Global existence of solutions of the Navier-Stokes equations with the Coriolis force

Graduate School of Mathematics, Nagoya University 521301017 Hiroki Ito

January 18, 2016

Abstract

The Cauchy problem for the Navier-Stokes equations with the Coriolis force is considered. It is proved that a similar a priori estimate, which is derived for the Navier-Stokes equations by Lei-Lin [12], holds under the effect of the Coriolis force. As an application existence of a unique global solution for arbitrary speed of rotation is proved, as well as its asymptotic behavior.

Contents

1	Int	roduction	3
2	H^{s}	Theory	6
	2.1	A Priori Estimate and Its Application to H^s Theory	6
	2.2	Proof of Theorem 2.3 \ldots \ldots \ldots \ldots \ldots \ldots \ldots	9
	2.3	Proof of Theorem 2.5 \ldots \ldots \ldots \ldots \ldots \ldots \ldots	11
	2.4	Proof of Theorem 2.7	12
3	χ^{-1}	Theory	15
	3.1	Main Theorem in χ^{-1} Theory $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	15
	3.2	Existence of Solutions for Any Time Interval	17
	3.3	Existence of Local Solutions for Any Initial Data	21
	3.4	Proof of Theorem 3.1	27

Chapter 1

Introduction

In this thesis, we consider the initial value problem of the Navier-Stokes equations with the Coriolis force in \mathbb{R}^3 ,

$$\begin{cases} \partial_t u - \nu \Delta u + \Omega e_3 \times u + (u, \nabla) u + \nabla p = 0, & \text{in } (0, \infty) \times \mathbb{R}^3, \\ \operatorname{div} u = 0, & \operatorname{in } (0, \infty) \times \mathbb{R}^3, \\ u|_{t=0} = u_0, & \operatorname{in } \mathbb{R}^3, \end{cases}$$
(NS_Ω)

where $u = u(t, x) = (u_1(t, x), u_2(t, x), u_3(t, x))$ denotes the unknown velocity field, and p = p(t, x) denotes the unknown scalar pressure, while $u_0 = u_0(x) = (u_0^1(x), u_0^2(x), u_0^3(x))$ denotes the initial velocity field. The constant $\nu > 0$ denotes the viscosity coefficient of the fluid, and $\Omega \in \mathbb{R}$ represents the speed of rotation around the vertical unit vector $e_3 = (0, 0, 1)$, which is called the Coriolis parameter.

Recently, this problem gained some attention due to its importance in applications to geophysical flows, see e.g. [4]. Mathematically, (NS_{Ω}) also have a interesting feature that there exists a global solution for arbitrary large data provided the speed of rotation Ω is large enough, see e.g. [1, 4, 9]. There are another type of results which shows the existence of a global solution uniformly in Ω provided the data is sufficiently small, see e.g. [5, 8, 11, 10]. The purpose of this thesis is, concerning to the latter, to relax the smallness condition of the data, based on the idea for the Navier-Stokes equations, $\Omega = 0$ in (NS_{Ω}) , by [12].

Before stating our main results, we give a definition of function spaces. For $m \in \mathbb{R}$, we define

$$\chi^{m}(\mathbb{R}^{3}) := \{ f \in \mathcal{S}' \mid \widehat{f} \in L^{1}_{\text{loc}}, \ \|f\|_{\chi^{m}} := \int_{\mathbb{R}^{3}} |\xi|^{m} |\widehat{f}(\xi)| \, d\xi < \infty \}.$$

Recently, Lei and Lin introduced the space χ^{-1} , which is contained in BMO^{-1} and equivalent to the Fourier-Herz space $\dot{\mathcal{B}}_1^{-1}$. It is known that $H^s(\mathbb{R}^3) \subseteq \chi^{-1}$, if $s > \frac{1}{2}$, see Lemma 2.1. Moreover it is known that there is an example so that $H^{\frac{1}{2}}(\mathbb{R}^3) \not\subseteq \chi^{-1}$, see [12]. It is also known that $\chi^{-1} \not\subseteq H^{\frac{1}{2}}(\mathbb{R}^3)$, see [14].

Theorem 2.3. Let $u_0 \in \chi^{-1}$ satisfy div $u_0 = 0$ and $||u_0||_{\chi^{-1}} < (2\pi)^3 \nu$. For T > 0, assume that $u \in C([0,T); \chi^{-1})$ is a solution to (NS_{Ω}) in the distribution sense satisfying

$$u \in L^1(0,T; \chi^1), \quad \partial_t u \in L^1(0,T; \chi^{-1}).$$

Then, u satisfies

$$\|u(t)\|_{\chi^{-1}} + (\nu - (2\pi)^{-3} \|u_0\|_{\chi^{-1}}) \int_0^t \|u(\tau)\|_{\chi^1} d\tau \le \|u_0\|_{\chi^{-1}}, \quad 0 \le t < T.$$
(1.0.1)

Remark 1.1. (1) This a priori estimate is first derived in the case $\Omega = 0$ in [12, Proof of Theorem 1.1]. Here, Theorem 2.3 states that the same estimate also holds under the effect of the Coriolis force.

(2) In this thesis, we define the Fourier transform of f by

$$\widehat{f}(\xi) = \mathcal{F}[f](\xi) := \int e^{-ix\cdot\xi} f(x) \, dx$$

The constant $(2\pi)^3$ in the theorem appears from the following formula:

$$\mathcal{F}[fg](\xi) = (2\pi)^{-3}(\widehat{f} * \widehat{g})(\xi),$$

where f * g denotes the convolution of f and g.

As an application of Theorem 2.3 we obtain the global solution to (NS_{Ω}) .

Theorem 2.5. Let s > 3/2 and $\Omega \in \mathbb{R}$. Assume that $u_0 \in H^s(\mathbb{R}^3)$ satisfy div $u_0 = 0$ and $||u_0||_{\chi^{-1}} < (2\pi)^3 \nu$. Then, there exists a unique global solution $u \in C([0,\infty); H^s(\mathbb{R}^3))$ to (NS_{Ω}) satisfying

$$u \in AC([0,\infty); H^{s-1}(\mathbb{R}^3)) \cap L^1_{\text{loc}}(0,\infty; H^{s+1}(\mathbb{R}^3))$$

and

$$\sup_{t>0} \left\{ \|u(t)\|_{\chi^{-1}} + (\nu - (2\pi)^{-3} \|u_0\|_{\chi^{-1}}) \int_0^t \|u(\tau)\|_{\chi^1} \, d\tau \right\} \le \|u_0\|_{\chi^{-1}}.$$

Remark 1.2. Since s > 3/2, we have $H^s \hookrightarrow \chi^{-1}$ by Lemma 2.1. For a interval I and a Banach space X, AC(I; X) denotes the space of X-valued absolutely continuous functions. There are several results which treats the existence of a unique global solution to (NS_{Ω}) , see [10] and reference therein. The advantage of this result is that the condition of the size of the data is merely $||u_0||_{\chi^{-1}} < (2\pi)^3 \nu$.

In chapter 3, we show the existence of a unique global solution for the data $u_0 \in \chi^{-1}$ with $||u_0||_{\chi^{-1}} < (2\pi)^3 \nu$. For the Navier-Stokes case $\Omega = 0$, see [14, Theorem 1.3].

Theorem 3.1. Let $u_0 \in \chi^{-1}$ and $||u_0||_{\chi^{-1}} < (2\pi)^3 \nu$. Then, there is a unique global in time solution $u \in C([0,\infty); \chi^{-1})$ of (NS_{Ω}) satisfying

$$u \in L^2(0,\infty;\chi^0) \cap L^1(0,\infty;\chi^1), \quad \partial_t u \in L^1(0,\infty;\chi^{-1}),$$

and

$$\sup_{t>0} \left\{ \|u(t)\|_{\chi^{-1}} + (\nu - (2\pi)^{-3} \|u_0\|_{\chi^{-1}}) \int_0^t \|u(\tau)\|_{\chi^1} \, d\tau \right\} \le \|u_0\|_{\chi^{-1}}.$$

Remark 1.3. (1) There are several results which treats the existence of a unique global solution to (NS_{Ω}) , see [10] and reference therein. In particular, the spaces FM_0^{-1} , which is considered by Giga, Inui, Mahalov, and Saal [5], and $\mathcal{B}_{1,2}^{-1}$ by [10], are larger than χ^{-1} . However, the advantage of this result is that the condition of the size of the data is merely $||u_0||_{\chi^{-1}} < (2\pi)^3 \nu$.

(2) In the Navier-Stokes equations, the case $\Omega = 0$, the corresponding result is proved in [12, Theorem 1.1]. We notice that there is also the another approach by [14, Theorem 1.3].

Chapter 2

H^s Theory

2.1 A Priori Estimate and Its Application to H^s Theory

In this thesis, we only use spaces χ^{-1} , χ^0 , and χ^1 below, so we summarize elementary estimates concerning the spaces we will use later.

Lemma 2.1. (1) For m > -3/2, and s > m + 3/2, $\|f\|_{\chi^m(\mathbb{R}^3)} \le C \|f\|_{L^2}^{1-\frac{1}{s}(m+\frac{3}{2})} \|f\|_{\dot{H}^s}^{\frac{1}{s}(m+\frac{3}{2})}.$

- (2) $||f||_{\chi^0} \le ||f||_{\chi^{-1}}^{1/2} ||f||_{\chi^1}^{1/2}.$
- (3) $\|\nabla f\|_{L^{\infty}} \leq (2\pi)^{-3} \|f\|_{\chi^1}$.

