. 

Algorithm 5-1 Test algorithm for non-dominated path 
1 Step 1: Generate the 𝛼-reliable path set: 𝒑𝑟𝑠

𝛼  

2 Step 2: Check whether the observed path (𝑝𝑟𝑠
𝑜𝑏𝑠) is dominated at risk-averse condition 

3              Check Mean-Variance dominance for any of the 𝛼-reliable paths (∀𝑝𝑟𝑠
𝛼 ∈ 𝒑𝑟𝑠

𝛼 ): 
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4              (1) 𝑢𝛼 ≤ 𝑢𝑜𝑏𝑠 and 𝜎𝛼 < 𝜎𝑜𝑏𝑠 or (2) 𝑢𝛼 < 𝑢𝑜𝑏𝑠 and 𝜎𝛼 ≤ 𝜎𝑜𝑏𝑠 

5 Step 3: Check whether the observed path (𝑝𝑟𝑠
𝑜𝑏𝑠) is dominated at risk-taking condition 

6 Check Mean-Variance dominance for any of 𝛼-reliable paths (∀𝑝𝑟𝑠
𝛼 ∈ 𝒑𝑟𝑠

𝛼 ): 

7             (1) 𝑢𝛼 ≤ 𝑢𝑜𝑏𝑠 and 𝜎𝛼 > 𝜎𝑜𝑏𝑠 or (2) 𝑢𝛼 < 𝑢𝑜𝑏𝑠 and 𝜎𝛼 ≥ 𝜎𝑜𝑏𝑠 

8 Step 4: Determine the non-dominated path 

9 Dominated path: satisfy step 2 or step 3 

10 Non-dominated path: not satisfy step 2 and step 3 

 

 

Figure 5-4 Illustration of determining the observed non-dominated path 

 

Second, we check whether the observed path 𝑝𝑟𝑠
𝑜𝑏𝑠  is dominated by any of the 𝛼-

reliable paths (∀𝑝𝑟𝑠
𝛼 ∈ 𝒑𝑟𝑠

𝛼 ) in risk-taking condition (𝛼 < 0.5). Since 𝛼 < 0.5, 𝑍𝛼 < 0, we 

need to check whether any 𝛼-reliable paths exist satisfy: (1) 𝑢𝛼 ≤ 𝑢𝑜𝑏𝑠 and 𝜎𝛼 > 𝜎𝑜𝑏𝑠 or 

(2) 𝑢𝛼 < 𝑢𝑜𝑏𝑠  and 𝜎𝛼 ≥ 𝜎𝑜𝑏𝑠 . If any of the two conditions satisfy, the observed path is 

regarded as the dominated path in risk-taking condition. 

According to Mean-Variance dominance, the observed path is a dominated path if it is 

dominated by any of the 𝛼-reliable paths in risk-averse condition or risk-taking condition. 

That is, the observed path is the non-dominated path if it is not dominated by any of the 𝛼-
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reliable paths in risk-averse condition and risk-taking condition. Based on the discussion 

above, pseudo code for determining the non-dominated path is given in Algorithm 5-1. 

An example of determining the observed non-dominated path by using Algorithm 5-1 

is illustrated in Figure 5-4. The 𝛼-reliable path set includes six paths and two observed 

paths (i.e., Path 7 and Path 8) need to test. Let’s test Path 7 first. Because the mean travel 

time of Path 7 is smaller than that of Path 2, Path 3 and Path 6, Path 7 is not dominated by 

the three paths. For risk-averse condition, we select the 𝛼-reliable path (among Path 1, Path 

4 and Path 5) with minimum travel time variance as the candidate (i.e., Path 5). Because 

𝜎5 > 𝜎7 which not satisfies the Mean-Variance dominance, Path 7 is not dominated by 

Path 5. Because the travel time variances of Path 1 and Path 4 are larger than that of Path 5, 

it can be concluded that Path 7 is not dominated by any of 𝛼-reliable paths in risk-averse 

condition. Since the observed path is not dominated in risk-averse condition, it is not 

necessary to test it in risk-taking condition. Therefore, Path 7 is the non-dominated path. 

Another example is Path 8. Since the mean travel time of Path 8 is smaller than that of Path 

2, Path 8 is not dominated by Path 2. For risk-averse condition, we select Path 6 which has 

the minimum travel time variance in the candidate set for test. It is found that 𝜎6 < 𝜎8 

which satisfies the second condition of Mean-Variance dominance. Therefore, Path 8 is 

dominated by Path 6 in risk-averse condition. Without considering the risk-averse 

condition, it can be concluded that Path 8 is not the non-dominated path. 

Assumed that travelers are rational (they never choose the dominated paths), we 

extract the non-dominated observed paths by using Algorithm 5-1. Those dominated 

observed paths will be excluded for risk-averse preference estimation. Because the 𝛼 -

reliable paths and the observed path are non-dominated path, the cross point of the CDF 

curves between the non-dominated observed path and each 𝛼-reliable path must exist. And 

the value of cross point determines boundary of the dominance condition between the two 

tested paths. The bound value of the risk-averse preference can be estimated by checking 

the cross points. The degree of risk-averse preference (𝜆) for each cross point can be 

formulated as follows: 

𝜆 = Φ(
𝑢𝑜𝑏𝑠𝜎𝛼−𝑢𝛼𝜎𝑜𝑏𝑠

𝑢𝑜𝑏𝑠(𝜎𝛼−𝜎𝑜𝑏𝑠)
− 1)                                                                (5-2) 

where 

𝑢𝛼 , 𝑢𝑜𝑏𝑠 : mean path travel times for the 𝛼 -reliable path and the observed path, 

respectively. 
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𝜎𝛼, 𝜎𝑜𝑏𝑠: standard deviations of path travel time for the 𝛼-reliable path and observed 

path, respectively. 

Φ: Cumulative density function (CDF) of the standard normal distribution. 

The lower bound (𝜆𝐿𝐵) and upper bound (𝜆𝑈𝐵) of the risk-averse preference can be 

determined by comparing the observed path with the 𝛼 -reliable paths. Obviously, the 

observed path dominates the 𝛼-reliable path with larger travel time variance (i.e., 𝜎𝛼 >

𝜎𝑜𝑏𝑠) if 𝛼′ > 𝜆 where 𝛼′  is the desired risk-averse preference. Therefore, the maximum 

value of 𝜆 can be regarded as the lower bound of the observed risk-averse preference.  

𝜆𝐿𝐵 = Max { Φ (
𝑢𝑜𝑏𝑠𝜎𝛼−𝑢𝛼𝜎𝑜𝑏𝑠

𝑢𝑜𝑏𝑠(𝜎𝛼−𝜎𝑜𝑏𝑠)
− 1)} , 𝑖𝑓 𝜎𝛼 > 𝜎𝑜𝑏𝑠                     (5-3) 

Similarly, the observed path dominates the 𝛼-reliable path with smaller travel time 

variance (i.e., 𝜎𝛼 < 𝜎𝑜𝑏𝑠) if 𝛼
′ < 𝜆. Therefore, the minimum value of 𝜆 can be regarded as 

the upper bound of the observed risk-averse preference. 

𝜆𝑈𝐵 = Min { Φ (
𝑢𝑜𝑏𝑠𝜎𝛼−𝑢𝛼𝜎𝑜𝑏𝑠

𝑢𝑜𝑏𝑠(𝜎𝛼−𝜎𝑜𝑏𝑠)
− 1)} , 𝑖𝑓 𝜎𝛼 < 𝜎𝑜𝑏𝑠                       (5-4) 

The observed path dominates all the 𝛼 -reliable paths if the desired risk-averse 

preference is set as 𝜆𝐿𝐵 < 𝛼′ < 𝜆𝑈𝐵. The degree of traveler’s risk-averse preference (𝜆𝐷𝑅) 

can be approximated by the average of the lower bound and upper bound. 

𝜆𝐷𝑅 =
1

2
(𝜆𝐿𝐵 + 𝜆𝑈𝐵)                                                          (5-5) 

An example of approximating the degree of traveler’s risk-averse preference is given 

in Figure 5-5. To estimate the traveler’s risk-averse preference from the observed path, we 

first calculate cross points with the four 𝛼-reliable paths. Because the travel time variances 

for Path 1, Path 2 and Path 3 are larger than that of the observed path, the lower bound of 

traveler’s risk-averse preference is selected from the cross points of the CDF curves 

between the observed path and these three 𝛼-reliable path. Because the cross points of the 

CDF curves between the observed path and Path 1 has the maximum value of 𝜆, i.e., 𝜆 =

0.63 , the lower bound of traveler’s risk-averse preference is 0.63. Because only Path 4 has 

smaller travel time variance than the observed one, the cross points of the CDF curves 

between the observed path and Path 4 is used to estimate the upper bound of traveler’s 

risk-averse preference, i.e., 𝜆𝑈𝐵 = 0.91. Consequently, the estimation of traveler’s risk-

averse preference is (0.63 + 0.91)/2=0.77. 
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Figure 5-5 Estimation of traveler’s risk-averse preference 

5.4 Prediction of traveler’s risk-averse preference 

The risk-averse navigation system requires the input of the travelers’ risk-averse 

attitudes toward the stochastic travel time. To make the navigation system more user-

friendly, it is necessary to learn the travelers’ risk-averse preferences from their trip 

records. To simplify the input of the risk attitudes, the estimated degrees of travelers’ risk-

averse preferences are aggregated to four levels, i.e., high risk-taking (0 ≤ 𝜆𝐷𝑅 < 0.25), 

slight risk-taking (0.25 ≤ 𝜆𝐷𝑅 < 0.5), slight risk-averse (0.5 ≤ 𝜆𝐷𝑅 < 0.75), and high 

risk-averse (0.75 ≤ 𝜆𝐷𝑅 < 1). In this study, the ordered probit model is applied to predict 

the level of risk-averse preference with various explanatory variables. The ordered probit 

model is suitable to estimate the parameters for the level of risk-averse preference with a 

categorical nature. Furthermore, it is already embed in several commercially statistic 

software such as STATA, which is convenient to apply to data analysis. The general model 

specification is shown as follows: 

𝑦𝑖
∗ = 𝒙𝑖𝜷 + 𝜀𝑖                                                              (5-6) 

where 𝑦𝑖
∗  is a latent variable expressing the surrogate degree of the 𝑖𝑡ℎ  traveler’s risk-

averse preference; 𝒙𝑖  denotes the vector of observed explanatory variables;  𝜷  is the 
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parameter vector; 𝜀𝑖  is the random error term, which is assumed to follow a normal 

distribution with zero mean and unit variance. 

 For any trips, it is reasonable to assume that a high surrogate degree of risk-averse 

preference, i.e.,  𝑦𝑖
∗, will represent a high level of risk-averse preference, i.e., 𝑦𝑖. Therefore, 

the coded discrete level of risk-averse preference, 𝑦𝑖, is determined as follows: 

𝑦𝑖 =

{
 

 
1 𝑖𝑓 − ∞ ≤ 𝑦𝑖

∗ < 𝑢1  (ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 − 𝑡𝑎𝑘𝑖𝑛𝑔) 

2  𝑖𝑓 𝑢1 ≤ 𝑦𝑖
∗ < 𝑢2  (𝑠𝑙𝑖𝑔ℎ𝑡 𝑟𝑖𝑠𝑘 − 𝑡𝑎𝑘𝑖𝑛𝑔)

3  𝑖𝑓 𝑢2 ≤ 𝑦𝑖
∗ < 𝑢3  (𝑠𝑙𝑖𝑔ℎ𝑡 𝑟𝑖𝑠𝑘 − 𝑎𝑣𝑒𝑟𝑠𝑒)

4  𝑖𝑓 𝑢3 ≤ 𝑦𝑖
∗ < +∞  (ℎ𝑖𝑔ℎ𝑡 𝑟𝑖𝑠𝑘 − 𝑎𝑣𝑒𝑟𝑠𝑒)

                                (5-7) 

where the 𝑢𝑖 denote thresholds to be estimated. 

The probabilities associated with yi are shown as follows: 

𝑃𝑖(1) = 𝑃𝑟(𝑦𝑖 = 1) = 𝑃𝑟(𝑦𝑖
∗ < 𝑢1) = 𝑃𝑟(𝑥𝑖𝛽 + 𝜀𝑖 < 𝑢1) 

= 𝑃𝑟(𝜀𝑖 < 𝑢1 − 𝑥𝑖𝛽) = 𝜙(𝑢1 − 𝑥𝑖𝛽)                                           (5-8) 

                   𝑃𝑖(2) = 𝑃𝑟(𝑦𝑖 = 2) = 𝑃𝑟(𝑢1 < 𝑦𝑖
∗ ≤ 𝑢2)  

                            = 𝑃𝑟(𝜀𝑖 ≤ 𝑢2 − 𝑥𝑖𝛽) − 𝑃𝑟(𝜀𝑖 ≤ 𝑢1 − 𝑥𝑖𝛽) 

= 𝜙(𝑢2 − 𝑥𝑖𝛽) − 𝜙(𝑢1 − 𝑥𝑖𝛽)                                                    (5-9) 

                   𝑃𝑖(𝑘) = 𝑃𝑟(𝑦𝑖 = 𝑘) = 𝑃𝑟(𝑢𝑘−1 < 𝑦𝑖
∗ ≤ 𝑢𝑘)  

                            = 𝑃𝑟(𝜀𝑖 ≤ 𝑢𝑘 − 𝑥𝑖𝛽) − 𝑃𝑟(𝜀𝑖 ≤ 𝑢𝑘−1 − 𝑥𝑖𝛽)  

= 𝜙(𝑢𝑘 − 𝒙𝑖𝜷) − 𝜙(𝑢𝑘−1 − 𝒙𝑖𝜷)                                                 (5-10) 

𝑃𝑖(𝐾) = 𝑃𝑟(𝑦𝑖 = 𝐾) = 𝑃𝑟(𝑢𝑘 < 𝑦𝑖
∗) = 1 − 𝜙(𝑢𝑘 − 𝒙𝑖𝜷)                      (5-11) 

Where 𝑖 is a traveler, 𝑘 is a response level of risk-averse preference, 𝑃𝑟(𝑦𝑖 = 𝑘) is the 

probability that the traveler i responses to 𝑘, and 𝜙(∗) is the standard normal cumulative 

distribution function. 
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Figure 5-6 Proportion of rational traveler 

 

 

Figure 5-7 Distribution of degree of risk-averse preference 

 

5.5 Data analysis 

The GPS data in this study are collected from 153 probe vehicles in Toyota City, 

Japan. After map-matching (Miwa et al, 2012) and some basic data cleaning work, 4032 

trip records with different OD pairs are obtained for one month (2011/3). The observed 

lower bound or upper bound of the risk-averse preference is collected by using the theory 

of stochastic dominance. The risk-taking travelers are willing to take risk of delay to 

pursue the minimum travel time budget while the risk-averse travelers try to minimize the 

risk of delay by increasing his/her travel time budget.  
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Figure 5-8 Statistic of degree of risk-averse preference in different categories 

 

As shown in Figure 5-6, 82% of the trips are rational, who selected non-dominated 

paths. It indicates that most of the local drivers are familiar with the traffic condition and 

the road network. Figure 5-7 shows the overall distribution of degree of risk-averse 

preference for all the trips. It is found that the frequency increases as the degree of risk-

averse preference increases. It indicates that travelers prefer the risk-averse routes in most 

of the trips. 

