主論文の要約

論文題目 Study on combustion and NO_x emission characteristic of NH₃ flame

(アンモニア火炎の燃焼特性と窒素酸化物 排出特性に関する研究)

氏 名 李 軍

論 文 内 容 の 要 約

This thesis includes six chapters. The literature review and background information on the use of NH_3 as an alternative fuel are summarized in Chapter 1. The world energy and environmental issues has been firstly introduced, following with the introduction of alternative fuels and NO formation during premixed combustion. Furthermore, the motivations of using NH_3 as an alternative fuel have been summarized. Finally, the objectives and outline of the thesis have been presented in Chapter 1.

Chapter 2 reports the experimental investigation of the combustion characteristics and NO_x formation in NH₃-H₂-air flames. The potential of H₂ and NH₃ as carbon-free fuels was evaluated. The combustion characteristics and NO_x formation in the combustion of H₂ and NH₃ at different air-fuel equivalence ratios and initial H₂ concentrations in the fuel gas were experimentally studied. The burning velocity of NH₃-H₂-air flame was measured by the Bunsen burner method. The emissions, including unburnt NH₃, H₂, O₂, N₂, and NO in the exhaust gas, were experimentally analyzed. The results show that NH₃ burning velocity improved because of increased amounts of H₂ atom in flame with the addition of H₂. NH₃ burning velocity could be moderately improved and could be applied to the commercial gas engine together with H₂ as fuels. H₂ has an accelerant role in H₂-NH₃-air combustion, whereas NH₃ has a major effect on the maximum burning velocity of H₂-NH₃-air. In addition, fuel-NO_x has

a dominant role and thermal- NO_x has a negligible role in H_2 - NH_3 -air combustion. Thermal- NO_x decreases in H_2 - NH_3 -air combustion compared with the case for pure H_2 -air combustion. NO_x concentration reaches its maximum at stoichiometric combustion. Furthermore, H_2 is detected at an air-fuel equivalence ratio of 1.00 for the decomposition of NH_3 in flame. Hence, the stoichiometric combustion of H_2 and NH_3 should be carefully considered in the practical utilization of H_2 and NH_3 as fuels. H_2 as fuel for improving burning performance with moderate burning velocity and NO_x emission enables the utilization of H_2 and NH_3 as promising fuels.

In Chapter 3, a freely propagating adiabatic, premixed, laminar flame speed calculation model in CHEMKIN 4.0 is demonstrated. The combustion and emissions characteristics of premixed NH3-air flame under preheating conditions (ranging from 298 K to 573 K) were numerically investigated. The burning velocity and molar fractions of all species were determined using the Miller and Bowman and the Reductive Konnov mechanisms. The results show that both the equivalence ratio and preheating temperature have important effects on the laminar burning velocity and adiabatic flame temperature of NH₃. The reaction rate of production and molar fraction of H, O, and OH radicals, together with nitrogen radicals such as NH_2 , NH , and N in the reaction zone increases as the preheating temperature is increased from 298 K to 573 K. Although NO concentrations in the exhaust gas increased with increasing preheating temperature under fuel-lean conditions, they could be maintained at a reasonably low level at all preheating temperatures, mainly due to the increased reduction reaction of NO with NH₂, NH, N radicals. The main N radical formation in the NH₃–air combustion is originated from NH₃ while not N₂, which indicates that the N₂ dilution effect of NH₃-air flame is negligible for NO formation. Furthermore, the equivalence ratio has a dominant effect on NO yields, because of the higher reduction reaction and lower flame temperature at higher equivalence ratio conditions, leading a lower formation of HNO, which indicates a potential in reducing NO emissions in NH₃ combustion. Therefore, the preheating temperature and equivalence ratio should be well considered in practical operations to minimize NO formation in combustion of NH₃ as a clean fuel.

In Chapter 4, the combustion of NH₃ under oxygen-enriched condition has been proposed as a novel method for improving NH₃ combustion. As a key parameter for a fuel in real combustion development, the burning velocity of NH₃, which is usually low, limits its application in the energy device. The oxygen concentration in the combustion air was varied from 21% to 30%. The results show that O₂—enriched combustion has positive effects on both laminar burning velocity and adiabatic flame temperature of NH₃. The maximum burning velocity of NH₃ is 38.6 cm/s at O₂ content of 30 %, which is

approximately 2.6 times the value obtained at an O₂ content of 21 %, mainly due to the increased reaction rates of OH, H, O, and NH₂ radicals in the reaction zone at higher O₂ contents. NO emissions increase with an increase in the O₂ content of the combustion air. Whereas, the reactions between NO and surplus NH₂, NH and N radicals cause more NO consumption especially at fuel-rich conditions, showing the potential in reducing NO emission in NH₃-air combustion. Therefore, O₂-enriched combustion is a suitable method for improving NH₃ combustion when NH₃ is utilized as fuel.

Chapter 5 presents the investigations of the performance and efficiency of a natural gas spark-ignition engine fueled with ammonia/hydrogen (NH₃/H₂) in order to evaluate the NH₃ combustion performance during engine combustion. NH₃, and H₂ from NH₃ decomposition, have been proposed as fuels for a gas engine system in this research. The effects of the direct injection of gaseous NH₃, together with H₂ from NH₃ decomposition, on the engine performance and efficiency have been experimentally investigated. The results show that a maximum of 60 % NH₃ addition (LHV basis) can be reached when the gas engine fueled by NH₃ and CH₄ with a fixed rotation speed of 1950 rpm. The gas engine operates stably at a maximum high addition ratio of 92.5% NH₃+H₂ (LHV basis) addition to total fuel under fixed rotation speed with tiny vibration of 1.0%, showing a feasible replacement of NH₃+H₂ as major fuel of the gas engine fueled by CH₄. The cylinder pressure of gas engine decreases with the addition of NH₃, while increases with the addition of H₂. A lower energy density of NH₃ and H₂ leads a lower power generation efficiency of the gas engine when fueled by NH₃/H₂/CH₄ compared with CH₄.

Chapter 6 summaries the conclusions of this study and suggestions in the future work about the combustion and emissions characteristics of NH₃ flame when use NH₃ as a carbon-free alternative fuel.