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Abstract

The Cauchy problem for the Navier-Stokes equations with the Coriolis force
is considered. It is proved that a similar a priori estimate, which is derived
for the Navier-Stokes equations by Lei-Lin [12], holds under the effect of the
Coriolis force. As an application existence of a unique global solution for
arbitrary speed of rotation is proved, as well as its asymptotic behavior.
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Chapter 1

Introduction

In this thesis, we consider the initial value problem of the Navier-Stokes
equations with the Coriolis force in R3,

∂tu − ν∆u + Ωe3 × u + (u,∇)u + ∇p = 0, in (0,∞) × R3,

div u = 0, in (0,∞) × R3,

u|t=0 = u0, in R3,

(NSΩ)

where u = u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) denotes the unknown ve-
locity field, and p = p(t, x) denotes the unknown scalar pressure, while
u0 = u0(x) = (u1

0(x), u2
0(x), u3

0(x)) denotes the initial velocity field. The
constant ν > 0 denotes the viscosity coefficient of the fluid, and Ω ∈ R rep-
resents the speed of rotation around the vertical unit vector e3 = (0, 0, 1),
which is called the Coriolis parameter.

Recently, this problem gained some attention due to its importance in
applications to geophysical flows, see e.g. [4]. Mathematically, (NSΩ) also
have a interesting feature that there exists a global solution for arbitrary large
data provided the speed of rotation Ω is large enough, see e.g. [1, 4, 9]. There
are another type of results which shows the existence of a global solution
uniformly in Ω provided the data is sufficiently small, see e.g. [5, 8, 11, 10].
The purpose of this thesis is, concerning to the latter, to relax the smallness
condition of the data, based on the idea for the Navier-Stokes equations,
Ω = 0 in (NSΩ), by [12].

Before stating our main results, we give a definition of function spaces.
For m ∈ R, we define

χm(R3) :=
{
f ∈ S ′ | f̂ ∈ L1

loc, ‖f‖χm :=

∫
R3

|ξ|m|f̂(ξ)| dξ < ∞
}
.
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Recently, Lei and Lin introduced the space χ−1, which is contained in BMO−1

and equivalent to the Fourier-Herz space Ḃ−1
1 . It is known that Hs(R3) ⊆

χ−1, if s > 1
2
, see Lemma 2.1. Moreover it is known that there is an example

so that H
1
2 (R3) 6⊆ χ−1, see [12]. It is also known that χ−1 6⊆ H

1
2 (R3), see

[14].

Theorem 2.3. Let u0 ∈ χ−1 satisfy div u0 = 0 and ‖u0‖χ−1 < (2π)3ν.
For T > 0, assume that u ∈ C([0, T ); χ−1) is a solution to (NSΩ) in the
distribution sense satisfying

u ∈ L1(0, T ; χ1), ∂tu ∈ L1(0, T ; χ−1).

Then, u satisfies

‖u(t)‖χ−1 + (ν − (2π)−3‖u0‖χ−1)

∫ t

0

‖u(τ)‖χ1 dτ ≤ ‖u0‖χ−1 , 0 ≤ t < T.

(1.0.1)

Remark 1.1. (1) This a priori estimate is first derived in the case Ω = 0 in
[12, Proof of Theorem 1.1]. Here, Theorem 2.3 states that the same estimate
also holds under the effect of the Coriolis force.

(2) In this thesis, we define the Fourier transform of f by

f̂(ξ) = F [f ](ξ) :=

∫
e−ix·ξf(x) dx.

The constant (2π)3 in the theorem appears from the following formula:

F [fg](ξ) = (2π)−3(f̂ ∗ ĝ)(ξ),

where f ∗ g denotes the convolution of f and g.

As an application of Theorem 2.3 we obtain the global solution to (NSΩ).

Theorem 2.5. Let s > 3/2 and Ω ∈ R. Assume that u0 ∈ Hs(R3) satisfy
div u0 = 0 and ‖u0‖χ−1 < (2π)3ν. Then, there exists a unique global solution
u ∈ C([0,∞); Hs(R3)) to (NSΩ) satisfying

u ∈ AC([0,∞); Hs−1(R3)) ∩ L1
loc(0,∞; Hs+1(R3))

and

sup
t>0

{
‖u(t)‖χ−1 + (ν − (2π)−3‖u0‖χ−1)

∫ t

0

‖u(τ)‖χ1 dτ
}
≤ ‖u0‖χ−1 .
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Remark 1.2. Since s > 3/2, we have Hs ↪→ χ−1 by Lemma 2.1. For a
interval I and a Banach space X, AC(I; X) denotes the space of X-valued
absolutely continuous functions. There are several results which treats the
existence of a unique global solution to (NSΩ), see [10] and reference therein.
The advantage of this result is that the condition of the size of the data is
merely ‖u0‖χ−1 < (2π)3ν.

In chapter 3, we show the existence of a unique global solution for the
data u0 ∈ χ−1 with ‖u0‖χ−1 < (2π)3ν. For the Navier-Stokes case Ω = 0, see
[14, Theorem 1.3].

Theorem 3.1. Let u0 ∈ χ−1 and ‖u0‖χ−1 < (2π)3ν. Then, there is a unique
global in time solution u ∈ C([0,∞); χ−1) of (NSΩ) satisfying

u ∈ L2(0,∞; χ0) ∩ L1(0,∞; χ1), ∂tu ∈ L1(0,∞; χ−1),

and

sup
t>0

{
‖u(t)‖χ−1 + (ν − (2π)−3‖u0‖χ−1)

∫ t

0

‖u(τ)‖χ1 dτ

}
≤ ‖u0‖χ−1 .

Remark 1.3. (1) There are several results which treats the existence of a
unique global solution to (NSΩ), see [10] and reference therein. In particular,
the spaces FM−1

0 , which is considered by Giga, Inui, Mahalov, and Saal [5],
and B−1

1,2 by [10], are larger than χ−1. However, the advantage of this result
is that the condition of the size of the data is merely ‖u0‖χ−1 < (2π)3ν.

(2) In the Navier-Stokes equations, the case Ω = 0, the corresponding result
is proved in [12, Theorem 1.1]. We notice that there is also the another
approach by [14, Theorem 1.3].
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Chapter 2

Hs Theory

2.1 A Priori Estimate and Its Application to

Hs Theory

In this thesis, we only use spaces χ−1, χ0, and χ1 below, so we summarize
elementary estimates concerning the spaces we will use later.