Figure 5-8 shows the statistic of degree of risk-averse preference in different 

categories. As shown in Figure 5-8 (a), it is found that as the OD distance increases, the 

proportion of high risk-averse preference increases. It indicates travelers have higher risk-
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averse preference when they plan a longer trip. Figure 5-8 (b) shows that 54% of the aged 

people (age>60) prefer high risk-averse routes, while only 44% of the young people 

(age<30) prefer the high risk-averse routes. About 5% of the high risk-taking routes are 

chosen by young people, while only 3% of the high risk-taking routes are chosen by the 

aged people. It indicates that aged people have higher risk-averse attitude. One possible 

reason is that the aged people have more driving experience than the young people. Figure 

5-8 (c) shows the risk attitudes in different departure time. It is found that people are more 

risk-averse in peak hours (8:00-10:00 and 18:00-20:00). The risk-averse attitudes decrease 

and the risk-taking attitudes increase after the peak hours. Figure 5-8 (d) shows that more 

people prefer the risk-averse routes in weekend. Figure 5-8 (e) shows that female is more 

risk-averse than the male. 

Table 5-1 Parameter estimation results of ordered probit model 

Risk-averse level Description  Coef. 𝒛 𝒑 > |𝒛| 

OD distance The straight distance between origin 

and destination 

0.007 2.05 0.04 

Age Age of driver (year) 0.001 2.33 0.02 

Departure time  Departure time  

(off-peak hours=0, peak hours=1) 

0.174 2.51 0.01 

Day of week Day of week (weekday=0, weekend=1) 0.245 7.25 0.00 

Gender Gender (male=0, female=1) 0.067 1.98 0.05 

Thresholds  

𝑢1 -1.08 

𝑢2 -0.18 

𝑢3 0.70 

Sample size 4032 

Log likelihood -5522 

5.6 Model results 

We estimate the parameters in the ordered probit model by using maximum likelihood 

estimation (MLE). The explanatory variables include the OD distance, age, departure time, 

day of week and gender. It should be noted that the departure time, day of week and gender 

are dummy variables. The estimation results are shown in Table 5-1 shows the coefficients, 

z-tests and their associated p-value. All of the explanatory variables are statistically 

significant at 95% confidence level. For OD distance, we would expect that a 0.007 

increase in the logarithm odds of being in a higher level of risk-averse preference.  For a 

one unit increase in age, we would expect a 0.001 increase in the logarithm odds of being 
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in a higher risk-averse level, given that all of the other variables in the model are held 

constant.  Similarly, we would expect a 0.174, 0.245, and 0.067 increases in the logarithm 

odds of being in a higher risk-averse level for departure time, day of week, and gender, 

respectively. The threshold shown at the bottom of the Table 5-1 indicates where 𝑦𝑖
∗ is cut 

to make the four groups that observed in our dataset.  

5.7 Summary 

This section investigated the traveler’s risk-averse preference prediction for α-reliable 

shortest path problem in stochastic network. A novel data collection methodology for 

travelers’ risk-averse preferences is introduced. The observed lower bound or upper bound 

of the risk-averse preference is collected by using the theory of stochastic dominance. 

Ordered probit model is applied to learn and predict the travelers’ risk preferences by 

considering variously individual properties (gender, age) and pre-trip information (OD 

distance, departure time, day of week). The parameter estimation results show that the 

ordered probit model enables to explain how the explanatory variables influence the level 

of risk-averse preference. 

In this study, only the GPS data and basic personal information were used to estimate 

the traveler’s risk-averse preference. In the future, we need to consider more influences 

such as traffic condition, trip purpose and whether condition so as to improve the accuracy 

of the proposed estimation models. 
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Chapter 6 Experiential routing considering driving experience 

EXPERIENTIAL ROUTING CONSIDERING 

DRIVING EXPERIENCE 

6.1 Introduction 

Finding the fastest and most reliable path for risk-averse navigation is an important 

application in intelligent transportation system. The uncertainty factors include traffic 

demand variation, signal control, and physical bottlenecks. These uncertainties may lead to 

a non-deterministic delay. A good navigation service should consider these aspects 

properly. Unfortunately, current dynamic navigation system based on real-time traffic 

information are not mature both in the software and hardware fields (Tang et al., 2010). 

One of the most concerns is the short-term forecast accuracy on travel time. In an urban 

transportation network, not all of the link travel times can be collected because most traffic 

information collection technologies such as automatic vehicle identification and loop 

detectors cover only limited and specific road sections. Even though probe vehicles with 

GPS equipment have proven to be an efficient tool for traffic information collection 

covering a wider area, it is still difficult to guarantee the accuracy and instantaneity. On the 

other hand, several studies found that the observed paths are usually longer in terms of 

time than their shortest travel time path alternatives (Papinski and Scott, 2011; Papinski et 

al., 2009). A possible reason is that the actual travel time distributes stochastically and the 

estimated travel time has error, which results in the overestimate or underestimate. Another 

potential explanation is that experienced drivers can find a real shortest path based on their 
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long-term driving experience. When people choose a route, they usually consider multiple 

factors such as distance, time-variant traffic flows, road gradient and signals (Yuan et al., 

2011; Yuan et al., 2013). These influences can be learned by experienced drivers but they 

are difficult to be incorporated into current navigation systems. Consequently, those roads 

selected by drivers with abundant driving experience can provide us with a valuable 

resource to better plan an optimal path for a new trip. 

Therefore, it is promising to improve the performance of current navigation system by 

integrating the estimated travel time and the driving experience of local drivers. The route-

finding problem addressed in this study aims to find an experientially reliable path that 

minimizes the path travel time by considering the uncertain delay and driving experience. 

The contribution of our work lies in four aspects.  

(1) A path set based on a risk-averse view of uncertain link delays is built by the 

hyperpath concept, which minimizes the expected arrival time at the destination and all 

intermediate nodes.  

(2) The experientially reliable path is generated from the hyperpath where the 

modified link cost is penalized by the link choice probability and driving experience 

defined by the degree of familiarity. 

(3) A sensitivity analysis is given to demonstrate how the output can be attributed to 

different variations in the inputs for the penalized link cost function. 

(4) The performance of the proposed path is evaluated by comparing other optimal 

paths and the observed path in a large-scale transportation network. 

6.2 Methodology  

6.2.1 Framework 

This study aims to find an experientially reliable path for risk-averse navigation. To 

fully utilize the objective travel time estimated by the probe vehicles and the subjective 

knowledge of experienced drivers, a two-stage path finding procedure is proposed as 

shown in Figure 6-1. First, the potential optimal path set is determined by using the travel 

time estimated by probe vehicles. In this stage, the hyperpath algorithm is applied to find a 

candidate path set, reflecting an optimization strategy that minimizes the uncertain delay. 

A choice probability for each link in the candidate path set is assigned by the hyperpath 

operation. In the second stage, the degree of familiarity for each link is formulated by 
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using the link usage frequency learned from the historical trips of experienced drivers. 

Then, the shortest-path algorithm is applied to find an experientially reliable path in the 

candidate path set where the links are penalized by the degree of familiarity and the link 

choice probability. This path finding procedure is robust because it enables to work when 

the probe vehicle data are not sufficient to estimate the link travel time distribution, which 

is more practical than the most reliable path models (Nie and Wu, 2009; Chen and Ji, 2005; 

Zeng et al., 2015; Xing and Zhou, 2011) that strictly require precise link travel time 

estimation. 

 

 

Figure 6-1 Framework of the path finding procedure 

 

6.2.2 Definition of notation 

A: Set of links in the whole network; 

N: Set of nodes in the whole network; 

r: Origin node; 

s: Destination node; 

Ai
+: Set of outgoing links from node i; 

Ai
−: Set of incoming links to node i; 

aij: Directed link from node i to node j; 

cij: Average free-flow travel time on link aij; 

dij: Average delay on link aij; 
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pij: Probability that link aij is chosen; 

wi: Expected delay at node i; 

pi: Probability that node i is chosen; 

6.2.3 Application of hyperpath algorithm to generate the candidate 

path set 

The hyperpath concept was originally proposed to generate multiple paths in the 

context of routing problem in Bell’s study (Bell, 2009). Here, this concept is applied to 

generate a candidate path set for risk-averse navigation. Instead of recommending a 

specific shortest path, hyperpath provides a set of potential optimal paths with choice 

probability based on the exposure to delay, which minimizes the expected travel time in 

the stochastic network. More specifically, to avoid the risk of stochastic delay at node i, all 

the attractive outgoing links of node i will be considered. Since the delay is stochastic, the 

best way is to assign outgoing links choice probabilities so as to minimize the exposure to 

delay on each path. 

In traffic assignment problem (Nguyen and Pallottino, 1988; Spiess and Florian, 

1989), the traffic demand from origin r to destination s is assigned to the network yielding 

link volumes by the optimal strategy. In the navigation problem, the assigned link volume 

can be explained as the probability (𝑝𝑖𝑗) that link 𝑎𝑖𝑗 is chosen, because the traffic demand 

for a specific individual driver from origin to destination is one. Then the hyperpath 

formulation for navigation problem can be given as follows. A detail explanation for 

hyperpath is given in Bell’s studies (Bell, 2009; Bell et al., 2012). 

𝑓 = 𝑀𝑖𝑛{∑ 𝑐𝑖𝑗𝑝𝑖𝑗(𝑖,𝑗)∈𝐴 + ∑ 𝑤𝑖𝑖∈𝑁 }                                                    (6-1) 

s.t. ∑ 𝑝𝑖𝑗(𝑖,𝑗)∈𝐴𝑖
+ − ∑ 𝑝𝑖𝑗(𝑖,𝑗)∈𝐴𝑖

− = 𝑔𝑖                                                    (6-2) 

𝑔𝑖 = {
1                   𝑖 = 𝑟
0   𝑖 ∈ 𝑁 − {𝑟, 𝑠}
−1               𝑖 = 𝑠

                                                                 (6-3) 

𝑝𝑖𝑗𝑑𝑖𝑗 ≤ 𝑤𝑖, (𝑖, 𝑗) ∈ 𝐴𝑖
+, 𝑖 ∈ 𝑁                                                       (6-4) 

𝑝𝑖𝑗 ≥ 0                                                                                           (6-5) 
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The objective function can be explained as the expected travel time from origin to 

destination. 𝑐𝑖𝑗 is the average free-flow travel time on link 𝑎𝑖𝑗, 𝑤𝑖 is the expected delay at 

node 𝑖, 𝑝𝑖𝑗 is the probability that link 𝑎𝑖𝑗 is chosen, and 𝑑𝑖𝑗 is the average delay on link 𝑎𝑖𝑗. 

Note that the expected node delay 𝑤𝑖  can be seen as the “combined waiting time” for 

alternative links at node 𝑖, which means that if there is only one alternative link 𝑎𝑖𝑗 of the 

outgoing link set of node 𝑖, the traveler will be fully suffered by average link delay (𝑑𝑖𝑗), 

whereas more alternative links enables to alleviate the exposure to delay at node 𝑖. In 

Bell’s study (Bell, 2009), the expected node delay is explained as the exposure to 

maximum link delay to a pessimistic driver. Constraint (6-2) and (6-3) are the flow 

conservations. Constraint (6-4) ensures that the choice probability (𝑝𝑖𝑗 ) of link 𝑎𝑖𝑗  is 

inversely proportion to its expected delay (𝑑𝑖𝑗). Schmocker et al. (2013) interpreted the 

constraint (6-4) as a specific game where the traveler fears a fictive opponent who may 

lead to delays on outgoing links. 

The analytical solution of 𝑤𝑖 and  𝑝𝑖𝑗 are dependent on the distribution pattern of the 

stochastic delay to traverse link 𝑎𝑖𝑗. Here, we assumed that the stochastic delay to traverse 

link 𝑎𝑖𝑗 follows the exponential distribution. Accordingly, 𝑤𝑖 and  𝑝𝑖𝑗 can be expressed by 

Eq.(6-6) and Eq.(6-7), respectively. The detail of derivation can be found in (Kanturska et 

al., 2013).  

𝑤𝑖 =
1

∑
1

𝑑𝑖𝑗(𝑖,𝑗)∈𝐴𝑖
+

                                                                                    (6-6) 

𝑝𝑖𝑗 =

1

𝑑𝑖𝑗

∑
1

𝑑𝑖𝑗(𝑖,𝑗)∈𝐴𝑖
+

                                                                                   (6-7) 

The data requirement for hyperpath problem are the average free-flow travel time (𝑐𝑖𝑗) 

and the average link delay (𝑑𝑖𝑗). As shown in Figure 6-2, the average free-flow travel time 

(𝑐𝑖𝑗) is defined as the average of the stochastic value from 0 to 50
th

 percentile of the link 

travel time distribution. Accordingly, the average link delay (𝑑𝑖𝑗) is defined as the mean 

difference between the stochastic link travel time with delay (from 50
th

 to 100
th

 percentile) 

and the 50
th

 percentile travel time. Then, the expected delay (𝑤𝑖) at node 𝑖 and the link 

choice probability (𝑝𝑖𝑗) can be obtained by Eq.(6-6) and (6-7). The formulations for 𝑐𝑖𝑗 and 

𝑑𝑖𝑗 are given as follows. 

