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Abstract

This thesis is a summary of four independent but related manuscripts

on computational design of synthetic bio-molecular systems based on

DNA strand displacement reaction.

In the first part, we report the design of the DNA-based circuit in well-

mixed chemical systems. Chemical Reaction Networks is employed as

the molecular programming principle, and Immune Network Theory

as the problem solving algorithm.

In the second part, Ant Double-Bridge System is chosen as a cue in

designing the spatially localized DNA architecture based on compu-

tation with molecular walkers.

In the third part, we discuss the model-based coordination strategy

for DNA-based agents based on Petri Nets. Preliminary experimental

results of the DNA-based Petri Nets operators are presented as a

proof-of-concept of the designed model.

In the last part, the in-vitro implementation of the DNA-based Finite

State Machine is reported. Furthermore, a design of probabilistic

DNA gate is proposed, to simulate stochastic-like computation based

on bio-molecular reactions.
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1

Introduction

1.1 Overview

Over the past few decades, DNA has been used as a non-genetic or non-biological

engineering material to develop various interesting applications at the molecular

level (3, 4, 5, 6, 7, 8). A toehold-mediated strand-displacement and branch-

migration mechanism has been treated as a promising methodology to deliver

DNA-based dynamical systems, which enables the potential of the bio-chemical

circuits to approach complexities of silicon-based ones (1) (Figure 1.1).

Numerous independent functions have been proposed on this mechanism, in-

cluding: chemical reaction networks (9, 10, 11), logic circuits (12, 13, 14, 15, 16,

17), nano-motors and synthetic walkers (18, 19, 20, 21, 22, 23, 24). Altogether,

these molecular implementation can exhibit intricate systems with growing com-

plexities, such as molecular robotics (25, 26). For example, the DNA walker

is designed to follow predetermined paths like locomotion of the autonomous

robot (20, 22). The unique thing is that the behavior of the mobile DNA is not

explicitly programmed, but it is driven by the peculiar structure interacting with

the environment. This indicates the capability of the information sensing as well.

In other reports, the capability of a tweezer-shaped and a forklift-shaped DNA

to interact with other biological materials opens the possibility for autonomous

actuation in the molecular level (23, 24). In the future, this direction is expected

to support the discovery of new therapeutics methods, such as intelligent drugs-

delivery.

1



1. INTRODUCTION

Figure 1.1: Basic of DNA strand displacement reactions. A) Toehold exchange

mechanism. B) Hairpin-based mechanism. Image was taken from (1).

Despite of its importance, there are still not so many literature and references

that address and explore the issue of the computational design of DNA-based

systems. In this work, we focus on designing and modeling of DNA-based in-

formation processing technology based on DNA strand displacement reaction

that is based on nature-inspired computation, the principle of distributed and

interaction-based model, in order to develop functions as simple as logical opera-

tion (e.g. digital logic circuit) and as complex as stochastic decision-making and

learning scheme. This is expected to introduce a new ability to bio-molecular

systems to compute and to offer a certain degree of autonomy to the DNA-based

molecular system.

One obstacle in developing DNA-based information processing systems is how

to perform mathematical operation and logical control over DNA reactions. While

numerous designs of DNA-based logic gates have been presented, performing

complex computation still remains a big challenge, due to the limitation of the

synthetic bio-molecular systems in terms of computation speed and error-rate.

Nature-inspired computation and self-organizing model can be utilized to over-

2



1.1 Overview

come this problem. In this work, the implementation of a DNA strand displace-

ment system based on nature-inspired computation is observed. We specifically

worked on Immune Network Theory, which is inspired by the principle of dis-

tributed interaction of humans natural immune system. By using mass action

kinetics model, the compilation of its DNA-based operations is derived from the

existed mathematical model. This DNA-based implementation is then compared

to the silicon-based programming. From the obtained results, we can see positive

correlations that our DNA-based Immune Network model satisfies the behavior

of the mathematical model. In robotics and applied math fields, Immune Net-

work Theory has been utilized to solve various computational problems, including

decision-making and reinforcement learning. Thus, we expect that we can also

introduce the similar capabilities to DNA-based machines by using our model.

A major challenge in the development of evolvable, autonomous, and pro-

grammable bio-molecular machines is the introduction of the ability to cope with

external stimuli. The intriguing question is: is it possible to build artificial molec-

ular systems that can learn to adapt their environmental condition? In this work,

DNA strand displacement was chosen as the main framework for modeling a DNA

circuit capable of complex computational mechanisms such as decision-making

and reinforcement learning. The design is inspired by positive and negative feed-

back mechanisms in simple systems, such as the collective food foraging of ants

colony. We show how it may be used as the basis for designing pathways of

DNA reaction systems; which exploits swarm interaction between ant-inspired

agents, spatial and temporal aspects of the designed circuit, as well as indirect

communication mediated by the environment. Our model is compatible to recent

architectures, termed spatially localized DNA circuits. In contrast with free-

floating systems, DNA complexes are immobilized on nanostructures, which in

principle speeds up the reaction and increases the efficiency. The correctness of

our model was verified in silico via quantitative measurement of reaction kinetics.

Our results indicate that the circuit adaptively responds to the present stimuli,

regardless of the initial conditions (in contrast to the currently available DNA

strand displacement systems). The potential applications of our model include

decision-making capable machine, and reusable DNA circuits.

3



1. INTRODUCTION

Coordination is an important aspect in developing distributed autonomous

systems. In silicon-based agents, designing individual-level behavior that may

emerge into one global function is a typical approach to such systems. Meanwhile,

in DNA-based agents, programming of each individuals behavior still remains a

big challenge, as they occur immediately after all reactants have been mixed into

the solution. We strive to solve this challenge by proposing a novel architecture of

interacting DNA-based molecular agents. This may be met through discretization

of bio-molecular reactions into event-driven systems by using Petri Nets model

(in contrast to natural chemical systems that are continuous and time-evolved).

First, computational primitives based on DNA strand displacement reaction are

introduced. Second, their molecular implementation is abstracted by Petri Nets

for high-level design. Third, we propose the model of interacting multi-agent

systems based on DNA-only reactions. We verify our design via computer-based

simulation and show the initial experiments of Petri Nets operators (due to the

limitation of currently available technologies, we were not able to fully tested the

DNA-based Petri Nets model as it requires single molecule preparation). From

the obtained results, we argue that our design strategy is feasible for coordinating

interaction of distributed DNA-based systems.

Molecular robotics and other autonomous molecular machines, like their me-

chanical counterparts, are expected to perform intelligent tasks under minimum

external supervisions. One strategy to accomplish such complex design is by

representing internal states of the machines by using Finite State Machine. The

transition between states is triggered by external stimuli. This can be an input

signal from external systems, data acquired from the environment, or commu-

nication signals with other machines in the case of multi-agent systems. While

there have been many proposals on how to implement deterministic transitions

by DNA reactions, e.g. by DNA strand displacement cascades, the experimental

procedure still remains a challenge. Moreover, in this work, we also propose a

new design for stochastic transitions, allowing selection of transition in case of

two or more possible next states. Our gate design is inspired by the principle

of competing-for-limited-resources and the cooperative hybridization. Further

application of such logic gate may also be applied to arbitrary stochastic DNA

computation.

4



1.2 Background

In general, our contributions can be divided into two: first is to develop

a new DNA-based algorithm that is based on swarm-intelligence computation,

and second is to bridge the current DNA computational system to any existed

mathematicals and information technology models so that in the future a gap

between molecular and traditional computing can be minimized.

1.2 Background

1.2.1 DNA Nanotechnology

Nanotechnology is a science and engineering to manipulate matters at the molec-

ular scale, sized from 1 to 100 nanometer (1 nanometer = 1 × 10−9 meter). It

ranges from many disciplines of researches, including material science, organic

chemistry, molecular biology, semiconductor physics, and so on (27). By DNA

nanotechnology, it means the nucleic-acid structure is manipulated to design and

manufacture artificial systems that are intended for other technology purposes;

rather than as a medium to carry the genetic information. It takes advantages

from the strict base pairing rules of nucleic acids, which cause the portions of

strands with complementary base sequences to bind together to form strong,

rigid double helix structures. This allows the rational design of base sequences

that will selectively assemble to form complex target structures with precisely

controlled nanoscale features. Even though other nucleic acids, such as RNA and

PNA can also be engineered, within the past few years, DNA has been the dom-

inant material, leading to the use of the name DNA nanotechnology to describe

the field.

The first scientist who is known as the father of DNA nanotechnology is

Nadrian C. Seeman from New York University, for his attempt to construct three

dimensional lattices made from DNA in the early 1980s (3). In 1991, he success-

fully realized the first synthesis of the three-dimensional nanoscale object: a cube

made of DNA, from which he was awarded with Feynman Prize in nanotechnol-

ogy years later (28). To this date, many designs have been developed; both static

structures such as two and three dimensional crystal lattices, nanotubes, polyhe-

dra, and arbitrary shapes (4, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41);

5



1. INTRODUCTION

Figure 1.2: Recent advancements from the structural DNA nanotechnology. Im-

age was taken from (2).
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Figure 1.3: Recent advancements from the structural DNA nanotechnology. Im-

age was taken from (2).
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1. INTRODUCTION

and functional devices such as reconfigurable structures, molecular walkers, and

DNA computers (12, 13, 22, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53).

Numerous assembly methods are investigated, including tile-based structures

to assemble from smaller structures, long single strand scaffold and shorter sta-

ple strands together by using the DNA origami, and dynamically reconfigurable

structures such as toehold mediated branch migration and strand displacement.

This field has then become the base for further advancement to other domains,

such as DNA-based computation, DNA nanorobotics, and so on. Figure 1.2

and 1.3 show various DNA-based nanostructures that have been developed in the

field of structural DNA nanotechnology until recent years.

1.2.2 DNA-Based Computation

DNA computing, or sometimes also referred to as molecular programming, is a

form of computing in which DNA structure is used to carry data and informa-

tion, during the process of computation. The basic principle of programming by

DNA is to exploit the programmability of DNA strands based on the specific

Watson-Crick binding of DNA bases, Adenine (A), Cytosine (C), Guanine (G)

and thymine (T). Typically, A binds with T, while C binds with G. Hence, the

sequence CGTACG hybridizes to its reverse complement (which often reversely

written) CGTACG to form a double strand DNA. These sequences can then be

designed in systematic ways to achieve particular behavior. For example, suppose

there are three molecules of A, B, and C. We can design such that the first part

of A is complementary to the last part of C, the last part of A is complementary

to the first part of B and the last part of B is complementary to first part of C.

In a maintained chemical condition, these molecules can assemble into a 3-way

DNA junction. Even another design of 4-way DNA junction can be achieved by

adding a molecule D, by following the same rules. Figure 1.4 summarizes about

this principle.

The beginning of the DNA computing was marked by the work of Leonard

Adleman in 1994 (54). By demonstrating a proof-of-concept by using DNA as

a form of computation, he solved the seven-point Hamiltonian path problem

through wet-lab experiments. This work was then extended by Richard Lipton
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Figure 1.4: Schematic representation of how DNA molecules can form a double-

stranded DNA, a 3-way junction or a 4-way junction

in 1995 (55), generalizing that this method can be useful to tackle NP-hard prob-

lems, which can hardly be solved by using a normal computer. Since then, DNA

has been argued as the promising material to develop an alternative computer or

other computing-based device in the future.

Despite of this breakthrough, in recent years, the Adleman’s method found

difficulties to progress; as this technique is prone to error or requires many ex-

perimental procedure which makes DNA-based computers practically in vain.

Therefore, lately, the direction of the DNA-based computation research is rather

to find a new way to control bio-molecular mechanisms for other engineering

purposes in the interface between computer science and other nanotechnologies.

There are various different methods in molecular programming, such as:

1. Enzymes. Enzyme based DNA computers are usually of the form of a

simple Turing machine. It is actually analogous to the hardware, in the

form of an enzyme, and the software, in the form of DNA. Example from

this work: Benenson and colleagues have demonstrated a DNA computer

using the FokI enzyme (56) and expanded on their work by going on to show

automata that diagnose and react to prostate cancer (57). The disadvantage

of this approach is since the design of the enzyme itself is also important,

it is not suitable to build a large scale application.

2. Toehold exchange. DNA computers have also been constructed by using the

concept of toehold exchange. An input DNA strand binds to a sticky end

9
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(or toehold) on another DNA molecule, which allows it to displace another

strand segment from the molecule due the difference and competitiveness of

entropy. There are a lot of work related to this approach, for example the

creation of modular logic components such as AND, OR, and NOT gates

and signal amplifiers, which can be linked into arbitrarily large comput-

ers. This class of DNA computers does not require enzymes or any other

chemical capability or design from the DNA itself (12).

In this thesis, we research about the toehold exchange method towards DNA-

based dynamical systems. Our objective is to deliver a complex system based on

DNA reactions capable of ”computation”. The detail of the implementation, as

well as the explanation about DNA strand displacement and toehold exchange

based computation will be explained in later sections. While in structural DNA

nanotechnology, attentions have been paid in designing various intricate two and

three dimensional structures, researches in dynamic DNA nanotechnology focus

on the non-equilibrium behaviors of the DNA-based systems which go through

structural changes in the addition of external fuels. Figure 1.5 shows major

domains in this area.

1.2.3 DNA Nanorobotics

The aim of DNA nanorobotics is to design and to fabricate of dynamic DNA

nanostructures that perform specific tasks via a series of states changes. At the

most references available so far, this task involve some form of robotics motion,

such as locomotion or conformational changes. These states changes can be au-

tonomous, in which case systems switch states without any external intervention;

or non-autonomous, where some amount of specific species, such as DNA strands

or enzymes, are introduced to enforce the process.

Various challenges arise in attempting to create a DNA nanorobot. The design

of the DNA robot begins at the domain level where the overall mechanisms of

the robot’s actions are planned without actually assigning DNA sequences to the

strands. Instead the different interacting segments of the DNA strands that ”act”

as the robot are assigned domain names which in the next step are assigned to
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1.2 Background

Figure 1.5: Recent advancements from the dynamic DNA nanotechnology. Image

was taken from (2).

11



1. INTRODUCTION

specific DNA sequences. The mapping of domains to DNA sequences can be done

by taking care of spurious interaction among the various domains.

Another important consideration at this stage is the fuel that powers the

robot. Typically, robots are powered either by enzymes that act upon specific

DNA strands of the robot’s components, or by the energy of hybridization of

freely floating single stranded fuel DNA. Sometimes entropic effects can be used

to power the states changes. For example, two DNA strands that are held together

by the hybridization of a small domain might denature spontaneously leading to

an increase in the entropy of the system.

Other challenges include actual assembly of the DNA nanorobot and its purifi-

cation, setting up initial operating conditions and finally designing experiments

that validate the proposed mechanism of action of the DNA nanorobot. It is very

hard to directly observe the operation of the robot, therefore other mean of real

time detection methods are often used, such as FRET, and so on.

Below are the list of reasons why DNA is a material uniquely suited for build-

ing and manipulation at the molecular scale. From the perspective of design,

the advantages are: (1) The predictable behavior can be achieved by carefully

programming the interaction of DNA sequences. (2) The basic geometric and

thermodynamic properties of the double strand DNA are well understood and

can be predicted by available software systems from relevant parameters like se-

quence composition, temperature, and solution composition. (3) Design of DNA

nanostructures can be assisted in silico. To design DNA nanostructures or de-

vices, one needs to design a library of single strand DNA strands with specific

segments that hybridize to (and only to) specific complementary segments on

other single strand DNA.