Lemma 2.1. (1) For m > −3/2, and s > m + 3/2,

‖f‖χm(R3) ≤ C‖f‖1− 1
s
(m+ 3

2
)

L2 ‖f‖
1
s
(m+ 3

2
)

Ḣs .

(2) ‖f‖χ0 ≤ ‖f‖1/2

χ−1‖f‖1/2

χ1 .

(3) ‖∇f‖L∞ ≤ (2π)−3‖f‖χ1.

Remark 2.2. Taking m = −1, 1 in Lemma 2.1 (1) respectively, we have for
s > 1/2,

‖f‖χ−1(R3) ≤ C‖f‖1− 1
2s

L2 ‖f‖
1
2s

Ḣs ,

and for s > 5/2,

‖f‖χ1(R3) ≤ C‖f‖1− 5
2s

L2 ‖f‖
5
2s

Ḣs .
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proof. (1) We take R > 0, which is determined later, to divide the integral

‖f‖χm =

∫
|ξ|≤R

|ξ|m|f̂(ξ)| dξ +

∫
|ξ|>R

|ξ|m|f̂(ξ)| dξ

≤
(∫

|ξ|≤R

|ξ|2m dξ
)1/2

(2π)
3
2‖f‖L2 +

(∫
|ξ|>R

|ξ|2(m−s) dξ
)1/2

‖f‖Ḣs

= |S2|1/2
( 1√

2m + 3
Rm+3/2(2π)

3
2‖f‖L2 +

1√
2(s − m) − 3

Rm−s+3/2‖f‖Ḣs

)
.

Then, choosing R = ‖f‖−1/s

L2 ‖f‖1/s

Ḣ2 , we obtain the desired result.
(2) This estimate is easily derived by the Hölder inequality,

‖f‖χ0 =

∫
|ξ|−1/2|f̂(ξ)|1/2|ξ|1/2|f̂(ξ)|1/2 dξ ≤ ‖f‖1/2

χ−1‖f‖1/2

χ1 .

(3) This is also easily derived from the Fourier inversion formula and the
Hausdorff-Young inequality.

Now we state our main results.

Theorem 2.3. Let u0 ∈ χ−1 satisfy div u0 = 0 and ‖u0‖χ−1 < (2π)3ν.
For T > 0, assume that u ∈ C([0, T ); χ−1) is a solution to (NSΩ) in the
distribution sense satisfying

u ∈ L1(0, T ; χ1), ∂tu ∈ L1(0, T ; χ−1).

Then, u satisfies

‖u(t)‖χ−1 + (ν − (2π)−3‖u0‖χ−1)

∫ t

0

‖u(τ)‖χ1 dτ ≤ ‖u0‖χ−1 , 0 ≤ t < T.

(2.1.1)

Remark 2.4. From the a priori estimate (2.1.1), we especially obtain

‖u‖L∞(0,T ; χ−1) ≤ ‖u0‖χ−1 , ‖u‖L1(0,T ; χ1) ≤
‖u0‖χ−1

ν − (2π)−3‖u0‖χ−1

.

As an application of Theorem 2.3 we obtain the global solution to (NSΩ).
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Theorem 2.5. Let s > 3/2 and Ω ∈ R. Assume that u0 ∈ Hs(R3) satisfy
div u0 = 0 and ‖u0‖χ−1 < (2π)3ν. Then, there exists a unique global solution
u ∈ C([0,∞); Hs(R3)) to (NSΩ) satisfying

u ∈ AC([0,∞); Hs−1(R3)) ∩ L1(0,∞; Hs+1(R3))

and

sup
t>0

{
‖u(t)‖χ−1 + (ν − (2π)−3‖u0‖χ−1)

∫ t

0

‖u(τ)‖χ1 dτ
}
≤ ‖u0‖χ−1 .

Remark 2.6. Since s > 3/2, we have Hs ↪→ χ−1 by Lemma 2.1. For a
interval I and a Banach space X, AC(I; X) denotes the space of X-valued
absolutely continuous functions. There are several results which treats the
existence of a unique global solution to (NSΩ), see [10] and reference therein.
The advantage of this result is that the condition of the size of the data is
merely ‖u0‖χ−1 < (2π)3ν.

Next theorem states the asymptotic behavior of a given global solution
to (NSΩ).

Theorem 2.7. Let s > 1/2 and Ω ∈ R. Assume that u ∈ C([0,∞); Hs(R3))
is a global solution to (NSΩ) satisfying

u ∈ AC([0,∞); Hs−1(R3)) ∩ L1
loc([0,∞); Hs+1(R3)).

Then, limt→∞ ‖u(t)‖χ−1 = 0.

Remark 2.8. In the Navier-Stokes case Ω = 0, this result corresponds to
the result in [3]. In that result, the assumption is only u ∈ C([0,∞); χ−1)
is a global solution. Compared with that result, additional assumptions are
imposed for the uniqueness of solutions.

As an application of Theorem 2.7 we obtain the following.

Corollary 2.9. The global solution to (NSΩ) derived in Theorem 2.5 satisfies

lim
t→∞

‖u(t)‖χ−1 = 0.

This chapter is organized as follows. In Section 2.2 we give a proof of
Theorem 2.3. In Section 2.3 we prove Theorem 2.5 as an application of
Theorem 2.3. In Section 2.4 we give a proof of Theorem 2.7.
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2.2 Proof of Theorem 2.3

In this section we give a proof of Theorem 2.3.

Proof of Theorem 2.3. By applying the Fourier transform to the equation,
we have

∂tû + ν|ξ|2û + Ωe3 × û + F
[
(u,∇)u

]
+ iξp̂ = 0.

Thus, we obtain

∂t|û|2 = 2Re(∂tû · û)

= −2ν|ξ|2|û|2 − 2Ω Re
[
(e3 × û) · û

]
− 2Re

{
F
[
(u,∇)u

]
· û
}
− 2Re

[
(iξp̂) · û

]
.