𝑐𝑖𝑗 = 𝐸[𝑡𝑖𝑗], ∀ 𝑡𝑖𝑗 ≤ 𝑡𝑖𝑗
(50)

                                                                   (6-8) 
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Figure 6-2 Illustration of free-flow travel time and delay 

 

𝑑𝑖𝑗 = 𝐸[𝑡𝑖𝑗 − 𝑡𝑖𝑗
(50)], ∀ 𝑡𝑖𝑗 > 𝑡𝑖𝑗

(50)
                                                      (6-9) 

where 𝑡𝑖𝑗 is the stochastic link travel time, and 𝑡𝑖𝑗
(50)

 is the 50
th

 percentile travel time. 

6.2.4 Link penalization and experiential reliable path construction 

The hyperpath algorithm generates a set of paths and assigns a choice probability to 

each link according to the expected delay. Actually, the paths in the optimal hyperpath are 

restricted by the optimistic (all links with no-delay) and pessimistic (all links with expected 

delay) travel times (Ma et al., 2013). Thus, it is reasonable to recommend the paths 

generated by the hyperpath algorithm to users as alternative paths with acceptable travel 

times. However, suggesting multiple paths leaves the drivers with the problem of selecting 

a single path for a trip.  

Local commuters are good at choosing a reliable path due to their experiences 

accumulated over years. When facing multiple route choices, most of the people who are 

unfamiliar with the local traffic condition may simply select the shortest path while the 

local commuters may utilize their experience to choose the best one with less uncertain 

delay. Obviously, there are some advantages to utilize the driving experience of the local 

commuters. First, because local commuters are very familiar with the regular traffic 

condition, they can avoid traffic congestion during peak hour and save significant amount 

of travel time. Second, local commuters rarely choose unfamiliar or low grade roads with 
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poor accessibility. This makes the path travel time more reliable. Naturally, the link usage 

frequency reflects the driving experience which can be expressed by degree of familiarity. 

Therefore, we use the link usage frequency to formulate the degree of familiarity on each 

link. To normalize the degree of familiarity from zero to one, a sigmoid learning curve 

(Yuan et al., 2011; Leibowitz et al., 2010) is used to model the degree of familiarity of 

local drivers. 

𝑟𝑖𝑗
𝑘 =

1

1+𝑒
−(𝑎𝑛𝑖𝑗

𝑘 +𝑏)
                                                                                   (6-10) 

where 𝑛𝑖𝑗
𝑘  is the link usage frequency that driver k traverses the link in a certain period 

such as peak hours; 𝑎𝑛𝑖𝑗
𝑘 + 𝑏  is the linear transformation that maps 𝑛𝑖𝑗

𝑘  from 

[0,𝑚𝑎𝑥𝑖𝑚𝑢𝑚]  to [−6, 6], where maximum represents the maximal individual trip count.  

The average degree of familiarity on link 𝑎𝑖𝑗 can be expressed as Eq.(6-11). 

𝑟𝑖𝑗 =
1

𝑚
∑ 𝑟𝑖𝑗

𝑘𝑚
𝑘=1                                                                                     (6-11) 

where m is the number of probe vehicle drivers on link aij. 

Given that most travelers prefer a reliable path with a more accurate travel time 

estimate, it is necessary to find an optimal path from the hyperpath. In general, a common 

approach to find a reliable path is to penalize unreliable links (Kaparias et al., 2007; Chen 

et al., 2007). Hence, the idea of link travel time penalty is introduced. To avoid the 

selection of links with larger uncertain delay and lower degree of familiarity, link travel 

time in hyperpath is penalized by the link choice probability and the degree of familiarity. 

The penalized link travel time can be expressed as Eq. (6-12). 

𝑇𝑖𝑗
′ = 𝑇𝑖𝑗 + 𝜃𝑑𝑖𝑗[𝑤1(1 − 𝑝𝑖𝑗) + 𝑤2(1 − 𝑟𝑖𝑗)]                                      (6-12) 

where 𝑇𝑖𝑗 = 𝐸[𝑡𝑖𝑗]  denotes the average travel time on link aij , w1  and w2  respectively 

denote the penalty weight for the link choice probability and the degree of familiarity, and 

θ denotes the penalty scale. Setting a higher value of 𝜃 will lead to a larger penalty on the 

link travel time, which can be specified by users. The sum of 𝑤1 and 𝑤2 equals to one. In 

case study, 𝜃, 𝑤1 and 𝑤2  are respectively set to 2, 0.5, and 0.5. With this formulation, 

smaller link choice probability and lower degree of familiarity will lead to a larger 

penalization on the link travel time. 
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After penalizing the travel time of each link in the hyperpath link set, the well-known 

shortest path algorithm such as A* algorithm (Hart et al., 1968) is applied to find the 

experiential reliable path. 

 

 

Figure 6-3 A simple network for sensitivity analysis 

 

 

Figure 6-4 Sensitivity analysis for link penalization function 
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6.3 Numerical analysis 

6.3.1 Sensitivity analysis for link penalization function 

To better understand how the link penalization function behaves with the change of 

the three parameters (i.e., 𝜃, 𝑤1 and 𝑤2) and how the variation in the outcome can be 

attributed to different variations in the input variables (i.e., 𝑑𝑖𝑗, 𝑟𝑖𝑗), a sensitivity analysis is 

carried out. To simplify the calculation for 𝑝𝑖𝑗, we use a simple network for sensitivity 

analysis as shown in Figure 6-3. And link (i, j) is chosen as the target link. Given default 

values for 𝑇𝑖𝑗 = 1, 𝑑𝑖𝑗 = 0.5, 𝑑𝑖𝑘 = 1 and 𝑟𝑖𝑗 = 0.4 in Eq. (6-12), Figure 6-4(a) shows the 

variation of the penalized link travel time in different settings of the three parameters. It 

indicates that as the parameter 𝜃  increases, the penalized link travel time 𝑇𝑖𝑗
′  increases 

linearly in different combinations of 𝑤1 and 𝑤2 . On the other hand, 𝑇𝑖𝑗
′  increases as 𝑤1 

increases (𝑤2  decreases correspondingly) when 𝜃  is fixed to a certain value. This is 

because 𝑝𝑖𝑗  is larger than 𝑟𝑖𝑗  in this case (𝑝𝑖𝑗 = 0.67, 𝑟𝑖𝑗 = 0.4 ). In contrast, if 𝑝𝑖𝑗  is 

smaller than 𝑟𝑖𝑗, 𝑇𝑖𝑗
′  will decrease as 𝑤1 increases. Figure 6-4(b) shows the variation of the 

penalized link travel time with the change of delay 𝑑𝑖𝑗 in different combinations of 𝑤1 and 

𝑤2. The default values for 𝑇𝑖𝑗, 𝑑𝑖𝑘, 𝑟𝑖𝑗, and 𝜃 are set as 1, 1, 0.6, and 1, respectively. It is 

found that as 𝑑𝑖𝑗 increases, 𝑇𝑖𝑗
′  increases. It should be noted that the increasing curve is not 

exactly linear because 𝑝𝑖𝑗 =
1

𝑑𝑖𝑗
/(

1

𝑑𝑖𝑗
+

1

𝑑𝑖𝑘
) in Eq. (6-7). Figure 6-4(c) shows how the link 

usage frequency 𝑛𝑖𝑗
𝑘  impacts on the degree of familiarity 𝑟𝑖𝑗. To simplify the calculation, 

we set the maximum individual trip count as 10 and assume that only one traveler goes 

through link (i, j). It is found that as 𝑛𝑖𝑗
𝑘  increases, the rate of increase for 𝑟𝑖𝑗 increases fast 

in the first half of the curve, while the rate of increase for 𝑟𝑖𝑗 decreases in the second half 

of the curve. Figure 6-4(d) shows the variation of the penalized link travel time with the 

change of the link usage frequency 𝑛𝑖𝑗
𝑘 . The default values for 𝑇𝑖𝑗, 𝑑𝑖𝑘, 𝑑𝑖𝑗, and 𝜃 are set as 

1, 1, 0.5, and 1, respectively. Other settings are the same as that in Figure 6-4(c). It is 

found that as 𝑛𝑖𝑗
𝑘  increases, 𝑇𝑖𝑗

′  decreases. It also found that the rate of increase for 𝑇𝑖𝑗
′  is 

sensitive to the combination of 𝑤1 and 𝑤2. As the weight for 𝑟𝑖𝑗 (i.e., 𝑤2) increases, the 

variation of 𝑇𝑖𝑗
′  becomes significant when 𝑛𝑖𝑗

𝑘  changes. 
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Figure 6-5 Tested network and degree of familiarity on each link 

6.3.2 Path performance analysis 

As shown in Figure 6-5, the tested network with 4072 nodes and 12,877 links is in 

Toyota city, Japan. Path records are obtained from probe vehicle data after map-matching 

and link travel time estimation, which is introduced in our previous studies (Miwa et al., 

2012; Miwa et al., 2008). A completed path record includes the ordering link sequence, the 

detail of link information, and the traveler information. Since all of the drivers are local, 

their driving experiences are valuable to risk-averse strangers who are unfamiliar with the 

network. As introduced in section 3.4, we use the degree of familiarity to present the 

driving experience. The statistical period is one week in peak hours (7:00-10:00, 17:00-

20:00). It is found that the degree of familiarity is more than 0.5 in 43.5% of the links, 

while it is less than 0.1 in 20.6% of the links. This could be explained by the fact that some 

of the links are not attractive due to insufficient probe vehicles in the network or the poor 

road condition. Another potential explanation is that local drivers are not willing to take 

risk to choose unfamiliar paths for their commutes. 

To demonstrate the performance of the proposed path, four kinds of optimal paths 

(shortest distance, average shortest time, penalized shortest time and the proposed) are 

compared with the observed path. The shortest distance path, shortest time path, and 
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penalized shortest time path are generated by the A* algorithm with the criteria of distance, 

travel time, and penalized travel time, respectively. It should be noted that the link penalty 

of the penalized shortest time path is different from the proposed one, which is only related 

to the degree of familiarity which is directly applied to the whole network (𝜃 is set as the 

same as the proposed method). 

Here, several performance indices are used, i.e., detour index (DI) (Barthelemy, 2011), 

cosine similarity index (CSI) (Fonzone et al., 2012), average degree of familiarity, and 

total travel time.  

DI is a measure of the efficiency of a path in terms of how well it overcomes distance. 

It can be defined as the ratio of straight distance and the actual distance. The closer the 

detour index gets to 1, the more the path is spatially efficient. 

𝐷𝐼 =
𝐷(𝑆)

𝐷(𝐴)
                                                                            (6-13)  

where D(S)  is the straight distance of the OD pair, D(A)  is the actual distance of a 

specified path of the OD pair.  

CSI represents how much similarity there is between the observed path and the paths 

with different criteria, which can be applied to evaluate the overlap degree of two paths. 

𝐶𝑆𝐼 =
𝐸1𝐸2

‖𝐸1‖‖𝐸2‖
                                                                   (6-14) 

where 𝐸1 = [𝑒11, 𝑒12, … , 𝑒1𝑛] and 𝐸2 = [𝑒21, 𝑒22, … , 𝑒2𝑛] are the link length vectors for the 

optimal path and the observed path, respectively. n is the total link count of the two paths 

(excluding duplicate calculations for the same link in two paths). e denotes the link length. 

For example, e1n denotes the length of link e1n. Noted that if link e1n is not included in the 

path, 𝑒1𝑛 is set to 0. 

To better understand the paths driven by the probe vehicles and test the proposed 

path-finding method, historical paths from 7240 OD pairs are extracted for analysis. The 

observed OD pairs are divided into four categories based on the straight OD distance, 

which is defined as the Euclidean distance between the origin and destination. The sample 

sizes are 4246, 2088, 703 and 205 for OD distances less than 5km, between 5km and 10km, 

between 10km and 15km, more than 15km, respectively. 

Figure 6-6 shows the curves of cumulative density function (CDF) of the average 

degree of familiarity on the five paths. It shows that the CDF curve of average degree of 

familiarity for the observed path shifts from the left to the right as the OD distance 
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increases, which indicates that the average degree of familiarity of the observed path 

increases as the OD distance increases. This can be explained in two possible ways. First, 

the observed paths with longer distance usually have higher percentage of corridor routes 

and expressways, which have a relatively higher usage frequency. Second, most drivers 

pay more attention to the degree of familiarity as travel distance increases. On the other 

hand, it is found that the proposed path dominates the observed path, which indicates that 

the proposed method can provide feasible path with more expert experience than the 

observed one. It can be explained by the fact that the proposed method enables to take 

account of the network-wide driving experience of all the drivers explicitly, and the sub-

objective of the penalized link cost function is to maximize the weighted degree of average 

link familiarity. The shortest distance path and the shortest time path provide a shorter 

distance or less travel time, but the average degree of familiarity is relatively low. That 

means drivers might suffer an unpredicted delay if such paths are chosen. 

Figure 6-7(a) compares the DI of four kinds of paths for historical OD pairs with 

different traveling distances. As expected, the shortest distance path has the highest value 

of detour index, while the penalized shortest time path has the lowest one. Though the 

penalized shortest time path has the highest degree of familiarity, it may cost an 

unexpected long distance and takes a detour in the network. The detour index of the 

proposed path is higher than that of the observed path if the OD distance is larger than 5km. 

It indicates that the proposed path has a better performance than the observed path on 

distance efficiency for a larger travel distance. 

