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CHAPTER 1

Introduction

1.1. Summary of the main result

Let M be a complete Riemannian manifold and S →M a Hermit-
ian vector bundle onM . J. Roe [34] introduced a non-unital C∗-algebra
C∗(M) = X , where X denotes the algebra of bounded integral opera-
tors on L2(M,S) which have smooth kernel functions supported within
a bounded neighborhood of the diagonal of M ×M . It is called the
Roe algebra. One has K1(C

∗(M)) = π0(GL∞(C∗(M))) by definition,
where π0 stands for the set of connected components. It turns out to
be an abelian group. Let D be the Dirac operator acting on a Clifford
bundle S. Roe also defined an odd index for D, ind(D), as an element
in K1(C

∗(M)). It is known that the odd index is represented by the
Cayley transformation of D:

ind(D) =

[
D − i

D + i

]
∈ K1(C

∗(M)).

Assume that there exist two submanifolds with boundary, M+ and
M−, of the same dimension as M that satisfy the conditions M =
M+ ∪ M− and M+ ∩ M− = ∂M+ = ∂M−. Set N = M+ ∩ M−,
which is a submanifold of M of codimension one. We call such M a
partitioned manifold if such N is a closed manifold, that is, N is a
compact, oriented manifold without boundary; see below Figure 1.1.1.
Denote by Π the characteristic function of M+ and set Λ = 2Π− 1. Π
and Λ act on L2(M,S) as a multiplication operator, respectively.

Figure 1.1.1. Partitioned manifold
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4 1. INTRODUCTION

In this setting, Roe also defined a cyclic 1-cocycle ζ:

ζ(A,B) =
1

4
Tr(Λ[Λ, A][Λ, B])

for A,B ∈ A , where A is a certain Banach algebra, which is dense in
C∗(M) and the inclusion map induces an isomorphism of K1 groups:
K1(A ) ∼= K1(C

∗(M)). Then ζ defines a linear map

ζ∗ : K1(C
∗(M)) → C,

which is essentially given by substituting an element in A in ζ. This
coincides with Connes’ pairing of a cyclic cohomology with K theory;
see Subsection 3.3.2.

On the other hand, it is known that there is a Z2-graded Dirac
operator DN on S|N with the grading the Clifford multiplication of ν.
Here, ν is the unit normal vector field; see Figure 1.1.1. DN is an odd
operator with respect to the grading, so DN splits the positive part D+

N

and the negative part D−
N . Roe [34] proved the following formula in

1988:

ζ∗(ind(D)) = − 1

8πi
index(D+

N).

N. Higson [26] proved this formula with a simplified proof in 1991, after
Roe’s work. We shall call the formula the Roe-Higson index theorem
from now on.

It is known that the Fredholm index of an elliptic differential opera-
tor on an odd-dimensional closed manifold is 0; see [4, Proposition 9.2].
Thus we have index(D+

N) = 0 when N is of odd dimension. Therefore,
the Roe-Higson index ζ∗(ind(D)) is trivial whenM is of even dimension.
However, the value ζ∗(x) is non trivial for a general x ∈ K1(C

∗(M)).
In this thesis, we shall study such values on even-dimensional mani-

foldsM replacing index(D+
N) by the Toeplitz index, which is a counter-

part of the Roe-Higson index theorem on odd-dimensional manifolds.
To be more precise, we replace two parts, ind(D) and the Dirac op-
erator D+

N by an index class Ind(ϕ,D) = [ϕ]⊗̂[D] and the Toeplitz
operator on N , respectively.

Main theorem Roe-Higson index theorem

dimM even odd
odd index Ind(ϕ,D) ind(D)

operator on N Toeplitz operator Tϕ|N Dirac operator D+
N

The odd index Ind(ϕ,D) and the associated Toeplitz operator is
defined as follows. Let D be the graded Dirac operator on S = S+ ⊕
S− and ϵ the grading operator. Denote by Cw(M) the C∗-algebra
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generated by bounded smooth functions on M with bounded gradient.
Then we can define [D] ∈ KK0(Cw(M), C∗(M)) and [ϕ] ∈ K1(Cw(M))
for ϕ ∈ GLl(Cw(M)). By using the Kasparov product