Here, since
(e3 × û) · û = −û2û1 + û1û2 = 2i Im

[
û1û2

]
,

we observe that Re[(e3 × û) · û] = 0. Also, we have (iξp̂) · û = 0, since
div u = 0. Moreover, we notice that

F
[
(u,∇)u

]
j
(ξ) =

3∑
k=1

(2π)−3ûk ∗ ∂̂kuj(ξ)

=
3∑

k=1

(2π)−3

∫
ûk(ξ − η) iηkûj(η) dη

=
3∑

k=1

(2π)−3iξk

∫
ûk(ξ − η) ûj(η) dη,

since
∑3

k=1(ξk − ηk)ûk(ξ − η) = 0. Therefore, we obtain

∂t|û|2 + 2ν|ξ|2|û|2 ≤ 2(2π)−3

3∑
j,k=1

|ξk| (|ûk| ∗ |ûj|) |uj|

≤ 2(2π)−3|ξ| |û| (|û| ∗ |û|).

Then, for ε > 0, we observe that

∂t(|û|2 + ε)1/2 =
∂t|û|2

2(|û|2 + ε)1/2

≤ − ν|ξ|2|û|2

(|û|2 + ε)1/2
+ (2π)−3 |ξ| |û|

(|û|2 + ε)1/2
(|û| ∗ |û|).
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Integrating with respect to t, we obtain

(|û(t, ξ)|2 + ε)1/2 +

∫ t

0

ν|ξ|2|û(τ, ξ)|2

(|û(τ, ξ)|2 + ε)1/2
dτ

≤ (|û0(ξ)|2 + ε)1/2 + (2π)−3

∫ t

0

|ξ| |û(τ, ξ)|
(|û(τ, ξ)|2 + ε)1/2

(|û(τ)| ∗ |û(τ)|)(ξ) dτ.

Then, letting ε → 0, we get

|û(t, ξ)| +
∫ t

0

ν|ξ|2|û(τ, ξ)| dτ ≤ |û0(ξ)| + (2π)−3

∫ t

0

|ξ| (|û(τ)| ∗ |û(τ)|)(ξ) dτ.

Finally, dividing by |ξ|, and then integrating over Rn, we obtain

‖u(t)‖χ−1 + ν

∫ t

0

‖u(τ)‖χ1 dτ ≤ ‖u0‖χ−1 + (2π)−3

∫ t

0

‖u(τ)‖2
χ0 dτ.

By applying Lemma 2.1 (2), we obtain,

‖u(t)‖χ−1 + ν‖u‖L1((0,t); χ1) ≤ ‖u0‖χ−1 + (2π)−3‖u‖L∞((0,t); χ−1)‖u‖L1((0,t); χ1).
(2.2.1)

To derive the desired estimate (2.1.1), it suffices to prove that

‖u‖L∞((0,t); χ−1) ≤ ‖u0‖χ−1 , 0 ≤ t < T.

For the proof, we first show that

‖u(t)‖χ−1 < (2π)3ν, 0 ≤ t < T (2.2.2)

holds by contradiction. From the assumption ‖u0‖χ−1 < (2π)3ν and u ∈
C([0, T ); χ−1), we observe that there exists δ > 0 such that (2.2.2) holds on
[0, δ). Now assume that there exists t0 ∈ (0, T ) such that ‖u(t)‖χ−1 < (2π)3ν
for 0 < t < t0 and

‖u(t0)‖χ−1 = (2π)3ν,

then by (2.2.1) we reach the contradiction

(2π)3ν = ‖u(t0)‖χ−1 ≤ ‖u0‖χ−1 < (2π)3ν,

since ‖u‖L∞((0,t0); χ−1) = (2π)3ν. Therefore, we obtain (2.2.2). Finally, apply-
ing (2.2.2) to estimate on the right hand side of (2.2.1), we obtain

‖u(t)‖χ−1 < ‖u0‖χ−1 , 0 ≤ t < T.

This completes the proof.
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2.3 Proof of Theorem 2.5

Below we fix Ω ∈ R. For the existence of local solutions, we employ the
following result.

Proposition 2.10. Let s > 3/2. For u0 ∈ Hs(R3) with div u0 = 0, there
exists T = T (|Ω|, s, ‖u0‖Hs) > 0 such that (NSΩ) admits a unique strong
solution u ∈ C([0, T ]; Hs(R3)) satisfying

u ∈ AC([0, T ]; Hs−1(R3)) ∩ L1(0, T ; Hs+1(R3)).

Remark 2.11. (1) For the proof, we refer to [13, Lemma 3.1]. We notice
that the condition in [13, Lemma 3.1] is s > 3/2 + 1, because their main
subject is the Euler equation. For the above statement, s > 3/2 is sufficient.

(2) In this proposition, the size of T is characterized by

C0|Ω|T + C1‖u0‖Hs(T + T 1/2ν−1/2) ≤ 1

2
. (2.3.1)

(3) Since s > 3/2, the solution constructed by Proposition 2.10 satisfies the
assumptions in Theorem 2.3. In particular, since

∂tu = ν∆u − ΩP(e3 × u) − P(u,∇u) in Hs−1

holds for a.e. t ∈ (0, T ), where P = (δij +RiRj)i,j is the Helmholtz projection,
we easily observe that ∂tu ∈ L1(0, T ; χ−1).

We will use the following energy estimate.

Proposition 2.12. Let s ≥ 0 and T > 0. Assume that u ∈ C([0, T ); Hs(R3))
is a solution to (NSΩ) satisfying

u ∈ AC([0, T ); Hs−1(R3)) ∩ L1(0, T ; Hs+1(R3)).

Then, u satisfies

‖u(t)‖Hs ≤ ‖u0‖HseC
∫ T
0 ‖∇u(τ)‖L∞ dτ , 0 ≤ t < T.

Remark 2.13. For the proof of this proposition, we also refer to [13, Proof
of Theorem 4.1]. There, we easily observe that

d

dt
‖u(t)‖Hs ≤ C‖∇u(t)‖L∞‖u(t)‖Hs

holds for s ≥ 0. We notice that the term concerning Ωe3 × u vanishes due to
its property of the skew symmetry in Hs.
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Now we are in a position to prove Theorem 2.5.

Proof of Theorem 2.5. Let T ∗ be the maximal existence time of a unique
solution derived by applying Proposition 2.10 repeatedly. Now assume T ∗ <
∞. Then, by (2.3.1), we must have

lim
t→T ∗

‖u(t)‖Hs = ∞. (2.3.2)

Since this solution satisfies the energy estimate in Proposition 2.12, we
have

‖u(t)‖Hs ≤ ‖u0‖HseC
∫ T∗
0 ‖∇u(τ)‖L∞ dτ , 0 ≤ t < T ∗.