Figure 6-7(b) compares the CSI of different paths. It shows that the proposed path is 

most similar to the observed one, while the shortest distance path and the penalized 

shortest time path has relatively low similarity for all historical OD pairs. The CSI of the 

proposed path increases as the OD distance increases, which indicates that the proposed 

method enables to find an applicable path based on hyperpath strategy and driving 

experience for a larger OD distance. On the other hand, it further verifies that drivers 

become more risk-averse when the travel distance increases. The CSI of the shortest time 

path also increases as the OD distance increases, which indicate that drivers are also 

concerned with the travel time budget if the travel distance becomes greater. However, the 

CSI of the shortest distance path decreases as the OD distance increases. It falls below 0.5 

when the OD distance increases to 5km. This can be explained because the components of 

the shortest paths may include some links with poor road condition or minor roads that few 

drivers are familiar with. And the traffic condition of the shortest path is uncertain when 

the OD distance increases. Therefore, the shortest distance paths should not be 

recommended to drivers if the travel distance is more than 5km. 
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Figure 6-6 CDF of degree of familiarity 
 

 

Figure 6-7 Comparison of detour index and cosine similarity index 
 

6.3.3 Case study 

In Figure 6-8, one real-world OD in the central area of Toyota city is extracted to 

demonstrate the performance of the proposed path finding procedure. The results, shown in 

Table 6-1, demonstrate the performance of different paths of the specified OD pair. As 

expected, the proposed path is most similar to the observed path, which has the highest CSI. 

Interestingly, the degree of familiarity of the proposed path is higher than that of the 
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observed one. That means the proposed method finds a feasible path with more expert 

experience through the use of other drivers’ experience, and this can be of value in guiding 

the driver. As expected, the penalized shortest time path has the highest average degree of 

familiarity, but has lowest DI and CSI. Drivers may not prefer the penalized shortest time 

path because it will take an unexpected long distance and more travel time. Note that the 

proposed path has higher average degree of familiarity, but it is slower than the observed 

one. For a risk-averse driver, we recommend the proposed path because it has higher usage 

frequency by all the experienced drivers, which may have less risk on stochastic delay and 

other unexpected incidents such as traffic jam or accidents. For a risk-neutral driver, we 

recommend the observed path because it has similar degree of familiarity and less average 

travel time. In the practical application, hyperpath and the five optimal paths could be 

provided to users, allowing them to make a choice depending on individual preference and 

the path performance. 

 

 

Figure 6-8 Case study for path comparison 
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Table 6-1 Path performance comparison 

Index Observed Proposed 
Shortest 

distance 

Shortest 

time 

Penalized 

shortest time 

CSI 1 0.79 0.38 0.32 0.11 

Average link 

familiarity 
0.63 0.67 0.33 0.39 0.72 

DI 0.82 0.84 0.85 0.77 0.67 

Total distance 2246m 2204m 2197m 2407m 2776m 

Total travel time 321s 382s 302s 263s 425s 

 

 

Figure 6-9 Relation between parameter settings and path performance 
 

A sensitivity analysis for different path performance indices is carried out by 

changing the combination of the three parameters. Figure 6-9 gives the relation between 

the parameter settings and the path performance. As shown in Figure 6-9(a), it is found that 

as the penalty scale θ increases, the path travel time increases. It is because the objective of 

the routing algorithm is no longer to minimize the travel time. Instead, as the θ increases, 

the weight for the link choice probability  𝑝𝑖𝑗 and the degree of familiarity 𝑟𝑖𝑗 increases, 

this will be at the cost of increasing in travel time. However, there is no significant pattern 

in the relationship between the path travel time and the combination of w1 and w2 when θ 

is fixed to a certain value. Figure 6-9(b) shows how the parameter combination impacts on 

the path distance. It is found that as the penalty scale θ increases, the increase of the path 

distance is not significant. Similar to path travel time, no significant pattern in the 
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relationship between the path distance and the combination of w1  and w2  is found. It 

indicates that increasing the weight for the expert knowledge does not necessarily increase 

the path distance. Figure 6-9(c) shows how the parameter combinations impact on the 

average link familiarity. It is found that as the penalty scale θ increases, the average link 

familiarity increases. And a significant pattern in the relationship between the average link 

familiarity and the combination of w1 and w2 is found, i.e., the average link familiarity 

increases as 𝑤2  increases (𝑤1  decreases correspondingly). It is because the routing 

objective function tends to minimize the average link familiarity when 𝜃 and 𝑤2 increase. 

The three parameters (i.e., θ, w1 and w2) for different groups of route guidance users 

can be calibrated by using a grid-like search which is similar to the parameter estimation in 

machine learning (Chang and Lin, 2002). In grid-like search, all combinations of (𝜃, 𝑤1 

and 𝑤2) are tried and the one with the minimum relative error is picked up. The relative 

error (𝑒) can be defined as follows: 

𝑒 = 𝑘1 |
𝑡−𝑡0

𝑡0
| + 𝑘2 |

𝑑−𝑑0

𝑑0
| + 𝑘3 |

𝑟−𝑟0

𝑟0
|                                                       (6-15) 

where 𝑡, 𝑑 and 𝑟 are the travel time, distance and average link familiarity of the candidate 

path by using a combination of the three parameters, respectively; t0, d0 and r0 are the 

travel time, distance and average link familiarity of the observed path chosen by the local 

driver, respectively; k1, k2 and k3 are the preference values for each performance index, 

respectively. Here, we set 𝑘1, 𝑘2 and 𝑘3 as 1/3. In the case in Figure 6-8, the calibrated 

parameters are 𝜃 = 3, 𝑤1 = 0.5 and 𝑤2 = 0.5. 

6.4 Summary 

The ultimate aim of this research is to better help travelers plan their trips and avoid 

the risk of uncertain travel time. A two-stage path finding procedure is developed to find 

an experientially reliable path. Firstly, the hyperpath concept helps to determine a set of 

potential optimal paths. Secondly, the links in the graph of hyperpath are penalized based 

on the choice probability and the degree of familiarity, and then the A-star algorithm is 

applied to search the optimal path.  

There are two advantages to this routing method. First, any reasonable detours are 

taken into account and the link choice probability for each outgoing link from an attractive 

node is estimated according to the expected delay, which guarantees the potential optimal 

paths are included. Second, the solution provides not only the hyperpath with the 
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recommended link choice probability, but also a shortest path with high degree of 

familiarity. This can help travelers plan their trips effectively. 

By comparing the performance of the proposed path with other optimal paths, it is 

found that the proposed path is most similar to the observed path (in the probe vehicle 

data). It also indicates that the proposed method yields a highly reliable path to drivers. 

However, there remain several problems needing further attention. For example, turn 

restrictions and direction constraints should be considered in a practical network. In 

addition, a faster path finding algorithm suitable for a time-dependent stochastic network 

needs to be developed. These limitations will be improved by a more comprehensive 

modeling approach and a stricter validation procedure in our future work. 
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Chapter 7 Eco-routing problem considering CO2 emission and travel time constraint 

ECO-ROUTING PROBLEM CONSIDERING 

CO2 EMISSION AND TRAVEL TIME 

7.1 Introduction 

With travel demand continuing to grow, fuel consumption and greenhouse gas (GHG) 

emissions are increasing unceasingly. Vehicle emissions contribute substantially to CO, 

CO2, HC and NOx. It has been noted that the transportation sector accounts for 

approximate 23% of total global CO2 emissions, of which 73% are generated by road 

transport (JAMA, 2008; Birol, 2010). Urban traffic emission modeling and control have 

been attracted more and more attention (Tan and Gao, 2015; Csikos et al., 2015). 

Even though alternative fuel vehicles such as all-electric and fuel cell vehicles will be 

the best solution, mitigating emissions by existing gasoline vehicles is an alternative 

countermeasure in the near term. Eco-driving, a term used for emerging driving assistance 

techniques that support the driver in optimizing route choice and driving behavior to 

reduce vehicle emissions, has been showing significant benefit in fuel saving and air 

quality improvement (Beusen et al., 2009; Mensing et al., 2014). Eco-driving techniques 

can be classified into three decision-making levels (Sivak and Schoettle, 2012): strategic 

level (vehicle maintenance), tactical level (pre-trip eco-routing), and operational level (on-

board driving assistance). In pre-trip eco-routing, a navigation system attempts to find the 

most eco-friendly path from origin to destination based on estimates of vehicle emission 

for all possible paths, while on-board driving assistance systems analyze drivers’ behavior 
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and instantaneous fuel consumption, and provide valuable feedback that helps them adjust 

their driving style to a more eco-friendly style. The focus of this study is the tactical level, 

in which pre-trip route planning determines an eco-friendly path for a driver.  

Traditional navigation systems usually provide the shortest path based on total travel 

time or distance, without considering vehicle emissions. Intuitively, one may think that the 

shortest path or fastest path would also be the most eco-friendly path. However, a shortest 

path may take a driver through a heavy congested area, resulting in high vehicle emissions. 

On the other hand, there may be cases where a fastest path results in longer travel distance, 

albeit on less congested roadways. Traveling on a path at a higher speed over a longer 

distance will also result in higher vehicle emission compared with a shorter path (Masikos 

et al., 2015). With the environmental problems outlined above becoming matters of urgent 

concern, eco-routing is an application that promises reduced emissions (Boriboonsomsin et 

al., 2012; Yao and Song, 2013; Guo et al., 2013; Boriboonsomsin et al., 2014). An 

investigation conducted in Sweden (Ericsson et al., 2006) found that 46% of trips based on 

the spontaneous route choice of the traveler were not the most eco-friendly. Vehicle 

emissions on these trips could be reduced by 8.2% if the most eco-friendly route were 

chosen. Similarly, Ahn and Rakha (2008) reported that a 4%-20% reduction in vehicle 

emission can be achieved if an eco-routing strategy is adopted. On the other hand, eco-

routing could result in significant reductions in emissions, but it naturally comes at the 

expense of increased travel time. A field study in Japan (Kono et al., 2008) found that the 

vehicle emission of the eco-friendly path is 9% lower than that of the least travel time path, 

while travel time is 9% longer. In such cases, an eco-routing navigation system might 

suggest the most eco-friendly path with lower vehicle emissions, but the travel time may 

exceed the travel time budget.  

 Actually, establishing an efficient and preferable eco-routing navigation system is a 

great challenge because many aspects of this problem need to be considered. For example, 

what kind of tools can efficiently collect and estimate emissions in a large-scale 

transportation network? How should an eco-routing strategy be developed and how will 

such a strategy impact travel time and the environment? To fill these gaps, this study aims 

to find an eco-friendly path that produces minimum CO2 emissions while satisfying travel 

time budget. In particular, the contribution of this study is as follows: 

(1)Probe cars with GPS and OBD (on-board diagnostics) device are used to collect 

the CO2 emission and travel time, which is an efficient tool to collect large-scale data. 

(2)A vehicle CO2 emission model is developed by using support vector machine 

(SVM). Specifically, the explanatory variables include average speed, average acceleration, 
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road gradient, and vehicle displacement, which are easily to be extracted from Google API 

and probe vehicles. 

(3)The eco-routing problem considering CO2 emission and travel time is transformed 

to a bi-objective like optimization problem. The method of Pareto-optimal optimization is 

applied to solve this routing problem. 

(4)The performance of the proposed CO2 emission model and eco-routing strategy is 

validated by comparing the actual driving records. A sensitivity analysis is conducted to 

indicate the relationship between the vehicle CO2 emission and the explanatory variables. 

(5)The sensitivity of the network-wide benefit of eco-routing is quantified for 

different travel time buffers and OD distances. 

7.2 State-of-art models for of vehicle fuel consumption 

Applicable vehicle emission model is critical to the development of an eco-routing 

navigation system. Models in literatures can be classified into macroscopic, mesoscopic or 

microscopic models depending on the level of detail that the models incorporate in the 

calculation procedure. Macroscopic models usually estimate average fuel consumption or 

vehicle emission rate from aggregated parameters, e.g., MOBILE6 model (EPA, 2003). 

Such model is intended to estimate the average emission for a large area, but it is not well 

suited for dynamic emission assessment (Barth et al., 2001). In contrast, microscopic 

models enable to take continuous retrieval of microscopic parameters such as 

instantaneous speed and instantaneous engine condition. For example, the Comprehensive 

Modal Emissions Model (CMEM) estimates vehicle emissions based on the instantaneous 

engine output power that determined by various vehicle-related parameters (Barth et al., 

1996, Barth et al., 2000). The CMEM model is shown as follows. 

𝑓 =
𝜙𝑃

𝜆
                                                                                   (7-1) 

Where 𝑓 is the fuel rate, 𝜙 is the air-fuel equivalence ratio (usually set to 1), and 𝜆 is the 

lower heating value. 

𝑃 = ∑ 𝛼𝑖𝑣
𝑖3

𝑖=0 + 𝛽𝑎𝑣                                                              (7-2) 

𝛼0 =
𝑃𝑎

𝜂
                                                                                    (7-3) 

𝛼1 = 𝑍𝑔
𝐺+𝑐1

𝜂𝜖
+ 𝑐4𝐾0𝑉𝜃(𝑟 + 𝑐3𝑣ℎ

2)                                        (7-4) 
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𝛼2 = 𝑍𝑔
𝑐1

𝑐2𝜂𝜖
− 2𝑐3𝑐4𝐾0𝑉𝑣ℎ𝜃                                             (7-5) 

𝛼3 =
𝜌𝐶𝑑𝐴

2𝜂𝜖
+ 𝑐3𝑐4𝐾0𝑉𝜃                                                        (7-6) 

𝛽 =
𝑍(1+𝑒0)

𝜂𝜖
                                                                          (7-7) 

Where the detail of the parameter is shown in Table 7-1. 

Table 7-1 Parameters for CMEM model (Nie and Li, 2013) 

Parameter Description  Unit  Default value  

g Acceleration of gravity m/s
2
 9.81 

𝑐1  Const  0.01 

𝑐2  Const m/s 44.73 

𝜂  Engine efficiency  0.4 

𝜌  Air density kg/m
3
 1.247 

A Frontal area m
2
 2 

𝐶𝑑  Drag coefficient  0.3 

𝐾0  Const J/rev/l 200 

𝑉  Engine displacement l 2.0 

𝑟  Const  2 

𝑣ℎ  Const m/s 35 

𝜆  Lower heating value  J/g 44000 

𝐺  Grade  0 

𝜖  Drivetrain efficiency  0.85 

𝑍  Axillary power W 1000 

𝑎  Acceleration  m/s
2
  

𝑣  Speed  m/s  

 

Another model, known as Virginia Tech Microscopic Energy and Emission Model 

(VT-Micro), was developed as a third-order regression model that estimates emission rates 

as a function of the instantaneous speed and acceleration (Rakha et al., 2004).  