Remark 2.2. Taking m = -1, 1 in Lemma 2.1 (1) respectively, we have for s > 1/2,

$$||f||_{\chi^{-1}(\mathbb{R}^3)} \le C ||f||_{L^2}^{1-\frac{1}{2s}} ||f||_{\dot{H}^s}^{\frac{1}{2s}},$$

and for s > 5/2,

$$\|f\|_{\chi^1(\mathbb{R}^3)} \le C \|f\|_{L^2}^{1-\frac{5}{2s}} \|f\|_{\dot{H}^s}^{\frac{5}{2s}}.$$

proof. (1) We take R > 0, which is determined later, to divide the integral

$$\begin{split} \|f\|_{\chi^m} &= \int_{|\xi| \le R} |\xi|^m |\widehat{f}(\xi)| \, d\xi + \int_{|\xi| > R} |\xi|^m |\widehat{f}(\xi)| \, d\xi \\ &\leq \left(\int_{|\xi| \le R} |\xi|^{2m} \, d\xi\right)^{1/2} (2\pi)^{\frac{3}{2}} \|f\|_{L^2} + \left(\int_{|\xi| > R} |\xi|^{2(m-s)} \, d\xi\right)^{1/2} \|f\|_{\dot{H}^s} \\ &= |S^2|^{1/2} \left(\frac{1}{\sqrt{2m+3}} R^{m+3/2} (2\pi)^{\frac{3}{2}} \|f\|_{L^2} + \frac{1}{\sqrt{2(s-m)-3}} R^{m-s+3/2} \|f\|_{\dot{H}^s}\right). \end{split}$$

Then, choosing $R = \|f\|_{L^2}^{-1/s} \|f\|_{\dot{H}^2}^{1/s}$, we obtain the desired result. (2) This estimate is easily derived by the Hölder inequality,

$$||f||_{\chi^0} = \int |\xi|^{-1/2} |\widehat{f}(\xi)|^{1/2} |\xi|^{1/2} |\widehat{f}(\xi)|^{1/2} d\xi \le ||f||_{\chi^{-1}}^{1/2} ||f||_{\chi^1}^{1/2}.$$

(3) This is also easily derived from the Fourier inversion formula and the Hausdorff-Young inequality. $\hfill \Box$

Now we state our main results.

Theorem 2.3. Let $u_0 \in \chi^{-1}$ satisfy div $u_0 = 0$ and $||u_0||_{\chi^{-1}} < (2\pi)^3 \nu$. For T > 0, assume that $u \in C([0,T); \chi^{-1})$ is a solution to (NS_{Ω}) in the distribution sense satisfying

$$u \in L^1(0,T; \chi^1), \quad \partial_t u \in L^1(0,T; \chi^{-1}).$$

Then, u satisfies

$$\|u(t)\|_{\chi^{-1}} + (\nu - (2\pi)^{-3} \|u_0\|_{\chi^{-1}}) \int_0^t \|u(\tau)\|_{\chi^1} d\tau \le \|u_0\|_{\chi^{-1}}, \quad 0 \le t < T.$$
(2.1.1)

Remark 2.4. From the a priori estimate (2.1.1), we especially obtain

$$||u||_{L^{\infty}(0,T;\chi^{-1})} \le ||u_0||_{\chi^{-1}}, \quad ||u||_{L^1(0,T;\chi^1)} \le \frac{||u_0||_{\chi^{-1}}}{\nu - (2\pi)^{-3} ||u_0||_{\chi^{-1}}}.$$

As an application of Theorem 2.3 we obtain the global solution to (NS_{Ω}) .

Theorem 2.5. Let s > 3/2 and $\Omega \in \mathbb{R}$. Assume that $u_0 \in H^s(\mathbb{R}^3)$ satisfy div $u_0 = 0$ and $||u_0||_{\chi^{-1}} < (2\pi)^3 \nu$. Then, there exists a unique global solution $u \in C([0,\infty); H^s(\mathbb{R}^3))$ to (NS_Ω) satisfying

$$u \in AC([0,\infty); H^{s-1}(\mathbb{R}^3)) \cap L^1(0,\infty; H^{s+1}(\mathbb{R}^3))$$

and

$$\sup_{t>0} \left\{ \|u(t)\|_{\chi^{-1}} + (\nu - (2\pi)^{-3} \|u_0\|_{\chi^{-1}}) \int_0^t \|u(\tau)\|_{\chi^1} \, d\tau \right\} \le \|u_0\|_{\chi^{-1}}.$$

Remark 2.6. Since s > 3/2, we have $H^s \hookrightarrow \chi^{-1}$ by Lemma 2.1. For a interval I and a Banach space X, AC(I; X) denotes the space of X-valued absolutely continuous functions. There are several results which treats the existence of a unique global solution to (NS_{Ω}) , see [10] and reference therein. The advantage of this result is that the condition of the size of the data is merely $||u_0||_{\chi^{-1}} < (2\pi)^3 \nu$.

Next theorem states the asymptotic behavior of a given global solution to (NS_{Ω}) .

Theorem 2.7. Let s > 1/2 and $\Omega \in \mathbb{R}$. Assume that $u \in C([0, \infty); H^s(\mathbb{R}^3))$ is a global solution to (NS_{Ω}) satisfying

$$u \in AC([0,\infty); H^{s-1}(\mathbb{R}^3)) \cap L^1_{\text{loc}}([0,\infty); H^{s+1}(\mathbb{R}^3)).$$

Then, $\lim_{t\to\infty} \|u(t)\|_{\chi^{-1}} = 0.$

Remark 2.8. In the Navier-Stokes case $\Omega = 0$, this result corresponds to the result in [3]. In that result, the assumption is only $u \in C([0, \infty); \chi^{-1})$ is a global solution. Compared with that result, additional assumptions are imposed for the uniqueness of solutions.

As an application of Theorem 2.7 we obtain the following.

Corollary 2.9. The global solution to (NS_{Ω}) derived in Theorem 2.5 satisfies

$$\lim_{t \to \infty} \|u(t)\|_{\chi^{-1}} = 0.$$

This chapter is organized as follows. In Section 2.2 we give a proof of Theorem 2.3. In Section 2.3 we prove Theorem 2.5 as an application of Theorem 2.3. In Section 2.4 we give a proof of Theorem 2.7.

2.2 Proof of Theorem 2.3

In this section we give a proof of Theorem 2.3.

Proof of Theorem 2.3. By applying the Fourier transform to the equation, we have

$$\partial_t \widehat{u} + \nu |\xi|^2 \widehat{u} + \Omega e_3 \times \widehat{u} + \mathcal{F}[(u, \nabla)u] + i\xi \widehat{p} = 0.$$

Thus, we obtain

$$\partial_t |\widehat{u}|^2 = 2\operatorname{Re}(\partial_t \widehat{u} \cdot \overline{\widehat{u}}) = -2\nu |\xi|^2 |\widehat{u}|^2 - 2\Omega \operatorname{Re}\left[(e_3 \times \widehat{u}) \cdot \overline{\widehat{u}}\right] - 2\operatorname{Re}\left\{\mathcal{F}\left[(u, \nabla)u\right] \cdot \overline{\widehat{u}}\right\} - 2\operatorname{Re}\left[(i\xi\widehat{p}) \cdot \overline{\widehat{u}}\right].$$

Here, since

$$(e_3 \times \widehat{u}) \cdot \overline{\widehat{u}} = -\widehat{u}_2 \overline{\widehat{u}_1} + \widehat{u}_1 \overline{\widehat{u}_2} = 2i \operatorname{Im}\left[\widehat{u}_1 \overline{\widehat{u}_2}\right]$$

we observe that $\operatorname{Re}[(e_3 \times \widehat{u}) \cdot \overline{\widehat{u}}] = 0$. Also, we have $(i\xi \widehat{p}) \cdot \overline{\widehat{u}} = 0$, since $\operatorname{div} u = 0$. Moreover, we notice that

$$\mathcal{F}[(u,\nabla)u]_{j}(\xi) = \sum_{k=1}^{3} (2\pi)^{-3} \widehat{u}_{k} * \widehat{\partial_{k}u_{j}}(\xi)$$
$$= \sum_{k=1}^{3} (2\pi)^{-3} \int \widehat{u}_{k}(\xi-\eta) i\eta_{k} \widehat{u}_{j}(\eta) d\eta$$
$$= \sum_{k=1}^{3} (2\pi)^{-3} i\xi_{k} \int \widehat{u}_{k}(\xi-\eta) \widehat{u}_{j}(\eta) d\eta$$

since $\sum_{k=1}^{3} (\xi_k - \eta_k) \widehat{u}_k (\xi - \eta) = 0$. Therefore, we obtain

$$\begin{aligned} \partial_t |\widehat{u}|^2 + 2\nu |\xi|^2 |\widehat{u}|^2 &\leq 2(2\pi)^{-3} \sum_{j,k=1}^3 |\xi_k| \left(|\widehat{u}_k| * |\widehat{u}_j| \right) |u_j| \\ &\leq 2(2\pi)^{-3} |\xi| |\widehat{u}| \left(|\widehat{u}| * |\widehat{u}| \right). \end{aligned}$$