⊗̂ : K1(Cw(M))×KK0(Cw(M), C∗(M)) → K1(C
∗(M)),

we obtain Ind(ϕ,D) = [ϕ]⊗̂[D] by definition. More explicitly, it is given
by

Ind(ϕ,D) =

[
D
[
ϕ 0
0 1

]
D
[
1 0
0 ϕ−1

]]
∈ K1(C

∗(M)),

where the bounded operator D on L2(M,S) is defined by D = (D +
ϵ)(D2 +1)−1/2. Next we construct the Toeplitz operator. Index theory
for Toeplitz operators on closed manifolds is developed by P. Baum
and R. G. Douglas [7], [8]. Set SN = S+|N and let DN : L2(N,SN) →
L2(N,SN) be the Dirac operator on SN . It is well known that the spec-
trum ofDN consists of only real eigenvalues with finite multiplicity. Let
H+ ⊂ L2(N,SN) be the closed subspace generated by all eigenvectors
for DN corresponding to non-negative eigenvalues. Denote by P the
projection onto H+. Let ψ ∈ GLl(C(N)), which can be considered as a
continuous mapping ψ : N → GLl(C) at the same time. The Toeplitz
operator Tψ with symbol ψ is defined to be a compression of the mul-
tiplication operator on H+. Namely, we define Tψ : H l

+ → H l
+ to be

Tψs = Pψs. We note that Tψ is a Fredholm operator since ψ takes the
values in GLl(C).

We shall study ζ∗(Ind(ϕ,D)) and prove that it is equal to the Fred-
holm index of a Toeplitz operator on N . Recall that Cw(M) is the C∗-
algebra generated by bounded smooth functions on M with bounded
gradient. Then an element ϕ ∈Ml(Cw(M)) can be considered as a con-
tinuous mapping ϕ = [ϕij] :M →Ml(C) such that ϕij ∈ Cw(M) at the
same time. Thus an element ϕ ∈Ml(Cw(M)) belongs toGLl(Cw(M)) if
and only if ϕ takes the values in GLl(C) and one has ϕ−1 ∈Ml(Cw(M)),
where ϕ−1 is defined by ϕ−1(x) = ϕ(x)−1. The precise statement of the
main theorem is as follows:

Main Theorem (see Theorem 5.2.1). Let M be a complete Rie-
mannian manifold partitioned by N as previously. Let S → M be
a graded Clifford bundle with grading ϵ and denote by D the graded
Dirac operator of S. Take ϕ ∈ GLl(Cw(M)). Then the following for-
mula holds:

ζ∗(Ind(ϕ,D)) = − 1

8πi
index(Tϕ|N ),

where Tϕ|N is the Toeplitz operator with symbol ϕ|N : N → GLl(C).
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In particular, if ϕ : M → GLl(C) is a bounded smooth mapping
with bounded gradient and ϕ−1 : M → GLl(C) is also bounded, then
we have ϕ ∈ GLl(Cw(M)). Here, bounded means the supremum on
M of the norm on Ml(C) is finite. Applying the topological formula
for Toeplitz operators proved by Baum-Douglas [7], [8], we obtain the
following:

Corollary (see Corollary 5.2.2). Let M be a complete Riemann-
ian manifold partitioned by N as previously. Denote by Π the charac-
teristic function of M+. Let S → M be a graded Clifford bundle with
grading ϵ and denote by D the graded Dirac operator of S. Assume
that ϕ ∈ C∞(M ;GLl(C)) is bounded with bounded gradient and ϕ−1 is
also bounded. Then one has

index

(
Π(D + ϵ)−1

[
ϕ 0
0 1

]
(D + ϵ)Π : Π(L2(M,S))l → Π(L2(M,S))l

)
=

∫
S∗N

π∗Td(TN ⊗ C)ch(S+)π∗ch(ϕ).

The idea of the proof is as follows. Firstly, we calculate the Kas-
parov product [ϕ]⊗̂[D] by using the Cuntz picture of [D]. Secondly, we
calculate ζ∗(Ind(ϕ,D)) explicitly by using the Hilbert transformation
and a homotopy of Fredholm operators in the case for M = R×N and
ϕ = 1 ⊗ ψ with ψ ∈ C∞(N ;GLl(C)). Finally, we reduce the general
case to R×N by applying a similar argument in Higson [26].