𝑀𝑂𝐸𝑒 = ∑ ∑ (𝐾𝑖,𝑗
𝑒 𝑢𝑖𝑎𝑗)3

𝑗=0
3
𝑖=0                                                     (7-8) 

Where 𝑀𝑂𝐸𝑒 is the instantaneous fuel consumption, 𝐾𝑖,𝑗
𝑒  is the coefficient to be estimated, 

𝑢 is the instantaneous speed, and 𝑎 is the instantaneous acceleration.  

Considering dynamic driving parameters, Jimenez-Palacios (1998) proposed a 

Vehicle Specific Power (VSP) based model, which had been incorporated into Motor 

Vehicle Emission Simulator (MOVES) (Koupal et al., 2002). The real-time vehicle 
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emission can be estimated by binning instantaneous VSP (Bandeira et al., 2013). The VSP 

model is shown as follows. 

𝑉𝑆𝑃 = 𝑣 × (𝑎(1 + 𝜀𝑖) + 𝑔 × 𝑔𝑟𝑎𝑑𝑒 + 𝑔 × 𝐶𝑅) +
1

2
𝜌𝑎

𝐶𝐷×𝐴

𝑚
(𝑣 + 𝑣𝑤)

2𝑣              (7-9) 

Where the detail of the parameter is shown in Table 7-2. 

Table 7-2 Parameters for VSP model (Jimenez-Palacios, 1998) 

Parameter Description  Unit  Default value  

g Acceleration of gravity m/s
2
 9.81 

𝑎  Acceleration  m/s
2
  

𝑣  Speed  m/s  

m Vehicle mass kg  

𝑔𝑟𝑎𝑑𝑒  Road gradient   

𝜀𝑖  Mass factor    

A Frontal area m
2
  

𝐶𝑅  Coefficient of rolling resistance   

𝐶𝐷  Drag coefficient   

𝜌𝑎  Ambient air density kg/m
3
 1.207  

𝑣𝑤  Headwind into the vehicle m/s  

 

Because it is quite difficult to obtain instantaneous information such as second-by-

second speed profiles except in an ideal laboratory, microscopic models may not be 

applicable for routing problems. To overcome this limitation, some studies proposed 

mesoscopic models. Unlike microscopic and macroscopic models, mesoscopic models 

usually estimate fuel consumption or vehicle emissions on a link and it is not necessary to 

collect substantial amount of second-by-second speed profiles. For example, Minett et al. 

(2011) generated synthetic speed profiles based on historical link speed data and used them 

for calculating fuel consumption per link. In recent years, machine learning was introduced 

to establish the learning based model for fuel consumption or vehicle emission (Masikos et 

al., 2013; Masikos et al., 2015a; Masikos et al., 2015b). It was found that the machine 

learning technique outperformed the multivariate regression technique (Boriboonsomsin et 

al., 2012) because it was capable of generating forecasts properly and of adequately 

identifying the nonlinearities underlying vehicle fuel consumption process. 

7.3 CO2 emission model based on SVM 

To develop an eco-routing navigation system, it is necessary to predict vehicle CO2 

emission per kilometer. Support vector machine (SVM), a novel supervised learning 

method used for regression, has been recently proved to be a promising tool in the field of 
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emission prediction. It has shown very high performance in solving various forecasting 

problems such as ozone concentration (Ortiz-Garcia et al., 2010; Luna et al., 2014), CO 

concentration (Yeganeh et al., 2012), and urban air quality (Singh et al., 2013), etc. These 

successful applications motivate us to apply SVM to learn vehicle CO2 emission from 

large-scale GPS and OBD data.  

A number of factors based on the characteristics of traffic, vehicle, and street 

configuration are found to affect vehicular fuel consumption which is linear related to CO2 

emission (Park and Rakha, 2006; Ahn et al., 2002; Pandian et al., 2009; Guo et al., 2014). 

These variables can be roughly grouped into six categories, i.e., vehicle-related (e.g., 

acceleration, power demands, and engine displacement), roadway related (e.g., road 

gradient), traffic-related (e.g., congestion and average speed), and driver-related factors 

(e.g., risk-taking and aggressive driving). In general, the selections of these factors to 

estimate CO2 emissions usually depends on the context of the study, ease of measurement 

and ease of computation. According to the state-of-art for modeling fuel consumption and 

CO2 emission (Barth et al., 1996; Nie and Li, 2013; Rakha et al., 2004; Jimenez-Palacios, 

1998), a number of explanatory variables that includes the average speed, average 

acceleration, road gradient, and vehicle displacement are considered as the input for the 

SVM model. The structure of the SVM based model is shown in Figure 7-1. 

Given a set of data points {(x1,y1), (x2,y2), . . , (xl,yl)} randomly and independently 

generated from an unknown function, SVM approximates the function using the following 

form (Cristianini and Taylor, 2000; Vapnik, 1999): 

f(x) = ω ∙ ϕ(x) + b                                                           (7-10) 

where ϕ(x) denotes the high dimensional feature spaces which are non-linearly mapped 

from the input space x, i.e., average speed, average acceleration, road gradient, and vehicle 

displacement; The road gradient can be extracted by using the Google Elevation API; 

Average acceleration is calculated as the change between the entering speed and the 

outgoing speed on a link; f(x) is the target value, i.e., vehicle CO2 emission per kilometre; l 

is the number of training samples; The coefficients ω and b are estimated by minimizing 

the regularized risk function: 

Minimize 
1

2
‖ω‖2 + C

1

l
∑ Lε(yi, f(xi))
l
i=1                                         (7-11) 

Lε(yi, f(xi)) = {
|yi − f(xi)| − ε, |yi − f(xi)| ≥ ε
0                                        otherwise

                       (7-12) 



 

 

108 

 

 

Figure 7-1 Structure of SVM model 

 

where ‖ω‖2 denotes the regularized term. Minimizing ‖ω‖2 will make a function as flat as 

possible, which plays the role of controlling the generalization capacity. The second term 

C
1

l
∑ Lε(yi, f(xi))
l
i=1  is the empirical error measured by the ε-insensitive (ε-SV) loss 

function (Vapnik, 2000). The constant C > 0 determines the tradeoff between the flatness 

of f(x) and the amount up to which deviations larger than ε are allowed. Increasing the 

value of C will lead to the relative importance of the empirical risk with respect to the 

regularization term to increase.  

To get the estimation of 𝝎 and b, Eq.(7-11) is transformed to the primal objective 

function by introducing the positive slack variables 𝜉𝑖 and 𝜉𝑖
∗. Then the above problem can 

be formalized as: 

Minimize 
1

2
‖ω‖2 + C∑ (ξi + ξi

∗)l
i=1                                               (7-13) 

Subject to 

{

yi −ω ∙ ϕ(xi) − b ≤ ε + ξi
ω ∙ ϕ(xi) + b − yi ≤ ε + ξi
ξi, ξi

∗ ≥ 0                                
                                                  (7-14) 

The key to solve the optimization problem is to construct a Lagrangian function from 

the objective function and the corresponding constraints. By introducing Lagrangian 

multipliers and exploiting the constraints, the Lagrangian formulation has the following 

form: 

L =
1

2
‖ω‖2 + C∑ (ξi + ξi

∗)l
i=1 − ∑ (ηiξi + ηi

∗ξi
∗)l

i=1 − ∑ ai(ε + ξi − yi +ω ∙
l
i=1

ϕ(xi) + b) − ∑ ai
∗(ε + ξi + yi −ω ∙ ϕ(xi) − b)

l
i=1                                (7-15) 

where ηi, ηi
∗, ai and ai

∗ are Lagrangian multipliers. The dual variables in Eq.(7-15) have to 

satisfy positive constraints: 
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ηi
(∗), ai

(∗) ≥ 0                                                                       (7-16) 

where (∗) denotes variables with and without *. 

To get the optimality, take the partial derivatives of L with respect to the primal 

variables (ω, b, ξi, ξi
∗):. 

∂bL = ∑ (ai
∗ − ai)

l
i=1 = 0                                                   (7-17) 

∂ωL = ω − ∑ (ai − ai
∗)ϕ(xi)

l
i=1 = 0                                 (7-18) 

∂
ξi
(∗)L = C − ai

(∗) − ηi
(∗) = 0                                            (7-19) 

Substituting Eq.(7-17), Eq. (7-18) and Eq. (7-19) into Eq.(7-15), the dual optimization 

problem can be written as: 

Minimize W(ai, ai
∗) = −

1

2
∑ ∑ (ai − ai

∗)(aj − aj
∗)l

j=1
l
i=1 K(xi, xj) − ε∑ (ai

∗ + ai)
l
i=1 +

∑ yi(ai − ai
∗)l

i=1                                                      (7-20) 

Subject to 

{
∑ (ai − ai

∗)l
i=1 = 0

ai, ai
∗ ∈ [0, C]         

                                                                                  (7-21) 

K(xi, xj) = ϕ(xi) ∙ ϕ(xj)                                                                        (7-22) 

where K(xi, xj) is the kernel function. The value of the kernel is equal to the inner product 

of two vectors and in the feature space ϕ(xi) and ϕ(xj). Kernel functions enable the dot 

product to be performed in high-dimensional feature space using low-dimensional space 

data input without having to compute the map explicitly. Most of the previous researches 

selected radial basis function (RBF) as the kernel model for regression because it maps 

samples into a higher dimensional space and it has less numerical difficulties in contrast to 

polynomial kernels whose values may go to infinity or zero. Thus, RBF kernel is used for 

the SVM model in this study. There are three parameters while using RBF kernel: (C, ε, γ). 

However, it is not known a priori which C, ε, and γ are the best choice for the problem. To 

properly select the three parameters, the grid-search method is used for parameter 

determination. In grid-search, all pairs of (C, ε, γ) are tested and the one with the best 

performance is picked up (Chang and Lin, 2011). 
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7.4 Eco-routing problem 

7.4.1 Problem statement 

Our objective is to find the minimum CO2 emissions path between two nodes in a 

transportation network within the constraint of a certain travel time budget. The 

transportation network is modeled as a directed graph 𝐺(𝑁, 𝐴), where N={n1, n2,…, nn} 

represents the set of nodes and A={a12, a23 ,…, amn} represents the set of links. Unlike a 

traditional network that only has a single attribute assigned to each link, such as travel time 

or length, the network considered in this study has two attributes: link CO2 emissions cij 

and link travel time tij. Here, we wish to search the most eco-friendly path within the travel 

time budget (T). Consequently, the eco-routing problem from origin r to destination s can 

be described as the following problem: 

P1:  𝑀𝑖𝑛 𝑍(𝑥) = ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴                                                   (7-23) 

                              Subject to 

∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑖𝑗∈𝐴 ≤ 𝑇                                                                    (7-24) 

∑ 𝑥𝑖𝑗(𝑖,𝑗)∈𝐴 − ∑ 𝑥𝑗𝑖(𝑗,𝑖)∈𝐴 = 𝑔                                                (7-25) 

𝑔 = {
1                   𝑖 = 𝑟
0   𝑖 ∈ 𝑁 − {𝑟, 𝑠}
−1               𝑖 = 𝑠

                                                           (7-26) 

where xij ∈ {0,1} indicates a link on the selected path and g denotes the flow direction for 

each node 𝑖 in the road network. 

In this study, the concept of the Pareto frontier and the corresponding weighting 

method is extended to solve the eco-routing problem with a travel time constraint. To 

utilize a Pareto-optimal approach to this eco-routing problem, such as by implementing a 

weighting method, we transform P1 into a bi-objective like optimization problem as 

follows: 

P2: Min Z(x) = wtZt(x) + wcZc(x)                                            (7-27) 

                         Subject to constraints (7-24)-(7-26).                                

Where,  
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Zt(x) = ∑ tijxijij∈A                                                                                                     (7-28) 

Zc(x) = ∑ cijxijij∈A                                                                                                    (7-29) 

wt: weighting parameter for the objective of travel time; 

wc: weighting parameter for the objective of CO2 emissions. 

Note that if constraint (7-24) is relaxed, solving P2 will generate a Pareto frontier 

(Pareto-optimal or non-dominated path set). Considering that this study aims to find an 

optimal path but not the path set, we design a heuristic algorithm to search the optimal 

solution along the Pareto frontier. The heuristic search procedure will stop when the travel 

time of a candidate Pareto-optimal solution reaches the specified travel time budget (T). 

 

Figure 7-2 Search procedure used by the Pareto-optimal based heuristic algorithm 
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7.4.2 Routing approach 

Prior to introducing the Pareto-optimal based heuristic approach, we first list some 

fundamental definitions relating to the concept of Pareto optimality. 

Definition 1 (Pareto-optimal solution and Pareto frontier). Given a bi-objective shortest 

path problem, a path p∗ ∈ P, where P is the path set from origin r to destination s, is called 

a Pareto-optimal solution if there is no other path p ∈ P with Zt(x) ≤ Zt(x
∗) and Zc(x) ≤

Zc(x
∗) with at least one inequality being strict. An equivalent condition to the Pareto-

optimal solution p∗ is that there is no other feasible solution p ∈ P that dominates p∗. The 

set of Pareto-optimal or non-dominated solutions is called the Pareto frontier. 

Definition 2 (Supported and unsupported Pareto-optimal solutions) (Sedeno-Noda and 

Raith, 2015). Supported Pareto-optimal solutions (supported non-dominated solutions) are 

those feasible solutions that can be obtained from a weighted sum optimization problem 

Min (wtZt +wcZc) for wt, wc > 0. All other Pareto-optimal solutions or non-dominated 

solutions are called unsupported Pareto-optimal solutions. 

As illustrated in Figure 7-2(a), the supported Pareto-optimal solutions lie on the lower 

left boundary of the convex hull of the feasible solution set, whereas the unsupported 

Pareto-optimal solutions lie in the triangle areas determined by two adjacent supported 

Pareto-optimal solutions. The Pareto frontier comprises all the Pareto-optimal solutions 

including both supported and unsupported solutions. Assuming that the traveler prefers a 

fuel-efficient path (e.g., p∗ ) with the lowest CO2 emissions within the travel time 

constraint (T), the optimal path can be found along the Pareto frontier. A weighting method 

(Coutinho-Rodrigues et al., 1999) can be applied to efficiently determine the Pareto 

frontier, using a weighting utility function including all the objectives so as to transform a 

multi-objective problem into a single objective shortest-path problem. Unfortunately this 

method does not identify the unsupported Pareto-optimal solutions that lie in the interior of 

the convex hull. For example, when the travel time budget is set to T, the optimal solution 

should be p∗ in Figure 7-2(a). However, p∗ is an unsupported Pareto-optimal solution in 

this case, so it will not be found by the weighting method. To fill this gap, a three-step 

Pareto-optimal based algorithm is proposed in the following sections. 