In the end, the ultimate goal of the DNA nanorobotics research is to create

an autonomous machine working at the molecular level. This is interesting, since

working at nanoscopic domain is still complicated so far, and it may open many

possibilities of technology advancements in the future. By autonomous machines

it has an analogous meaning to the traditional robots, that the molecular robots

should possess the capability to interact with their environment, and to utilize

those information to make an appropriate action without any intervention from

outside resources. Since developing this kind of machine at the nanoscopic level by
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using silicon-based materials will be very difficult, the usage of the bio-materials

such as DNA became a promising proposal. The idea is, instead of manufactur-

ing the robots from the scratch, the self-assembly property of the biochemical

systems can be utilized. The challenge is how to direct the interaction of those

biomolecular components to achieve certain purpose as we intend.

1.3 Scope and Objectives

The DNA nanotechnology is an emerging study with a broad scope that crosses

many different disciplines, such as: bio-chemistry, molecular bio-physics, mathe-

matics, computer science, and so on. As mentioned earlier, generally, directions of

this field can be divided into two: structural DNA nanotechnology, and dynamic

DNA nanotechnology. The work presented in this thesis is relatively close to the

second mentioned. In this research, we particularly focus on the computational

design and information processing strategy based on a particular bio-molecular

mechanism termed DNA strand displacement. The substantial challenge is how

to enable computation (as simple as logical control, and as complex as decision-

making and learning capability) through the DNA-based reaction. Further ap-

plications of the designed systems include molecular robotics and DNA-based

computer.

We studied two different architectures of the DNA circuits. First, the free-

floating circuit, or the well-mixed chemical system. In this type of system, DNA

strands that are the objects of interest in our design, move freely in a liquid solu-

tion within a test tube, like almost all chemical solutions in wet lab experiments.

Second, the spatially localized circuit. This architecture is developed recently to

offer new advantages for DNA-based circuit, such as sped-up reaction, lower error

rate, and so on. The main idea is to tether the DNA strands participating in the

computational process onto a static structure, such as DNA origami; so that the

computation can be restricted spatially.

We designed decision-making and reinforcement learning strategies for both

architectures by taking inspiration from swarm intelligence in nature. Specifically,

we worked on Immune Network Theory (for the well-mixed chemical system),

and Ant Colony System (for spatially localized system). We develop models of
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computation that exploit the distributed interaction among participating indi-

viduals, the indirect communication method mediated by the environment, and

the positive-negative feedback arise from the massively interacting network.

In this work, we also employ a decision making or action taking scenario as

a test-bed for our computational model. One of the challenges in promoting a

higher level of intelligence to a molecular robot is to introduce the capability

to cope with the changes within its environment. Decision making is an impor-

tant feature that deals with the adaptability when a robot is not equipped with

complete information. In this research, DNA Strand Displacement is chosen as

the main framework to develop a DNA-based decision making system. The im-

plementation of a action taking model itself is inspired by the principle of the

human body’s immune system, which relies on a dstributive interaction between

the involved components (referred to as antigen and antibody), which compete

to remain as the best population. In this scenario, a robot is given numerous

choices of actions in order to deal with a particular problem. The robot is then

reinforced to decide which action is the best for any given problem.

Lastly, the implementation of DNA Strand Displacement system based-on

nature-inspired computation is observed. By using the Immune Network Theory

and Chemical Reaction Network, the compilation of DNA-based operation is de-

signed and the formulation of its mathemical model is derived. Furthermore, the

implementation on this system is compared with the traditional implementation

by using silicon-based programming. The objective of this research is too see a

positive correlation between both. Thus, we intend to seek a novel compilation

method from any existed mathematical model into biochemical reaction in or-

der to solve particular computational problem. In summary, the execution of all

works in this thesis and how they are connected each other is captured by the

flowchart in Figure 1.6 and the research position in Figure 1.7.

1.4 Organization

This thesis is a summary of four independent research papers on computational

design of synthetic bio-molecular systems based on DNA strand displacement

reaction. They may be seen as independent results; however still in a related
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1.4 Organization

Figure 1.6: Research flowchart

scope. We will begin with some brief explanation in Chapter 2 about basic

theories and frameworks that are used throughout the article. The major results

of our works are reported in four different chapters, respectively from Chapter 3

to Chapter 6. The arrangement of the contents is mainly according to the time-

flow of the research execution (and related papers being published); with some

adjustment are made to create a coherent narrative. In Chapter 7, we finally

summarize our works and point out several challenges that can be considered in

the future. One additional chapter is added to present the in silico implementation

of the designed systems, which may also be a useful reference.
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Figure 1.7: Research position, with bold-line border boxes represent what are

covered in this thesis

16



2

Frameworks

2.1 Theoretical Foundation

This section briefly introduces the theoretical foundations used in the rest of

the thesis. All other theories specific to the work of particular chapters will be

discussed separately.

2.1.1 DNA Strand Displacement

Toehold-mediated three-way branch migration DNA strand displacement (or sim-

ply DNA strand displacement) is a stochastic biochemical mechanism, where sin-

gle strand DNA as input signals react to pre-hybridized multi strand complexes

(or gates) to release other single strand DNA as output signals through a process

termed branch-migration (1). This process can be viewed as a computational

mechanism, with DNA as a medium to carry the structure as well as the infor-

mation. Among all DNA manipulation techniques available so far, DNA strand

displacement is said to be superior as it does not require any different molecules

design such as the restriction enzyme. Therefore, it is suitable for large applica-

tion designs (13, 16).

Figure 2.1 shows the basic reaction of DNA strand displacement. Abstractly,

a DNA strand is seen as consecutive sub-sequences (or called domains). The

design of DNA sequences is done at the domain level, and a complete sequence

is obtained by combining all corresponding units. By doing this, we can avoid
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the need to work with the nucleotide sequences directly. Instead, we treat the

domain as the simplest functional unit in the computation. Arbitrary alphanu-

meric characters represent the coding sequence and asterisk signs represent their

complements (A with T, C with G, and vice versa). One character consistently

represents the exact sequence.

There are two different types of domain, depending on the sequence length.

A toehold (color-coded) is a short part (between 4-6 nucleotides) that triggers

the whole reaction through reversible hybridization. A non-toehold is a longer

part (approximately 20 nucleotides) that provides irreversible binding power once

hybridized. The reaction begins as soon as there are free toeholds in an input

strand and a gate complex (domain 2 of A and 2* of T1). Their interaction

accelerates the branch migration process if the adjacent domain also shares the

same region (domain 3 of A). The old domain (domain 3 of B) will be ejected,

leaving the unstable binding of the other toehold domain (domain 4 of B). As a

result, an output strand will be released. Note that this reaction can be reversed

as the whole process exposes new toeholds that may bind each other (i.e. another

reaction that consumes strand B and complex {A, C}, and produces strand A

and complex {B, C}).

A + T1

k1−⇀↽−
k2

T2 + B (2.1)

Equation 2.1 shows the equivalent chemical reaction to the DNA strand dis-

placement process in Figure 2.1, assuming all the sequences matches the coding

and the branch migration happens instantaneously.
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2.1.2 Chemical Reaction Networks

Chemical Reaction Networks (or CRNs) is an applied mathematics theory that

models behavior of biochemical reaction systems in term of ordinary differential

equation. Suppose there are chemical species A, B, and C involving in a chemical

reaction as in Equation 2.2.

A + B
k1−⇀↽−
k2

C (2.2)

The kinetics of the reaction can be observed by instantaneous changes of each

species as in Equation 2.3.

d[A]

dt
=
d[B]

dt
= −k1[A][B] + k2[C] (2.3)

d[C]

dt
= k1[A][B]− k2[C]

Where [A], [B], and [C] are population numbers of species at any time t. The

reaction can be divided into two different reactions. First, a reaction where species

A and B act as the reactants, and C as the product (or the forward reaction with

constant rate k1). Second, a reaction where species C acts as the reactant, and

A and B as the products (or the backward reaction with constant rate k2). The

number of products depends on how many reactants’ molecules collide each other

through the reaction, which is denoted by the reaction rate.

Therefore, in the case of the forward reaction, it is shown by the first line

of Equation 2.3. The second line depicts the backward reaction. The plus and

minus signs distinguish the products from the reactants, which should be positive

when the species are produced and negative if they are consumed.

Soloveichik, et al. in (10) showed that CRNs can be utilized as a formulat-

ing tool in programming arbitrary DNA-based systems with complex behavior.

Since DNA is basically a biochemical substrate, its reaction kinetics also follows

the CRNs principle. By seeing this as a reverse problem, corresponding DNA

operations can be designed to achieve the intended behavior of chemical sys-

tems. For example, in (10) a DNA-based Lotka-Volterra model and a limit cycle

oscillator are successfully implemented.
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2.2 Methods

We evaluate our design by means of wet-lab experiments and software-based

simulations, as presented in this section.

2.2.1 Wet-Lab Experiments

All sequence designs were performed with computer-assistance at the domain

level. First, a set of nucleotide sequences were generated, according to the follow-

ing rules: 1) one sequence is made from only three bases: A, C, and T to minimize

secondary structure formation (G only occurs in complementary sequences), 2)

no more than four consecutive As and Ts or three consecutives C are included

in a row to reduce synthesis error, and 3) the number of Cs is maintained in

between 30%-70% to ensure comparable melting temperature (13) (52). Second,

after generation, all sequences were checked by using NUPACK (58) to simulate

the secondary structure and interaction, and were manually modified if necessary.

After design, DNA oligonucleotides were purchased from Eurofins Genomics,

unpurified or purified by high performance liquid chromatography (HPLC) in

powder form. To prepare master-stock solutions, these DNA oligonucleotides

were suspended in distilled water (Millipore) to reach a concentration of 100

µM. From each stock, experiment-ready solutions were made, by first diluting the

master stocks to 20 µM with 1x TAE/Mg2+ (containing 12.5 mM magnesium

acetate) buffer, and then quantifying the correct concentration by UV absorbance

at 230 nm. This quantification was performed by using a Malcom Micro UV-VIS

Spectrophotometer (ES-2). Each sample was measured at least twice and the

values were averaged to confirm the correctness of the quantification. From the

measured results, extra 1x TAE/Mg2+ buffer was added to achieve stoichiometry-

correct 10 µM stock solutions.

DNA gates were annealed together by mixing 6 µl of all component strands

from experiment-ready stocks to make 50 µl solutions. For sequential gates,

this means adding 32 µl of 1x TAE/Mg2+ buffer; and for synchronization and

concurrent gates, this means adding 26 µl of 1x TAE/Mg2+ buffer to the mixed

solution. Annealing process was performed by using a Bio RAD C1000 Touch
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Thermal Cycler, by first heating the solutions to 95oC for 10 minutes and then

slowly cooling to 20oC at a rate of −1oC/minute.

Kinetics experiments were performed by using a Hitachi F7000 spectropho-

tometer with an Eyela NCB-1200 thermal bath. Annealed gate samples were

mixed together with input signals in a 0.9 ml 28-F/MS cuvette with magnetic

stirring (Pacific Science Corp.) The Solutions were prepared to reach a total

volume of 600 µl. The concentration of output signals was monitored by the

FRET technique, by reading the fluorescence excitation changes corresponding

to particular output signals (details for this method can be found in the sup-

plementary information). The two different fluorescence molecules used in these

experiments were FAM (excitation: 495 nm, emission: 520 nm) for all operator

experiments, and ROX (excitation: 580 nm, emission: 610 nm) for concurrent

operator experiments. As our machine could only measure one wavelength at one

time, for sequential and synchronization operators, time-scan measurements were

performed. However, for the concurrent operator, monitoring was performed at

the FAM channel. Wavelength measurements were performed to compare the

initial and final conditions of both fluorescences. All kinetics experiments were

done at 25oC. The following figures depict instruments used in this work.

2.2.2 Software-Based Simulations

We set up software-based simulations to evaluate the DNA-based implementation

in-silico by using Visual DNA Strand Displacement Simulator from Microsoft

(http://boson.research.microsoft.com/webdna/).

This tool provides a programming language for designing composable DNA

circuits based on toehold exchange, branch migration, and strand displacement

as the main computational mechanisms. It compiles a collection of DNA strands

into a reaction network, and provides reaction kinetics simulation based on deter-

ministic or stochastic algorithms (59). Visual DSD has been used to verify many

actual implementation of DNA-based systems, which motivated the use of this

software in our study (53) (52).
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Figure 2.2: Thermal-cycler machines
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Figure 2.3: Spectrophotometer for fluorescence measurement
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Figure 2.4: UV spectrometer for DNA quantification
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Figure 2.5: Camera for gel imaging
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Figure 2.6: Screen-shoot of Visual DSD code compilation

Figure 2.7: Screen-shoot of Visual DSD code compilation (reaction network

graph)
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Figure 2.8: Screen-shoot of deterministic simulation

Figure 2.9: Screen-shoot of stochastic simulation
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3

Immune Network-Based DNA

Circuit

One of the biggest obstacles in the molecular programming is that there is still

no direct method to compile arbitrary mathematical models into biochemical

reactions in order to solve given computational problems. In this paper, the

application of the DNA strand displacement system based on the nature-inspired

computation is observed. By using the Immune Network Theory and Chemical

Reaction Networks, a compilation of DNA-based operationsand the formulation of

its mathematical model are derived. Furthermore, the application of this system

is compared with the conventional implementation by silicon-based programming.

From results obtained, we can see a positive correlation between the two. One

of the possible applications of this DNA-based model is for a decision-making

scheme of intelligent computers and molecular robots.

3.1 Introduction

Both theoretical studies and experimental results have been demonstrated on

DNA nanomachine devices (5, 7, 10, 12, 13, 51, 52). A toehold mediated strand

displacement and branch migration mechanism have been treated as a promising

methodology to provide dynamical systems, which allows the bio-chemical circuits

to approach the silicon-based machines functionality. While most attention has

been paid to the development of the mechanical function of nucleic-acid based
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3. IMMUNE NETWORK-BASED DNA CIRCUIT

molecular agents, such as DNA walkers and motors (9, 18, 19, 20, 21, 22), there

is still a large gap where there is not many references can be found regarding the

design of computation and information processing strategies by using DNA.

One of the biggest drawbacks of DNA-based information processing system

is that performing computation on the DNA strands is a non-trivial task. Even

nucleotides can store information in a manner similar to binary numbers, the pos-

sible manipulation is limited. This makes the coding of mathematical operations

in bio-computers is not as straightforward as in dry computers. On the contrary,

the predictable behavior of the Watson-Crick pairs and simple hybridization can

be used as a mechanism to program at the molecular level (10, 13, 16, 17, 60).

In (52) and (61), nature inspired computational methods, such as neural-networks

and the artificial immune system, have been used as strategies to develop DNA-

based systems capable of decision-making. It opens the possibility of DNA to

perform more complex tasks in various intelligent applications. However, the

design of DNA reactions and motifs are still limited to some specific problems.

This leaves a question: given an arbitrary mathematical model to solve a com-

putational problem, can we directly build a DNA-based system with the same

behavior?

In this work, we extend the idea of a self-organizing algorithm, namely Im-

mune Network Theory, to describe a DNA-based interaction system. This model

has been used to solve many computational problems, including decision-making

and reinforcement learning (62, 63) in machine learning, robotics, and artificial

intelligence. Here, we obtain the correlation between the DNA-based implemen-

tation with the mathematical formulation, in order to seek a more schematic way

to compile DNA Strand Displacement reactions.