Set M = R × N and assume that N is of odd dimension. In this
case, the main theorem is derived from the Roe-Higson index theorem
by applying the suspension homomorphism formally. Let D be the
Dirac operator on M and take a mapping ϕ : M → GLl(C). Then
they determine elements [[D]] ∈ KK0(M, pt) and [[ϕ]] ∈ KK1(M,M),
respectively. By using the Kasparov product ⊗̂, with σ the suspension
homomorphism and e an induced mapping by the map to one point,
we have the following commutative diagram:

KK1(M,M)×KK0(M, pt)

⊗̂
��

// KK0(M × S1,M × S1)×KK1(M × S1, pt)

⊗̂
��

KK1(M, pt)

σ

��

KK1(M × S1, pt)

σ

��
KK0(N, pt)

e

��

KK0(N × S1, pt)

e

��
Z Z
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([[ϕ]], [[D]])
_

⊗̂
��

� // ([[Eϕ]], [[DM×S1 ]])
_

⊗̂
��

[[ϕ]]⊗̂[[D]]
_

σ
��

[[Eϕ]⊗̂[[DM×S1 ]]
_

σ

��
[[ϕ|N ]]⊗̂[[DN ]]_

e

��

[[Dϕ|N ]]_

e

��
index(Tϕ|N ) index(Dϕ|N )

Here, Eϕ is the vector bundle clutched by ϕ and Dϕ|N the Dirac op-
erator on N × S1 twisted by Eϕ|N . To be precise, we set Eϕ = (M ×
[0, 1] × Cl)/ ∼ with (x, 0, v) ∼ (x, 1, ϕ(x)v). By the second column
and the Roe-Higson index theorem, we have e ◦ σ = ζ∗ ◦ A, where A :
KK1(M, pt) → K1(C

∗(M)) is the map defining the odd index called
the assembly map. Thus, we have ζ∗(A([[ϕ]]⊗̂[[D]])) = e(σ([[ϕ]]⊗̂[[D]])) =
index(Tϕ|N ), which is a statement of the main theorem forM = R×N .

This formal argument is correct if ϕ is an element in GLl(C0(M))
since the aboveKK groups are defined asKK1(M, pt) = KK1(C0(M),C),
for instance. However, if ϕ were chosen as an element in GLl(C0(M)), ϕ
should take a constant value outside a compact set of M . This implies
that ϕ|N is homotopic to a constant function in GLl(C(N)) and thus
index(Tϕ|N ) should vanish. Therefore, in order to obtain non-trivial
index, we have to employ a larger algebra than C0(M).

Higson [25] introduced such a C∗-algebra Ch(M) that contains
C0(M), which is now called the Higson algebra. It plays an impor-
tant role in a K-homological proof of the Roe-Higson index theorem.
The Higson algebra is defined as follows: Ch(M) is the C∗-algebra gen-
erated by all smooth and bounded functions defined on M of which
gradient is vanishing at infinity [25, p.26]. Ch(M) contains C0(M) as
an ideal and is contained in Cw(M) by definition. Given ψ ∈ C∞(N),
we note that ϕ = 1 ⊗ ψ does not belong to Ch(M) in general. Thus
the Higson algebra is not large enough to prove our main theorem.
On the other hand, we have ϕ ∈ Cw(M). Moreover, Cw(M) is the
largest C∗-algebra A for which we can define [D] as an element in
KK0(A,C∗(M)). They are reasons why we introduced the C∗-algebra
Cw(M) in our main theorem.

Last but not least, the Roe-Higson index theorem is generalized by
M. E. Zadeh [37] and T. Schick and Zadeh [44], for instance. However,
they treat N of even dimension, essentially.
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1.2. Background

Let Σ be a closed Riemannian surface, where closed means compact,
oriented and without boundary. By the classification theorem of closed
surfaces, Σ is classified by the number of holes. The number g(Σ) is
called the genus of Σ. Denote by K : Σ → R the Gaussian curvature
of Σ. The Gauss-Bonnet theorem gives a relationship of g(Σ) and K:

2− 2g(Σ) =
1

2π

∫
Σ

K ∗ 1.

Here, ∗ is the Hodge star operator. The left hand side 2 − 2g(Σ) is
called the Euler number χ(Σ) of Σ. We can see this formula connects
a global invariant and a local invariant. Moreover, we can also see this
formula connects an analytic invariant and a geometric invariant as
described later.

The Gauss-Bonnet theorem is generalized by C. B. Allendoerfer
and A. Weil [1] in 1943 to closed Riemannian manifolds N of even
dimension. Their proof is using the embedding into a Euclidean space
of a sufficiently high dimension. After that, S. Chern [13] proved the
generalized Gauss-Bonnet theorem by using differential forms without
embedding into a Euclidean space in 1944. By using the Chern-Weil
theory [14], its generalization is formulated as follows:

χ(N) =
dimN∑
j=0

(−1)jHj(N ;C) =
∫
N

e(TN),

where e(TN) is the Euler class of the tangent bundle TN . We can see
this formula also connects a global invariant and a local invariant or
an analytic invariant and a geometric invariant.