Then, for $\varepsilon > 0$, we observe that

$$\partial_t (|\widehat{u}|^2 + \varepsilon)^{1/2} = \frac{\partial_t |\widehat{u}|^2}{2(|\widehat{u}|^2 + \varepsilon)^{1/2}} \\ \leq -\frac{\nu |\xi|^2 |\widehat{u}|^2}{(|\widehat{u}|^2 + \varepsilon)^{1/2}} + (2\pi)^{-3} \frac{|\xi| |\widehat{u}|}{(|\widehat{u}|^2 + \varepsilon)^{1/2}} (|\widehat{u}| * |\widehat{u}|).$$

Integrating with respect to t, we obtain

$$\begin{aligned} &(|\widehat{u}(t,\xi)|^{2}+\varepsilon)^{1/2}+\int_{0}^{t}\frac{\nu|\xi|^{2}|\widehat{u}(\tau,\xi)|^{2}}{(|\widehat{u}(\tau,\xi)|^{2}+\varepsilon)^{1/2}}\,d\tau\\ &\leq (|\widehat{u}_{0}(\xi)|^{2}+\varepsilon)^{1/2}+(2\pi)^{-3}\int_{0}^{t}\frac{|\xi|\,|\widehat{u}(\tau,\xi)|}{(|\widehat{u}(\tau,\xi)|^{2}+\varepsilon)^{1/2}}\,(|\widehat{u}(\tau)|*|\widehat{u}(\tau)|)(\xi)\,d\tau.\end{aligned}$$

Then, letting $\varepsilon \to 0$, we get

$$|\widehat{u}(t,\xi)| + \int_0^t \nu|\xi|^2 |\widehat{u}(\tau,\xi)| \, d\tau \le |\widehat{u}_0(\xi)| + (2\pi)^{-3} \int_0^t |\xi| \, (|\widehat{u}(\tau)| * |\widehat{u}(\tau)|)(\xi) \, d\tau.$$

Finally, dividing by $|\xi|$, and then integrating over \mathbb{R}^n , we obtain

$$\|u(t)\|_{\chi^{-1}} + \nu \int_0^t \|u(\tau)\|_{\chi^1} d\tau \le \|u_0\|_{\chi^{-1}} + (2\pi)^{-3} \int_0^t \|u(\tau)\|_{\chi^0}^2 d\tau.$$

By applying Lemma 2.1 (2), we obtain,

$$\|u(t)\|_{\chi^{-1}} + \nu \|u\|_{L^{1}((0,t);\chi^{1})} \leq \|u_{0}\|_{\chi^{-1}} + (2\pi)^{-3} \|u\|_{L^{\infty}((0,t);\chi^{-1})} \|u\|_{L^{1}((0,t);\chi^{1})}.$$
(2.2.1)

To derive the desired estimate (2.1.1), it suffices to prove that

$$||u||_{L^{\infty}((0,t);\chi^{-1})} \le ||u_0||_{\chi^{-1}}, \quad 0 \le t < T.$$

For the proof, we first show that

$$\|u(t)\|_{\chi^{-1}} < (2\pi)^3 \nu, \quad 0 \le t < T$$
(2.2.2)

holds by contradiction. From the assumption $||u_0||_{\chi^{-1}} < (2\pi)^3 \nu$ and $u \in C([0,T); \chi^{-1})$, we observe that there exists $\delta > 0$ such that (2.2.2) holds on $[0,\delta)$. Now assume that there exists $t_0 \in (0,T)$ such that $||u(t)||_{\chi^{-1}} < (2\pi)^3 \nu$ for $0 < t < t_0$ and

$$\|u(t_0)\|_{\chi^{-1}} = (2\pi)^3 \nu,$$

then by (2.2.1) we reach the contradiction

$$(2\pi)^{3}\nu = ||u(t_{0})||_{\chi^{-1}} \le ||u_{0}||_{\chi^{-1}} < (2\pi)^{3}\nu,$$

since $||u||_{L^{\infty}((0,t_0);\chi^{-1})} = (2\pi)^3 \nu$. Therefore, we obtain (2.2.2). Finally, applying (2.2.2) to estimate on the right hand side of (2.2.1), we obtain

$$\|u(t)\|_{\chi^{-1}} < \|u_0\|_{\chi^{-1}}, \quad 0 \le t < T.$$

This completes the proof.

2.3 Proof of Theorem 2.5

Below we fix $\Omega \in \mathbb{R}$. For the existence of local solutions, we employ the following result.

Proposition 2.10. Let s > 3/2. For $u_0 \in H^s(\mathbb{R}^3)$ with div $u_0 = 0$, there exists $T = T(|\Omega|, s, ||u_0||_{H^s}) > 0$ such that (NS_{Ω}) admits a unique strong solution $u \in C([0, T]; H^s(\mathbb{R}^3))$ satisfying

$$u \in AC([0,T]; H^{s-1}(\mathbb{R}^3)) \cap L^1(0,T; H^{s+1}(\mathbb{R}^3)).$$

Remark 2.11. (1) For the proof, we refer to [13, Lemma 3.1]. We notice that the condition in [13, Lemma 3.1] is s > 3/2 + 1, because their main subject is the Euler equation. For the above statement, s > 3/2 is sufficient.

(2) In this proposition, the size of T is characterized by

$$C_0|\Omega|T + C_1||u_0||_{H^s}(T + T^{1/2}\nu^{-1/2}) \le \frac{1}{2}.$$
 (2.3.1)

(3) Since s > 3/2, the solution constructed by Proposition 2.10 satisfies the assumptions in Theorem 2.3. In particular, since

$$\partial_t u = \nu \Delta u - \Omega \mathbb{P}(e_3 \times u) - \mathbb{P}(u, \nabla u) \quad \text{in } H^{s-1}$$

holds for a.e. $t \in (0, T)$, where $\mathbb{P} = (\delta_{ij} + R_i R_j)_{i,j}$ is the Helmholtz projection, we easily observe that $\partial_t u \in L^1(0, T; \chi^{-1})$.

We will use the following energy estimate.

Proposition 2.12. Let $s \ge 0$ and T > 0. Assume that $u \in C([0, T); H^s(\mathbb{R}^3))$ is a solution to (NS_{Ω}) satisfying

$$u \in AC([0,T); H^{s-1}(\mathbb{R}^3)) \cap L^1(0,T; H^{s+1}(\mathbb{R}^3)).$$

Then, u satisfies

$$\|u(t)\|_{H^s} \le \|u_0\|_{H^s} e^{C\int_0^T \|\nabla u(\tau)\|_{L^{\infty}} d\tau}, \quad 0 \le t < T.$$

Remark 2.13. For the proof of this proposition, we also refer to [13, Proof of Theorem 4.1]. There, we easily observe that

$$\frac{d}{dt} \|u(t)\|_{H^s} \le C \|\nabla u(t)\|_{L^{\infty}} \|u(t)\|_{H^s}$$

holds for $s \ge 0$. We notice that the term concerning $\Omega e_3 \times u$ vanishes due to its property of the skew symmetry in H^s .

Now we are in a position to prove Theorem 2.5.

Proof of Theorem 2.5. Let T^* be the maximal existence time of a unique solution derived by applying Proposition 2.10 repeatedly. Now assume $T^* < \infty$. Then, by (2.3.1), we must have

$$\lim_{t \to T^*} \|u(t)\|_{H^s} = \infty.$$
(2.3.2)

Since this solution satisfies the energy estimate in Proposition 2.12, we have π^*

$$\|u(t)\|_{H^s} \le \|u_0\|_{H^s} e^{C \int_0^{T^*} \|\nabla u(\tau)\|_{L^{\infty}} d\tau}, \quad 0 \le t < T^*.$$

Then, since $||u_0||_{\chi^{-1}} < (2\pi)^3 \nu$, applying Theorem 2.3 we obtain

$$\int_0^{T^*} \|\nabla u(\tau)\|_{L^{\infty}} d\tau \le \|u\|_{L^1(0,T^*;\chi^1)} \le \frac{\|u_0\|_{\chi^{-1}}}{\nu - (2\pi)^{-3} \|u_0\|_{\chi^{-1}}}.$$

This implies $\sup_{0 < t < T^*} \|u(t)\|_{H^s} < \infty$, which contradicts to (2.3.2).

2.4 Proof of Theorem 2.7

In this section we give a proof of Theorem 2.7.

We take $\varepsilon > 0$ arbitrary small. Since $u_0 \in H^s \hookrightarrow \chi^{-1}$, we are able to take $R_0 > 0$ such that

$$\int_{|\xi|>R_0} |\xi|^{-1} |\widehat{u}_0(\xi)| \, d\xi < \frac{\varepsilon}{2}.$$

Now we set

$$v_0 = \mathcal{F}^{-1}[\chi_{\{|\xi| \le R_0\}} \widehat{u_0}], \quad w_0 = \mathcal{F}^{-1}[\chi_{\{|\xi| > R_0\}} \widehat{u_0}].$$

Then, we observe that $v_0 \in H^{\infty}$, $w_0 \in H^s$, $u_0 = v_0 + w_0$, and

$$\|w_0\|_{\chi^{-1}} < \frac{\varepsilon}{2}.$$

By applying Theorem 2.5 for the initial data w_0 we obtain the solution (w, p_w) to (NS_{Ω}) . Then, $w \in C([0, \infty); H^s) \cap L^1(0, \infty; H^{s+1})$ satisfies

$$\|w(t)\|_{\chi^{-1}} + (\nu - (2\pi)^{-3} \|w_0\|_{\chi^{-1}}) \int_0^t \|w(\tau)\|_{\chi^1} d\tau \le \|w_0\|_{\chi^{-1}} < \frac{\varepsilon}{2}, \quad t > 0.$$
(2.4.1)