To approach the solution to this problem, we express the DNA reactions above

mathematical notation referred to as Chemical Reaction Networks (CRNs). For

decades, CRNs has been used to describe and analyze the kinetics of chemical

reaction systems. Given arbitrary chemical reactions, in which substrate of reac-

tants are well-mixed in a defined reaction rate constant to produce other chemical

products, we can obtain instantaneous changes of substrate population from time

to time, in terms of differential equations. The CRNs has also been demonstrated

as a powerful tool for molecular programming because it can simulate a variety
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of complex dynamical systems implemented by DNA Strand Displacement reac-

tions, including the Lotka-Voltera model (10).

In general, our contribution can be divided into two. First, we develop a new

DNA computing algorithm that is based on the principles of swarm intelligence

and interaction between DNA strands in vitro. Second, we bridge the current

DNA computing systems to the existing mathematical model, so that in the

future the gap between traditional and molecular computation can be minimized.

3.2 DSD-Based Computational Operator

The compilation of computational procedures from DNA strand displacement

reactions can be done in various ways. Among all available design to date, the

fundamental is to encode information signals as single strand DNA with uniform

structures. For example, in (60, 64) the 3-domains design was introduced. The

work in (10) employed the 4-domains structure instead. Additionally, a set of

multi-strand DNA complexes or gates are treated as the fuel for the reactions.

Their design varies depending on input and output signals. To maintain the

reactions run long enough, we assume that the amount of the multi-strand DNA

are largely available in the system that it will not exhaust within the given time.

In this chapter, our DSD-based computational operators (or simply DNA

operator) are implemented by following the principles as outlined in (10). We

employ the 4-domains coding for DNA signals, which consists of two non-toehold

domains and two toehold domains situated between each other. The first non-

toehold is the history domain. It stores information of previous interaction, to

which DNA gates the signal bound previously. Two same signals may possess

two different history domains, as they may be produced from different reactions.

The first toehold is the reaction initiator. It triggers the whole branch migration

and strand displacement processes. The second non-toehold is the signal identity.

It is unique for each single strand DNA as it captures different information. The

second toehold is an additional domain that is necessary to establish irreversible

reaction in particular steps.
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A template of general-purpose DNA gates can be designed that accepts m

number of input strands to produce n number of output strands (m and n are

arbitrary positive integers). There are two main parts of this operator. The first

part is the structure that receives all input strands, or referred to as the binding-

operator, which is shown in Figure 3.1. When an input strand (left-side) binds

to the binding-operator (center), an auxiliary strand (a single strand with a dif-

ferent structure with the input signal) is released (right-side) as denoted by the

horizontal dashed arrow. The structure of the binding-operator is changed and a

new toehold domain for the following reaction becomes available (denoted by the

vertical reversible arrow). Then, the next input signal may proceed consecutively

until the last expected input presents (the recurrent process until the m-th itera-

tion is shown by the ellipsis mark). Eventually, a new longer intermediate single

strand DNA, as referred to as the trigger strand, is released. This step marks the

binding of all inputs and the trigger strand will be used in the next part of the

DNA operator to signal the release all output strands as shown in Figure 3.2.

The second part is the structure that releases all output strands, or referred

to as the releasing-operator. It has a simpler structure compared to the first one.

The length of the trigger strand depends on the number of the output strands.

It consists of a toehold that has a free complement available in the releasing

operator. As these toeholds bind, the rest of the sequences thereafter displaces

all the single strand DNA bound to this complex, which will be the final output

strands. This last step depicts the transformation of m number of input strands

into n number of output strands. This is sufficient to our objective to design

the event-based computation by DNA. The number of single strand DNA in the

system remains constant, whether in a form of active signals or bound to DNA

gates. On the contrary, the active multi-strand DNA complexes will be turned

into wastes as soon as they are involved in a reaction. All DNA strands that have

to be initially prepared are denoted by the rectangular shapes.
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X1 + Ti1
k1−⇀↽−
k2

Ti2 + I1

...

Xm−1 + Tim−1
kx−⇀↽−
ky

Tim + Im−1 (3.1)

Xm + Tim
ki−→ Tiwaste + Trig

Trig + To
kj−→ Towaste + Y1 + ...+ Yn (3.2)

This whole operation is equivalent to a chemical system, as denoted by Equa-

tion 3.1 and Equation 3.2, where X1, ..., Xm are a set of input strands, I1, ..., Im−1

are a set of intermediate strands, and Y1, ..., Yn are a set of output strands re-

spectively; Ti1, ..., T im, To, Tiwaste and Towaste are sets of multi strand DNA

complexes or DNA gates; Trig is the trigger strand; and k1, ..., ki, kj captures

the reaction rates.

X1 + ...+ Xm
ki−→ Y1 + ...+ Yn (3.3)

From the point of view of computation, these reactions can be simplified into

a transformation function that converts the m-number of input signals into n-

number of output signals, as depicted by Equation 3.3. All auxiliary strands

other than input and output signals are semantically not important in this case

(note that from the point of view of experiments, they may affect the kinetics

difference). To make their presents insignificant, we assume that their amount

can be maintained constant throughout the reaction, either by providing a very

large number of population or constantly replenishing the depleted fuels. These

auxiliary strands are also treated as inputs with amount a lot bigger than the

DNA gates, since the increasing of their numbers are linear the consumed DNA

complexes.
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3.3 DNA Mathematical Model

3.3.1 Jerne’s Immune Network Model

Living organism is an indefinitely huge system consisting of small billion particles

working together to provide several functions. One of the example is the human’s

natural immune system. Whenever our body encounter the present of foreign

molecules, referred to as antigen, it triggers a self-defense mechanism to cancel

the attack. While it is still unclear how this multilayer system works specifically,

it is known that this defense mechanism is solely driven by distributed interaction

of specific part of the immune system’s cells, referred to as antibody.

For most of the cases, the immune system can respond accordingly, despite the

huge numbers and unlimited possibilities of the antigen types, without given any

prior information. This may happen through the recognition process between the

antibody and the antigen, which principle is similar to the key-and-lock mecha-

nism. Both antibodies and antigens are ”made” of certain receptor combinations

that match each other. When they find their suitable matching, an antibody

binds and kills the antigen through further processes that involve a different type

of cells, which also stimulate the production of the antibody from the same type.

As their number increases, the more antigens will be bound and eliminated. On

the contrary, the rest type of the antibodies naturally die in the absence of interac-

tion with the antigen. This competing process between the positive and negative

feedback leaves only the fittest antibody to work in the system effectively. This

shows the adaptability of the natural immune system (63), which can be adopted

in designing a learning model and decision-making capability of the DNA-based

system.

Furthermore, not only the immune system can respond correctly to the ini-

tially unknown stimulus, it also responds faster in the second occurrence of the

similar pathogen attack. While how this mechanism works is yet still unrevealed,

some studies mentioned that this occur due the ”memory” as well as the learning

capability of the immune system. One of the most popular hypothesis, termed the

Immune Network Theory ( proposed by Niels Jerne (62)), stated that the inter-

action within the immune system does not only happen between the antibodies
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Figure 3.3: Model of immune network

and antigens, but also among the antibodies themselves. As the results, they

maintain the number of each population from the past experiences in relatively a

high amount. As a new and different antigen comes attacking, the balance of the

system will be disrupted. They again converges into another new stable state if

the better new antibody is found.

This interaction can be abstractly represented as building blocks, which is

shown in Figure 3.3. Suppose the different types of antigens and antibodies are

shown by particular shapes, and the matching between them are captured by

those are complementary to each other. In the immune system, these parts are

termed as an epitope for the antigen and a paratope for the antibody. The binding

process can happen when a paratope locks an epitope. In this case, the antibody

is said stimulated and the antigen is said suppressed. For example, the antigen’s

epitope in Figure 3.3 matches with antibody I’s paratope, but not with antibody

II’s one. However, according to Jerne’s theory, instead of only having a paratope

as a binding side, an antibody also possesses another region called an idiotope

which binds to other paratopes. Therefore, an antibody with an idiotope is

treated similarly to an antigen and it will be suppressed by another antibody with

a paratope. From Figure 3.3, this is captured by the relation of antibody I and

antibody II. According to these interactions, there are indirect communication

mechanisms between antibodies maybe be established at the large-scale. They

provide indirect response to the previously unknown molecule’s attack.
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d[ai(t)]

dt
=

[ M∑
j=1

mijaj(t)−
M∑
k=1

mkiak(t) +
N∑
n=1

minbn(t)− ki
]
ai(t) (3.4)

d[bn(t)]

dt
= −

N∑
n=1

mniai(t)bn(t) (3.5)

The mathematical formulations of the Immune Network Theory for antibody

ai and antigen bn at time t are denoted by Equation 3.4 and 3.5. Suppose there

are M -number of antibodies and N -number of antigen, there are four important

terms to describe the changes of an antibody through time: 1) the stimulation

rate with other antibodies to which its paratope binds, 2) the suppression rate

with other antibodies to which its idiotope is bound, 3) the stimulation rate

with antigens, and 4) the natural death rate. The affinity is a parameter that

describes the closeness between antibody i and antibody j, which is described

by parameter mij. This determines the quantitative degree of how they match

each other (1 means a perfect match, and 0 means totally different). The affinity

between antibody i and antigen bn is denoted by min, and the natural death’s

rate of the antibody ai is depicted by ki. On the other hand, the change of the

antigen is only determined from its interaction to antibodies, which is denoted

by parameter mni. W discuss how to compile this equation into DNA reactions

in the following section.

3.3.2 Formalization of DNA-Based System

In compiling Immune Network Theory into DNA reactions, the first thing to do

is to determine the structure of the interaction network itself. Suppose there are

three arbitrary and different antibodies: A1, A2 ,and A3 interacting in an Immune

Network model as Figure 3.4.a. The stimulation rates are shown by solid colored

lines, while the suppression rates are shown by dashed gray lines. The antibodies

and antigens interaction are represented by this stimulation and suppression rates,

which are represented by affinity values ranging from 0 to 1. These values also

show how fast an antibody stimulates or suppresses others. Therefore, the affinity

values are similar to the reaction rates in a chemical reaction system. Figure 3.4.b
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Figure 3.4: Interaction model between antibodies and affinity matrices
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shows the derivation of the affinity matrix that determines the affinity values of

the antibodies (note that affinities values with antigens are not shown in this

figure).

The affinity values are reciprocal. Therefore, the relation between the stimula-

tion and suppression rates for particular antibody x and y satisfies αxy = c×βxy,
for any constant c. The ratio between these rates varies depending on particular

antibodies (e.g. the ratio between α12 and β12; and α13 and β13 may not be

the same). For simplification reason, we assume that this ratio is uniform for all

antibodies. Therefore, the suppression matrix is actually a scalar multiplication

of the stimulation matrix. In our model, we use c = 1, so that α12 = β12 = k12.

Lets consider an example of antibodies A1 and A2. A2 is stimulated by A1

(consequently, A1 is suppressed by A2). Thus, the increasing level of A2 is equal

to the decreasing level of A1, ruled by reaction rate k12. This interaction may only

happen when both species exist within the system. Therefore, this is equivalent

to the consumption of A1 and the production of A2 in the presence of both. As

shown in Equation 3.6, the number of A1 is reduced by one in the reactants side

or the left-hand side of the equation, while the number of A2 is added by one in

the products side or the right-hand side of the equation. The same principle can

be applied to the rest of interaction from Figure 3.4, to obtain their equivalent

chemical reactions.

A1 + A2
k12−−→ A2 + A2

A1 + A3
k13−−→ A3 + A3

A2 + A3
k23−−→ A3 + A3 (3.6)

A2 + A1
k21−−→ A1 + A1

A3 + A1
k31−−→ A1 + A1

A3 + A2
k32−−→ A2 + A2

The antigen-antibody interaction, where γ is the best-match antibody that

can be substituted by either A1, A2 or A3; andX is the antigen, can be determined
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in the similar way. Equation 3.7 and 3.8 shows about this, and the death rate

that limits the population growth from exploding.

γ + X
kx−→ γ + γ (3.7)

A1
d1−→ ∅

A2
d2−→ ∅ (3.8)

A3
d3−→ ∅

The kinetics of the chemical systems can be observed from Equation 3.6 to

Equation 3.8, by using CRNs as previously described in Section 2.1.2. This is as

summarized by Equation 3.9 and 3.10.

d[A1]

dt
= ((k12[A2] + k13[A3])− (k21[A2] + k31[A3]) + kx[X]− d1)[A1]

d[A2]

dt
= ((k21[A1] + k23[A3])− (k12[A1] + k32[A3]) + kx[X]− d2)[A2] (3.9)

d[A3]

dt
= ((k31[A1] + k32[A2])− (k13[A1] + k23[A2]) + kx[X]− d3)[A3]

d[X]

dt
= −kx[γ][X] (3.10)

From here, the CRNs of our Immune Network Model can directly be compared

to the Equation 3.4 and 3.5. For example, all species in Equation 3.9 have equal

terms to Equation 3.4. On the first term, the affinity value mij is equal to

the reaction rate, and the stimulating antibody aj(t) is equal to the different

species that stimulate it. On the second term, the affinity mki is also equal to

the reaction rate, and the suppressing antibody ak(t) is equal to different species

that suppressing it. On the third term, the reaction rate with the antigen and its

number at the given time determine the affinity value min. One the last term,

it is shown the death rate of each species. Equation 3.5 and 3.10 undergo the

similar analysis as they show the correlation between antigens model. From here,

we can implement the chemical reactions in Equation 3.6 to Equation 3.8 into

corresponding DNA operators by following the outline as explained in Section 3.2.
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To design the natural death operators, the structure of the multi-stranded

DNA complexes only consists of the binding-operator since there is no output

strand is expected. Other additional DNA gates are called buffering operators,

which are useful to slow down the reaction rate at some particular situation,

for example in an oscillating behavior such as in Lotka-Volterra model. It is

important to maintain the low reaction rate so that no species dies prematurely

from the system. However, we assume that all reactions in our design occur under

the same environmental conditions and the reaction rates for each DNA strand

is also assumed to be equal. A multi-strand DNA complex that can reversibly

bind to every single strand DNA can be implemented to slow down the reaction

as they are competition between the main operators and the buffering operator.

The buffering reaction is reversible, so it does not permanently reduce the amount

of the input strands but only delay the whole reaction. The buffering operator

design is similar to the natural death with additional toehold domain on the

right-end to facilitate reversible reactions.

3.4 Simulation Results

To evaluate the implemented model, we utilize a software-based simulator called

Microsoft Visual DNA Strand Displacement and to compare the obtain results

with the mathematical implementation by using Matlab. Visual DSD is a tool for

programming language of composable DNA circuits that includes basic elements

of sequence domains, toeholds and branch migration (65). It compiles a collection

of DNA strands into a reaction network based on DNA strand displacement. The

software also includes a deterministic and stochastic simulator to graph species

population over time. It work under main assumption that there is no secondary

structure of the involving strands. The usage of this simulator at this stage

was motivated by previous works that has been run and verified by using this

simulator, including the actual implementations of DNA strand displacement-

based systems (17, 60).

There are two different scenarios taken into considerations. First, the case

of partial interactions among antibodies only and without any antigen presents.