As same as the above formulas, the Riemann-Roch-Hirzebruch the-
orem and the Hirzebruch signature theorem is also connecting such
invariants. The Riemann-Roch-Hirzebruch theorem connects the Eu-
ler number of a Dolbeault complex and the Todd class (we can expand
it a polynomial of Chern classes). The Hirzebruch signature theorem
connects the signature of the intersection form and the L class (we can
expand it a polynomial of Pontrjagin classes).

In 1963, M. F. Atiyah and I. M. Singer [2] presented the index
theorem for elliptic differential operators on closed manifolds N . In
particular, above Euler numbers or signatures are equal to the Fred-
holm index of Dirac operators D defined by the following:

index(D) = dimKer(D)− dimKer(D∗) ∈ Z.
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This quantity is calculated by the dimension of the solution space of
differential equations Ds = 0 and D∗s = 0. So index(D) is a global and
analytic number. For example, by using the Hodge theory, we can see
the Euler number χ(N) in the Gauss-Bonnet-Chern theorem is equal
to index((d + d∗)+), where d is the exterior differential for differential
forms and upper + means the restriction to the set of differential forms
of even degree. On the other hand, the notion of Dirac operators is a
generalization of the canonical Dirac operator for a spin manifold. In
this case, the Atiyah-Singer formula is as follows:

index(D+) =

∫
N

Â(TN),

where upper + means the restriction of the canonical Dirac operator to
the set of positive spinors and Â(TN) is a characteristic class of TN

called Â class (we can expand it a polynomial of Pontrjagin classes).
We often assume the Dirac operator D acting on S is graded, that
is, D is an odd operator with respect to a Z2-grading of S like above
examples.

Atiyah-Singer generalized their index theorem for elliptic pseudo-
differential operators by using topological K-theory [3]. There are a
lot of advantages of this generalization. For example, we can get a
nontrivial index for odd dimensional manifolds since every elliptic dif-
ferential operator has trivial index, that is, index = 0; see [4, Propo-
sition 9.2]. The most typical example of an elliptic pseudo-differential
(not differential) operator is given by the Toeplitz operator Tϕ. As
an example, we assume N = S1 is a unit circle, the simplest closed
manifold. Let ϕ ∈ C∞(S1) be a smooth function with ϕ(x) ̸= 0 for
x ∈ S1 and H+ the Hardy space, that is, the set of L2-boundary value
functions on S1 of holomorphic functions on the unit disk. Denote
by P the projection onto H+. Then we define the Toeplitz operator
Tϕ : H+ → H+ to be Tϕf = Pϕf . In this case, Dϕ = Tϕ ⊕ 1 on
L2(S1) = H+ ⊕H⊥

+ is an elliptic pseudo-differential operator of order
0 and we have index(Dϕ) = index(Tϕ). Then the Atiyah-Singer index
formula gives the Gohberg-Krein formula [23]:

index(Tϕ) = − deg(ϕ),

where deg means the winding number. More generally, index theory
for Toeplitz operators on the general N is developed by P. Baum and
R. G. Douglas [7], [8]; see also Subsection 2.3.

Thanks to the K-theoretical approach, we can generalize the notion
of the Fredholm index. Indeed, Atiyah-Singer defined the index for
equivariant elliptic operators with the action of a group in [3] and the
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index for families of elliptic operators in [5]. In particular, the index
of a family of elliptic operators {Dx}x∈X parametrized by a compact
Hausdorff space X is defined as an element in K(X), that is, it is a
formal difference of vector bundles over X. If the dimension of Ker(Dx)
is independent of x ∈ X, then it is represented by the following:

index({Dx}) = [∪Ker(Dx)]− [∪Ker(D∗
x)] ∈ K(X).

Since the category of vector bundles on X and that of finitely
generated projective C(X)-modules are categorical equivalence by the
Swan theorem, we have K(X) ∼= K0(C(X)). Here, K0(C(X)) is a
K0 group of C(X), that is, K0(C(X)) is the group generated by the
stable homotopy class of idempotents in M∞(C(X)). Thus we have
index({Dx}) ∈ K0(C(X)).

By using the above point of view, we assume that a generalized
index is an element in K groups for algebras. We use K groups for
operator algebras since it has several properties compatible with geom-
etry, for example, it satisfies K1(C(X)) ∼= K−1(X). Its generalization
is called an index class.