Now we set v := u - w. Then, $v \in C([0, \infty); H^s)$ satisfies

$$v \in AC([0,\infty); H^{s-1}(\mathbb{R}^3)) \cap L^1(0,\infty; H^{s+1}(\mathbb{R}^3))$$

and

$$\begin{cases} \partial_t v + \nu \Delta v + \Omega e_3 \times v + (v, \nabla)v + (w, \nabla)v + (v, \nabla)w + \nabla (p - p_w) = 0, \\ \operatorname{div} v = 0, \\ v|_{t=0} = v_0. \end{cases}$$

Taking L^2 -inner product with v, the equation becomes

$$\frac{d}{dt} \|v(t)\|_{L^2}^2 + \nu \|\nabla v(t)\|_{L^2}^2 = \langle (v, \nabla)w, v \rangle_{L^2}.$$

Since

$$\langle (v, \nabla) w, v \rangle_{L^2} = -\langle w, (v, \nabla) v \rangle_{L^2},$$

we obtain

$$\begin{aligned} |\langle (v, \nabla)w, v \rangle_{L^2}| &\leq \|w\|_{L^{\infty}} \|v\|_{L^2} \|\nabla v\|_{L^2} \\ &\leq C \|w\|_{\chi^0} \|v\|_{L^2} \|\nabla v\|_{L^2} \\ &\leq C_{\nu} \|w\|_{\chi^0}^2 \|v\|_{L^2}^2 + \frac{\nu}{2} \|\nabla v\|_{L^2}^2 \end{aligned}$$

Therefore, we obtain

$$\frac{d}{dt} \|v(t)\|_{L^2}^2 + \frac{\nu}{2} \|\nabla v(t)\|_{L^2}^2 = C_{\nu} \|w(t)\|_{\chi^0}^2 \|v(t)\|_{L^2}^2.$$

Then, by Gronwall's inequality,

$$\|v(t)\|_{L^{2}}^{2} + \frac{\nu}{2} \int_{0}^{t} \|\nabla v(t)\|_{L^{2}}^{2} \le \|v(0)\|_{L^{2}}^{2} e^{C_{\nu} \int_{0}^{t} \|w(\tau)\|_{\chi^{0}}^{2} d\tau}.$$
 (2.4.2)

Here, by (2.4.1) we have

$$\int_{0}^{t} \|w(\tau)\|_{\chi^{0}}^{2} d\tau \leq \|w\|_{L^{\infty}((0,t);\chi^{-1})} \|w\|_{L^{1}((0,t);\chi^{1})} \leq \frac{\|w_{0}\|_{\chi^{-1}}^{2}}{\nu - (2\pi)^{-3} \|w_{0}\|_{\chi^{-1}}}.$$
(2.4.3)

Therefore, by Lemma 2.1 (1), (2.4.2), (2.4.3) we obtain

$$\int_0^\infty \|v(t)\|_{\chi^{-1}}^4 d\tau \le \int_0^\infty \|v(t)\|_{L^2}^2 \|\nabla v(t)\|_{L^2}^2 \le \frac{2}{\nu} \|v_0\|_{L^2}^4 \exp\Big(\frac{C_\nu \|w_0\|_{\chi^{-1}}^2}{\nu - (2\pi)^{-3} \|w_0\|_{\chi^{-1}}}\Big).$$

Since $v \in C([0,\infty); \chi^{-1})$, we observe that there exists $t_0 > 0$ such that $\|v(t_0)\|_{\chi^{-1}} < \varepsilon/2$, and thus we have $\|u(t_0)\|_{\chi^{-1}} \le \|v(t_0)\|_{\chi^{-1}} + \|w(t_0)\|_{\chi^{-1}} < \varepsilon$. So, applying Theorem 2.5 for the data $u(t_0)$ we obtain

$$\|u(t)\|_{\chi^{-1}} \le \|u(t_0)\|_{\chi^{-1}} < \varepsilon, \quad t > t_0,$$

which implies $\lim_{t\to\infty} ||u(t)||_{\chi^{-1}} = 0.$

Here, we notice that in the final part of the proof we need the uniqueness of solutions, which is assured in our class of solutions. In fact, if u_1 , and $u_2 \in C([0,\infty); H^s)$ are two solutions to (NS_{Ω}) satisfying

$$u_1, u_2 \in AC([0,\infty); H^{s-1}(\mathbb{R}^3)) \cap L^1_{loc}(0,\infty; H^{s+1}(\mathbb{R}^3)),$$

then, $\tilde{u} := u_1 - u_2$ satisfies div $\tilde{u} = 0$ and

$$\partial_t \widetilde{u} + \nu \Delta \widetilde{u} + \Omega e_3 \times \widetilde{u} + (\widetilde{u}, \nabla) \widetilde{u} + (u_1, \nabla) \widetilde{u} + (\widetilde{u}, \nabla) u_2 + \nabla (p_1 - p_2) = 0,$$

and thus we obtain

$$\frac{d}{dt}\|\widetilde{u}(t)\|_{L^2}^2 + \frac{\nu}{2}\|\nabla\widetilde{u}(t)\|_{L^2}^2 = |\langle (\widetilde{u}, \nabla)u_2, \widetilde{u} \rangle_{L^2}| \le \|\nabla u_2(t)\|_{L^\infty}^2 \|\widetilde{u}(t)\|_{L^2}^2.$$

Therefore, we have

$$\frac{d}{dt} \|\widetilde{u}(t)\|_{L^2}^2 = C \|u_2(t)\|_{H^{s+1}} \|\widetilde{u}(t)\|_{L^2}^2$$

and Gronwall's inequality implies $\widetilde{u}(t) = 0$ for t > 0.

Chapter 3 χ^{-1} Theory

3.1 Main Theorem in χ^{-1} Theory

In this section, we state our main result and representation of the solution of linearized equation of (NS_{Ω}) .

Theorem 3.1. Let $u_0 \in \chi^{-1}$ and $||u_0||_{\chi^{-1}} < (2\pi)^3 \nu$. Then, there is a unique global in time solution $u \in C([0,\infty); \chi^{-1})$ of (NS_{Ω}) satisfying

$$u \in L^2(0,\infty;\chi^0) \cap L^1(0,\infty;\chi^1), \quad \partial_t u \in L^1(0,\infty;\chi^{-1}),$$

and

$$\sup_{t>0} \left\{ \|u(t)\|_{\chi^{-1}} + (\nu - (2\pi)^{-3} \|u_0\|_{\chi^{-1}}) \int_0^t \|u(\tau)\|_{\chi^1} \, d\tau \right\} \le \|u_0\|_{\chi^{-1}}.$$

Remark 3.2. In the Navier-Stokes equations, the case $\Omega = 0$, the corresponding result is proved in [12, Theorem 1.1]. We notice that there is also another approach by [14, Theorem 1.3]. The argument below is based on the latter.

For the proof of Theorem 3.1 we consider the integral equation

$$u(t) = \mathcal{S}(t)u_0 - \int_0^t \mathcal{S}(t-s)\mathbb{P}\nabla \cdot (u \otimes u)(s)ds, \qquad (3.1.1)$$

where $\mathbb{P} = (\delta_{ij} + R_i R_j)_{i,j}$ denotes the Helmholtz projection, $R_j = \mathcal{F}^{-1} \frac{i\xi_j}{|\xi|} \mathcal{F}$ denotes the Riesz transforms, and $\nabla \cdot (u \otimes u) = (\sum_j \partial_j (u_i u_j))_{i=1,2,3}$. Here $\mathcal{S}(t)$ represents the semigroup corresponding to the linear problem

$$\begin{cases} \partial_t v - \nu \Delta v + \Omega e_3 \times v + \nabla q = 0, \\ \operatorname{div} v = 0, \\ v|_{t=0} = v_0, \end{cases}$$
(3.1.2)

which is given explicitly by

$$\widehat{\mathcal{S}(t)v_0}(\xi) = \cos\left(\Omega\frac{\xi_3}{|\xi|}t\right)e^{-\nu|\xi|^2t}I\widehat{v_0}(\xi) + \sin\left(\Omega\frac{\xi_3}{|\xi|}t\right)e^{-\nu|\xi|^2t}R(\xi)\widehat{v_0}(\xi),$$

where I is the 3×3 identity matrix and

$$R(\xi) = \begin{pmatrix} 0 & \frac{\xi_3}{|\xi|} & -\frac{\xi_2}{|\xi|} \\ -\frac{\xi_3}{|\xi|} & 0 & \frac{\xi_1}{|\xi|} \\ \frac{\xi_2}{|\xi|} & -\frac{\xi_1}{|\xi|} & 0 \end{pmatrix}.$$

For its derivation, see e.g. [8]. The integral equation (3.1.1) formally derived as follows. We first apply \mathbb{P} to the equation, then we have

$$\partial_t u - \nu \Delta u + \Omega \mathbb{P} e_3 \times u + \mathbb{P} \nabla \cdot (u \otimes u) = 0, \qquad (3.1.3)$$

where $(u, \nabla u) = \nabla \cdot (u \otimes u)$ holds since div u = 0. Here, we notice that

$$\Omega \mathbb{P}e_3 \times u = \Omega e_3 \times u + \nabla q \tag{3.1.4}$$

holds, where q denotes the pressure to the linear problem (3.1.2). Indeed, taking div to the first equation of (3.1.2), we have

$$\operatorname{div} \partial_t u - \nu \operatorname{div} \Delta u + \Omega \operatorname{div} (e_3 \times u) + \Delta q = 0.$$