Furthermore, the affinity values are integer and given fix, and there are two cases
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where natural death operation occurs and does not occur. Second, the case of full

interactions among antibodies and between antibodies and antigens. The affinity

values are real numbers given randomly, and there are two cases where natural

death operation occurs and does not occur. Figure 3.5 and 3.6 show the imple-

mentation results from the first scenario. As expected, the DNA-based Immune

Network model shows an oscillatory behavior since all antibodies interact with

equal affinities and there is no stimulation from external by any antigen. The

left-side of the figure shows the implementation of the DNA-based model, while

the right-side shows the implementation of mathematical model by computer pro-

gramming. The time unit and population is arbitrary, on the real experiments it

may vary depending on reaction rates and concentration. The small differences

between numbers of population and simulation time are neglected as at current

time we are only interested in the behavior of the system. The most optimized ex-

perimental results can be obtained by setting up appropriate parameters (such as

reaction rates). As shown in this figure, our DNA-based implementation behaves

similarly to the mathematical model.

Figure 3.7 and 3.8 shows the implementation results from the second scenario.

As expected, there is one antibody rises as the best solution depending on its

affinity value to the antigens. In this case, multiple antigens are given as stimulus

and there is variation on the affinity values as well, and we confirmed the result

of our implementation. Similarly, we compared the result from our DNA-based

implementation to the mathematical model implementation. Both systems show

a similar behavior under the same initial condition.

In summary, these results demonstrate the potential of our model to be im-

plemented in the DNA-based decision-making capable system. The system’s ca-

pability to infer a different answer under different stimulus shows the adaptivity

of our model. This architecture is expected to work in a dynamic environment,

where the environmental conditions or given problems that may change over time.

The system also accepts multiple numbers of antigens. The affinity matrix can

be further optimized in-silico by properly adjusting the initial condition of input

strands.
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Figure 3.5: Simulation results of partial and ideal interaction among antibodies
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Figure 3.6: Simulation results of partial and ideal interaction among antibodies
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Figure 3.7: Simulation results of full interaction among antibodies and antigens
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Figure 3.8: Simulation results of full interaction among antibodies and antigens
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4

Ant System-Based DNA Circuit

The main challenge in developing of evolvable, autonomous, and programmable

biomolecular machines is to introduce the ability to cope with external changes.

In this study, we use DNA strand displacement as the main mechanism for mod-

eling a complex-computation capable DNA circuit. Particularly, we focus on a

system that can be reinforced to make intelligent decisions. The goal is to design

a reactive synthetic bio-molecular system that is also adaptive to external stim-

ulus. An instance of nature-inspired computational algorithms, namely the ant

food-foraging system, has inspired the design in this work. It also incorporates

the usage of DNA-based geometrical components or nanostructures, termed DNA

origami. We verified the correctness of our algorithm in-silico through quantita-

tive measurement of reaction kinetics. From the obtained results, it is indicated

that the circuit can respond correspondingly regardless of the initial conditions,

with some limited thresholds. This is in contrast to the currently available DNA

strand displacement systems that are dependent to their initial conditions and

can only be used for once. The potential applications include decision-making

capable machines, and reusable DNA circuits.

4.1 Introduction

Adaptation is a key for survival. For decades, the idea of evolvable machines

has intrigued many scientists, both from computer science and biology. The

emerging study of molecular robotics and computer has been an active field of
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research in recent years. The latest progress of DNA nanotechnology has intro-

duced more sophisticated biomolecular systems that are autonomous (20, 21),

programmable (66), and both autonomous and programmable (26). The next

challenge is, as discussed by Murata et. al.: Can we build artificial molecular

systems that learn to adapt their environmental condition? If it is possible what

kind of design fundamentals should be taken into consideration? This feature

is important for designing biological machines at the molecular level, such as

molecular robotics (25).

Due to the programmability and predictable behavior of the Watson-Crick

pairing, DNA has raised as a substrate of choice for building various interesting

applications at the molecular level (1, 2). Progress toward this direction has

been made in the rational design of DNA-based components, such as sensors and

motors (67, 68), circuits (13, 51, 53), and structures (7, 69). The appropriate

biomolecular information processing technologies are on demand as the complex-

ities of such applications grow. One of the most successful approach in delivering

DNA-based dynamical systems is the toehold-mediated and three-way branch mi-

gration DNA strand displacement system (termed DNA strand displacement or

DSD), for its modularity and robustness for computations involving biochemical

materials (1).

Surprisingly, only a few have attempted to design DNA circuits by taking

inspiration from how natural systems process and carry information. One of the

most seminal demonstrations to date is the brainchild of Qian and Winfree (52).

Having been inspired by the way human brain performs computation, they devel-

oped a DNA system that can be ”trained” to memorize patterns and to deduct

the correct answer when incomplete stimulus are present. Soon after, Genot et al.

dramatically reduced the number of required operators by their simplified design,

thanks to the cues from the distributed competition for shared resources. This

mechanism can be observed in various population dynamics, for example during

the enzymatic replication process (70).

Soloveichik et. al. conceptually outlined general designs of DNA strand

displacement-based systems by utilizing a mathematical-chemical notation, termed

Chemical Reaction Networks (CRNs) to reverse-engineer chemical reactions into

DNA primitives. In this work, they demonstrated various classes of dynamical
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systems, such as the Lotka-Volterra model, limit cycle, and state machine, which

can be implemented over DNA strand displacement semantics (10). Additionally,

Mardian et al. formulated the correlation between the DNA-based implementa-

tion and the mathematical models based on a specific form of nature-inspired

computation, namely the Immune Network Theory. Theoretically speaking, this

approach can be employed to develop synthetic biomolecular systems that are

capable of decision making, directed by the mutual interaction between the in-

volving species (71).

In this chapter, we investigate another algorithm based on nature-inspired

computation that can be utilized for designing a DNA-based circuit that can be

reinforced to learn to adapt to a dynamic environment or sudden changes. We

take an inspiration from the by positive and negative feedback mechanisms and

distributed-cooperative interaction underlying the colony of ants. For decades,

this computational metaphor has been investigated in computer science and ap-

plied mathematics. To date, there have been various formulations on its mathe-

matical model as well (72).

Ants are simple creatures with physical limitations. For example, some species

of ants are blind and have very few brain cells compared to humans. However, in

a group, they are capable of performing intricate tasks with a complexity beyond

their individual capacities. For instance, despite the absence of a central leader

and movement coordinator, in collecting food, a colony of ants is always able to

find the most effective route and the shortest-possible path for transporting food-

loads to the nest. Interestingly, this process emerges from distributed interaction

between ants, without any individual awareness and full comprehension of the

overall happening process. An ant behaviorally acts simply to respond the local

encountered stimulus.

This process can be adopted to design DNA-based interaction in a test tube.

DNA strands can be treated as ”self-interested agents” coexist in a swarm pop-

ulation with no awareness of each other presence. They are ”selfishly” attracted

to their complementary sequences through hybridization or toehold exchange.

These massive interactions, which can be directed through appropriate design of

their reaction pathways may lead to the establishment of equilibrium states. We

show how the ant-foraging behavior can be employed as a basis for designing DNA
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strand displacement systems reaction pathways throughout this chapter. The idea

is to exploit the distributed interaction between ant-inspired agents (which are

represented by DNA strands), the spatio-temporal aspects of designed circuit by

incorporating recent trends in both structural and dynamic DNA nanotechnology,

as well as the principle of indirect communication mediated by the environment.

Our model is majorly inspired by the recent architectures, termed spatially lo-

calized DNA circuits. Being different with free floating systems, DNA complexes

or DNA gates are immobilized as stators on DNA origami. In principle, this may

speed up the reaction and increases the DNA circuit’s efficiency (73, 74, 75). On

important feature of our design is that this architecture enables straightforward

visualization of ant-based DNA agents traveling the structure by the molecular-

walker mechanism.

To evaluate our model, we measure the reaction kinetics in-silico. The ob-

tained results suggest the robustness of our model that makes it suitable for

dynamic environments. This DNA circuit model can be reinforced to learn to

make stochastic decision, and it is independent to the initial concentration to

input signals under certain threshold. This can be achieved thanks to due to the

adaptability to corresponding unknown environmental stimulus. The potential

applications of the system presented in this study include the novel design of

reusable DNA circuits.

The rest of this chapter is organized as follows. Section 2 describes the brief

theory underlying nature-inspired computation models on which our DNA circuit

design is based. Section 3 explains the main architecture of the DNA strand

displacement systems, including stochastic-based operation. Section 4 discusses

the implementation details, followed by simulation results. Finally, discussions

are presented in Section 5.

4.2 Artificial Ant Systems

Nature-inspired computation, or swarm intelligence in computational science, is a

field of study with interests in algorithms that mimic the way of natural systems

carry information via interaction networks and directed by simple behaviors of

involving individuals, or particles or agents. From this local interaction between
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Figure 4.1: Double bridge experiment

agents, global system dynamics gives rise. In this study, we focus on a particular

class of nature-inspired systems based on the ant-foraging behavior that may be

utilized for designing DNA based computation.

Like many other colonies of insects, ants are social creatures that perform their

tasks in highly structured coordinated manner. Ants are capable of performing

complex tasks beyond their individual limit in a group, for example during the

coordinated foraging and food gathering. When searching for a new food source,

there is no central leader that directs the movement of the colony. However, de-

spite this lack of coordinator, ants are still capable of finding collecting food in

the most optimum way. This behavior has motivated many studies in computa-

tional science, in order to explain the means by which simple creatures such ants

can exhibit that high-level organization.

The ant-foraging system’s key of success relies on an indirect communica-

tion mechanism mediated by changes in the environment, which is referred to as

”stigmergy”. Ants communicate in a form of coordination involving chemotaxis-

based process, instead of communicating via direct signal transmission or relying

on visual perception. Ants, when explore their surrounding, deposit a certain

amount of chemical compound, termed pheromones, which attracts other ants in
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the colony by its odor. An individual of ant is not aware and does not have any

comprehension of the global view of the task being performed. They are instead

”behaviorally-programmed” by a simple set of rules, such as moving to follow

the pheromones trails, and leaving pheromones trails on area they have traveled.

Thus, ants decision is biased to pheromones exposure. The movement of the

ant colony is driven to the path traversed by most ants, as this path supposedly

contains the greatest amount of pheromones. This can bee seen as a positive

feedback mechanism of the ant systems. On the contrary, the pheromones exis-

tence is also dependent to time, as they vaporize slowly. When pheromones on

a particular path are not constantly updated, or are updated with much slower

rate, the trails disappear and are no longer followed by ants. This can be seen as

a negative feedback of the system.

The following details explain this principle. Suppose there are two differ-

ent paths of different length with pheromones trails. The path with the longer

distance takes more time to update compared to one with the shorter distance.

Intuitively, given a time period, the amount of pheromones on the shorter path

will be accumulated faster, which reinforce ants to choose to travel along that

particular route. Moreover, as the evaporation rates are the same for both paths,

pheromones along the longer one disappear faster than the shorter one. As the

result, the whole colony will prefer to follow the shortest path in the end.

Figure 4.1 illustrated the ”double-bridge experiment” which is an early ex-

ample of the ant foraging behavior study (76). A colony of ants have to collect

foods at point F by traveling from point N. There are two possible branches of

different lengths along the route. The ants have to choose the shortest path,

which is initially unknown to them, in order to maximize the amount of trans-

ported food in a given time. Ants produce pheromones trail to mark their cho-

sen path as they traverse the bridge (left-side). The first ant chooses an op-

tion at random when it encounters the branch. It could possibly the longest

one since there is no pheromone trail for it to follow. On the contrary, the

next ant’s choice is affected by the marked by pheromones trail of the previous

ant. In early time, since there are only a few of ants have chosen the route,

the secretion of pheromones along both routes are relatively low. Therefore,
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there is still a high probability that the next ant would choose a path differ-

ently (middle). Eventually, the accumulation of pheromones trails along the

short route will be a lot faster than in the longest one. On the other hand,

pheromones trails in the longest path evaporate quickly. As this keeps continu-

ing, ants will be reinforced to follow the shortest path (right-side). Inset: real ants

during the food searching as depicted by the double bridge experiment. Image

was taken from http://archive.cosmosmagazine.com/news/simple-rules-smooth-

traffic-ant-highways/.

p(r, s) =
[τ(r, s)]× [η(r, s)]β∑

u∈Mk
[τ(r, u)]× [η(r, u)]β

, s ∈Mk (4.1)

τ(r, s) = (1− ρ)× τ(r, s) +
∑

i∈P (r,s)

τo, 0 ≤ ρ ≤ 1 (4.2)

This self-organizing principle has been studied formally in computational sci-

ence and applied mathematics. They have been successfully implemented in var-

ious applications such as machine learning and robotics. Equations 4.1 and 4.2

show the mathematical formulation of the ant systems (76) (72). The probability

of an ant choosing the path from r to s is shown by Equation 4.1, where τ(r, s)

is the amount of pheromones on the corresponding path, η(r, s) is the desirable

weight function (i.e. inverse distance as heuristics), β is the importance parame-

ter against the pheromones, and Mk is ants’ working memory, which defines the

paths that have not been visited. The update in pheromone concentration after

visiting is shown by Equation 4.2, where ρ captures the evaporation rate and

τo represents the amount of pheromones mark left by an ant at one time unit.

Therefore, the update at one path is equal to the summation of all ants i choosing

to travel through that path (r, s).

4.3 DNA-Based Architecture

4.3.1 DNA Strand Displacement Operator

Any DNA strand displacement system can be represented by using the mathematical-

chemical notation referred to as Chemical Reaction Networks (CRNs) (10). The
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Figure 4.2: Signal transformation by DNA strand displacement reaction

generic implementation of the operator in this work is as represent by a chemical

reaction equation X1 + ... + Xm + T1
k1−→ Y1 + ... + Yn. It may be translated as

a programming instruction that of an equivalent transformation of m-number of

input signals into n-number of output signals by a gate T1 with reaction rate

k1. From this abstract level, there are various design strategies can be employed

to obtain reaction controllers, or referred to as gate motifs. The main principle

is to encode input and output signals into single-strand DNA and gate motifs

into multi-strand DNA complexes that are pre-hybridized before the intended

reaction.

In this study, our objective is to outline the conceptual design of DNA circuits

rather than to demonstrate detailed the wet-lab implementation. A simple pos-

sible coding of DNA strand displacement primitives that is easy to understand is

chosen, without taking into excessive considerations of its actual limitations (e.g.

possible of crosstalk, leakage reaction, and so on). With a slight modification

from previously described structures (64), we define out DNA strand displace-

ment semantics. The reaction kinetics of this particular design has been studied

previously (10). It is important to mention that this implementation may not

be unique, one can also implement our design by using different structures. For

example, the above-mentioned chemical reaction equation may be implemented
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Figure 4.3: Stochastic DNA operation

by using gate motifs with similar behavior from (13, 53, 77).

Figure 4.2 shows an example of an arbitrary signaling reaction. Suppose there

are two input signals (F,X) and a gate motif T1. By design, gate T1 consists

of one multi-strand complex and one long single strand as the trigger (top-left).

Presenting the gate in the system means adding both strands into the solution. As

signal F and gate T1 share a free toehold, the reaction begins and they reversibly

reacts with each other. This reaction is followed by the displacement of auxiliary

strand a, which modifies of the gate structure into intermediate gstate T ′1 (top-

right). Then, signal X is now able to interact with the gate, as a new free toehold

is exposed, and a similar process occur to displace auxiliary strand b (down-right).