Step 1: Initialization 

The algorithm gets started by searching two initial Pareto-optimal solutions with two 

weighting parameter sets, i.e., (wt, wc) = (ε, 1 − ε) and (wt, wc) = (1 − ε, ε), where ε is a 

sufficiently small number, i.e., 0 < ε ≪ 1. Note that a shortest path minimizing the CO2 
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emissions (Zc(x)) may be obtained when we solve the weighting program for ε = 0, but 

the corresponding shortest path could be a dominated path as the second objective is not 

taken into account. For example, as shown in Figure 7-2(a), p′ could be found if wt = 0, 

but p′ is not the Pareto-optimal solution because it is dominated by Z2. Therefore, we use a 

small ε  value in the initial weighting parameter sets to avoid the risk of selecting a 

dominated solution at the initial iteration. Assumed that the initial Pareto-optimal solutions 

are Z1 and Z2, three situations should be considered for different settings of travel time 

budgets. (1) If the travel time budget is less than the travel time of Z1, i.e., T < Z1,t, no 

available paths can be found; (2) If the travel time budget is between the travel time of Z1 

and Z2, i.e., Z1,t ≤ T ≤ Z2,t, it is easy to show that the optimal path will be located on the 

Pareto frontier as shown in Fig. 1(a); (3) If the travel time budget is more than the travel 

time of Z2, i.e., T > Z2,t, the optimal path is Z2 which can be found directly by using the 

shortest-path algorithm with the weighting parameter set (wt, wc) = (ε, 1 − ε). Here, we 

put the focus on how to find the optimal path for the second situation. The two resulting 

solutions, i.e. Z1 and Z2, are recorded into a list L sorted ascending by path travel time, i.e., 

L = {Za
(0), Zb

(0)} , where Za
(0) = Z1 , Zb

(0) = Z2 , and Za,t
(0) ≤ Zb,t

(0)
. And then a heuristic 

algorithm approximates the true optimal solution in next steps. 

Step 2: Find the initial duality gap 

To ensure a rapid approach to the optimal solution, a NISE-like methodology 

(Coutinho-Rodrigues et al., 1999) is used to update the weighting parameters. The 

weighting parameters are generated from the two Pareto-optimal solutions in list L 

iteratively. The most widely used method for generating weighting parameters is the 

perpendicular approach (Xie and Waller, 2012b), which leads to a parameter vector 

perpendicular to the line going through the two Pareto-optimal solution points (see the red 

dash line in Figure 7-2(a)). Specifically, given two Pareto-optimal solutions in list L, a new 

parameter set is generated by using the following linear functions: 

{
wt
(n)
(Za,t

(n−1) − Zb,t
(n−1)) + wc

(n)
(Za,c

(n−1) − Zb,c
(n−1)) = 0

wt
(n)
+wc

(n)
= 1                                                                   

                            (7-30) 

Thus, 

wt
(n)
=

Zb,c
(n−1)

−Za,c
(n−1)

(Zb,c
(n−1)

−Za,c
(n−1)

)+(Za,t
(n−1)

−Zb,t
(n−1)

)
                                                         (7-31) 

wc
(n)
=

Za,t
(n−1)

−Zb,t
(n−1)

(Zb,c
(n−1)

−Za,c
(n−1)

)+(Za,t
(n−1)

−Zb,t
(n−1)

)
                                                       (7-32) 
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where, 

 Za,t
(n−1)

: Path travel time of Za
(n−1)

 in list L; 

 Zb,t
(n−1)

: Path travel time of Zb
(n−1)

 in list L; 

 Za,c
(n−1)

: Path CO2 emission of Za
(n−1)

 in list L; 

 Zb,c
(n−1)

: Path CO2 emission of Zb
(n−1)

 in list L; 

 n: Iteration number. 

The weighting single objective shortest-path problem specified by the updated wt
(n)

 

and wc
(n)

 can be solved iteratively. A heuristic strategy is taken to identify the two 

candidate supported Pareto-optimal solutions that are closest to the true optimal solution. 

That is, the new supported Pareto-optimal solution is added to list L and meanwhile the 

previous solution, which has a larger absolute difference from the travel time budget, is 

removed from list L iteratively. For example, as shown in Figure 7-2(a), Z3 is obtained by 

solving the weighting shortest path problem with updated wt
(1)

 and wc
(1)

. And then Z3 is 

added to L, replacing Z1 because |Z1,t − T| > |Z2,t − T|. Thus, the items in L are updated, 

i.e., Za
(1) = Z3, and Zb

(1) = Z2 at the first iteration. The iteration procedure is ended if no 

new supported Pareto-optimal solutions can be found. For example, since there are no 

other new supported Pareto-optimal solutions that can be found by updating the weighting 

parameters generated by Z3  and Z4 , the parameter generation procedure is stopped. As 

shown in Figure 7-2(a), the optimal solution Z5 should be located in the yellow triangle 

region, which is called the duality gap, though Z3  is a potential optimal solution. The 

duality gap can be determined using the two adjacent supported Pareto-optimal solutions in 

list L. It must be noted that Z3  may not be the optimal solution because the heuristic 

algorithm only identifies those supported Pareto-optimal solutions that lie on the boundary 

of the convex hull, but it cannot find unsupported Pareto-optimal solutions, e.g., Z5. For 

this reason, we present a procedure to identify unsupported Pareto-optimal solutions in the 

duality gap and determine the optimal solution in the next step. 

Step 3: Update the duality gap and determine the optimal solution 

An efficient algorithm for closing the duality gap was introduced by Current et al. 

(1990) for the bi-objective routing problem, in which the upper bound is updated by 

checking the trade-off of two objective values according to the traveler’s preference 
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interactively. This inspires us to develop a heuristic approach to close the duality gap for 

the constrained eco-routing problem. In our algorithm, the upper bound and lower bound 

are updated according to the updated solution in the duality gap, but the weighting 

parameters do not need to update. And the duality gap is further limited to a smaller 

triangle region bounded by the travel time budget as shown in Figure 7-2(b). Considering 

that the optimal solution may locate in the duality gap, a k-shortest path algorithm (Yen, 

1971) is applied to search for potential optimal solutions until there are no further new 

unsupported Pareto-optimal solutions to be found in the duality gap. Specifically, the k-

shortest path searching procedure stops when the upper bound (UB) of the duality gap has 

been reached. At each iteration, the upper bound is determined by the two candidate 

solutions in list 𝐿 = {𝑍𝑎
(𝑛), 𝑍𝑏

(𝑛)} and the travel time budget (T):  

𝑈𝐵(𝑛) = 𝑤𝑡
(𝑛)
𝑇 + 𝑤𝑐

(𝑛)
𝑍𝑎,𝑐
(𝑛)

                                                             (7-33) 

Any k-shortest path algorithm for a directed network can be used in this study. The 

objective function for the k-shortest path algorithm is as follows: 

Min Z(x) = ∑ (wt
(n)
tij +wc

(n)
cij)xijij∈A                                           (7-34) 

Subject to constraints (7-24)-(7-26). 

Here, we use Yen’s well-known algorithm (Yen, 1971) to find the unsupported 

Pareto-optimal solution. The UB is updated when a new unsupported Pareto-optimal 

solution is found in the duality gap by the k-shortest path algorithm. For example, at the 

first iteration, 𝑍𝑎
(𝑛)

 in list L is updated to 𝑍5 and the UB is updated to 𝑈𝐵(1) when 𝑍5 is 

found. Correspondingly, the lower bound (LB) can be defined as the weighted sum cost of 

the current unsupported Pareto-optimal solution, i.e., 𝑍𝑎
(𝑛)

. 

𝐿𝐵(𝑛) = 𝑤𝑡
(𝑛)
𝑍𝑎,𝑡
(𝑛)
+ 𝑤𝑐

(𝑛)
𝑍𝑎,𝑐
(𝑛)

                                     (7-35) 

Note that in using the k-shortest path searching procedure, it is possible that solutions 

outside the duality gap might be found, e.g., Z6. These solutions are not added to list L and 

the UB is not updated; instead the next kth shortest path is calculated until a feasible 

solution is found in the duality gap. 
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7.4.3 Solution algorithm 

The solution algorithm is based on the discussion presented above, which is presented 

below in pseudo code as Algorithm 7-1. 

Algorithm 7-1 Pareto-optimal based heuristic algorithm 

1 Step 1: Initialization 

2 Initialize 𝑳 ≔ {𝑍𝑎, 𝑍𝑏}, 𝑍𝑎 ≔ 𝑛𝑢𝑙𝑙, 𝑍𝑏 ≔ 𝑛𝑢𝑙𝑙; 
3 Set travel time budget: 𝑇 ≔ 𝑡0; 

4 Set 𝑤𝑡: = 1, 𝑤𝑐: = 𝜀; 

5 Find the minimal travel time solution: 𝑍1(𝑍1,𝑡, 𝑍1,𝑐); 

6 Set 𝑤𝑡: = 𝜀, 𝑤𝑐: = 1; 

7 Find the minimal CO2 emission solution: 𝑍2(𝑍2,𝑡, 𝑍2,𝑐); 

8 Update 𝑳, 𝑍𝑎 ≔ 𝑍1, 𝑍𝑏 ≔ 𝑍2; 

9 If (𝑇 < 𝑍1,𝑡) 

10     Return 𝑛𝑢𝑙𝑙; 
11 End if 

12 If (𝑍1,𝑡 ≤ 𝑇 ≤ 𝑍2,𝑡) 
13     Go to Step 2; 

14 End if 

15 If (𝑇 > 𝑍2,𝑡) 

16     Return 𝑍2; 

17 End if 

18 Step 2: Find the initial duality gap 

19 While (𝑍𝑎 ≠ 𝑍𝑏) 

20     Update weighting parameters 𝑤𝑡 and 𝑤𝑐 using Eqs. (7-31) and (7-32); 

21 

    Find the supported Pareto-optimal solution for Min 𝑍(𝑥) = 𝑤𝑡𝑍𝑡(𝑥) + 𝑤𝑐𝑍𝑐(𝑥): 

𝑍′; 
22     If (𝑍′ = 𝑍𝑎 or 𝑍′ = 𝑍𝑏) 

23         Break; 

24     Else  

25         If (|𝑍𝑎,𝑡 − 𝑇| > |𝑍𝑎,𝑡 − 𝑇|) 

26             Update 𝑳, 𝑍𝑎 ≔ 𝑍′; 
27         Else  

28             Update 𝑳, 𝑍𝑏 ≔ 𝑍′; 
29         End if 

30     End if 

31 End while  

32 Step 3: Update the duality gap and determine the optimal solution 

33 Initialize 𝑈𝐵:= 𝑤𝑡𝑇 + 𝑤𝑐𝑍𝑎,𝑐 and 𝐿𝐵:= 𝑤𝑡𝑍𝑎,𝑡 + 𝑤𝑐𝑍𝑎,𝑐; 𝑘:= 1; 

34 while (𝐿𝐵 < 𝑈𝐵); 

35 

Find the k
th

 best solution for 

Min 𝑍(𝑘)(𝑥) = ∑ (𝑤𝑡𝑡𝑖𝑗 + 𝑤𝑐𝑐𝑖𝑗)𝑥𝑖𝑗𝑖𝑗∈𝐴 ; 

36     If (𝑍(𝑘) = 𝑛𝑢𝑙𝑙);  
37         Break; 
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38     End if  

39     Update 𝐿𝐵:= 𝑤𝑡𝑍𝑡
(𝑘)
+ 𝑤𝑐𝑍𝑐

(𝑘)
; 

40     If (𝑍𝑎,𝑡
(𝑘)
< 𝑇 and 𝑍𝑎,𝑐

(𝑘)
< 𝑍𝑎) 

41         Update 𝑳, 𝑍𝑎 ≔ 𝑍(𝑘); 

42         Update 𝑈𝐵, 𝑈𝐵 ≔ 𝑤𝑡𝑇 + 𝑤𝑐𝑍𝑎,𝑐; 
43     End if 

44     𝑘:= 𝑘 + 1 

45 End while 

46 Return the optimal solution: 𝑍𝑎; 

 

 

Figure 7-3 Illustration of the tested network and the optimal path 

 

7.4.4 An illustrative example for the proposed eco-routing approach 

An example of an eco-routing problem with a travel time constraint is shown here to 

illustrate the effectiveness of the proposed search procedure. The tested network and the 

link attributes are shown in Figure 7-3. The origin and destination are set to node 1 and 

node 12, respectively. The objective is to find the most eco-friendly path within the travel 

time budget (e.g., T=42). The solutions in outcome space are shown in Figure 7-4, and the 

iteration results are shown in Table 7-3. 