Then, since ‖u0‖χ−1 < (2π)3ν, applying Theorem 2.3 we obtain∫ T ∗

0

‖∇u(τ)‖L∞ dτ ≤ ‖u‖L1(0,T ∗; χ1) ≤
‖u0‖χ−1

ν − (2π)−3‖u0‖χ−1

.

This implies sup0<t<T ∗ ‖u(t)‖Hs < ∞, which contradicts to (2.3.2).

2.4 Proof of Theorem 2.7

In this section we give a proof of Theorem 2.7.
We take ε > 0 arbitrary small. Since u0 ∈ Hs ↪→ χ−1, we are able to take

R0 > 0 such that ∫
|ξ|>R0

|ξ|−1|û0(ξ)| dξ <
ε

2
.

Now we set

v0 = F−1[χ{|ξ|≤R0}û0], w0 = F−1[χ{|ξ|>R0}û0].

Then, we observe that v0 ∈ H∞, w0 ∈ Hs, u0 = v0 + w0, and

‖w0‖χ−1 <
ε

2
.

By applying Theorem 2.5 for the initial data w0 we obtain the solution
(w, pw) to (NSΩ). Then, w ∈ C([0,∞); Hs) ∩ L1(0,∞; Hs+1) satisfies

‖w(t)‖χ−1 + (ν − (2π)−3‖w0‖χ−1)

∫ t

0

‖w(τ)‖χ1 dτ ≤ ‖w0‖χ−1 <
ε

2
, t > 0.

(2.4.1)
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Now we set v := u − w. Then, v ∈ C([0,∞); Hs) satisfies

v ∈ AC([0,∞); Hs−1(R3)) ∩ L1(0,∞; Hs+1(R3))

and
∂tv + ν∆v + Ωe3 × v + (v,∇)v + (w,∇)v + (v,∇)w + ∇(p − pw) = 0,

div v = 0,

v|t=0 = v0.

Taking L2-inner product with v, the equation becomes

d

dt
‖v(t)‖2

L2 + ν‖∇v(t)‖2
L2 = 〈(v,∇)w, v〉L2 .

Since
〈(v,∇)w, v〉L2 = −〈w, (v,∇)v〉L2 ,

we obtain

|〈(v,∇)w, v〉L2 | ≤ ‖w‖L∞‖v‖L2‖∇v‖L2

≤ C‖w‖χ0‖v‖L2‖∇v‖L2

≤ Cν‖w‖2
χ0‖v‖2

L2 +
ν

2
‖∇v‖2

L2

Therefore, we obtain

d

dt
‖v(t)‖2

L2 +
ν

2
‖∇v(t)‖2

L2 = Cν‖w(t)‖2
χ0‖v(t)‖2

L2 .

Then, by Gronwall’s inequality,

‖v(t)‖2
L2 +

ν

2

∫ t

0

‖∇v(t)‖2
L2 ≤ ‖v(0)‖2

L2e
Cν
∫ t
0 ‖w(τ)‖2

χ0 dτ
. (2.4.2)

Here, by (2.4.1) we have∫ t

0

‖w(τ)‖2
χ0 dτ ≤ ‖w‖L∞((0,t); χ−1)‖w‖L1((0,t); χ1) ≤

‖w0‖2
χ−1

ν − (2π)−3‖w0‖χ−1

.

(2.4.3)
Therefore, by Lemma 2.1 (1), (2.4.2), (2.4.3) we obtain∫ ∞

0

‖v(t)‖4
χ−1 dτ ≤

∫ ∞

0

‖v(t)‖2
L2‖∇v(t)‖2

L2 ≤
2

ν
‖v0‖4

L2 exp
( Cν ‖w0‖2

χ−1

ν − (2π)−3‖w0‖χ−1

)
.
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Since v ∈ C([0,∞); χ−1), we observe that there exists t0 > 0 such that
‖v(t0)‖χ−1 < ε/2, and thus we have ‖u(t0)‖χ−1 ≤ ‖v(t0)‖χ−1+‖w(t0)‖χ−1 < ε.
So, applying Theorem 2.5 for the data u(t0) we obtain

‖u(t)‖χ−1 ≤ ‖u(t0)‖χ−1 < ε, t > t0,

which implies limt→∞ ‖u(t)‖χ−1 = 0.
Here, we notice that in the final part of the proof we need the uniqueness

of solutions, which is assured in our class of solutions. In fact, if u1, and
u2 ∈ C([0,∞); Hs) are two solutions to (NSΩ) satisfying

u1, u2 ∈ AC([0,∞); Hs−1(R3)) ∩ L1
loc(0,∞; Hs+1(R3)),

then, ũ := u1 − u2 satisfies divũ = 0 and

∂tũ + ν∆ũ + Ωe3 × ũ + (ũ,∇)ũ + (u1,∇)ũ + (ũ,∇)u2 + ∇(p1 − p2) = 0,

and thus we obtain

d

dt
‖ũ(t)‖2

L2 +
ν

2
‖∇ũ(t)‖2

L2 = |〈(ũ,∇)u2, ũ〉L2 | ≤ ‖∇u2(t)‖2
L∞‖ũ(t)‖2

L2 .

Therefore, we have

d

dt
‖ũ(t)‖2

L2 = C‖u2(t)‖Hs+1‖ũ(t)‖2
L2

and Gronwall’s inequality implies ũ(t) = 0 for t > 0.
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Chapter 3

χ−1 Theory

3.1 Main Theorem in χ−1 Theory

In this section, we state our main result and representation of the solution
of linearized equation of (NSΩ).

Theorem 3.1. Let u0 ∈ χ−1 and ‖u0‖χ−1 < (2π)3ν. Then, there is a unique
global in time solution u ∈ C([0,∞); χ−1) of (NSΩ) satisfying

u ∈ L2(0,∞; χ0) ∩ L1(0,∞; χ1), ∂tu ∈ L1(0,∞; χ−1),

and

sup
t>0

{
‖u(t)‖χ−1 + (ν − (2π)−3‖u0‖χ−1)

∫ t

0

‖u(τ)‖χ1 dτ

}
≤ ‖u0‖χ−1 .