As the final step, the trigger irreversibly binds, releasing the output signal Fu,

and opening the loop structure by the end of the gate. The gate is converted into

a different gate T2 and reveals a new toehold. Signal X remains active since it still

consists of one free toehold (it is now referred to as X ′). In summary, the whole

reaction may be seen as transformation of species F,X, T1 into Fu, X
′, T2. This

will be the basis or the main operation of reaction controllers for the DNA-based

agent walking mechanism that implements our ant system-based DNA circuit.
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4.3.2 Stochastic DNA Operator

The stochastic operation can be implemented by adjusting the amount of a partic-

ular gate motif, when there are at least two transformation rules are involved with

the same input signal. This will increase the likelihood of firing the corresponding

output signal. The following example illustrate this mechanism: suppose there

are two transformation rules with equal rates: X + T1
k−→ Y and X + T2

k−→ Z,

controlled by gate motifs T1 and T2 respectively. Assuming the amount of T1 is

equal to T2, the probability of both reactions occurring is also uniform by 50:50

ratio. However, if the amount of T1 changes, for example, to three times that of

T2, the probability of the occuring reaction changes to approximately ratio 75-25

ratio.

In many implementations of DNA strand displacement systems to date, the

dynamic adjustment of the amount of gate motifs requires external assistance

from human operator. On the other hand, manipulating single-stranded DNA is

easier to than multi-stranded complexes. One possible way to do so suggests a

technique termed the buffering operator, which makes a particular gate motif ”in-

active” until corresponding releasing signals are present. This simulate a design

of an operation that produces a gate motif instead of a signal. However, cascading

this mechanism into multi-layered reactions is still a difficult task (64). In this

study we suggests the implementation by using two AND gates (or join opera-

tion), as shown in Figure 4.3. We call this bio-molecular procedure as ”Stochastic

DNA operator”. Our implementation suggests the application in any DNA-based

stochastic selection and decision-making. A stochastic transformation of an input

signal X into two output signals Y and Z may be achieved by combining two

gate motifs that implements instructions a1 + X + T1
k−→ Y and a2 + X + T2

k−→ Z.

There are two new signals a1 and a2, referred to as implicit signals, which facil-

itate indirect control of the reaction kinetics. We assume that both gate motifs

have the same displacement rate. So, given the initially equal amount of gate

motifs T1 = T2 and T1, T2 >> a1, a2, X, intuitively we can infer that the implicit

signal a1 and a2 control the amount of gate motifs available for input signal X

to react during the second step of the reaction. Therefore, the probability of

both transformations are roughly determined by the ratio between the implicit
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4.3 DNA-Based Architecture

Figure 4.4: Design of the double bridge-inspired DNA circuit (top-view)

signals a1 and a2. The direction of the reaction can be determined by adjusting

the amount of signals a1 and a2. For example, the reaction between X to Y is

more probable to happen (solid line) than the reaction between X to Z (dashed

line) by stimulating a larger amount of a1 than a2.

4.3.3 Localized DNA Architecture

DNA origami is a nanostructure composed of DNA folded together to assemble

into certain shapes of bio-molecular landscape (7). Over the years, it has been

utilized in various applications in nanotechnology and also to enhance DNA-

based computation (26). DNA strand displacement reactions can be sped up via

localized hybridization by tethering DNA strands on the origami surface, and by

employing molecular walkers traversing the DNA stators (73). We utilized the

similar architecture for simulating of our design because of the visual resemblance

between the DNA walkers-origami circuit and ant colony system, where artificial

ants are equal to DNA walkers and DNA origami is as the working environment).

A DNA structure design that is inspired by the ant system and resembles the

double-bridge experiment is shown in Figure 4.4. Gate a1 and a2 represent a set

of gate motifs designated as stators of the first branch; whereas gate b1, b2, b3, and

b4 represent a set of gate motifs designated as stators of the second branch. The

number of the gates on each branch are the density value or weight function of
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those branches. They can be assigned with arbitrary integer numbers. We have

chosen the minimum amount for simplification reason. Both branches accept

signal X as their input and transform it into output signal Y through several

intermediate reactions (the more stators, the more reactions are involved). This

simulates the walking of the artificial ants. Furthermore, this double-bridge struc-

ture can be treated as a molecular building block for construction of arbitrary

two-dimensional landscapes consisting of paths with different length. The objec-

tive is that, without any prior information given, the artificial ants are supposed

to find the most optimum path that allows the collection of better weight.

DNA origami can be built by folding a long scaffold strand with short staple

strands that can hold the scaffold in a particular arrangement. There have been

some software developed to generate the most optimum sequences of each staple,

and they can be annealed together through a one-pot reaction to achieve the de-

signed structure. In case of localized DNA circuits, arbitrary staple strands along

the branches may be extended as DNA gates that act as stators for computation.

Thus, we can assign different gate densities to each branch, which also re-

ferred to as the weight function. Each branch may take the same input signal

but produce different output signals. The number of intermediate reactions along

the branches may vary, and it represents the goodness of the branch. The com-

putation is restricted spatially since DNA gates are immobilized on the origami.

To avoid the cross-talk the distance between gates or stators can be adjusted

accordingly, so that it is long enough for the walkers to not jump directly to the

end point, and at the same time it is short enough to cascade the reactions. The

following section discusses further implementation details of the ant system-based

DNA circuit.

4.4 Implementation and Results

4.4.1 DNA-Based Implementation

In order to translate the mechanism of the ant foraging behavior system into our

DNA circuit design, first we need to decide the representation of required compo-

nents. The stigmergy, or the indirect communication mechanism of ants, relies on
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the environmental changes. In this case, it involves spatial localization. It means

thaat ants need to walk from their nest to the source of food, and the amount of

pheromones trails depends on the distance between those two points. Intuitively,

this can be represented by a landscape of DNA origami consisting of two arbi-

trary points denoted by the nest (starting point) and the source of food (finishing

point). DNA strands that traverse the origami as molecular walkers represent the

artificial ants. Analogous to the process where ants secrete pheromones, these

DNA signals also produce other output strands as they walk through the stators.

Consequently, this procedure can be captured by a reaction that may be

defined as the consumption of previous pheromone signal, ant signal, and stator,

resulting in the production of a new pheromone signal, catalysis of ant signal, and

another fuel signal to drive the movement of the walker. In general, Figure 4.2

shows gate motifs that can control these operations. This implementation can

replace the stators abstraction as shown in Figure 4.4.

Fa +X + a1 → Fa +X∗ + fa2

fa2 +X∗ + a2 → Fa +X∗∗ + fa3 (4.3)

fa3 +X∗∗ + y → Fa +X∗∗∗ + Y

Fb +X + b1 → Fb +X ′ + fb2

fb2 +X ′ + b2 → Fb +X ′′ + fb3

fb3 +X ′′ + b3 → Fb +X ′′′ + fb4 (4.4)

fb4 +X ′′′ + b4 → Fb +X ′′′′ + fb5

fb5 +X ′′′′ + y → Fb +X ′′′′′ + Y

Fa → ∅ (4.5)

Fb → ∅

Equations 4.3 to 4.5 describe the reactions involved in our DNA circuit de-

sign. Equation 4.3 and Equation 4.4 capture the ants walking mechanism and
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positive feedback on both branches respectively. Equation 4.5 depicts the neg-

ative feedback or the evaporation of pheromones. In this example, the second

branch consists of a larger number of gates so it is considered to be better as it

has a better weight than the first one. Note that it is possible to assign arbitrary

values by design. However, the main purpose of this study is to demonstrate the

capability of our DNA circuit to make decisions with a better weight and to elim-

inate the less feasible choices. A larger landscape can be constructed from this

structure. One unit of the bridge can be treated as a building block, as shown in

Figure 4.4.

The pheromone signals for selection of each branch are represented by Fa, Fb.

In the stochastic DNA operator, as depicted by Figure 4.3, the implicit strands

control the direction between two possible reactions. The artificial ant is repre-

sented by signal X, with additional mark ’ and * to represent intermediate states

when the agent is in the middle of the walking mechanism as it bound to particular

stators. It will be released back into the solution, when it arrives at the destina-

tion point. Signal a1, a2, b1, b2, b3, b4, y represent the stator or DNA gates along

branches. Signal fa2, fa3, fb2, fb3, fb4, fb5 represent non-stochastic pheromone sig-

nals that act as fuels to drive the ant agent’s movement from one stator to another

through the chosen path. Signals for the downstream reactions are produced as

the output from upstream reactions to ensure the executions are performed in

order. Otherwise, they can be provided as the input with a unique design for

every gate.

The main difference between the natural ant system and our DNA circuit lie

in the heuristics use the feedback parameter. The original system suggest the

utilization of time and distance as heuristics, while our model uses the amount

of gates or stators. Consequently, the better weight of one corresponding path

means the more amount of gate motifs assigned to that path. One may assume

that this principle is trivial, as it is easy to think that a larger number of gates will

produce more signals. However, the result will vary from time to time since bio-

molecular reactions do not allow decision making or exclusive selection, especially

when there are only few differences between gates numbers. On the contrary, on

the basis of small differences between branches, we demonstrate that our design

can distinguish the best path from the less feasible ones. Our design promotes
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Figure 4.5: Design of walking mechanisms (step 1-2)
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Figure 4.6: Design of walking mechanisms (step 3-4)
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improved selection of the best option and elimination of the remaining options,

by using a metaphor learned from the positive-negative feedback mechanism of

pheromone-based communication. In this chapter, a two-choices ant-bridge sys-

tems is presented. In principle, this model can be extended into multiple choices

systems without further significant revision on its design.

The mechanics or the walking mechanisms can be implemented in various

ways, for example, by using hairpin fuels (9) or DNAzyme (68). Our design has a

special need as it requires different signals to mediate the indirect communication.

Therefore, we propose an alternative or extended walking mechanisms as depicted

by Figure 4.5 and Figure 4.6.

As shown in Figure 4.2, gate motifs are tethered as stators to DNA origami

(side-view). Suppose there are three different types, with stator I being the

initial point, stator II being the stochastic stator and it represents the branch

for selection in the double-bridge system, and stator III being the non-stochastic

stator and located in the remaining parts of either path. The stochastic stator II

determines the chosen path of the DNA walker. The non-stochastic stator III is

unique to each path. Figure 4.2 shows the details of the reactions. The first input

is either the fuel strand from the previous stator’s output or the pheromone signal

for the stochastic stator. The second input is the DNA agent with a flexible region

connecting two equivalent legs. The flipping when the walker moves forward

is possible because there are similar regions also present in the staple strands

extension to DNA gates.

4.4.2 Correlation with Mathematical Models

The kinetics of pheromones signal at a branch r is defined by the following equa-

tion: (The first and second terms are derived from Equations 4.3 and 4.4, while

the third is from Equation 4.5.

d(Fr(t))

dt
= −(q×Fr(t)×X(t)×r1(t))+

N∑
j=1

(q×frj(t)×X∗(t)×rj(t))−(q×k×Fr(t))

(4.6)
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Assuming that rate q is uniform for the whole strand displacement reaction,

and stators rj (hence the open-loop frj) are available in large amounts n → ∞,

and signal X is not consumed by the reaction, their values can be replaced by the

constant δ. Therefore, Equation 4.6 above can be simplified into Equation 4.8.

Intuitively, this denotes the parameter of pheromone update, where evaporation

rate k< constant δ to satisfy Equation 4.2.

d(Fr(t))

dt
= −(k × Fr(t)) + (X(t)×

N∑
j=2

(frj(t)× rj(t))) (4.7)

d(Fr(t))

dt
= −(k × Fr(t)) + δ

For the probability equation, the stochastic selection is based on the first-line

reactions of Equations 4.3 and 4.4. Their implementation satisfies the stochastic

DNA operation as in Figure 4.3, with extension to multiple output signals. The

kinetics of the sum of output signals Pr at one branch, and total output signals

P for whole branches is denoted by following equation.

d(Pr(t))

dt
= q × Fr(t)×X(t)× r1(t) = α× Fr(t) (4.8)

d(P (t))

dt
=

N∑
u=1

q × Fu(t)×X(t)× u1(t) =
N∑
u=1

α× Fu(t)

According to this equation, the probability of selection of branch-r at a given

time t can be calculated as Equation 4.9 below. It is clear that the coding

correctly implements the original mathematical model as in Equation 4.1, where

the constant δ incorporates the desirable function and importance parameter that

are the same for all available selections.

p(r, t) =
α× Fr(t)∑N
u=1 α× Fu(t)

(4.9)

Figure 4.7 summarizes the correlation between each mathematical parameter

in our DNA circuit design. This graph shows the mechanism of the communication-

mediated-by-environment, where the time-evolved competition between positive
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feedback δ(r) and negative feedback k leads to the selection of a solution with

better weight function. The internal model represents the local view of each

agent, without any understanding of global environmental conditions.

Figure 4.7: Graphical representation of the mathematical model of the double-

bridge inspired DNA system

4.4.3 Simulation Results

We verified our implementation in-silico by using Visual DSD (65). This tool is a

program for composable DNA circuits, that includes basic elements of sequence

domains, toeholds and branch migration. Visual DSD compiles a collection of

DNA strands into a reaction network based on the DNA strand displacement

mechanism, and includes stochastic and deterministic simulators to display reac-

tion kinetics. It works on the assumption that the strands do not possess any

secondary structure.

This tool has been applied for running and verifying actual implementations

of DNA systems (52, 53, 70), motivated the usage of this simulator in our work.

Straightforward programming was obtained from chemical reaction equations as

in Equation 4.3 to 4.5.
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Figure 4.8: A) The double bridge structure consists of two paths selection with ar-

bitrary weight function. B) Simulation result in for the same initial concentrations

of the pheromone signal
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Figure 4.9: C) Simulation result for different initial concentrations of the

pheromone signals, where the best selection initially has a higher concentration. D)

Simulation result for different initial concentrations of pheromone signals, where

the best selection initially has a lower concentration
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Figure 4.8 and Figure 4.9 show the simulation results of the present nature-

inspired DNA circuits design, in comparison with mathematical models. The

adaptability of our design, i.e. its ability to cope with changes in the environ-

ment is demonstrated by its capability of identifying the path with the better

weight function, regardless of the initial concentration. Moreover, the present

DNA circuit design can approximate the implementation based upon existing

mathematical models. Simulation parameters are tuned-up by iterated trials,

and the best values that yield corresponding results between both models are

chosen. DNA concentration is expressed in arbitrary unit. The time parameter

is selected to be long enough to allow the reaction to reach equilibrium (approx-

imately 15 hours in real experimental conditions (52)

Our design demonstrates the capability of the DNA circuit to learn to make

decisions to adapt external stimuli from the environment. Given the arbitrary

landscape configuration the design can infer the optimum path to reach the target.

We also tested our design under different initial conditions: 1) both output signals

were initially at the same concentration, 2) the expected signal concentration was

initially lower than the other signal, and 3) the expected signal concentration was

initially greater than the other signal. Under all these conditions, our circuit was

consistently able to infer the best solution. The second and the third conditions,

particularly, demonstrated the capability of our design to work correctly regard-

less the initial concentration of output signals. This property, which is lacking in

most currently available DNA-based circuits these days, should additionally en-

able the potential application of our ant systems-based model for reusable DNA

circuits.

Figure 4.10 and Figure 4.11 show further analysis of our simulation results.