In the first step, given the initial weighting parameter sets, (wt = 0.999,wc = 0.001) 

and (wt = 0.001,wc = 0.999), the first two supported Pareto-optimal solutions, i.e., Z1 

and Z2  shown in Figure 7-4, are identified by solving the weighted sum shortest path 

problem. Then, the travel times of the two solutions are checked against the specified 

travel time budget. Since the travel time budget is between the travel times of these two 

Pareto-solutions, i.e., 33<T<69, Z1  and Z2  are added to list L, and the calculation 

procedure goes to step 2.  
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Figure 7-4 Solutions in outcome space 

 

Table 7-3 Solution process and iteration results for illustrative eco-routing example 

Step Iteration 𝑤𝑡  𝑤𝑐 LB UB 
List L Objective value 

𝑍𝑎 𝑍𝑏 𝑍𝑎,𝑡 𝑍𝑎,𝑐 𝑍𝑏,𝑡 𝑍𝑏,𝑐 

1 1 1.000 0.010 null null 1-5-6-7-11-12 null 33 63 null null 

1 2 0.010 1.000 null null 1-5-6-7-11-12 1-2-3-7-8-12 33 63 69 36 

2 1 0.429 0.571 null null 1-5-6-7-11-12 1-5-6-7-8-12 33 63 44 44 

2 2 0.633 0.367 null null 1-5-6-7-11-12 1-5-6-7-8-12 33 63 44 44 

3 1 0.633 0.367 44.00 49.70 1-5-6-10-11-12 1-5-6-7-8-12 41 53 44 44 

3 2 0.633 0.367 45.40 46.03 1-5-6-10-11-12 1-5-6-7-8-12 41 53 44 44 

 

In step 2, the weighting parameters are updated using Eqs. (7-31) and (7-32), i.e., 

wt = 0.43 and wc = 0.57. Then, the next supported Pareto-optimal solution is found, i.e., 

Z3  shown in Figure 7-4, using the shortest-path algorithm. Comparing the travel time 

budget with the travel times of the two solutions in list L, i.e., Z1 and Z2 shown in Figure 

7-4, it is found that the travel time of Z1 is closer than that of Z2. Thus, Z2 is removed and 

Z3 is added to list L. The weighting parameters are updated iteratively using the objective 

values of the two candidate solutions in list L, i.e., Z1 and Z3. In iteration 2, because no 

other solutions can be found using the updated weighting parameters, i.e., wt = 0.63 and 

wc = 0.37, the duality gap can be determined by Z1 and Z3, and the calculation procedure 

goes to step 3. 
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In step 3, we find the optimal solution inside the duality gap. First, the UB value of 

the weighted sum cost of the k-shortest path is set using Eq. (7-33), i.e. 

UB=0.633*42+0.367*63=49.7. The LB value is set as the weighted sum cost of one of the 

solutions in list L, i.e., LB=0.633*33+0.367*63=44. Then, the k-shortest path algorithm 

searches iteratively for the kth best path constrained by UB and LB. If the kth best path 

falls inside the duality gap, i.e., Z4  shown in Figure 7-4, the first solution in list L is 

replaced by the kth best path, i.e., Za = Z4. And then UB and LB are updated by the new 

solutions in list L, i.e., UB=0.633*42+0.367*53=46.03, B=0.633*41+0.367*53=45.4. The 

k-shortest path algorithm is called again with the updated UB and LB. Because there are no 

more solutions to be found in the updated duality gap, the algorithm stops and the optimal 

solution, i.e., Z4, is found. 

7.5 Numerical experiment and discussion 

7.5.1 Comparison of CO2 emission models 

The estimation performance is evaluated by using the following statistical metrics, 

namely, the mean absolute percentage error (MAPE) and squared correlation coefficient 

(𝑟2). The smaller the values of MAPE, the closer are the estimated values to the observed 

values. 𝑟2  provides an index of the correlation between the predicted values and the 

observed values. A larger value closing to one represents a better predictor. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |
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where n is the total number of samples, 𝑦𝑖 and 𝑦̂𝑖 represent the actual and the estimated 

outputs, respectively. 

To demonstrate the advantage of the proposed SVM model, the multiple linear 

regression (MLR) model and artificial neural network (ANN) model, are used for 

performance comparison. The MLR model can be expressed as follows: 

𝑦̂𝑀𝐿𝑅 = 𝑤0 + ∑ 𝑤𝑖𝑥𝑖
𝑚
𝑖=1                                                            (7-38) 

where (𝑥1, 𝑥2,…, 𝑥𝑚) denotes the input vector, {𝑤0, 𝑤1,…, 𝑤𝑚} are the model coefficients 

to be estimated, 𝑦̂𝑀𝐿𝑅 denotes the CO2 emission.  



 

 

120 

 

 

Figure 7-5 Model performance comparison 

 

Table 7-4 Car models 

model Samples 
Displacement 

(cc) 

Ideal fuel consumption rate 

(L/100km) 

Weight 

(kg) 

Corolla Fielder-1NZ 8791  1496 6.2 1280 

Corolla Fielder-2ZR 615  1797 6.7 1330 

IQ 3188  996 5.7 860 

ISIS-2ZR 1646  1797 6.9 1560 

ISIS-3ZR 410  1986 7.9 1560 

MarkX 26  2499 9.1 1520 

Noah 9864  1986 8 1500 

Premio 2688  1986 7.7 1440 

RAV4 3378  2362 6.5 1150 

Vitz-1KR 4241  996 4.6 980 

Vitz-1NZ 4376  1496 5.8 1050 

Vitz-2SZ 4960  1296 5.6 1030 

Voxy 20443  1986 7 1500 

WISH 5430  1797 6.6 1355 
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The classical backpropagation neural network will be used to establish the ANN 

model (Cortez et al., 2009). The structure of ANN model can be written as follows: 

𝑦̂𝐴𝑁𝑁 = 𝑤𝑜,0 + ∑ 𝑓(∑ 𝑥𝑖𝑤𝑗,𝑖 + 𝑤𝑗,0
𝑚
𝑖=1 )𝑜−1

𝑗=𝑚+1 𝑤𝑜,𝑖                            (7-39) 

𝑓(𝑥) =
1

𝑒−𝑥+1
                                                                                      (7-40) 

where wj,i denotes the weight of the connection from node 𝑗 to 𝑖, and o is the output node. 

The number of hidden nodes (H) is determined by a regularization method (Hastie et al., 

2001). 

Figure 7-5 shows the goodness-of-fit for the vehicle CO2 emission predictions by the 

three models. The vehicle models are shown in Table 7-4. The link-based sample size 

includes 70056 records. 90% of the samples are used for training and 10% are used for 

testing. It can be seen from the 𝑟2 that the prediction of the SVM model is much closer to 

the observed target than the other two models. The MAPEs are 13.6%, 16.4%, and 24.5%, 

respectively. The advantage of SVM over ANN is likely due to the differences in the 

training procedure. The training of SVM ensures an optimum fit, while ANN training 

might fall into a local optimum. On the other hand, the objective function of SVM endows 

a linear penalty to out-of-range errors. Thus, SVM is expected to be less sensitive to 

outliers and such effect will lead to a higher accuracy for low error tolerances. MLR model 

is the worst one since it cannot capture the nonlinear features of the explanatory variables. 

Therefore, it can be concluded that the proposed SVM structure can provide a better result. 

7.5.2 Sensitivity analysis for CO2 emission model 

To reveal how the selected factors influence the CO2 emission, this study proposes the 

following simple methodology for sensitivity analysis. Once a SVM structure has been 

trained on a large set of input variables, calculate an average value for each input variable. 

Then, holding all variables at their average values but one each time, vary the one input 

over its entire range and analyze the variability produced in the outputs. 

Here, sensitivities of the four explanatory variables are examined. Figure 7-6(a) 

portrays a bowl-shape variation in the CO2 emission. The optimal CO2 emission appears to 

occur at the average speed of approximate 16.9m/s (61km/h). This finding indicates that an 

increase in average travel speed from 1m/s to 16.9m/s could result in a decrease of 78% in 

the CO2 emission, while a decrease in average travel speed from 16.9m/s to 30m/s could 

also result in an increase of 34% in the CO2 emission. It indicates that driving too slowly or 

too fast will lead to high CO2 emission. Figure 7-6 (b) illustrates the relationship between 
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the acceleration and CO2 emission. The CO2 emission increases slowly when the 

acceleration is negative, while it increases dramatically when the acceleration is between 0 

and 0.5m/s
2
. Interestingly, the CO2 emission does not always increase as the acceleration 

increases. It is found that CO2 emission decreases as the acceleration increases from 

0.5m/s
2 
to 2m/s

2
. A possible reason is that the fuel efficiency during acceleration improves 

as the revolution per minute (RPM) increases, which results in fewer fuel consumption and 

CO2 emission. Figure 7-6 (c) shows how the road gradient influences the CO2 emission. As 

expected, the CO2 emission approximately follows a linear relationship with the road 

gradient. It indicates that the CO2 emission increases by 2% as a result of 1 degree increase 

in road gradient. Figure 7-6 (d) illustrates the trend of the CO2 emission with vehicle 

displacement. It is found that the vehicle with lower displacement will result in lower CO2 

emission. 

 

Figure 7-6 Sensitivity analysis on explanatory variables 
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Figure 7-7 Relative importance for each explanatory variable 

 

To better understand the relative importance of each explanatory variable to the trip 

fuel consumption, we conduct the elasticity analysis after training SVM. Elasticity 

measures the percentage change of a dependent variable to a percentage change in an 

explanatory variable. Accordingly, the elasticity can be written as follows: 

𝐸𝑎 =
𝑑𝑓(𝐱)

𝑓(𝐱)
/
𝑑𝑥𝑎

𝑥𝑎
                                                                (7-41) 

where 𝐸𝑎  denotes the elasticity for variable 𝑥𝑎 , 𝑎  denotes the subscript for each 

explanatory variable, 𝑓(𝒙) is the regression model by SVM. The output of Eq. (7-41) can 

be obtained by numerical solution after training SVM. 

Keeping all input variables at their mean values except 𝑥𝑎 which changes through its 

whole range with i∈{1,…, n} intervals, the point elasticity (𝐸𝑎
𝑖 ) for each input 𝑥𝑎

𝑖  can be 

written as follows: 

𝐸𝑎
𝑖 =

𝑦𝑎
𝑖+1−𝑦𝑎

𝑖

𝑥𝑎
𝑖+1−𝑥𝑎

𝑖

𝑥𝑎
𝑖

𝑦𝑎
𝑖                                                                 (7-42) 

If an explanatory variable (𝑥𝑎∈{𝑥𝑎
1,…, 𝑥𝑎

𝑛}) is relevant, then it should produce a 

larger sum of absolute point elasticity (|𝐸𝑎
𝑖 |). Thus, its relative importance (𝑅𝑎) can be 

represented by: 

𝑅𝑎 =
∑ |𝐸𝑎

𝑖 |𝑛
𝑖=1

∑ ∑ |𝐸𝑎
𝑖 |𝑛

𝑖=1
𝑚
𝑎=1

                                                             (7-43) 
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where n is the number of samples, m is the number of explanatory variables. 

The relative importance for explanatory variables in SVM models are shown in Figure 

7-7. It demonstrates that the average speed plays the most important role in vehicle CO2 

emission, while the road gradient has slight impact. The average speed and vehicle 

displacement occupy 78% relative importance to the model. It indicates that a vehicle with 

lower displacement running in around 60km/h is likely to save fuel consumption and 

reduce the CO2 emission. This ranking helps travelers determine an economic and eco-

friendly path. 

7.5.3 Performance analysis of eco-routing in a real-world network 

In this study, we collect data from probe vehicles fitted with GPS and an on-board 

diagnostics (OBD) device. Link information such as link length and link travel time can be 

extracted after map-matching (Miwa et al., 2012). Link CO2 emissions can be obtained 

from the OBD reader. Actually, the OBD reader is able to provide comprehensive 

controller area network (CAN) bus data, including fuel consumption and emissions, 

instantaneously. However, considering the applicability and robustness of the routing 

model for a navigation system, we aggregate the emissions data at the link level. A real-

world network with 4072 nodes and 12,877 links in Toyota city, Japan, is used to verify 

the eco-routing procedure and evaluate the likely environment benefits of implementing it. 

The trip records used for verification are from 153 GPS probe vehicles over a period of 10 

months.  

In Figure 7-8, a randomly selected real-world OD pair in the central area of Toyota 

city is extracted to demonstrate the performance of the proposed eco-routing strategy. For 

this demonstration, the travel time budget is set as 1.2 times the observed travel time. That 

means we allow the eco-routing model to find an eco-friendly path with 20% extra travel 

time buffer relative to the observed path. As shown in Table 7-5, different routing 

strategies and their associated path performances are compared with the proposed eco-

routing strategy. The shortest distance path takes a direct route through the central urban 

area with a high density of intersections, which may lead to great fluctuations in speed. 

The observed path selected by the driver has similar features to the shortest distance path. 

Even though the shortest path and the observed path are shorter, the high density of 

intersections and high value of coefficient of variance (COV) of link average speed will 

result in higher CO2 emissions as compared to the proposed eco-friendly path. On the other 

hand, the least travel time path detours onto expressways to profit from their higher 

average travel speed. As compared with the shortest distance path, the travel time saving is 

10.26% even though the distance traveled is 1.16 times longer. However, this path 
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generates the most CO2 emissions because it is the longest among the four paths. The eco-

friendly path, determined as proposed in this study, offers significantly better performance 

in regard to CO2 emissions at the cost of a very small increase in travel time and a minor 

detour. The eco-friendly path reduces CO2 emissions by 13.02%, 10.24%, and 18.92% 

relative to the observed path, the shortest distance path, and the least travel time path, 

respectively. In particular, in comparison with the observed path as selected empirically by 

the driver, the eco-friendly path offers a significant advantage in both travel time (reduced 

by 16.95%) as well as CO2 emissions (reduced by 13.02%), though the distance traveled is 

a little longer (by 0.3km). We note that the saving in CO2 emissions compared with the 

least travel time path naturally comes at the expense of increased travel time, since the 

objective of the routing algorithm is no longer travel time. This is consistent with previous 

studies (Ahn and Rakha, 2008; Yao and Song, 2013; Boriboonsomsin, 2012). 

 

 

Figure 7-8 Case study for eco-routing 
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Table 7-5 Path performance comparison 

Performance indices OP DP TP EP 
Relative difference (%) 

EP vs. OP EP vs. DP EP vs. TP 

Trip distance (km) 8.71 8.00 9.33 9.01 3.42 12.58 -3.43 

Trip average speed 

(km/h) 

17.23 20.52 26.66 21.45 24.53 4.54 -19.52 

Intersection density  

(km
-1

) 

8.15 8.75 7.50 5.88 -27.82 -32.75 -21.60 

COV of link 

average speed 

0.63 0.74 0.58 0.43 -31.62 -42.16 -26.21 

Travel time (h) 0.51 0.39 0.35 0.42 -16.95 7.69 20.00 

CO2 emission (kg) 1.33 1.29 1.43 1.16 -13.02 -10.24 -18.92 

Note: OP = Observed path; DP = Shortest distance path; TP = Least travel time path;  

EP = Eco-friendly path; COV = Coefficient of variance 

 

 

Figure 7-9 Impact of travel time buffer on the percentage of trips with CO2 emission 

reduction 
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Figure 7-10 Impact of travel time buffer and OD distance on CO2 reduction 

7.5.4 Sensitivity analysis of potential CO2 emission reduction 

Because the benefit tradeoff between CO2 emissions and travel time budget is 

important both to individual travelers and to the provision of routing guidance, the 

network-wide reduction in CO2 emissions that can potentially be realized with various 

settings of travel time budget is analyzed in this section. The concept of a travel time 

buffer is used, defined as the percentage increment over the least travel time. OD pairs 

collected from 7989 real-world trip records are used to conduct this sensitivity analysis. 