Since div u = 0, it follows that

$$\Delta q = -\Omega \operatorname{div} (e_3 \times u)$$
$$= \Omega(\partial_1 u_2 - \partial_2 u_1).$$

Thus we have

$$\widehat{\nabla q} = i\xi \left(-\Omega \left(\frac{i\xi_1}{|\xi|^2} \widehat{u}_2 - \frac{i\xi_2}{|\xi|^2} \widehat{u}_1 \right) \right).$$

Since $\mathbb{P} = (\delta_{ij} + R_i R_j)_{i,j}$, we find that

$$\begin{aligned} \mathbb{P}e_{3} \times u &= \mathbb{P}\begin{pmatrix} -u_{2} \\ u_{1} \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} -u_{2} \\ u_{1} \\ 0 \end{pmatrix} + \begin{pmatrix} -R_{1}^{2}u_{2} + R_{1}R_{2}u_{1} \\ -R_{2}R_{1}u_{2} + R_{2}^{2}u_{1} \\ -R_{3}R_{1}u_{2} + R_{3}R_{2}u_{1} \end{pmatrix} \\ &= e_{3} \times u + \frac{1}{\Omega} \nabla q, \end{aligned}$$

by definition of R_j . Thus, we obtain the equation

$$\begin{cases} \partial_t u - \nu \Delta u + \Omega e_3 \times u + \nabla q = -\mathbb{P}(u, \nabla)u, \\ \operatorname{div} u = 0, \\ u|_{t=0} = u_0, \end{cases}$$
(3.1.5)

Therefore, by Duhamel's principle, we obtain (3.1.1).

3.2 Existence of Solutions for Any Time Interval

In this section, we state there exists a local solution of (NS_{Ω}) if $||u_0||_{\chi^{-1}} \leq 4\pi^3 \nu$. First we prove the following lemma about $\mathcal{S}(t)$.

Lemma 3.3. For $u \in S'$ and $\widehat{u} \in L^1_{\text{loc}}$, we have

$$|\widehat{\mathbb{P}u}(\xi)| \le |\widehat{u}(\xi)|,$$

and

$$|\widehat{\mathcal{S}}(t)u(\xi)| \le e^{-\nu|\xi|^2 t} |\widehat{u}(\xi)|.$$

proof. By definition of \mathbb{P} , we have

$$\begin{split} |\widehat{\mathbb{P}u}(\xi)| &= \left| \mathcal{F} \left(\begin{array}{c} u_1 + R_1 \sum_{j=1}^3 R_j u_j) \\ u_2 + R_2 \sum_{j=1}^3 R_j u_j) \\ u_3 + R_3 \sum_{j=1}^3 R_j u_j) \end{array} \right) \right| \\ &= \left| \left(\begin{array}{c} \widehat{u}_1 + \frac{i\xi_1}{|\xi|} \sum_{j=1}^3 \frac{i\xi_j}{|\xi|} \widehat{u}_j) \\ \widehat{u}_2 + \frac{i\xi_2}{|\xi|} \sum_{j=1}^3 \frac{i\xi_j}{|\xi|} \widehat{u}_j) \\ \widehat{u}_3 + \frac{i\xi_3}{|\xi|} \sum_{j=1}^3 \frac{i\xi_j}{|\xi|} \widehat{u}_j) \end{array} \right) \right| \\ &= \left| \left(\begin{array}{c} \widehat{u}_1 - \frac{\xi_1}{|\xi|^2} (\xi \cdot \widehat{u}) \\ \widehat{u}_2 - \frac{\xi_2}{|\xi|^2} (\xi \cdot \widehat{u}) \\ \widehat{u}_3 - \frac{\xi_3}{|\xi|^2} (\xi \cdot \widehat{u}) \end{array} \right) \right| \\ &= \sqrt{|\widehat{u}|^2 - \frac{2}{|\xi|^2} (\xi \cdot \widehat{u})^2 + \frac{\xi_1^2 + \xi_2^2 + \xi_3^2}{|\xi|^4} (\xi \cdot \widehat{u})^2} \\ &= \sqrt{|\widehat{u}|^2 - \frac{1}{|\xi|^2} (\xi \cdot \widehat{u})^2} \leq |\widehat{u}(\xi)|. \end{split}$$

By definition of $R(\xi)$, we have

$$R(\xi)u = \frac{\xi}{|\xi|} \times u.$$

It follows that

$$\begin{split} e^{2\nu|\xi|^{2}t}|\widehat{\mathcal{S}(t)u}(\xi)|^{2} &= \left|\cos\left(\Omega\frac{\xi_{3}}{|\xi|}t\right)\widehat{u}(\xi) + \sin\left(\Omega\frac{\xi_{3}}{|\xi|}t\right)\frac{\xi}{|\xi|}\times\widehat{u}(\xi)\right|^{2} \\ &= \cos^{2}\left(\Omega\frac{\xi_{3}}{|\xi|}t\right)|\widehat{u}(\xi)|^{2} + \sin^{2}\left(\Omega\frac{\xi_{3}}{|\xi|}t\right)\left|\frac{\xi}{|\xi|}\times\widehat{u}(\xi)\right|^{2} \\ &+ 2\cos\left(\Omega\frac{\xi_{3}}{|\xi|}t\right)\sin\left(\Omega\frac{\xi_{3}}{|\xi|}t\right)\widehat{u}(\xi)\cdot\left(\frac{\xi}{|\xi|}\times\widehat{u}(\xi)\right) \\ &= \cos^{2}\left(\Omega\frac{\xi_{3}}{|\xi|}t\right)|\widehat{u}(\xi)|^{2} + \sin^{2}\left(\Omega\frac{\xi_{3}}{|\xi|}t\right)\left\{|\widehat{u}(\xi)|^{2} - \left(\frac{\xi}{|\xi|}\cdot\widehat{u}(\xi)\right)^{2}\right\} \\ &= |\widehat{u}(\xi)|^{2} - \sin^{2}\left(\Omega\frac{\xi_{3}}{|\xi|}t\right)\left(\frac{\xi}{|\xi|}\cdot\widehat{u}(|\xi|)\right)^{2} \\ &\leq |\widehat{u}(\xi)|^{2}. \end{split}$$

Proposition 3.4. For any T > 0, we define $\mathcal{B} : L^2([0,T];\chi^0) \times L^2([0,T];\chi^0) \rightarrow L^2([0,T];\chi^0)$ as

$$\mathcal{B}(u,v) = \int_0^t \mathcal{S}(t-s) \mathbb{P} \nabla \cdot (u \otimes v) ds, \quad u,v \in L^2([0,T];\chi^0).$$

Then, \mathcal{B} is the continuous bilinear map, and

$$\|\mathcal{B}\| := \sup_{\|u\| \le 1, \|v\| \le 1} \|\mathcal{B}(u, v)\|_{L^2_T \chi^0} \le \frac{1}{\sqrt{2\nu} (2\pi)^3}.$$

proof. For T > 0 and $u, v \in L^2([0, T]; \chi^0)$, we have from Lemma 3.3

$$\begin{aligned} |\widehat{\mathcal{B}(u,v)}(t,\xi)| &\leq \int_0^t |\mathcal{F}[\mathcal{S}(t-s)\mathbb{P}\nabla \cdot (u\otimes v)](s,\xi)|ds\\ &\leq \int_0^t e^{-\nu(t-s)|\xi|^2} |\mathcal{F}[\mathbb{P}\nabla \cdot (u\otimes v)](s,\xi)|ds\\ &\leq \int_0^t e^{-\nu(t-s)|\xi|^2} |\mathcal{F}[\nabla \cdot (u\otimes v)](s,\xi)|ds\\ &\leq \frac{1}{(2\pi)^3} \int_0^t e^{-\nu(t-s)|\xi|^2} |\xi||\widehat{u}| * |\widehat{v}|(s,\xi)ds. \end{aligned}$$

Using Minkowski's integral inequality and Young's inequality, we have

$$\begin{split} \|\mathcal{B}(u,v)\|_{L^{2}([0,T];\chi^{0})} &= \left(\int_{0}^{T} \|\mathcal{B}(u,v)\|_{\chi^{0}}^{2} dt\right)^{\frac{1}{2}} = \left(\int_{0}^{T} \left(\int_{\mathbb{R}^{3}} |\widehat{\mathcal{B}(u,v)}(t,\xi)| d\xi\right)^{2} dt\right)^{\frac{1}{2}} \\ &\leq \frac{1}{(2\pi)^{3}} \left(\int_{0}^{T} \left(\int_{\mathbb{R}^{3}} \int_{0}^{t} e^{-\nu(t-s)|\xi|^{2}} |\xi||\widehat{u}| * |\widehat{v}| ds d\xi\right)^{2} dt\right)^{\frac{1}{2}} \\ &= \frac{1}{(2\pi)^{3}} \left(\int_{0}^{T} \left(\int_{\mathbb{R}^{3}} \int_{0}^{T} \chi_{[0,t]}(s) e^{-\nu(t-s)|\xi|^{2}} |\xi||\widehat{u}| * |\widehat{v}| ds d\xi\right)^{2} dt\right)^{\frac{1}{2}} \\ &\leq \frac{1}{(2\pi)^{3}} \int_{\mathbb{R}^{3}} \int_{0}^{T} \left(\int_{s}^{T} e^{-2\nu(t-s)|\xi|^{2}} |\xi|^{2} (|\widehat{u}| * |\widehat{v}|(s,\xi))^{2} dt\right)^{\frac{1}{2}} ds d\xi \\ &= \frac{1}{(2\pi)^{3}} \int_{\mathbb{R}^{3}} \int_{0}^{T} |\xi||\widehat{u}| * |\widehat{v}|(s,\xi) \left(\int_{s}^{T} e^{-2\nu(t-s)|\xi|^{2}} dt\right)^{\frac{1}{2}} ds d\xi \\ &\leq \frac{1}{\sqrt{2\nu}(2\pi)^{3}} \int_{\mathbb{R}^{3}} \int_{0}^{T} |\widehat{u}| * |\widehat{v}|(s,\xi)| ds d\xi \\ &\leq \frac{1}{\sqrt{2\nu}(2\pi)^{3}} \int_{0}^{T} \|\widehat{u}(s,\cdot)\|_{L^{1}} \|\widehat{v}(s,\cdot)\|_{L^{1}} ds \\ &\leq \frac{1}{\sqrt{2\nu}(2\pi)^{3}} \|u\|_{L^{2}([0,T];\chi^{0})} \|v\|_{L^{2}([0,T];\chi^{0})}, \end{split}$$