On the vertical axis (outputs) are shown in arbitrary units, either in absolute

values or in normalized percentages. On the horizontal axis (parameters) are

shown as ratio of concentration or ratio percentages, e.g. 1x=100nM. This value

may vary depending on the experimental requirements. We tested each parameter

separately and observed its effects on the output signals concentration. A higher

amount of initial gate concentration and a lower amount of initial evaporation

gate concentration was found to clearly produce a higher output concentration

for both signals (4.10.a and 4.10b). Despite the increase in the production of
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Figure 4.10: Analysis of simulation parameters. A) Initial gate concentration

versus absolute values of output concentration. B) Evaporation rate versus output

concentration. C) Initial gate concentration versus effective percentage of output

concentration
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Figure 4.11: Analysis of simulation parameters. D) Number of ants versus output

concentration. E) The difference between pheromone ratios versus output concen-

tration

70



4.4 Implementation and Results

the less favorable signal, the percentage of the final ratio between the signals was

unaffected (4.10.c). The lower initial gates, however, effectively eliminated the

worse selection. However, this may result in the failure of the second iteration in

reusable DNA circuits, as one possible signal completely disappears from solution.

The output is not significantly affected by the number of ants (4.11.d)), as our

design employs a deterministic, rather than stochastic, model for reaction kinetics.

However, this is important as the catalyst for the reaction. Our design can

work independently of the initial output signal concentration; however, a certain

threshold value of ratio difference is required for this. For example, our circuit

works effectively when the signal concentrations are the same (ratio difference =

0%). As the ratio difference percentage increases, the effectiveness of our circuit

decreases. Thus, the ratio difference between the initial output signals should

ideally be under 50% (4.11.e).
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Agent-Based DNA Circuit

Coordination is one important feature in delivering distributed systems. A typical

approach in developing silicon-based agents, such as mechanical robotics, is by

designing individual-level behavior that emerges into one global functionality.

Meanwhile, as DNA-based agents are based on chemical reactions, programming

of every individual behavior still remains a big challenge. Once all reactants

have been mixed into a solution the reactions occur immediately. This introduces

nontrivial challenges in logical control. In this chapter, A strategy for coordinated

and event-driven DNA-based systems by using a Petri Nets model is reported.

First, we introduce computational primitives based on DNA strand displacement

reactions. Second, we abstract their molecular implementation by Petri Nets for

higher-level design. Third, we propose a model of interacting multi-agent systems

based on DNA-only reactions as the main contribution of this work. The design

is verified via in − silico simulation. Furthermore, we show the results from

initial experiments of Petri Nets operators. From the obtained results, we believe

that our design strategy is suitable for coordinating interaction of distributed

DNA-based systems.

5.1 Introduction

Recent progress of DNA-based applications has arrived at a level of sophistica-

tion that one can envision complex applications, such as molecular robotics and
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machines (2, 25, 68). For example, various designs of molecular walkers capa-

ble of traversing DNA landscapes have been proposed in (18, 20, 66), simulating

the function of locomotion of mechanical machinery. A design of reconfigurable

container for transporting molecular cargo, embedded with sensor and activation

functions has been introduced in (67). Another demonstration of a programmable

DNA-based machine that is capable of picking up, manipulating, and delivering

molecular loads is reported in (24). The programmability of Watson-Crick com-

plementary rules has made it is possible to develop bio-molecular information

processing systems to control such intricate applications (1, 10, 53).

In general, there are two main features that distinguish molecular machines

from their silicon-based counterparts. First, instead of hardwired within the

machines, the program is incorporated through the interaction with environ-

ments (9, 50). Second, the system consists of multiple and independent par-

ticles running together in parallel, from which the summation of all individual

reactions gives arise as the system global behavior (78). There have been many

works focusing on the first category. However the latter mentioned is still not

appropriately addressed in many studies to date, despite the fact the concurrency

power available at the molecular level (54, 55).

This kind of system’s efficiency and complexity can be increased by putting to-

gether modular units being responsible in different tasks together. In distributed

robotics field, many researches have successfully demonstrated this design prin-

ciple (79, 80, 81). However, it still remains challenge to re-engineer the same

fundamental in bio-molecular systems. Programming every individual behavior

is not a trivial task since it is based on chemical reactions. These reactions occur

immediately once all reactants have been mixed into a solution.

In order to solve this challenge, we propose a novel design of distributed DNA-

based systems, or to be specific a control architecture for DNA agents interaction.

In this study, an agent is a technical term used to describe an abstract model

of a molecular robot or machine based on DNA. We argue that it can be met

through discretization of bio-molecular reactions by state-evolution. This is in

contrast to any biochemical systems which are naturally continuous and time-

evolved (82). To simulate our purpose, we employ a simple task between two DNA
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agents working in coordinated manner. The high-level control and coordination

of molecular agents are achieved by employing agent-based model.

Along with concurrency and parallelism, agent-based models have intensively

been studied in many fields including computer science, robotics, and artificial

life (83, 84, 85), and also the study of coordination in biological-based and other

distributed systems (86, 87). Agent-based model is said to be a superior frame-

work, because it has several advantages over conventional system. It is suitable

for building complex systems from collection of primitive components (88, 89).

Its architecture can be assembled from simple and modular units, and is regulated

by a simple set of behavioral rules. These rules when they are combined together

will result in an intricate global function. in addition to the homogenous system,

it also opens the possibility of implementing a heterogeneous one.

To model the high-level abstraction, we bridge the low-level bio-molecular

operation through a mathematical modeling notation referred to as Petri Nets.

This abstract model has discrete and concurrent event-driven semantics and it has

been used to describe many autonomous systems behaviors, such as task planning

for single-robot or multi-robot systems (90, 91, 92). It is preferable because it has

easy-to-understand graphical notations, and also for its capability to represent

concurrences and synchronization in a tangible formal definition. Many elegant

designs can be achieved from this abstract model, such as decision making and

task scheduling applications. Additionally, Petri Nets was originally designed to

describe chemical reaction processes (93, 94). Therefore, it is highly suitable to

model nucleic acid-based distributed systems or other systems that operate in

biochemical environments.

The present work in this chapter is also motivated by recent theoretical find-

ings on the general formalism of DNA-based dynamical networks (10, 64). In prin-

ciple, arbitrary multiset rewriting systems can be implemented by one instance

of prominent bio-molecular mechanisms termed DNA strand displacement (95).

Consequently, this includes the formalism of DNA-based Petri Nets. To the best

of our knowledge, the work presented in this study is the first to bridge the gap of

such theoretical models to practical applications. Enabling a distributed control,

and interaction and coordination model for molecular agents will increase the

complexity of the future DNA-based systems can handle.
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5.2 Petri Nets Model

We specifically work on a particular class of Petri Nets termed the Simple Marked

Petri Nets. Throughout this paper, we refer to this class as Petri Nets for sim-

plification reason. There are many other classes of Petri Nets such as Stochastic

Petri Nets; therefore it should not be confused with them. Its basic transitioning

rules are sufficient to model event-based systems without unnecessary confusion

of more complicated rules.

Formally defined, (Simple Marked) Petri Nets is a 4-tuple of < S, T,W,Mk >,

where: S = {s1, s2, ..., si} is a finite set of places. T = {t1, t2, ..., tj} is a finite set

of transitions. W ⊆ (S × T ) ∪ (T × S)→ N is multiset of arcs connecting places

with transition and transition with places. Place si is an input places if there is

any transition such that tj = {si ∈ S|W (si, tj) > 0}; and/or an output place if

there is any transition such that tj = {si ∈ S|W (tj, si) > 0}. Then, si and tj

are said to be connected. Mk = {s1k, s2k, ..., sik} is a marking state represents

the current state of the system such that Mk ⊆ S is any marked place of si that

contains a token at time k. M0 is the initial marking condition.

Petri Nets can also be represented in graphical symbols. By combining all of

these components, a model of any dynamical systems can be obtained. Figure 5.1

shows the visual representation and the distributed system scenario modeled in

this chapter.

the changing of the marking state through time captures the dynamics of the

system. A transition tj is fired whenever every input place si connected to it

contains a token, such that si ∈Mk. Once the transition is fired, tokens from the

input places are removed and added to output places, which then changes the

system state.

Figure 5.1 shows a system of two agents of coordinated manner, A and B,

performing arbitrary functions. The interaction between the agents is captured

by token at places s2 and s5. All other places represent the internal states of

the respective agents. At time k = 0, the initial marking is M0 = {s1, s2, s6}.
Because all input places connected to t1 contain tokens, t1 is fired, consuming

tokens from s1 and s2 into s3. However, t4 is not fired since there is an input

place s5 that is not marked with a token. At the time k = 1, the marking state
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Figure 5.1: A) Graphical components of Petri Nets B) An arbitrary (Simple

Mark) Petri Nets model representing the scenario of two interacting agents.

becomes M1 = {s3, s6}, which in turn enables t2 for the next iteration (not shown

in the figure). t4 is fired as soon as a token reaches s5.

5.3 Design and Implementations

As mentioned previously the main aims in this work are: 1) to show how arbi-

trary discrete-event systems can be designed by DNA-based reactions, and 2) to

show how modeling control architecture of distributed agents can implement such

systems. We evaluate the first objective via wet-lab experiments, and the second

one via in-silico simulation. We were unable to completely implement the second

objective in vitro due to the limitation of current available technology in single

molecule DNA preparation in a test tube.

We formalize a bottom-up approach of three different steps of implementa-

tion. First, we define the low-level reaction controllers. DNA strand displacement

is employed as the main mechanism for reaction dynamics. This molecular op-

eration is solely based on competitive hybridization between strands that share
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common binding regions with other strands in a partially annealed complex; as

it does not require the additional design of different molecules, such as restric-

tion enzymes, it is possible to construct a modular design for large-scale appli-

cation (1, 13). The basic reaction of DNA strand displacement was previously

explained in Section 2.1.1.

Second, we translate these low-level primitives into a higher-level representa-

tion by using Petri Nets. The dynamics of Petri Nets are denoted by the changing

of the tokens’ position, which represent chemical reactions between DNA strands.

As in DNA strand displacement, the main fuel for the reaction is the partially

pre-hybridized DNA complexes (or DNA gates), and we thus model them as the

set of transitions T . The set of places P is represented by DNA signals that

are unique for each place. The marking state Mk is a subset of signals that are

active at particular time k. It is also important to note that the design of DNA

gates is mainly dictated by an arc connection W that imposes signals that a

transition can consume and produce. The nucleotide assignments for each DNA

signal can be performed by following a rule of thumb (52, 96), assisted by some

simulation software to minimize crosstalk and secondary structures (58) (refer to

Section 5.4.1 for further description).

Generally, a complete DNA-based Petri Nets model can be built from three

basic transitional operations.

1. sequential, is an operation that converts one input signal to one output

signal. It can be written as

S1
T1−→ S2

which means that by the composition of a signal S1 with a gate T1, a reaction

occurs that transforms S1 into a new signal S2.

2. synchronization, is an operation that converts two or more input signals

into one output signal. It can be written as

S1 + ...+ Sm
T1−→ Sn
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which means that by the composition of signals S1, ..., Sm, with a gate T1,

a reaction occurs that transforms all input signal into a new signal Sn.

3. concurrent, is an operation that converts an input signal into two or more

output signals. It can be written as

S1
T1−→ S2 + ...+ Sn

which means that by the composition of a signal S1 with a gate T1, a reaction

occurs that transforms S1 into new signals S2, ..., Sn.

Figure 5.2 summarizes the implementation of DNA-based reactions for each

of these operators, in addition to their Petri Nets equivalent mapping, while

Figure 5.3 shows the initial experimental results. Details of reaction of pathways

for each operator is omitted, please refer to Section 5.4.2. The horizontal axis

captures the experiment steps, each mark shows the injection of the gate and

input strands in order. The vertical axis measures the normalized fluorescence

intensity. 0 values are determined in two different ways: in case all leaks are

considered (leaky), and in case all leaks are neglected (ideal).

A place in Petri Nets is represented by a single strand input, and a transition

is represented by a multi-strand gate complex that accepts corresponding inputs.

Another intermediate single strand DNA is required to trigger the output once all

inputs are presented, otherwise it reversibly releases the inputs. The initial states

are on the left side, and the final states in the middle of the figure. The complete

reaction pathway of each operator implementation is shown in Section 5.4.2. Ki-

netics experiment results are shown in the right-side of the figure. The horizontal

axis captures every step of the experiment, from the injection of the gate com-

plex (gray circle) to until all inputs (colored down triangles) are included in the

solution. The output level is measured in the end (up triangle). The vertical axis

measures the fluorescence intensity changes. These values are normalized to be

between 0 and 1. In leaky reactions, 0 values are determined by the time when

no DNA strands are present within the solution; whereas in ideal reactions, all

leaks are neglected; therefore 0 values are determined by the time when the first

input is mixed.
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Figure 5.2: Implementation of each Petri Nets operator in a DNA-based reaction.

A) sequential operator. B) synchronization operator. C) concurrent operator
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Figure 5.3: Experimental results. A) sequential operator. B) synchronization

operator. C) concurrent operator
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5. AGENT-BASED DNA CIRCUIT

Leaking in strand displacement reactions is a typical case, in which gate

complexes are not formed perfectly during the annealing process, leaving small

chances for unintended interactions to happen (1, 13). Thus, there are slight

growth in fluorescence measurements even before all inputs are presented.

For all operators, the behaviors are correctly confirmed, i.e. the output strands

are only released when all input strands are presented. Raw time-scan data

measurements are presented in Section 5.4.3.

The kinetics of each reaction were measured through wet-lab experiments to

confirm their behaviors. Complete reaction pathways and time-scan data mea-

surements are provided in Section 5.4.3. Moreover, a general transformation op-

erator can be obtained by combining synchronization and concurrent operators

together to implement a chemical equation:

X1 + ...+ Xm
T−→ Y1 + ...+ Yn.

Third, we model the high-level behavior of a DNA-based system into an ab-

straction that can be accepted by Petri Nets. For a case study, we employ a

scenario of two interacting agents, namely agent A and B, performing arbitrary

functions in a distributed and coordinative manner. Agent A first performs any

given task, while agent B waits for it to finish. As soon as agent A finishes, it

sends a signal for agent B to start its own task. Agent B undergoes the same

process, and in turn send back a notification for agent A that starts the next

iteration. This task scheduling process can be represented in a Petri Nets model

as depicted by Figure 5.1.b, hence the simulation in DNA-only reactions. DNA

strands are used to represent their action states, and the strand displacement

reaction is used to represent the signaling process for state transitions. These

definitions are equivalent to the set of places and transitions in Petri Nets.

Figure 5.4 shows the simulation results of the interaction model of the DNA-

based agent system. The model is a closed-loop design in which the system

continues working and does not end in a particular state for as long as the fuel

is provided. In this figure, we show two cycles of operations, separated by the

bold dashed line. Each species represents a single copy of different DNA strands;

a single-strand DNA represents a place in a Petri Nets (their correspondence is

color-coded), and a multi-strand complex represents a transition. Each line on the
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5.3 Design and Implementations

Figure 5.4: Stochastic simulation result of a distributed DNA-based agent system.
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graph depicts the activeness of each DNA strand (only sets of places are shown).

A high bar means active, and a low bar means inactive (or partially inactive

because of reversible binding). The strand displacement and branch migration

rates are assumed to be uniform (approximately 1.126 × 10−1/s and 3 × 10−4

/nM/s), so that the kinetics difference and delay caused by nucleotides design of

all strands can be minimized.

Corresponding Petri Nets states are shown in numbered figures in Figure 5.5,

and their occurrences are indexed in Figure 5.4. Each state is separated by thin

dashed lines. For example, in state=1, all strands are in the low bar, and hence

inactive, except for S1, S2, and S6. This condition corresponds to the existence

of a token at places S1, S2, and S6. The correctness of the remaining states can

be inferred in the same way. Note that, a strand can occasionally be reversibly

consumed, but it cannot proceed to a further step, for example strand S1 at

state=4, cycle=1. There are many fluctuations that make the token temporarily

disappear. However, to proceed further strand S2 needs to be present.