Remark 3.2. In the Navier-Stokes equations, the case Ω = 0, the corre-
sponding result is proved in [12, Theorem 1.1]. We notice that there is also
another approach by [14, Theorem 1.3]. The argument below is based on the
latter.

For the proof of Theorem 3.1 we consider the integral equation

u(t) = S(t)u0 −
∫ t

0

S(t − s)P∇ · (u ⊗ u)(s)ds, (3.1.1)

where P = (δij + RiRj)i,j denotes the Helmholtz projection, Rj = F−1 iξj

|ξ|F
denotes the Riesz transforms, and ∇ · (u ⊗ u) = (

∑
j ∂j(uiuj))i=1,2,3. Here

15



S(t) represents the semigroup corresponding to the linear problem
∂tv − ν∆v + Ωe3 × v + ∇q = 0,

div v = 0,

v|t=0 = v0,

(3.1.2)

which is given explicitly by

Ŝ(t)v0(ξ) = cos

(
Ω

ξ3

|ξ|
t

)
e−ν|ξ|2tIv̂0(ξ) + sin

(
Ω

ξ3

|ξ|
t

)
e−ν|ξ|2tR(ξ)v̂0(ξ),

where I is the 3 × 3 identity matrix and

R(ξ) =

 0 ξ3
|ξ| − ξ2

|ξ|
− ξ3

|ξ| 0 ξ1
|ξ|

ξ2
|ξ| − ξ1

|ξ| 0

 .

For its derivation, see e.g. [8]. The integral equation (3.1.1) formally derived
as follows. We first apply P to the equation, then we have

∂tu − ν∆u + ΩPe3 × u + P∇ · (u ⊗ u) = 0, (3.1.3)

where (u,∇u) = ∇ · (u ⊗ u) holds since div u = 0. Here, we notice that

ΩPe3 × u = Ωe3 × u + ∇q (3.1.4)

holds, where q denotes the pressure to the linear problem (3.1.2). Indeed,
taking div to the first equation of (3.1.2), we have

div ∂tu − νdiv ∆u + Ωdiv (e3 × u) + ∆q = 0.

Since div u = 0, it follows that

∆q = −Ωdiv (e3 × u)

= Ω(∂1u2 − ∂2u1).

Thus we have

∇̂q = iξ

(
−Ω

(
iξ1

|ξ|2
û2 −

iξ2

|ξ|2
û1

))
.

16



Since P = (δij + RiRj)i,j, we find that

Pe3 × u = P

 −u2

u1

0


=

 −u2

u1

0

+

 −R2
1u2 + R1R2u1

−R2R1u2 + R2
2u1

−R3R1u2 + R3R2u1


= e3 × u +

1

Ω
∇q,

by definition of Rj. Thus, we obtain the equation
∂tu − ν∆u + Ωe3 × u + ∇q = −P(u,∇)u,

div u = 0,

u|t=0 = u0,

(3.1.5)

Therefore, by Duhamel’s principle, we obtain (3.1.1).

3.2 Existence of Solutions for Any Time In-

terval

In this section, we state there exists a local solution of (NSΩ) if ‖u0‖χ−1 ≤
4π3ν. First we prove the following lemma about S(t).

Lemma 3.3. For u ∈ S ′ and û ∈ L1
loc, we have

|P̂u(ξ)| ≤ |û(ξ)|,

and
|Ŝ(t)u(ξ)| ≤ e−ν|ξ|2t|û(ξ)|.

17



proof. By definition of P, we have

|P̂u(ξ)| =

∣∣∣∣∣∣∣F
 u1 + R1

∑3
j=1 Rjuj)

u2 + R2

∑3
j=1 Rjuj)

u3 + R3

∑3
j=1 Rjuj)


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
 û1 + iξ1

|ξ|
∑3

j=1
iξj

|ξ| ûj)

û2 + iξ2
|ξ|
∑3

j=1
iξj

|ξ| ûj)

û3 + iξ3
|ξ|
∑3

j=1
iξj

|ξ| ûj)


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
 û1 − ξ1

|ξ|2 (ξ · û)

û2 − ξ2
|ξ|2 (ξ · û)

û3 − ξ3
|ξ|2 (ξ · û)


∣∣∣∣∣∣∣

=

√
|û|2 − 2

|ξ|2
(ξ · û)2 +

ξ2
1 + ξ2

2 + ξ2
3

|ξ|4
(ξ · û)2

=

√
|û|2 − 1

|ξ|2
(ξ · û)2 ≤ |û(ξ)|.

By definition of R(ξ), we have

R(ξ)u =
ξ

|ξ|
× u.

It follows that

e2ν|ξ|2t|Ŝ(t)u(ξ)|2 =

∣∣∣∣cos

(
Ω

ξ3

|ξ|
t

)
û(ξ) + sin

(
Ω

ξ3

|ξ|
t

)
ξ

|ξ|
× û(ξ)

∣∣∣∣2
= cos2

(
Ω

ξ3

|ξ|
t

)
|û(ξ)|2 + sin2

(
Ω

ξ3

|ξ|
t

) ∣∣∣∣ ξ

|ξ|
× û(ξ)

∣∣∣∣2
+ 2 cos

(
Ω

ξ3

|ξ|
t

)
sin

(
Ω

ξ3

|ξ|
t

)
û(ξ) ·

(
ξ

|ξ|
× û(ξ)

)
= cos2

(
Ω

ξ3

|ξ|
t

)
|û(ξ)|2 + sin2

(
Ω

ξ3

|ξ|
t

){
|û(ξ)|2 −

(
ξ

|ξ|
· û(ξ)

)2
}

= |û(ξ)|2 − sin2

(
Ω

ξ3

|ξ|
t

)(
ξ

|ξ|
· û(|ξ|)

)2

≤ |û(ξ)|2.
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Proposition 3.4. For any T > 0, we define B : L2([0, T ]; χ0)×L2([0, T ]; χ0) →
L2([0, T ]; χ0) as

B(u, v) =

∫ t

0

S(t − s)P∇ · (u ⊗ v)ds, u, v ∈ L2([0, T ]; χ0).