where $\chi_{[0,t]}$ is characteristic function on [0,t]. Thus we conclude

$$\|\mathcal{B}\| \le \frac{1}{\sqrt{2\nu}(2\pi)^3}.$$

Theorem 3.5. Let u_0 be in χ^{-1} and $||u_0||_{\chi^{-1}} \leq 4\pi^3 \nu$. For any T > 0, there is a unique solution $u \in L^2([0,T];\chi^0)$ of (NS_Ω) such that $||u||_{L^2([0,T];\chi^0)} \leq 2\pi^3\sqrt{2\nu}$.

Now we use the following lemma to prove this.

Lemma 3.6 ([2]). Let E be a Banach space, \mathcal{B} a continuous bilinear map from $E \times E \to E$, and a positive real number α such that $\alpha < \frac{1}{4||\mathcal{B}||}$. For any a in the ball $B(0, \alpha) = \{x \in E; ||x||_E \leq \alpha\}$, then there exists a unique x in $B(0, 2\alpha)$ such that x = a + B(x, x).

Using Lemma 3.6, we can prove Theorem.

proof. Using $\|\mathcal{B}\| \leq \frac{1}{\sqrt{2\nu}(2\pi)^3}$, we can get for any T > 0,

$$\begin{split} \|\mathcal{S}(t)u_0\|_{L^2([0,T];\chi^0)} &\leq \left(\int_0^T \left(\int_{\mathbb{R}^3} e^{-\nu|\xi|^2 t} |\widehat{u_0}(\xi)| d\xi\right)^2 dt\right)^{\frac{1}{2}} \\ &\leq \int_{\mathbb{R}^3} \left(\int_0^T e^{-2\nu|\xi|^2 t} |\widehat{u_0}(\xi)|^2 dt\right)^{\frac{1}{2}} d\xi \\ &\leq \int_{\mathbb{R}^3} \frac{|\widehat{u_0}(\xi)|}{(2\nu)^{\frac{1}{2}} |\xi|} d\xi = \frac{1}{(2\nu)^{\frac{1}{2}}} \|u_0\|_{\chi^{-1}}. \end{split}$$

Since $||u_0||_{\chi^{-1}} \le 4\pi^3 \nu$, we have $\frac{1}{(2\nu)^{\frac{1}{2}}} ||u_0||_{\chi^{-1}} \le \frac{\sqrt{2\nu}(2\pi)^3}{4} \le \frac{1}{4||\mathcal{B}||}$.

So using Lemma 3.6 for $\alpha = \sqrt{2\nu}\pi^3$, $E = L^2([0,T];\chi^0)$ and $a = \mathcal{S}(t)u_0$, we can conclude there exists a unique u in $B(0,2\alpha)$ such that $u = \mathcal{S}(t)u_0 + \mathcal{B}(u,u)$. Moreover, we have $\|u\|_{L^2([0,T];\chi^0)} \leq 2 \cdot \sqrt{2\nu}\pi^3 = 2\pi^3\sqrt{2\nu}$. \Box

3.3 Existence of Local Solutions for Any Initial Data

In this section we prove existence of local solutions for any initial data in χ^{-1} .

Theorem 3.7. For any $u_0 \in \chi^{-1}$, there exists a positive number $\rho = \rho_{u_0} > 0$ and $T = T(\nu, ||u_0||_{\chi^{-1}}, \rho) > 0$ such that (NS_{Ω}) has a unique solution $u \in C([0, T]; \chi^{-1})$ satisfying

$$u \in L^2(0,T;\chi^0) \cap L^1(0,T;\chi^1), \quad \partial_t u \in L^1(0,T;\chi^{-1}).$$

Remark 3.8. T is determined by

$$T = \frac{\pi^6 \nu}{2\rho_{u_0}^2 \|u_0\|_{\chi^{-1}}^2}.$$

proof. We fix some positive number $\rho_{u_0} > 0$ such that

$$\int_{|\xi| \ge \rho_{u_0}} \frac{|\widehat{u}_0(\xi)|}{|\xi|} d\xi \le \pi^3 \nu.$$

Defining $u_0^{\flat} = \mathcal{F}^{-1}(\chi_{B(0,\rho_{u_0})}(\xi)\widehat{u_0}(\xi))$, we get

$$\begin{split} \|\mathcal{S}(t)u_{0}^{\flat}\|_{L^{2}([0,T];\chi^{0})} &= \left(\int_{0}^{T} \left(\int_{\mathbb{R}^{3}} |\mathcal{F}[\mathcal{S}(t)u_{0}^{\flat}](\xi)|d\xi\right)^{2} dt\right)^{\frac{1}{2}} \\ &\leq \left(\int_{0}^{T} \left(\int_{|\xi| \leq \rho_{u_{0}}} |\widehat{u}_{0}^{\flat}(\xi)|d\xi\right)^{2} dt\right)^{\frac{1}{2}} \\ &\leq \left(\int_{0}^{T} \left(\int_{|\xi| \leq \rho_{u_{0}}} |\xi| \cdot \frac{1}{|\xi|} |\widehat{u}_{0}(\xi)|d\xi\right)^{2} dt\right)^{\frac{1}{2}} \\ &\leq \rho_{u_{0}} \|u_{0}\|_{\chi^{-1}} T^{\frac{1}{2}}. \end{split}$$

So using Minkowski inequality, we deduce that

$$\begin{split} \|\mathcal{S}(t)u_{0}\|_{L^{2}([0,T];\chi^{0})} &\leq \|\mathcal{S}(t)(u_{0}-u_{0}^{\flat})\|_{L^{2}([0,T];\chi^{0})} + \|\mathcal{S}(t)u_{0}^{\flat}\|_{L^{2}([0,T];\chi^{0})} \\ &\leq \left(\int_{0}^{T} \left(\int_{|\xi| \geq \rho_{u_{0}}}^{T} e^{-\nu|\xi|^{2}t} |\widehat{u_{0}}(\xi)| d\xi\right)^{2} dt\right)^{\frac{1}{2}} + \rho_{u_{0}} \|u_{0}\|_{\chi^{-1}} T^{\frac{1}{2}} \\ &\leq \int_{|\xi| \geq \rho_{u_{0}}} \left(\int_{0}^{T} e^{-2\nu|\xi|^{2}t} |\widehat{u_{0}}(\xi)|^{2} dt\right)^{\frac{1}{2}} d\xi + \rho_{u_{0}} \|u_{0}\|_{\chi^{-1}} T^{\frac{1}{2}} \\ &\leq \frac{1}{\sqrt{2\nu}} \int_{|\xi| \geq \rho_{u_{0}}} \frac{|\widehat{u_{0}}(\xi)|}{|\xi|} d\xi + \rho_{u_{0}} \|u_{0}\|_{\chi^{-1}} T^{\frac{1}{2}} \\ &\leq \frac{1}{\sqrt{2\nu}} \cdot \pi^{3}\nu + \rho_{u_{0}} \|u_{0}\|_{\chi^{-1}} T^{\frac{1}{2}}. \end{split}$$

So if

$$T = \frac{\pi^6 \nu}{2\rho_{u_0}^2 \|u_0\|_{\chi^{-1}}^2},\tag{3.3.1}$$

we get

$$\|\mathcal{S}(t)u_0\|_{L^2([0,T];\chi^0)} \le \sqrt{2\nu}\pi^3.$$

By Lemma 3.6, this implies that (NS_{Ω}) has a unique solution u in $L^{2}([0, T]; \chi^{0})$.