5.4 Methods

5.4.1 Sequence Design

The sequence design in this work is done at domain level. Set of sequences

was obtained from Visual DSD. They are modified manually in order to satisfy

following rules (52):

1. One sequence is made from only three bases: A, C, and T to minimize

secondary structure; only complementary sequence to this has G-bases.

2. No more than four consecutive A and T in a row, and no more than three

consecutive C in a row to reduce synthesis error.

3. The number of C-bases is in between 30%-70% to ensure comparable melting

temperature.

After being generated, all sequences are checked by using NUPACK (58), and are

manually modied if necessary.
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Figure 5.5: Corresponding Petri Nets states to the simulation result.
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5. AGENT-BASED DNA CIRCUIT

5.4.2 Reaction Pathway

The following figures (Figure 5.6 - 5.8)are detailed reaction pathways for each

Petri Net operator as experimental results are summarized in Figure 5.2. Im-

ages are obtained from graphical simulations of Visual DSD. Bold-line species

are provided as reactants, arrows show reaction direction, where uncolored means

forward reaction and black-colored means backward reaction. Alphanumeric char-

acters represent DNA sequence coding which correspond to Table 5.1.
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5. AGENT-BASED DNA CIRCUIT

Figure 5.6: Sequential operator reaction pathway.

5.4.3 Experimental Results

Figure 5.9 shows raw time-scan measurement data for sequential operator. FAM

fluorescence is used as the reporter molecule (EX=495/EM=520). Vertical axis

is in arbitrary unit (might vary from time to time depending on fluorescence

type, simulation, and machine condition), and horizontal axis is time in seconds

(t=3000). Other parameters are: delay=5s, EX/EM slit=5.0, PM voltage=700.

Figure 5.10 shows raw time-scan measurement for synchronization operator.

FAM fluorescence is used as the reporter molecule (EX=495/EM=520). Vertical

axis is in arbitrary unit (might vary from time to time depending on fluorescence

type, simulation, and machine condition), and horizontal axis is time in seconds

(t=3000). Other parameters are: delay=5s, EX/EM slit=5.0, PM voltage=700.

Figure S.7: Raw time-scan measurement for concurrent operator. FAM and

ROX fluorescence are used as reporter molecules (EX=495/EM=520 for FAM,

(EX=580/EM=610) for ROX). However, in this experiment, only FAM channel

is selected for measurement. Vertical axis is in arbitrary unit (might vary from
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Figure 5.7: Synchronization operator reaction pathway.
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Figure 5.8: Concurrent operator reaction pathway.

Figure 5.9: Sequential operator.
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Figure 5.10: Synchronization operator.

time to time depending on fluorescence type, simulation, and machine condition),

and horizontal axis is time in seconds (t=3000). Other parameters are: delay=5s,

EX/EM slit=5.0, PM voltage=700.

Figure S.8: Raw wavelength measurements for concurrent operator (because

we were not able to measure both fluorescence channels at the same time, due

to machine limitation). Vertical axis is in arbitrary unit (might vary from time

to time depending on fluorescence type, simulation, and machine condition), and

horizontal axis is within the range of emission wavelength of respective fluores-

cence molecules. a) FAM channel, b) ROX channel.
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Figure 5.11: Concurrent operator.
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Figure 5.12: Concurrent operator (wavelength).
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6

Probabilistic DNA Gate

Molecular robotics and autonomous molecular machines, like their conventional-

mechanical counterparts, are expected to perform intelligent tasks under mini-

mum external supervisions. One strategy to accomplish such complex design is

to represent internal states of the machines by using finite state automaton (or

also called finite state machine/FSM). The transition between states is triggered

by external stimulus (can be input signals, sensing data from the environment,

or the communication with other machines in the case of multi-agent systems).

While there have been many proposals in implementing deterministic transitions

by DNA reactions, e.g. by DNA strand displacement cascades, the experimen-

tal procedure still remains a challenge. Moreover, in this work, we also propose

a new design for stochastic transitions, which also may be applied to arbitrary

stochastic DNA computations.

6.1 Introduction

To date, one important challenge in DNA nanotechnology is to design intricate in-

formation processing mechanisms that allow the development of autonomous and

programmable systems based on biomolecular reactions (25, 26). One promising

approach is by employing the isothermal competitive hybridization mechanism,

termed DNA strand displacement (DSD), to achieve complex dynamical functions

at the molecular level (10, 12, 13, 51).
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6. PROBABILISTIC DNA GATE

Figure 6.1: Finite state machine or FSM

The major obstacle is, encapsulating computation through chemical reactions

is not as trivial as in silicon-based circuitry. Most of efforts rely on engineering

by reaction kinetics that is, in principle, based on continuous model of ordinary

differential equations (9, 10, 53). Discrete systems, however, are easier to under-

stand and provide elegant mechanism for sequential logic programming (82). In

this work, we strive to contribute to solve this challenge by surveying an experi-

mental implementation of DNA-based systems based on discrete models, such as

Finite State Machine.

Finite State Machine (FSM), or Finite State Automaton, is an abstract com-

putational model used to describe discrete systems, including programming and

logical sequences (82). For long, FSM has been used to model various complex

design tasks, including autonomous and intelligent robotics. In this paper, rather

than discussing the FSM by its formal definition, we represent it with the graph-

ical notation.

Generally, a robot, either mechanical or biomolecular ones, can be represented

as an abstract model consisting sequences of internal states. These capture pos-

sible functions the robot may perform, as well as how it progresses from one

state to another, through the transitioning process. As shown in Figure 6.1, a

FSM consists of states (denoted by numbered circles) and transitions (denoted

by dashed and solid lines). One state may move to another while certain required

conditions or events are satisfied, e.g. external stimuli or time evolution. These

transitions may be exclusive to one possible outcome (deterministic, represented
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Figure 6.2: Experimental result of the reporter test

by dashed-blue lines), or with possibility of multiple outcomes (stochastic, repre-

sented by solid-red line). In this work, we show how a FSM can be designed over

bio-molecular reactions, by employing DNA strand displacement reactions.

6.2 Design and Results

DSD can be cascaded into multilayer networks, where output signals from one

reaction serve as input signals for another reaction. Moreover, one signal may

serve as inputs in two different reactions (OR gate design), or multiple inputs

should be present for a reaction to occur (AND gate design). Thus, in principle,

it is possible to build discrete-finite systems based on DNA reactions, such as

Petri Nets (11, 60, 64).

In the present study, we survey the implementation of the FSM based on

this biomolecular mechanism. To simulate the functionality of the FSM, we

experimentally tested four different setups: 1) reporter test, 2) deterministic

transition, 3) conditional transition, and 4) stochastic transition.

The first mentioned is the quantitative measurement method of DSD reactions

by using FRET technique. The design of the reporter is a slight modification of

the basic DSD of Figure 2.1. A pair of DNA strand is labeled with fluorophore

(lower strand) and quencher molecules (upper strand), which are complement

to each other. When they hybridize, the quencher absorbs the light emitted

97



6. PROBABILISTIC DNA GATE

by the fluorophore, thus no emission is measured. Once an output signal that

can displace the top strand of the reporter gate, the quencher will be separated

from the fluorophore, resulting in light emission. The growth of the fluorescence

intensity is linear to the number of the displacing output signal, thus this may be

utilized as unit for signal’s measurement. As this value may vary depending on

experimental and machine conditions, typically, post-experimental normalization

is needed, to map the measured values from 0.0 to 1.0. We utilize two different

fluorophores, FAM (excitation 495nm, emission 520nm) and ROX (excitation

580nm, emission 610nm). Results from reporter tests are shown in Figure 6.2.

We tested different amount of signals by increasing from 0.3x to 0.7x to 1.0x

concentration, and obtained corresponding results with the expected probability.

The second mentioned can be implemented by a simple translator gate that

transforms one signal strand into another. In order to build a composable system,

the signal’s coding structure should be uniform. In this paper, we utilize 3-domain

single strand DNA structure: (non − toehold, toehold, non − toehold) which is

inspired by (64). Consequently, this determines the design of the gates required

for reactions to occur. Figure 6.3 shows the design of DSD reaction that can take

one input signal and to transform it into another output signal. One additional

single strand acts as a helper strand to ensure that the final step in the reaction

is irreversible for a deterministic operation (it possesses different structure with

the signals). All reactants are represented by bold lines, intermediate states and

outputs are by thin lines. White arrows represent forward reactions, and black

arrows represent backward reactions.

The reaction begins with the interaction of toehold xt from signal X, as an

input, with its complement on gate T1. This is followed by the displacement

of non-toehold xb that it shares with the gate. This step reversibly releases an

intermediate single strand due the unstable binding of toehold t. As a new free

toehold is now exposed, the helper strand can react with the gate and undergo

the similar process to release signal Y , as an output. In addition to that, the gate

will also turn into a waste as there is no toehold left open anymore. These whole

processes can be written simply as the transformation of signal X into Y which

is ruled by gate T1. Experimental result of deterministic transition is shown in

Figure 6.4.
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Figure 6.3: Schematic of deterministic transition

Figure 6.4: Experimental result of deterministic transition
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6. PROBABILISTIC DNA GATE

Figure 6.5: Schematic of conditional transition

The third mentioned can be implemented by designing extension reactions

that take multiple input signals and to transform them into one output signal, by

adding extra domains in the gate. Therefore, there will be additional intermediate

reactions depending on the number of input signals. After the last input signal

binds, similar to the deterministic transition, the helper strand plays its role to

release the output signal, which makes the whole reaction irreversible. Figure 6.5

shows the extension design for the conditional transition (assuming a ”condition”

happens once two input signals are present). All reactants are represented by bold

lines, intermediate states and outputs are by thin lines. White arrows represent

forward reactions, and black arrows represent backward reactions.

The reaction begins with the interaction of toehold xt from signal X, as the

first input, with its complement on gate T1. This is followed by the displacement

of non-toehold xb from the gate, which reversibly releases an intermediate single

strand. In contrast to the deterministic transition, this step is repeated once

again for signal Y , as the second input, until toehold t is exposed. Finally, the

helper strand reacts with the gate and the output signal Z is released. After
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Figure 6.6: Experimental result of conditional transition

the reaction, gate T1 turns into a waste as well. It is important to note that

by this design, the DSD reaction may not proceed unless both input signals are

present. When the second input is missing, the reaction can be undone through

the reversible reaction of the first intermediate strand. Then, the first input

signal can be released again into the system. Experimental result of conditional

transition is shown in Figure 6.6.

The conditional transition is an important concept to build a stochastic-based

process, which is utilized to implement the last mentioned. Conceptually, it

consists of two conditional transitions with a shared second input signal. The

first input signal will be the control of the probability of both reactions.

As shown in Figure 6.7, the stochastic transition is utilized to transform signal

Z into two possible outcomes: signal X and signal Y . In this case, signal Z acts

as the shared input between gate T1 and T2. Both of gates have different first

input: signal A and signal B respectively (we refer them as implicit signals as
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Figure 6.7: Schematic of stochastic transition

they do not directly represent any state within the designed system). Assuming

that initial concentrations of signal A and B, and gate T1 and T2 are the same

(DSD reactions also at the same biochemical rates), the consumption rate of both

gates will be uniform as well. Given any arbitrary concentration of signal Z, it

will then be equally divided by both gate T1 and T2 when the second step of

reactions becomes available. This yields 50:50 production of signal X and signal

Y .

In the case of different amount of implicit signal’s concentration (however both

gates are available in arbitrary larger concentrations), the consumption rate of

gates depends on the implicit signal’s concentration respectively. For example, if

signal A is twice larger than signal B, gate T1 will bind twice more than gate T2.

Because the whole DSD reaction and branch migration are occurred by chance,

and more gate T1 are now available, signal Z binds more likely with gate T1

rather than gate T2. The output production will be roughly 67:33 yield. Since

these output signals can be cascaded into input signals for different gates, we

can safely assume that the reaction probability of a stochastic DNA operator is

directly proportional to the implicit strands.

Experimental result of the stochastic transition is shown in Figure 6.8. From

this result, one output strand grow faster than another because of external stimu-

lation from the implicit strand. However, in contrast to the ideal outcome (dashed
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Figure 6.8: Experimental result of stochastic transition

line), there are errors observed presumably due to reaction leakage. As discussed

in previous chapter, leaking in strand displacement reactions is quite a typical

case. One possible cause is because the imperfect formation of gate complexes,

leaving small chances for unintended interactions to happen. While this aspect

has been a major drawback of DNA strand displacement reactions so far, some

works reported that leakage can be suppressed by doing purification the DNA

samples before further experiments.

All DNA sequences were designed by following the rules as outlined at Chap-

ter 2.2.1. Table 6.1 shows all strands used in these experiments.
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7

Conclusions

7.1 Summary

This thesis is a summary of four independent but related research papers on

computational design of synthetic bio-molecular systems based on DNA strand

displacement reaction.

In the first part, the design of the DNA-based circuit in well-mixed chemical

systems is reported. As the characters of DNA-based systems are in many ways

similar to many self-organizing models in the real life, a nature-inspired compu-

tation has been treated as a promising strategy to compromise the difficulties to

deliver computation above bio-molecular materials. In this work, we successfully

implemented a nature-inspired self-organizing algorithm, namely Immune Net-

work Theory, by using DNA strand displacement (DSD) based operator. We first

expressed the intended behavior of our model in terms of chemical reaction sys-

tems and derived its mathematical formulation by Chemical Reaction Networks

(CRNs). From its chemical notation, the required DNA operators were designed.

We then compared the simulation-based implementation of this DNA-based sys-

tem to the direct programming of the Immune Network Theory’s equation by

silicon-based computing. From the obtained results, there is positive correla-

tion can be concluded between these two different methods of implementation.

This finding is expected to contribute the efforts in overcoming the obstacle in

DNA-based molecular programming, which is to find a formal method to compile

arbitrary mathematical model into biochemical reactions directly.
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In the second part, Ant Double-Bridge System is chosen as an inspiration for

designing the spatially localized DNA architecture based on computation with

molecular walkers. Many collective and distributed systems in nature exhibit a

global level of intelligence driven by local interaction between participating in-

dividuals One particular example is ant foraging behavior. This nature-inspired

computation has been modeled and implemented for various optimization, ma-

chine learning, and robotics-related problems; and now we showed how this algo-

rithm can be applied to the DNA strand displacement reaction. The design can

be implemented on DNA nanostructures, with spatially localized architecture.

The computation is carried out by synthesized walkers traversing the landscape.

Further applications of this computational model include the design of machines

capable of decision making, and systems that can learn to adapt to changes in

the environment. We believe this is an important feature for the development of

fully autonomous, programmable, and evolvable DNA machine in the future.

In the third part, we discuss the model-based coordination strategy for DNA-

based agents based on Petri Nets. By treating DNA strands as individuals or

agents participating in a massive interaction-based swarm-system, we showed

that coordination between two DNA-based agents could be realized. Agent-based

modeling has advantages over conventional/non-agent models, because it enables

simple and modular design and control. In addition, the architecture can be easily

extended for both homogenous and heterogeneous systems. Our approach decom-

poses the problem into three different layers. First, we described the low-level

reaction primitives based on branch migration and DNA strand displacement.

Second, we mapped the intermediate-level representation by using Petri Nets.

We confirmed the behavior of our architecture by in − vitro evaluation. Last,

we employed a simple coordination task between two agents as a test scenario

for the DNA-based interaction model. According to the simulation results, we

inferred that concurrency control could be achieved through Petri Nets modeling.