Then, B is the continuous bilinear map, and

‖B‖ := sup
‖u‖≤1,‖v‖≤1

‖B(u, v)‖L2
T χ0 ≤

1√
2ν(2π)3

.

proof. For T > 0 and u, v ∈ L2([0, T ]; χ0), we have from Lemma 3.3

|B̂(u, v)(t, ξ)| ≤
∫ t

0

|F [S(t − s)P∇ · (u ⊗ v)](s, ξ)|ds

≤
∫ t

0

e−ν(t−s)|ξ|2 |F [P∇ · (u ⊗ v)](s, ξ)|ds

≤
∫ t

0

e−ν(t−s)|ξ|2 |F [∇ · (u ⊗ v)](s, ξ)|ds

≤ 1

(2π)3

∫ t

0

e−ν(t−s)|ξ|2|ξ||û| ∗ |v̂|(s, ξ)ds.
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Using Minkowski’s integral inequality and Young’s inequality, we have

‖B(u, v)‖L2([0,T ];χ0) =

(∫ T

0

‖B(u, v)‖2
χ0dt

) 1
2

=

(∫ T

0

(∫
R3

|B̂(u, v)(t, ξ)|dξ

)2

dt

) 1
2

≤ 1

(2π)3

(∫ T

0

(∫
R3

∫ t

0

e−ν(t−s)|ξ|2 |ξ||û| ∗ |v̂|dsdξ

)2

dt

) 1
2

=
1

(2π)3

(∫ T

0

(∫
R3

∫ T

0

χ[0,t](s)e
−ν(t−s)|ξ|2 |ξ||û| ∗ |v̂|dsdξ

)2

dt

) 1
2

≤ 1

(2π)3

∫
R3

∫ T

0

(∫ T

s

e−2ν(t−s)|ξ|2 |ξ|2 (|û| ∗ |v̂|(s, ξ))2 dt

) 1
2

dsdξ

=
1

(2π)3

∫
R3

∫ T

0

|ξ||û| ∗ |v̂|(s, ξ)
(∫ T

s

e−2ν(t−s)|ξ|2dt

) 1
2

dsdξ

≤ 1√
2ν(2π)3

∫
R3

∫ T

0

|û| ∗ |v̂|(s, ξ)dsdξ

≤ 1√
2ν(2π)3

∫ T

0

‖û(s, ·)‖L1‖v̂(s, ·)‖L1ds

≤ 1√
2ν(2π)3

‖u‖L2([0,T ];χ0)‖v‖L2([0,T ];χ0),

where χ[0,t] is characteristic function on [0, t]. Thus we conclude

‖B‖ ≤ 1√
2ν(2π)3

.

Theorem 3.5. Let u0 be in χ−1 and ‖u0‖χ−1 ≤ 4π3ν. For any T > 0, there
is a unique solution u ∈ L2([0, T ]; χ0) of (NSΩ) such that ‖u‖L2([0,T ];χ0) ≤
2π3

√
2ν.

Now we use the following lemma to prove this.

Lemma 3.6 ([2]). Let E be a Banach space, B a continuous bilinear map
from E ×E → E, and a positive real number α such that α < 1

4‖B‖ . For any
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a in the ball B(0, α) = {x ∈ E; ‖x‖E ≤ α}, then there exists a unique x in
B(0, 2α) such that x = a + B(x, x).

Using Lemma 3.6, we can prove Theorem.

proof. Using ‖B‖ ≤ 1√
2ν(2π)3

, we can get for any T > 0,

‖S(t)u0‖L2([0,T ];χ0) ≤

(∫ T

0

(∫
R3

e−ν|ξ|2t|û0(ξ)|dξ

)2

dt

) 1
2

≤
∫

R3

(∫ T

0

e−2ν|ξ|2t|û0(ξ)|2dt

) 1
2

dξ

≤
∫

R3

|û0(ξ)|
(2ν)

1
2 |ξ|

dξ =
1

(2ν)
1
2

‖u0‖χ−1 .

Since ‖u0‖χ−1 ≤ 4π3ν, we have 1

(2ν)
1
2
‖u0‖χ−1 ≤

√
2ν(2π)3

4
≤ 1

4‖B‖ .

So using Lemma 3.6 for α =
√

2νπ3, E = L2([0, T ]; χ0) and a = S(t)u0,
we can conclude there exists a unique u in B(0, 2α) such that u = S(t)u0 +
B(u, u). Moreover, we have ‖u‖L2([0,T ];χ0) ≤ 2 ·

√
2νπ3 = 2π3

√
2ν.

3.3 Existence of Local Solutions for Any Ini-

tial Data

In this section we prove existence of local solutions for any initial data in
χ−1.

Theorem 3.7. For any u0 ∈ χ−1, there exists a positive number ρ = ρu0 > 0
and T = T (ν, ‖u0‖χ−1 , ρ) > 0 such that (NSΩ) has a unique solution u ∈
C([0, T ]; χ−1) satisfying

u ∈ L2(0, T ; χ0) ∩ L1(0, T ; χ1), ∂tu ∈ L1(0, T ; χ−1).

Remark 3.8. T is determined by

T =
π6ν

2ρ2
u0
‖u0‖2

χ−1

.
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proof. We fix some positive number ρu0 > 0 such that∫
|ξ|≥ρu0

|û0(ξ)|
|ξ|

dξ ≤ π3ν.

Defining u[
0 = F−1(χB(0,ρu0 )(ξ)û0(ξ)), we get

‖S(t)u[
0‖L2([0,T ];χ0) =

(∫ T

0

(∫
R3

|F [S(t)u[
0](ξ)|dξ

)2

dt

) 1
2

≤

∫ T

0

(∫
|ξ|≤ρu0

|û[
0(ξ)|dξ

)2

dt

 1
2

≤

∫ T

0

(∫
|ξ|≤ρu0

|ξ| · 1

|ξ|
|û0(ξ)|dξ

)2

dt

 1
2

≤ ρu0‖u0‖χ−1T
1
2 .

So using Minkowski inequality, we deduce that

‖S(t)u0‖L2([0,T ];χ0) ≤ ‖S(t)(u0 − u[
0)‖L2([0,T ];χ0) + ‖S(t)u[

0‖L2([0,T ];χ0)

≤

∫ T

0

(∫
|ξ|≥ρu0

e−ν|ξ|2t|û0(ξ)|dξ

)2

dt

 1
2

+ ρu0‖u0‖χ−1T
1
2

≤
∫
|ξ|≥ρu0

(∫ T

0

e−2ν|ξ|2t|û0(ξ)|2dt

) 1
2

dξ + ρu0‖u0‖χ−1T
1
2

≤ 1√
2ν

∫
|ξ|≥ρu0

|û0(ξ)|
|ξ|

dξ + ρu0‖u0‖χ−1T
1
2

≤ 1√
2ν

· π3ν + ρu0‖u0‖χ−1T
1
2 .