Now we show $u \in L^1([0,T];\chi^1)$.

$$\begin{split} \|S(t)u_0\|_{L^1_T\chi^1} &= \int_0^T \|S(t)u_0\|_{\chi^1} dt \\ &= \int_0^T \int_{\mathbb{R}^3} |\xi| |\widehat{S(t)u_0}(\xi)| d\xi dt \\ &\leq \int_{\mathbb{R}^3} |\xi| |\widehat{u_0}(\xi)| \int_0^T e^{-\nu|\xi|^2 t} dt d\xi \\ &\leq \int_{\mathbb{R}^3} \frac{|\xi|}{\nu|\xi|^2} |\widehat{u_0}(\xi)| d\xi \\ &= \frac{1}{\nu} \|u_0\|_{\chi^{-1}}. \end{split}$$

Similarly, we see that by Lemma 3.3

$$\begin{split} \left\| \int_0^t \mathcal{S}(t-s) \mathbb{P} \nabla \cdot (u \otimes u)(s) ds \right\|_{L^1_T \chi^1} \\ &\leq \int_0^T \int_{\mathbb{R}^3} |\xi| \int_0^t |\mathcal{F}[\mathcal{S}(t-s) \mathbb{P} \nabla \cdot (u \otimes u)](s,\xi)| \, ds d\xi dt \\ &\leq \int_0^T \int_{\mathbb{R}^3} |\xi| \int_0^t e^{-\nu |\xi|^2 (t-s)} |\mathcal{F}[\mathbb{P} \nabla \cdot (u \otimes u)](s,\xi)| \, ds d\xi dt \\ &\leq \int_0^T \int_{\mathbb{R}^3} \int_0^t e^{-\nu |\xi|^2 (t-s)} \frac{|\xi|^2}{(2\pi)^3} |\widehat{u}| * |\widehat{u}|(s,\xi) \, ds d\xi dt \\ &\leq \int_0^T \int_{\mathbb{R}^3} \frac{1}{\nu (2\pi)^3} |\widehat{u}| * |\widehat{u}|(s,\xi) \, d\xi ds \\ &\leq \frac{1}{\nu (2\pi)^3} \int_0^T \|u(s)\|_{\chi_0}^2 \, ds. \end{split}$$

Therefore we obtain that $u \in L^1([0,T];\chi^1)$.

We see $u \in L^{\infty}_T \chi^{-1}$. Indeed, we have

$$\begin{split} \|\mathcal{S}(t)u_0\|_{L^{\infty}_T\chi^{-1}} &= \sup_{0 \le t \le T} \|\mathcal{S}(t)u_0\|_{\chi^{-1}} \\ &= \sup_{0 \le t \le T} \int_{\mathbb{R}^3} |\xi|^{-1} |\widehat{\mathcal{S}(t)u_0}(\xi)| d\xi \\ &\le \sup_{0 \le t \le T} \int_{\mathbb{R}^3} |\xi|^{-1} e^{-\nu|\xi|^2 t} |\widehat{u_0}(\xi)| d\xi \\ &\le \int_{\mathbb{R}^3} |\xi|^{-1} |\widehat{u_0}(\xi)| d\xi = \|u_0\|_{\chi^{-1}}. \end{split}$$

Moreover using Lemma 3.3 and Hausdorff-Young inequality, we obtain

$$\begin{split} \left\| \int_{0}^{t} \mathcal{S}(t-s) \mathbb{P} \nabla \cdot (u \otimes u)(s) ds \right\|_{L_{T}^{\infty} \chi^{-1}} \\ \sup_{0 \leq t \leq T} \left\| \int_{0}^{t} \mathcal{S}(t-s) \mathbb{P} \nabla \cdot (u \otimes u)(s) ds \right\|_{\chi^{-1}} \\ &= \sup_{0 \leq t \leq T} \int_{\mathbb{R}^{3}} |\xi|^{-1} \left| \mathcal{F} \left[\int_{0}^{t} \mathcal{S}(t-s) \mathbb{P} \nabla \cdot (u \otimes u)(s) ds \right] (\xi) \right| d\xi \\ &= \sup_{0 \leq t \leq T} \int_{\mathbb{R}^{3}} |\xi|^{-1} \left| \int_{0}^{t} \mathcal{F} \left[\mathcal{S}(t-s) \mathbb{P} \nabla \cdot (u \otimes u)(s) \right] (s,\xi) ds \right| d\xi \\ &\leq \sup_{0 \leq t \leq T} \int_{\mathbb{R}^{3}} |\xi|^{-1} \int_{0}^{t} |\mathcal{F} \left[\mathcal{S}(t-s) \mathbb{P} \nabla \cdot (u \otimes u)(s) \right] (s,\xi) | ds d\xi \\ &\leq \sup_{0 \leq t \leq T} \int_{\mathbb{R}^{3}} |\xi|^{-1} \int_{0}^{t} e^{-\nu |\xi|^{2}(t-s)} |\mathcal{F} \left[\mathbb{P} \nabla \cdot (u \otimes u)(s) \right] (s,\xi) | ds d\xi \\ &\leq \sup_{0 \leq t \leq T} \int_{\mathbb{R}^{3}} |\xi|^{-1} \int_{0}^{t} e^{-\nu |\xi|^{2}(t-s)} |\mathcal{F} \left[\nabla \cdot (u \otimes u)(s) \right] (s,\xi) | ds d\xi \\ &\leq \sup_{0 \leq t \leq T} \int_{\mathbb{R}^{3}} |\xi|^{-1} \int_{0}^{t} e^{-\nu |\xi|^{2}(t-s)} |\mathcal{F} \left[\nabla \cdot (u \otimes u)(s) \right] (s,\xi) | ds d\xi \\ &\leq \frac{1}{(2\pi)^{3}} \sup_{0 \leq t \leq T} \int_{0}^{t} \int_{\mathbb{R}^{3}} |\widehat{u}| * |\widehat{u}| (s,\xi) (s,\xi) d\xi ds \\ &\leq \frac{1}{(2\pi)^{3}} \sup_{0 \leq t \leq T} \int_{0}^{t} ||u(s)||_{\chi^{0}}^{2} ds \\ &\leq \frac{1}{(2\pi)^{3}} \int_{0}^{T} ||u(s)||_{\chi^{0}}^{2} ds. \end{split}$$

It follows that $u \in L^{\infty}_T \chi^{-1}$. Next we prove $\partial_t u \in L^1([0,T];\chi^{-1})$, which implies $u \in C([0,T];\chi^{-1})$. We have

$$\partial_t u(t) = \nu \Delta u(t) - \Omega \mathbb{P} e_3 \times u(t) - \mathbb{P} \nabla \cdot (u \otimes u)$$

in the distribution sense.

Then we see that

$$\int_0^T \|\Delta u(t)\|_{\chi^{-1}} dt \le \int_0^T \int_{\mathbb{R}^3} |\xi| |\widehat{u}(t,\xi)| d\xi dt = \|u\|_{L^1_T \chi^1}$$

and

$$\begin{split} \int_0^T \|\mathbb{P}\nabla \cdot (u \otimes u)\|_{\chi^{-1}} dt &\leq \int_0^T \int_{\mathbb{R}^3} \frac{1}{|\xi|} |\mathcal{F}[\nabla \cdot (u \otimes u)](t,\xi)| d\xi dt \\ &\leq \int_0^T \int_{\mathbb{R}^3} |\widehat{u}| * |\widehat{u}| d\xi dt \\ &\leq \frac{1}{(2\pi)^3} \|u\|_{L^2_T \chi^0}. \end{split}$$

Since $u \in L^{\infty}_T \chi^{-1}$, we see

$$\int_0^T \|\Omega \mathbb{P} e_3 \times u(t)\|_{\chi^{-1}} dt \le \Omega T \|u\|_{L^\infty_T \chi^{-1}}.$$

Thus we have $\partial_t u \in L^1([0,T];\chi^{-1})$. Finally, we prove uniqueness of the solution to (NS_{Ω}) in $L_T^{\infty}\chi^{-1} \cap L_T^1\chi^1$. For $u, v \in L_T^{\infty}\chi^{-1} \cap L_T^1\chi^1$, we set w := u - v. Then, we observe

$$w(t) = \left\{ \mathcal{S}(t)u_0 - \int_0^t \mathcal{S}(t-s)\mathbb{P}\nabla \cdot (u\otimes u)(s)ds \right\} \\ - \left\{ \mathcal{S}(t)u_0 - \int_0^t \mathcal{S}(t-s)\mathbb{P}\nabla \cdot (v\otimes v)(s)ds \right\} \\ = -\int_0^t \mathcal{S}(t-s)\mathbb{P}\nabla \cdot (u\otimes u - v\otimes v)(s)ds.$$

So by Lemma 3.3, we see

$$\begin{split} |\widehat{w}(t,\xi)| &= \left| \mathcal{F}\left[\int_0^t \mathcal{S}(t-s) \mathbb{P} \nabla \cdot (u \otimes u - v \otimes v)(s) ds \right] (\xi) \right| \\ &\leq \int_0^t |\mathcal{F}[\mathcal{S}(t-s) \mathbb{P} \nabla \cdot (u \otimes u - v \otimes v)] (s,\xi)| \, ds \\ &\leq \int_0^t e^{-\nu |\xi|^2 (t-s)} |\mathcal{F}[\mathbb{P} \nabla \cdot (u \otimes u - v \otimes v)] (s,\xi)| \, ds \\ &\leq \int_0^t e^{-\nu |\xi|^2 (t-s)} |\mathcal{F}[\nabla \cdot (u \otimes (u-v) + (u-v) \otimes v)] (s,\xi)| \, ds \\ &\leq \frac{1}{(2\pi)^3} \int_0^t e^{-\nu |\xi|^2 (t-s)} |\xi| (|\widehat{u}| * |\widehat{w}| (s,\xi) + |\widehat{w}| * |\widehat{v}| (s,\xi)) ds. \end{split}$$

Then we have

$$\begin{split} \|w(t)\|_{\chi^{-1}} &\leq \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \int_0^t \{ (|\widehat{u}| * |\widehat{w}|)(s,\xi) + (|\widehat{w}| * |\widehat{v}|)(s,\xi) \} ds d\xi \\ &\leq \frac{1}{(2\pi)^3} \int_0^t (\|u(s)\|_{\chi^0} + \|v(s)\|_{\chi^0}) \|w(s)\|_{\chi^0} ds. \end{split}$$