We argue that our design strategy is feasible for future DNA-based applications,

including DNA-based machines and molecular robotics.

In the last part, the in-vitro implementation of the DNA-based Finite State

Machine is presented. Furthermore, a design of probabilistic DNA gate is shown,

to exhibit stochastic-like computation based on bio-molecular reactions. With
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recent advances in DNA nanotechnology, DNA-based machines and robotics, are

expected to work under minimum external supervisions. Finite State Machine

is a prominent model that can represent the abstraction of the molecular ma-

chines through a discrete state-transition diagram. In this work, we strive to

demonstrate the deterministic and stochastic computation models through wet-

lab experiments, that can implement arbitrary DNA-based Finite State Machine.

To simulate the functionality of the FSM, there are four different schema tested in

separate experimental settings: reporter test, deterministic transition, conditional

transition, and stochastic transition. The obtained results from all experiment

setups positively correspond to the expected behaviors.

All of these independent results are important for contribution to the de-

velopment of DNA-based information processing systems or computation. The

research ultimate goal is to develop systems that can perform logical function that

will be deployed for molecular robotics application. Analogous to any mechani-

cal robotics, high-level behaviors of the designed machine can be abstracted by

Finite State Machine, as discussed in Chapter 6. Generally, the implementation

of the DNA-based FSM consists of two challenges: how to design and implement

the deterministic process and how to design and implement stochastic process.

We showed how these both processes, once be implemented in bio-molecular re-

actions, can be utilized for designing more sophisticated systems that can solve

complex computation problems, such as decision-making and reinforcement learn-

ing. We demonstrated the interaction model of DNA agents that is based on

deterministic operations in Chapter 3 and that is based on stochastic operations

in Chapter 4. The first mentioned is by taking inspiration from distributed in-

teraction of human’s immune system, while the latter mentioned is by learning

from the metaphor of indirect communication mediated by the environment of the

ant colony system. We further discussed that both designs. are suitable for two

different architectures of DNA strand displacement systems. The first is for well-

mixed chemical systems, which is the typical case of bio-molecular reactions, and

the second is for spatially localized architecture, which integrates to technologies

from structural DNA nanotechnology. Furthermore, we argue that our approach

improves currently available techniques in DNA-based circuits and computation.

Most of approaches so far attempted to re-engineer electronic circuits principle
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by using biological components. However, synthetic bio-molecular systems are

relatively slow, prone to error, and may never compete the speed and effective-

ness of silicon-based machines. So instead, we exploit the self-organizing principle

underlying the molecular scale and described how formal design of agent-based

model can be utilized to achieve such purpose. This is as discussed in Chapter 5.

7.2 Future Works

Apart from the obtained results, we are aware that the work presented in this

thesis is far from finished. We would end this manuscript by highlighting some

open questions as the future works.

First, the Immune-Network-based DNA circuit. At the current stage, the

designed model is still very simple structurally. Our intention is to observe the

behavior of the DNA-based implementation and to see the correlation with its

conventional programming counterpart. For the next step, a larger scale of Im-

mune Network’s model should be put into consideration. Furthermore, the kinet-

ics gap between the simplified chemical reactions and the DNA operators should

also be properly observed. An alternative design of DNA operators with less

kinetics gap should be designed for this matter.

Second, the Ant-System-based DNA circuit. The utilization of DNA nanos-

tructure technology in combination with the present DNA circuits is expected to

broaden the potential applications for this design. This nature-inspired design

may also be may be incorporated with other DNA based computation systems,

such as tiles assembly for its modular construction, amplifiers, or even in DNA

routing system.

Third, the Agent-based DNA circuit. The scenario we utilized for our model

was simplified to avoid confusion in understanding how the design works. A

more complex scenario that is based on real-life interaction processes and cur-

rently available DNA-based functions is important for actually implementing our

method. Second, as there is no technology available at this time, to prepare a

single molecule of DNA in solution, we are not able to fully evaluate our system

in− vitro. In our agent-based model approach, each copy of a DNA strand acts
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as a single agent in a massive-collective system. Therefore, a single molecule

observation technique would be highly advantageous for models similar to ours.

Last, the Probabilistic-based DNA gate. Current results have shown the au-

tonomous capability of the designed circuit to selectbetween two transitions which

is directed by the implicit signals. Our implementation was based on gate motifs

designed in previous works. However, this design still subjects to leakage-error,

due to imperfect DNA synthesize. While other works have shown that post-

purification protocol may reduce this problem, our motivation in this work is to

show the conceptual idea rather than to present the ideal experimental condition.

In the future, in addition to the purification steps, new simplified design may also

be tested to obtain better result performances.
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Appendix

This section presents the programming code from our in-silico implementation

by using Microsoft Visual DNA Strand Displacement simulator (59), and Mat-

lab R2011a. The Visual DSD software, its manual and documentation can be

obtained from: http://research.microsoft.com/en-us/projects/dna/.

Visual DSD Code

1. Sequential / Deterministic Operator.

directive duration 50000.0 points 1000

directive scale 100.0

directive plot sum(<_ xt^ xb>); sum(<_ yt^ yb>)

def signal = 100

def gate = 100

def Sig(N, h, t, b) = N * <h t^ b>

def TGat(N, t0, b0, t1, b1) = new t new a

( N * t0^*:[b0 t^]:[a t1^]<b1>

| N * <t^ a t1^>

)

( Sig(signal, xh, xt, xb)

| TGat(gate, xt, xb, yt, yb)

)

2. Synchronization / Conditional Operator.

directive duration 50000.0 points 1000

directive scale 100.0
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directive plot sum(<_ xt^ xb>); sum(<_ yt^ yb>); sum(<_ zt^ zb>)

def signal = 100

def gate = 100

def Sig(N, h, t, b) = N * <h t^ b>

def JGat(N, t1, b1, t2, b2, t3, b3) = new a new b

( N * t1^*:[b1 t2^]:[b2 a^]:[b t3^]<b3>

| N * <a^ b t3^>

)

( Sig(signal, xh, xt, xb)

| Sig(signal, yh, yt, yb)

| JGat(gate, xt, xb, yt, yb, zt, zb)

)

3. Concurrent Operator.

directive duration 50000.0 points 1000

directive scale 100.0

directive plot sum(<_ xt^ xb>); sum(<_ yt^ yb>); sum(<_ zt^ zb>)

def signal = 100

def gate = 100

def Sig(N, h, t, b) = N * <h t^ b>

def FGat(N, t1, b1, t2, b2, t3, b3) = new a

( N * t1^*:[b1 t2^]<b2>:[a t3^]<b3>

| N * <t2^ a t3^>

)

( Sig(signal, xh, xt, xb)

| FGat(gate, xt, xb, yt, yb, zt, zb)

)

4. Stochastic DNA Operator.

directive duration 50000.0 points 1000

directive scale 100.0

directive plot sum(<_ xt^ xb>); sum(<_ yt^ yb>); sum(<_ zt^ zb>)

def signal = 100

def gate = 100

def Sig(N, h, t, b) = N * <h t^ b>

def JGat(N, t0, b0, t1, b1, t2, b2) = new t new a
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( N * t0^*:[b0 t1^]:[b1 t^]:[a t2^]<b2>

| N * <t^ a t2^>

)

( Sig(signal, xh, xt, xb)

| Sig(75, ah, at, ab)

| Sig(25, bh, bt, bb)

| JGat(gate, at, ab, xt, xb, yt, yb)

| JGat(gate, bt, bb, xt, xb, zt, zb)

)

5. Immune-Network-Based DNA Circuit.

directive sample 2000.0 1000

directive plot sum(<_ xt^ xb>); sum(<_ yt^ yb>); sum(<_ zt^ zb>);

sum(<_ at^ ab>); sum(<_ bt^ bb>); sum(<_ ct^ cb>)

def Species(N, h, t, b) = N * <h t^ b>

def Fuel(N, h, t, b) = constant N * <h t^ b>

def kGat(N, t1, b1) = constant N * t1^*:[b1]

def mGat(N, t1, b1, t2, b2, t3, b3, t4, b4, t5, b5) = new t new a

( constant N * t1^*:[b1 t2^]:[b2 t3^]:[b3 t^]:[a t4^]<b4>:[a t5^]<b5>

| constant N * <t^ a t4^ a t5^>

| constant N * <b1 t2^>

| constant N * <b2 t3^> )

( Species(300, xh, xt, xb)

| Species(200, yh, yt, yb)

| Species(200, zh, zt, zb)

| Species(220, ah, at, ab)

| Species(180, bh, bt, bb)

| Species(200, ch, ct, cb)

| Fuel(1586, k1h, k1t, k1b)

| Fuel(4751, k2h, k2t, k2b)

| Fuel(172, k3h, k3t, k3b)

| Fuel(1908, k4h, k4t, k4b)

| Fuel(3827, k5h, k5t, k5b)

| Fuel(3976, k6h, k6t, k6b)

| Fuel(2449, kz1h, kz1t, kz1b)

| Fuel(2228, ky1h, ky1t, ky1b)

| Fuel(3231, kx1h, kx1t, kx1b)

| Fuel(3547, kz2h, kz2t, kz2b)

| Fuel(3774, ky2h, ky2t, ky2b)

113



APPENDIX

| Fuel(1380, kx2h, kx2t, kx2b)

| Fuel(3398, kz3h, kz3t, kz3b)

| Fuel(3276, ky3h, ky3t, ky3b)

| Fuel(813, kx3h, kx3t, kx3b)

| mGat(4000, k3t, k3b, xt, xb, yt, yb, yt, yb, yt, yb)

| mGat(4000, k5t, k5b, xt, xb, zt, zb, zt, zb, zt, zb)

| mGat(4000, k1t, k1b, yt, yb, xt, xb, xt, xb, xt, xb)

| mGat(4000, k6t, k6b, yt, yb, zt, zb, zt, zb, zt, zb)

| mGat(4000, k2t, k2b, zt, zb, xt, xb, xt, xb, xt, xb)

| mGat(4000, k4t, k4b, zt, zb, yt, yb, yt, yb, yt, yb)

| mGat(4000, kx1t, kx1b, at, ab, xt, xb, xt, xb, xt, xb)

| mGat(4000, ky1t, ky1b, at, ab, yt, yb, yt, yb, yt, yb)

| mGat(4000, kz1t, kz1b, at, ab, zt, zb, zt, zb, zt, zb)

| mGat(4000, kx2t, kx2b, bt, bb, xt, xb, xt, xb, xt, xb)

| mGat(4000, ky2t, ky2b, bt, bb, yt, yb, yt, yb, yt, yb)

| mGat(4000, kz2t, kz2b, bt, bb, zt, zb, zt, zb, zt, zb)

| mGat(4000, kx3t, kx3b, ct, cb, xt, xb, xt, xb, xt, xb)

| mGat(4000, ky3t, ky3b, ct, cb, yt, yb, yt, yb, yt, yb)

| mGat(4000, kz3t, kz3b, ct, cb, zt, zb, zt, zb, zt, zb)

| kGat(3, xt, xb)

| kGat(3, yt, yb)

| kGat(3, zt, zb)

)

6. Ant-System-Based DNA Circuit.

directive duration 500000.0 points 200

directive scale 100.0

directive plot sum(<_ j1t^ j1b>); sum(<_ j2t^ j2b>)

def gatNum = 50

def antNum = 100

def phero1 = 100

def phero2 = 100

def kilNum = 125

def Sig(N, h, t, b) = N * <h t^ b>

def mGat(N, t0, b0, t1, b1, h2, t2, b2, h3, t3, b3, h4, t4, b4) =

( N * t0^*:[b0 t1^]:[b1 t^]:[h2 t2^]<b2>:[h3 t3^]<b3>:[h4 t4^]<b4>

| N * <t^ h2 t2^ h3 t3^ h4 t4^>

)

def kGat(N, t, b) = N * t^*:[b]

( Sig(antNum, aah, aat, aab)
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| Sig(phero1, j1h, j1t, j1b)

| Sig(phero2, j2h, j2t, j2b)

| mGat(gatNum, j1t, j1b, aat, aab, xoh, xot, xob, axh, axt, axb, j1h, j1t, j1b)

| mGat(gatNum, xot, xob, axt, axb, yoh, yot, yob, aah, aat, aab, j1h, j1t, j1b)

| mGat(gatNum, j2t, j2b, aat, aab, boh, bot, bob, abh, abt, abb, j2h, j2t, j2b)

| mGat(gatNum, bot, bob, abt, abb, coh, cot, cob, ach, act, acb, j2h, j2t, j2b)

| mGat(gatNum, cot, cob, act, acb, doh, dot, dob, adh, adt, adb, j2h, j2t, j2b)

| mGat(gatNum, dot, dob, adt, adb, eoh, eot, eob, aah, aat, aab, j2h, j2t, j2b)

| kGat(kilNum, j1t, j1b)

| kGat(kilNum, j2t, j2b)

)

Matlab Code

1. Immune-Network-Based DNA Circuit.

x0 = [1 10 20 5 0 5];

afn = [0.0, 1.0, 0.0; 0.0, 0.0, 1.0; 1.0, 0.0, 0.0;

0.3, 0.6, 0.1; 0.4, 0.4, 0.2; 0.1, 0.9, 0.0]

A1 = triu(rand(3));

A2 = transpose(A1);

A3 = A1 + A2;

A3p = rand(3);

A4 = A3p - diag(diag(A3p));

B = rand(3);

[t, x] = ode45(@(t, x) m1e(t, x, afn) ,[0 1.0], x0);

plot(t, x)

legend(’A1’, ’A2’, ’A3’, ’X’, ’Y’, ’Z’)

function density = m1e (t, x, afn)

death = 0.0;

x1 = (afn(1,:) * [x(1); x(2); x(3)] - [x(1), x(2), x(3)] * afn(1:3,1) + afn(4,:)

* [x(4); x(5); x(6)] - death) .* x(1);

x2 = (afn(2,:) * [x(1); x(2); x(3)] - [x(1), x(2), x(3)] * afn(1:3,2) + afn(5,:)

* [x(4); x(5); x(6)] - death) .* x(2);

x3 = (afn(3,:) * [x(1); x(2); x(3)] - [x(1), x(2), x(3)] * afn(1:3,3) + afn(6,:)

* [x(4); x(5); x(6)] - death) .* x(3);

x4 = -1 .* [x(1), x(2), x(3)] * afn(4:6,1) .* x(4);

x5 = -1 .* [x(1), x(2), x(3)] * afn(4:6,2) .* x(5);
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x6 = -1 .* [x(1), x(2), x(3)] * afn(4:6,3) .* x(6);

density = [x1; x2; x3; x4; x5; x6];

end

2. Ant-System-Based DNA Circuit.

function ant_circuit

clc;

pA = 100;

pB = 120;

par = [pA pB];

[t, x] = ode45 (@rhs, [0 2], par);

c = 1;

sampling = floor((size(x, 1)/100));

output = zeros(sampling, 2);

for q=1:sampling:size(x, 1)

output(c, 1) = x(q, 1);

output(c, 2) = x(q, 2);

c = c + 1;

end

plot (t, x);

xlabel(’t’); ylabel(’x’);

function dxdt = rhs(t, x)

k = 7.0;

d = 100;

ants = 10;

a = 0; b = 0;

for i=1:ants

if rand > 0.8

a = a + 1;

else

b = b + 1;

end

end

pheroA = ((-1 .* k .* x(1)) + (d * a));

pheroB = ((-1 .* k .* x(2)) + (d * b));

dxdt = [pheroA; pheroB];

end

end
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