For each trip, the eco-routing model calculates eco-friendly paths under various travel time 

buffers, and then the potential reduction in CO2 emissions is calculated by comparing these 

with the least travel time path.  

Figure 7-9 illustrates how many percentage of trips for which CO2 emissions are 

reduced by a certain amount under different conditions. The x-axis denotes the percentage 

increment in travel time budget (the travel time buffer). The y-axis denotes the percentage 

reduction in CO2 emissions compared to the least travel time path. The color of each cell 

denotes the percentage of trips represented by that cell. The single row table below each 

sub-graph denotes the cumulative percentage of trips with that buffer value for which CO2 

emissions are reduced. This shows that the percentage of trips with reduced CO2 emissions 

at the cost of a very small increase in travel time. However, the degree of the CO2 

reduction varies by trips. For example, some trips can achieve a reduction of 15% while 

others only reach 5%, even when the travel time buffer is increased to 20% or more. This 

indicates that eco-routing does not always provide a significant CO2 reduction as compared 
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to traditional routing based on travel time. Interestingly, if the travel time buffer is 

increased to 10%, almost all trips see some degree of CO2 emissions reduction. This 

suggests that a relatively small increase in travel time enables network-wide CO2 emissions 

to be effectively reduced by the eco-routing strategy. On the other hand, the cumulative 

percentage of the trips for which CO2 emissions are reduced on weekdays increases faster 

with increasing travel time buffer than on weekends. This indicates that the overall 

reduction in CO2 emissions on weekdays is more sensitive. Further, the cumulative 

percentage of trips for which CO2 emissions are reduced in peak hours increases faster 

with increasing buffer than in off-peak hours. This suggests that the eco-routing strategy 

has a significant potential to reduce CO2 emissions during peak hours. 

Figure 7-10(a) shows the joint percentage distribution of potential CO2 reduction for 

different OD distances and travel time buffers. The cell color denotes the percentage CO2 

emissions reduction comparing to the path with least travel time. In general, it is found that 

the eco-friendly path enables to reduce CO2 emissions by an average of 11% for OD 

distances between 6km and 9km when the travel time buffer is greater than 10%. Figure 

7-10(b) shows the curves of potential CO2 reduction as the travel time buffer increases. 

There is a significant rise in CO2 emissions reduction as the travel time buffer increases 

from 1% to 12%. However, with further rises in travel time buffer, the CO2 reduction 

remains relatively stable. That is, few paths with lower CO2 emissions can be found once 

the travel time buffer increases beyond a certain threshold (e.g., approximately 12% in the 

studied network). This indicates that a travel time buffer of 12% is appropriate for the eco-

routing strategy, since this provides the greatest CO2 emissions reduction for the least cost 

in travel time. On the other hand, compared to trips with longer OD distance, shorter trips 

have the potential for a larger CO2 reduction percentage. For example, for trips with 6km 

OD distance the potential reduction in average CO2 emissions is from 2% to 11%, while 

for trips with 20km OD distance the potential reduction is only from 0.2% to 3%. Figure 

7-10(c) shows the trend of potential CO2 reduction percentage as OD Euclidean increases. 

The curves are shaped like a mountain for all buffer values. The CO2 reduction rises to a 

peak for OD distances up to 8km, then falls for OD distances greater than 8km. Trips with 

larger OD distances are not as sensitive to CO2 reduction as shorter trips; this is because a 

larger percentage of shortest travel time paths and eco-friendly paths may overlap due to 

the same choice of expressway or major road. 
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Figure 7-11 Solution quality comparison 

 

 

Figure 7-12 Network generation 
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Figure 7-13 Computation time comparison 

7.6 Computation efficiency analysis 

A comparative evaluation analysis for the proposed Pareto-optimal based heuristic 

approach (PHA) against the Lagrangian relaxation approach (LRA) is presented in this 

section. The Lagrangian relaxation approach is a classical and widely used approach for 

the constrained shortest path problem (Carlyle et al., 2008; Ahuja et al., 1993). Both 

algorithms are programed in C# on the Windows 7 platform and run on a PC with Intel 

Core i7-4960X 3.6GHz CPU and 8GB RAM. We use two performance measures to 

evaluate the computation efficiency: (1) solution quality; (2) computation time. 

To assess the solution quality, we use the solutions generated by the k-shortest path 

(KSP) algorithm (Yen, 1971) as the benchmark for the PHA and LRA. The KSP algorithm 

sorts the solution by ascending the CO2 emission from the minimum to the kth minimum 

until the first solution that is feasible to the travel time budget is obtained. Although the 

computation time of KSP algorithm increases dramatically with the network size increases, 

it can be regarded as an exact solution (Handler and Zang, 1980). We generate the paths 

from 1000 observed OD pairs by the three routing approaches. Figure 7-11 shows the 

solution quality comparison for the two tested approaches, i.e., the PHA and LRA. A 45-
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degree reference line is also plotted. If the tested approach generating the same solutions as 

the KSP algorithm generating, the points should fall along this reference line. Through the 

t-test at the 95% confidence level, it is concluded that the two tested solutions and the 

exact solution are not significant different. However, it is found that the performance of the 

PHA is better than that of the LRA. This is because the PHA enables to search the 

unsupported Pareto-optimal solutions in the duality gap while the LRA can not find the 

solution in the duality gap.  

To assess the computation time, a set of real-world networks is generated, whose size 

ranges from 95 to 3525 links. As shown in Figure 7-12, we generate elliptical shape 

networks from 1000 randomly observed OD pairs. The elliptical area can be defined by the 

right triangle (AOD) of which the length of the first right-angle side is the OD Euclidean 

distance and the length of the second right-angle side is the half of the OD Euclidean 

distance. And in this way, the network size is dependent on the OD Euclidean distance. 

Figure 7-13 shows the computation time of each OD pair by the PHA and LRA. Since the 

structure of the transportation network is various for each OD pair, the CPU time may have 

difference even though the network size is similar. In general, the CPU time for the PHA is 

slightly less than that for LRA. On the other hand, it is found that the CPU times for both 

the PHA and LRA can be empirically represented by a cubic polynomial function. 

Therefore, it can be concluded that the proposed approach is efficient and applicable to a 

real-world network. 

7.7 Summary 

This study proposes an eco-routing approach to address the problem of finding the 

most eco-friendly path in terms of minimum CO2 emissions constrained by a travel time 

budget. The theory of Pareto-optimal optimization is introduced to solve this NP-complete 

routing problem. Specifically, a Pareto-optimal based heuristic approach combining the 

weighting method with the k-shortest path algorithm is used to find the eco-friendly path. 

Based on the results of a numerical experiment in which this eco-routing strategy is 

analyzed using data collected in Toyota city, Japan, the following key findings are 

obtained: 

(1)The SVM based model considering the average speed, average acceleration, road 

gradient and vehicle displacement enables to predict the CO2 emission, which superiors to 

LRM and ANN model. 

(2) The sensitivity analysis for the SVM model illustrates the non-linear relationship 

between the CO2 emission and the explanatory variables. 
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(3) The relative importance analysis indicates that the average speed and vehicle 

displacement occupy 78% relative importance to the SVM based model.  

(4) Eco-friendly paths determined as proposed in this study offer significantly reduced 

CO2 emissions at little cost in terms of increased travel time and short detours. On average, 

an eco-friendly path can reduce CO2 emissions by 13.02%, 10.24%, and 18.92% relative to 

the observed path, the shortest distance path, and the least travel time path, respectively.  

(5) Compared to the observed path as selected empirically by the driver, the eco-

friendly path offers significant advantage in terms of travel time (reduced by 16.95%) and 

CO2 emissions (reduced by 13.02%) though the travel distance is slightly longer (by 

0.3km). 

(6) In an eco-routing experiment using all the observed OD pairs, it is found that the 

percentage of trips in which CO2 emissions are reduced increases as the travel time buffer 

is increased. Interestingly, when the travel time buffer reaches about 10%, a certain degree 

of CO2 emissions reduction is achieved for almost all trips. 

(7) There is a significant rise in CO2 emissions reduction as the travel time buffer 

increases from 1% to 12%. And a travel time buffer of 12% is appropriate for the eco-

routing strategy, since this provides the greatest CO2 emissions reduction for the least cost 

in travel time.  

(8) The Pareto-optimal based heuristic approach has better performance than the 

Lagrangian relaxation approach. Particularly, the Pareto-optimal based heuristic approach 

enables to search the unsupported Pareto-optimal solutions in the duality gap while the 

Lagrangian relaxation approach can not find the unsupported Pareto-optimal solutions.  

Potential directions for future research in this area include improvement of the path 

finding algorithm and consideration of the stochastic characteristics of travel time and CO2 

emissions: (1) an efficient path-finding algorithm suitable for a real-time eco-routing 

navigation system needs to be developed; (2) considering that travel time and emissions 

are non-deterministic, the reliability of the eco-algorithm routing should be considered 

further. 
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Chapter 8 Conclusions and Future Works 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

To mitigate the uncertain delay and vehicle emission, this study investigated the route 

search problem considering travel time reliability and CO2 emission. The travel time 

distribution, CO2 emission model and the corresponding route search methodologies are 

discussed. The major achievements and conclusions are summarized as follows: 

In chapter 3, the data collection method for travel time and CO2 emission (fuel 

consumption) is introduced. Specifically, Link travel time and path travel time 

distributions are characterized using empirical probe vehicle data. Several classical 

distributions (normal, lognormal, truncated normal, and truncated lognormal) are subjected 

to K-S test, A-D test and χ2 test. It is found that the truncated lognormal distribution 

reasonably expresses the distribution of link travel time for about 90% of the links. To 

make the computation of the α-reliable paths tractable, we assume that the normal 

distribution can be used to approximate the distribution of path travel times as composed of 

truncated lognormal link travel times. And this assumption is justified by a Monte-Carlo 

simulation. 

In chapter 4, the α-reliable path problem in a stochastic network with correlated and 

truncated lognormal link travel times is addressed. The Lagrangian relaxation approach is 

applied to solve the nonlinear and non-additive problem. The availability of such reliable 

paths in a navigation system application would help travelers plan their travel time budgets 
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with a given on-time arrival probability efficiently. The proposed α-reliable path-finding 

algorithm was applied to a large-scale real-world network in Toyota city, Japan. The 

calculation performance of the proposed method was shown to be accurate within a 

reasonable computation time. 

In chapter 5, the traveler’s risk-averse preference prediction for α-reliable shortest 

path problem in stochastic network is investigated. A novel data collection methodology 

for travelers’ risk-averse preferences is introduced. The observed lower bound or upper 

bound of the risk-averse preference is collected by using the theory of stochastic 

dominance. Ordered probit model is applied to learn and predict the travelers’ risk 

preferences by considering variously individual properties (gender, age) and pre-trip 

information (OD distance, departure time, day of week). The parameter estimation results 

show that the ordered probit model enables to explain how the explanatory variables 

influence the level of risk-averse preference. 

In chapter 6, as a parallel study of risk-averse navigation, a two-stage path finding 

procedure is developed to find an experientially reliable path. Firstly, the hyperpath 

concept helps to determine a set of potential optimal paths. Secondly, the links in the graph 

of hyperpath are penalized based on the choice probability and the degree of familiarity, 

and then the A* algorithm is used to find the optimal path. There are two advantages to this 

routing method. First, any reasonable detours are taken into account and the link choice 

probability for each outgoing link from an attractive node is estimated according to the 

expected delay, which guarantees the potential optimal paths are included. Second, the 

solution provides not only the hyperpath with the recommended link choice probability, 

but also a shortest path with high degree of familiarity. This can better help travelers plan 

their trips and avoid the risk of uncertain travel time. 

In chapter 7, an eco-routing approach to address the problem of finding the most eco-

friendly path in terms of minimum CO2 emissions constrained by a travel time budget is 

proposed. The SVM based model considering the average speed, average acceleration, 

road gradient and vehicle displacement enables to predict the CO2 emission, which 

superiors to LRM and ANN model. The theory of Pareto-optimal optimization is 

introduced to solve this NP-complete routing problem. Specifically, a Pareto-optimal based 

heuristic approach combining the weighting method with the k-shortest path algorithm is 

used to find the eco-friendly path. Eco-friendly path offers significantly reduced CO2 

emissions at little cost in terms of increased travel time and short detours. On average, an 

eco-friendly path can reduce CO2 emissions by 13.02%, 10.24%, and 18.92% relative to 

the observed path, the shortest distance path, and the least travel time path, respectively. 

Compared to the observed path as selected empirically by the driver, the eco-friendly path 
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offers significant advantage in terms of travel time (reduced by 16.95%) and CO2 

emissions (reduced by 13.02%) though the travel distance is slightly longer (by 0.3km). he 

average reduction in CO2 emissions achieved by the eco-friendly path reaches a maximum 

of around 11% for trip OD distances between 6km to 9km and when the travel time buffer 

is around 10%. This indicates that setting a travel time buffer of 10% is appropriate for this 

eco-routing model, because this results in the greatest reduction in CO2 emissions for the 

least cost in terms of travel time. 

8.2 Future work 

There is significant benefit to an efficient and green transportation system by applying 

the navigation methods proposed in this study. Based on this study, there are still many 

aspects need to be further discussed. Potential directions for future research are listed as 

follows: 

(1)The α-reliable path finding could be extended to a time-varying stochastic network. 

A more accurate approximation method for path travel time distribution estimation could 

be developed by considering the skewness characteristic. In addition to spatial link travel 

time correlation, temporal correlation should be considered in the finding algorithm. 

(2)To improve the estimation of the traveler’s risk-averse preference, more factors 

such as traffic condition, trip purpose and weather condition are needed to consider. 

(3)Considering that travel time and emissions are non-deterministic, a time-dependent 

routing method needs to be extended. 

(4)A more intelligent navigation system that considers the balance of travel time, 

travel time reliability and emission will be a promising direction for further research. 
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