So if

T =
π6ν

2ρ2
u0
‖u0‖2

χ−1

, (3.3.1)

we get
‖S(t)u0‖L2([0,T ];χ0) ≤

√
2νπ3.
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By Lemma 3.6, this implies that (NSΩ) has a unique solution u in L2([0, T ]; χ0).

Now we show u ∈ L1([0, T ]; χ1).

‖S(t)u0‖L1
T χ1 =

∫ T

0

‖S(t)u0‖χ1dt

=

∫ T

0

∫
R3

|ξ||Ŝ(t)u0(ξ)|dξdt

≤
∫

R3

|ξ||û0(ξ)|
∫ T

0

e−ν|ξ|2tdtdξ

≤
∫

R3

|ξ|
ν|ξ|2

|û0(ξ)|dξ

=
1

ν
‖u0‖χ−1 .

Similarly, we see that by Lemma 3.3∥∥∥∥∫ t

0

S(t − s)P∇ · (u ⊗ u)(s)ds

∥∥∥∥
L1

T χ1

≤
∫ T

0

∫
R3

|ξ|
∫ t

0

|F [S(t − s)P∇ · (u ⊗ u)](s, ξ)| dsdξdt

≤
∫ T

0

∫
R3

|ξ|
∫ t

0

e−ν|ξ|2(t−s)|F [P∇ · (u ⊗ u)](s, ξ)|dsdξdt

≤
∫ T

0

∫
R3

∫ t

0

e−ν|ξ|2(t−s) |ξ|2

(2π)3
|û| ∗ |û|(s, ξ)dsdξdt

≤
∫ T

0

∫
R3

1

ν(2π)3
|û| ∗ |û|(s, ξ)dξds

≤ 1

ν(2π)3

∫ T

0

‖u(s)‖2
χ0

ds.

Therefore we obtain that u ∈ L1([0, T ]; χ1).
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We see u ∈ L∞
T χ−1. Indeed, we have

‖S(t)u0‖L∞
T χ−1 = sup

0≤t≤T
‖S(t)u0‖χ−1

= sup
0≤t≤T

∫
R3

|ξ|−1|Ŝ(t)u0(ξ)|dξ

≤ sup
0≤t≤T

∫
R3

|ξ|−1e−ν|ξ|2t|û0(ξ)|dξ

≤
∫

R3

|ξ|−1|û0(ξ)|dξ = ‖u0‖χ−1 .

Moreover using Lemma 3.3 and Hausdorff-Young inequality, we obtain∥∥∥∥∫ t

0

S(t − s)P∇ · (u ⊗ u)(s)ds

∥∥∥∥
L∞

T χ−1

sup
0≤t≤T

∥∥∥∥∫ t

0

S(t − s)P∇ · (u ⊗ u)(s)ds

∥∥∥∥
χ−1

= sup
0≤t≤T

∫
R3

|ξ|−1

∣∣∣∣F [∫ t

0

S(t − s)P∇ · (u ⊗ u)(s)ds

]
(ξ)

∣∣∣∣ dξ

= sup
0≤t≤T

∫
R3

|ξ|−1

∣∣∣∣∫ t

0

F [S(t − s)P∇ · (u ⊗ u)(s)] (s, ξ)ds

∣∣∣∣ dξ

≤ sup
0≤t≤T

∫
R3

|ξ|−1

∫ t

0

|F [S(t − s)P∇ · (u ⊗ u)(s)] (s, ξ)|dsdξ

≤ sup
0≤t≤T

∫
R3

|ξ|−1

∫ t

0

e−ν|ξ|2(t−s)|F [P∇ · (u ⊗ u)(s)] (s, ξ)|dsdξ

≤ sup
0≤t≤T

∫
R3

|ξ|−1

∫ t

0

e−ν|ξ|2(t−s)|F [∇ · (u ⊗ u)(s)] (s, ξ)|dsdξ

≤ sup
0≤t≤T

∫
R3

|ξ|−1

∫ t

0

e−ν|ξ|2(t−s) 1

(2π)3
|ξ||û| ∗ |û|(s, ξ)dsdξ

≤ 1

(2π)3
sup

0≤t≤T

∫ t

0

∫
R3

|û| ∗ |û|(s, ξ)(s, ξ)dξds

≤ 1

(2π)3
sup

0≤t≤T

∫ t

0

‖u(s)‖2
χ0ds

≤ 1

(2π)3

∫ T

0

‖u(s)‖2
χ0ds.
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It follows that u ∈ L∞
T χ−1.

Next we prove ∂tu ∈ L1([0, T ]; χ−1), which implies u ∈ C([0, T ]; χ−1). We
have

∂tu(t) = ν∆u(t) − ΩPe3 × u(t) − P∇ · (u ⊗ u)

in the distribution sense.
Then we see that∫ T

0

‖∆u(t)‖χ−1dt ≤
∫ T

0

∫
R3

|ξ||û(t, ξ)|dξdt = ‖u‖L1
T χ1

and ∫ T

0

‖P∇ · (u ⊗ u)‖χ−1dt ≤
∫ T

0

∫
R3

1

|ξ|
|F [∇ · (u ⊗ u)](t, ξ)|dξdt

≤
∫ T

0

∫
R3

|û| ∗ |û|dξdt

≤ 1

(2π)3
‖u‖L2

T χ0 .

Since u ∈ L∞
T χ−1, we see∫ T

0

‖ΩPe3 × u(t)‖χ−1dt ≤ ΩT‖u‖L∞
T χ−1 .