Using Lemma 2.1, for $\varepsilon > 0$, there exists a positive number C_{ε} such that

$$\begin{aligned} \|u(s)\|_{\chi^{0}}\|w(s)\|_{\chi^{0}} &\leq \|u(s)\|_{\chi^{1}}^{\frac{1}{2}}\|u(s)\|_{\chi^{-1}}^{\frac{1}{2}} \cdot \|w(s)\|_{\chi^{1}}^{\frac{1}{2}}\|w(s)\|_{\chi^{-1}}^{\frac{1}{2}} \\ &\leq C_{\varepsilon}\|u(s)\|_{\chi^{1}}\|w(s)\|_{\chi^{-1}} + \varepsilon \|u(s)\|_{\chi^{-1}}\|w(s)\|_{\chi^{1}}.\end{aligned}$$

Thus we have

$$||w||_{L^{\infty}_{T}\chi^{-1}} \leq \varepsilon ||u||_{L^{\infty}_{T}\chi^{-1}} ||w||_{L^{1}_{T}\chi^{1}} + C_{\varepsilon} ||u||_{L^{1}_{T}\chi^{1}} ||w||_{L^{\infty}_{T}\chi^{-1}}.$$

Similarly we see

$$\nu \|w\|_{L^{1}_{T}\chi^{1}} \leq \varepsilon \|u\|_{L^{\infty}_{T}\chi^{-1}} \|w\|_{L^{1}_{T}\chi^{1}} + C_{\varepsilon} \|u\|_{L^{1}_{T}\chi^{1}} \|w\|_{L^{\infty}_{T}\chi^{-1}}.$$

Here we take sufficiently small $\varepsilon>0$ such that

$$\varepsilon \|u\|_{L^{\infty}_{T}\chi^{-1}} < \frac{\nu}{4}.$$

Furthermore, if we take $\delta>0$ such that

 $C_{\varepsilon} \|u\|_{L^1_{\delta}\chi^1} < \frac{1}{4},$

we have

$$\begin{split} \|w\|_{L^{\infty}_{\delta}\chi^{-1}} + \nu \|w\|_{L^{1}_{\delta}\chi^{1}} \leq & 2\varepsilon \|u\|_{L^{\infty}_{\delta}\chi^{-1}} \|w\|_{L^{1}_{\delta}\chi^{1}} + 2C_{\varepsilon} \|u\|_{L^{1}_{\delta}\chi^{1}} \|w\|_{L^{\infty}_{\delta}\chi^{-1}} \\ \leq & \frac{1}{2} (\|w\|_{L^{\infty}_{\delta}\chi^{-1}} + \nu \|w\|_{L^{1}_{\delta}\chi^{1}}). \end{split}$$

Thus we deduce $\|w\|_{L^\infty_\delta\chi^{-1}}+\nu\|w\|_{L^1_\delta\chi^1}=0.$ Therefore , we have

$$w(t) = 0, \quad t \in [0, \delta].$$

Repeating this argument, we see uniqueness of the solution.

3.4 Proof of Theorem 3.1

In this section, we prove Theorem 3.1.

proof. Let T^* be the maximal existence time of a solution of (NS_{Ω}) , derived by applying Theorem 3.7 repeatedly. Suppose $T^* < \infty$. By (3.3.1), we must have $\lim_{t \to T^*} \|u(t)\|_{\chi^{-1}} = \infty,$

or

$$\lim_{t \to T^*} \rho(t) = \infty, \tag{3.4.1}$$

where $\rho(t)$ is determined by

$$\rho(t) = \inf\left\{\rho > 0; \int_{|\xi| \ge \rho} \frac{|\widehat{u}(t,\xi)|}{|\xi|} d\xi \le \pi^3 \nu\right\}$$

We easily observe that $\sup_{0 < t < T^*} ||u(t)||_{\chi^{-1}} \leq ||u_0||_{\chi^{-1}}$ by Theorem 2.3. So, it suffices to show that (3.4.1) would never happen. For $0 < t < T^*$, we find that

$$\begin{aligned} |\widehat{u}(t,\xi)| &\leq |\widehat{\mathcal{S}(t)u_0}(\xi)| + \int_0^t |\mathcal{F}[\mathcal{S}(t-s)\mathbb{P}\nabla \cdot (u\otimes u)](s,\xi)| ds \\ &\leq e^{-\nu|\xi|^2 t} |\widehat{u_0}(\xi)| + \int_0^t e^{-\nu(t-s)|\xi|^2} |\mathcal{F}[\nabla \cdot (u\otimes u)](s,\xi)| ds \\ &\leq |\widehat{u_0}(\xi)| + \int_0^t e^{-\nu(t-s)|\xi|^2} |\mathcal{F}[\nabla \cdot (u\otimes u)](s,\xi)| ds \\ &\leq |\widehat{u_0}(\xi)| + \int_0^t e^{-\nu(t-s)|\xi|^2} \frac{|\xi|}{(2\pi)^3} |\widehat{u}| * |\widehat{u}|(s,\xi) ds. \end{aligned}$$

Hence we see that

$$\begin{split} \int_{\mathbb{R}^3} \sup_{0 \le t \le T^*} |\widehat{u}(t,\xi)| \frac{1}{|\xi|} d\xi &\le \|u_0\|_{\chi^{-1}} + \int_{\mathbb{R}^3} \int_0^{T^*} \frac{1}{(2\pi)^3} |\widehat{u}| * |\widehat{u}|(s,\xi) ds d\xi \\ &\le \|u_0\|_{\chi^{-1}} + \frac{1}{(2\pi)^3} \int_0^{T^*} \|u(s)\|_{\chi^0}^2 ds \\ &\le \|u_0\|_{\chi^{-1}} + \frac{1}{(2\pi)^3} \|u\|_{L^2([0,T^*);\chi^0)}^2. \end{split}$$

Applying Theorem 2.3, we obtain that

$$\begin{split} \|u\|_{L^{2}([0,T^{*});\chi^{0})}^{2} &= \int_{0}^{T^{*}} \|u(t)\|_{\chi^{0}}^{2} dt \\ &\leq \int_{0}^{T^{*}} \|u(t)\|_{\chi^{-1}} \|u(t)\|_{\chi^{1}} dt \\ &\leq \|u_{0}\|_{\chi^{-1}} \cdot \frac{\|u_{0}\|_{\chi^{-1}}}{\nu - \frac{1}{(2\pi)^{3}} \|u_{0}\|_{\chi^{-1}}}. \end{split}$$

Thus we have there exists some M > 0, such that

$$\int_{\mathbb{R}^3} \sup_{0 \le t \le T^*} |\widehat{u}(t,\xi)| \frac{1}{|\xi|} d\xi < M.$$

This implies that we are able to take $\rho>0$ such that

$$\int_{|\xi|>\rho} \sup_{0\le t\le T^*} |\widehat{u}(t,\xi)| \frac{1}{|\xi|} d\xi < \pi^3 \nu,$$

we get for any $0 < t < T^*$,

$$\int_{|\xi|>\rho} |\widehat{u}(t,\xi)| \frac{1}{|\xi|} d\xi < \int_{|\xi|>\rho} \sup_{0 \le t \le T^*} \frac{|\widehat{u}(t,\xi)|}{|\xi|} d\xi < \pi^3 \nu.$$

This contradicts to (3.4.1).

Bibliography

- A. Babin, A. Mahalov, B. Nicolaenko, Regularity and integrability of 3D Euler and Navier-Stokes equations for rotating fluids, Asymptot. Anal. 15 (1997), 103 – 150.
- [2] H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 343. New York: Springer-Verlag (2011).
- [3] J. Benameur, Long time decay to the Lei-Lin solution of 3D Navier-Stokes equations, J. Math. Anal. Appl. 422 (2015), 424 – 434.
- [4] J.-Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, "Mathematical geophysics. An introduction to rotating fluids and the Navier-Stokes equations." Oxford Lecture Series in Mathematics and its Applications 32, Oxford University Press (2006).
- [5] Y. Giga, K. Inui, A. Mahalov, J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J. 57 (2008), 2775 – 2791.
- [6] H. Ito, J. Kato, A remark on a priori estimate for the Navier-Stokes equations with the Coriolis force, arXiv:1512.01814.
- [7] H. Ito, J. Kato, Blow-up criterion for the Navier-Stokes equations with the Coriolis force, in preparation.
- [8] M. Hieber, Y. Shibata, The Fujita-Kato approach to the Navier-Stokes equations in the rotational framework, Math. Z. 265 (2010), 481 – 491.
- [9] T. Iwabuchi, R. Takada, Global solutions for the Navier-Stokes equations in the rotational framework Math. Ann. 357 (2013), 727 – 741.

- [10] T. Iwabuchi, R. Takada, Global well-posedness and ill-posedness for the Navier-Stokes equations with the Coriolis force in function spaces of Besov type, J. Funct. Anal. 267 (2014), 1321 – 1337.
- [11] P. Konieczny, T. Yoneda, On dispersive effect of the Coriolis force for the stationary Navier-Stokes equations, J. Differential Equations 250 (2011), 3859 – 3873.
- [12] Z. Lei, F. Lin, Global mild solutions of Navier-Stokes equations, Comm. Pure Anal. Math. 64 (2011), 1297 – 1304.
- [13] Y. Koh, S. Lee, R. Takada, Strichartz estimates for the Euler equations in the rotational framework, J. Differential Equations 256 (2014), 707 - 744.
- [14] Z. Zhang, Z. Yin, Global well-posedness for the generalized Navier-Stokes system, arXiv:1306.3735.