Thus we have ∂tu ∈ L1([0, T ]; χ−1). Finally, we prove uniqueness of the
solution to (NSΩ) in L∞

T χ−1 ∩ L1
T χ1. For u, v ∈ L∞

T χ−1 ∩ L1
T χ1, we set

w := u − v. Then, we observe

w(t) =

{
S(t)u0 −

∫ t

0

S(t − s)P∇ · (u ⊗ u)(s)ds

}
−
{
S(t)u0 −

∫ t

0

S(t − s)P∇ · (v ⊗ v)(s)ds

}
= −

∫ t

0

S(t − s)P∇ · (u ⊗ u − v ⊗ v)(s)ds.
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So by Lemma 3.3, we see

|ŵ(t, ξ)| =

∣∣∣∣F [∫ t

0

S(t − s)P∇ · (u ⊗ u − v ⊗ v)(s)ds

]
(ξ)

∣∣∣∣
≤
∫ t

0

|F [S(t − s)P∇ · (u ⊗ u − v ⊗ v)] (s, ξ)| ds

≤
∫ t

0

e−ν|ξ|2(t−s) |F [P∇ · (u ⊗ u − v ⊗ v)] (s, ξ)| ds

≤
∫ t

0

e−ν|ξ|2(t−s) |F [∇ · (u ⊗ (u − v) + (u − v) ⊗ v)] (s, ξ)| ds

≤ 1

(2π)3

∫ t

0

e−ν|ξ|2(t−s)|ξ|(|û| ∗ |ŵ|(s, ξ) + |ŵ| ∗ |v̂|(s, ξ))ds.

Then we have

‖w(t)‖χ−1 ≤ 1

(2π)3

∫
R3

∫ t

0

{(|û| ∗ |ŵ|)(s, ξ) + (|ŵ| ∗ |v̂|)(s, ξ)}dsdξ

≤ 1

(2π)3

∫ t

0

(‖u(s)‖χ0 + ‖v(s)‖χ0)‖w(s)‖χ0ds.

Using Lemma 2.1, for ε > 0, there exists a positive number Cε such that

‖u(s)‖χ0‖w(s)‖χ0 ≤ ‖u(s)‖
1
2

χ1‖u(s)‖
1
2

χ−1 · ‖w(s)‖
1
2

χ1‖w(s)‖
1
2

χ−1

≤ Cε‖u(s)‖χ1‖w(s)‖χ−1 + ε‖u(s)‖χ−1‖w(s)‖χ1 .

Thus we have

‖w‖L∞
T χ−1 ≤ ε‖u‖L∞

T χ−1‖w‖L1
T χ1 + Cε‖u‖L1

T χ1‖w‖L∞
T χ−1 .

Similarly we see

ν‖w‖L1
T χ1 ≤ ε‖u‖L∞

T χ−1‖w‖L1
T χ1 + Cε‖u‖L1

T χ1‖w‖L∞
T χ−1 .

Here we take sufficiently small ε > 0 such that

ε‖u‖L∞
T χ−1 <

ν

4
.

Furthermore, if we take δ > 0 such that

Cε‖u‖L1
δχ1 <

1

4
,
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we have

‖w‖L∞
δ χ−1 + ν‖w‖L1

δχ1 ≤2ε‖u‖L∞
δ χ−1‖w‖L1

δχ1 + 2Cε‖u‖L1
δχ1‖w‖L∞

δ χ−1

≤ 1

2
(‖w‖L∞

δ χ−1 + ν‖w‖L1
δχ1).

Thus we deduce ‖w‖L∞
δ χ−1 + ν‖w‖L1

δχ1 = 0. Therefore , we have

w(t) = 0, t ∈ [0, δ].

Repeating this argument, we see uniqueness of the solution.

3.4 Proof of Theorem 3.1

In this section, we prove Theorem 3.1.

proof. Let T ∗ be the maximal existence time of a solution of (NSΩ), derived
by applying Theorem 3.7 repeatedly. Suppose T ∗ < ∞. By (3.3.1), we must
have

lim
t→T ∗

‖u(t)‖χ−1 = ∞,

or
lim

t→T ∗
ρ(t) = ∞, (3.4.1)

where ρ(t) is determined by

ρ(t) = inf

{
ρ > 0;

∫
|ξ|≥ρ

|û(t, ξ)|
|ξ|

dξ ≤ π3ν

}
.

We easily observe that sup0<t<T ∗ ‖u(t)‖χ−1 ≤ ‖u0‖χ−1 by Theorem 2.3.
So, it suffices to show that (3.4.1) would never happen. For 0 < t < T ∗, we
find that

|û(t, ξ)| ≤ |Ŝ(t)u0(ξ)| +
∫ t

0

|F [S(t − s)P∇ · (u ⊗ u)](s, ξ)|ds

≤ e−ν|ξ|2t|û0(ξ)| +
∫ t

0

e−ν(t−s)|ξ|2 |F [∇ · (u ⊗ u)](s, ξ)|ds

≤ |û0(ξ)| +
∫ t

0

e−ν(t−s)|ξ|2 |F [∇ · (u ⊗ u)](s, ξ)|ds

≤ |û0(ξ)| +
∫ t

0

e−ν(t−s)|ξ|2 |ξ|
(2π)3

|û| ∗ |û|(s, ξ)ds.
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Hence we see that∫
R3

sup
0≤t≤T ∗

|û(t, ξ)| 1

|ξ|
dξ ≤ ‖u0‖χ−1 +

∫
R3

∫ T ∗

0

1

(2π)3
|û| ∗ |û|(s, ξ)dsdξ

≤ ‖u0‖χ−1 +
1

(2π)3

∫ T ∗

0

‖u(s)‖2
χ0ds

≤ ‖u0‖χ−1 +
1

(2π)3
‖u‖2

L2([0,T ∗);χ0).

Applying Theorem 2.3, we obtain that

‖u‖2
L2([0,T ∗);χ0) =

∫ T ∗

0

‖u(t)‖2
χ0dt

≤
∫ T ∗

0

‖u(t)‖χ−1‖u(t)‖χ1dt

≤ ‖u0‖χ−1 ·
‖u0‖χ−1

ν − 1
(2π)3

‖u0‖χ−1

.

Thus we have there exists some M > 0, such that∫
R3

sup
0≤t≤T ∗

|û(t, ξ)| 1

|ξ|
dξ < M.

This implies that we are able to take ρ > 0 such that∫
|ξ|>ρ

sup
0≤t≤T ∗

|û(t, ξ)| 1

|ξ|
dξ < π3ν,

we get for any 0 < t < T ∗,∫
|ξ|>ρ

|û(t, ξ)| 1

|ξ|
dξ <

∫
|ξ|>ρ

sup
0≤t≤T ∗

|û(t, ξ)|
|ξ|

dξ < π3ν.

This contradicts to (3.4.1).
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