We can also assume that the ordinary index is an element in K0(K),
where K is the C∗-algebra of all compact operators on a fixed count-
ably infinite dimensional Hilbert space. It is provided by the Atkinson
theorem; see Section 3.1.

By the way, there is another (but related) approach for the iden-
tification of the Fredholm index with an element in K0(K). Let D
be the graded Dirac operator on a closed manifold. Then we have
[eD]− [p] ∈ K0(K), where we set

eD = (D2 + 1)−1

[
1 D−

D+ D+D−

]
and p =

[
0 0
0 1

]
.

eD is called the graph projection of D. Moreover, by using an isomor-
phism Tr∗ : K0(K) ∼= Z which is defined essentially by substituting an
operator in the trace Tr, we have index(D+) = Tr∗([eD]− [p]). We note
that we can see the isomorphism Tr∗ is defined by Connes’ pairing [18]
of the cyclic 0-cocycle Tr with K0(K).

By using an index class, we can study an index problem for more
general spaces. For example, non-compact manifolds, foliated mani-
folds and Hilbert module bundles.

We are interested in non-compact, complete Riemannian manifolds
in this thesis. In this case, we can not define the ordinary Fredholm
index in general. For example, the Dirac operator −id/dt on R is not
Fredholm. Thus we should define a generalized index.
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Let M be a complete Riemannian manifold and D the Dirac op-
erator on M . J. Roe [34] defined the C∗-algebra C∗(M), which is
called the Roe algebra, and the odd index ind(D) ∈ K1(C

∗(M)). By
using this odd index, Roe [34] proved an index theorem for a com-
plete manifold partitioned by a closed hypersurface N like Figure 1.2.1:
M =M− ∪N M+.

Figure 1.2.1. Partitioned manifold

The statement of Roe’s theorem is as follows. By using the partition
ofM , Roe defined the cyclic 1-cocycle ζ, which is called the Roe cocycle.
Recall that A. Connes [18] defined the pairing of a cyclic cohomology
with a K group. Roe proved Connes’ pairing of ζ with ind(D) is equal
to the Fredholm index of the restricted Dirac operator D+

N on N up to
a certain constant multiple:

(♠) ⟨ind(D), ζ⟩ = index(D+
N),

where the grading of DN is defined by the Clifford action of the unit
normal vector field ν.

Higson [26] gave a short proof of a variation of Roe’s theorem after
Roe’s work. Thus we call the formula (♠) the Roe-Higson index theo-
rem in this thesis. In fact, let Π be the characteristic function of M+

and φ ∈ C∞(M) a smooth function such that we have φ = Π on the
complement of a compact set inM . We identify φ with a multiplication
operator of it. Higson proved

index(1− φ+ φ(D − i)(D + i)−1) = index(D+
N).

Roe’s original proof is using K-theoretical argument. On the other
hand, Higson’s proof is based on a calculation of the dimension of
the solution space of a first order ordinary linear differential equation.
Firstly, he proved the case when M = R × N by calculation of its
dimension. Secondly, he reduced the proof for a general partitioned
manifold M to the case when M = R×N .

Since the Fredholm index of the Dirac operator on a closed manifold
of odd dimension is 0, the right hand side of the Roe-Higson index
theorem is trivial when M is of even dimension. Thus, this theorem is
a theorem when M is of odd dimension, essentially.
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The Roe-Higson index theorem is generalized by some researchers.
U. Bunke’s Callias-type index theorem [12] covers the Roe-Higson in-
dex theorem by using the point of view of Higson. P. Siegel [39] gen-
eralized when the Dirac operator is equivariant with an action of a
discrete group and a manifold has a certain geometric condition. M.
E. Zadeh [43, 44] generalized for Hilbert module bundles on a parti-
tioned manifold of odd dimension. S. Kamimura [28] generalized for
a product manifold Rp × N even (R × N is a partitioned manifold). T.
Shick and Zadeh [37] generalized for a p-multi-partitioned manifoldM
with dimM − p = even (“dimM − p = odd” implies trivial index).
Siegel [39] also treats the case when a multi-partitioned manifold has
a certain geometric condition. Here, Rp ×N is a typical example of a
p-multi-partitioned manifold.

1.3. Organization of the thesis

In Section 2, we recall basic properties of the Dirac operator. We
also recall the index theorem for Dirac operators and Toeplitz oper-
ators. In Section 3, we review a generalization of the notion of the
analytic index in terms of noncommutative geometry in the required
range. In Section 4, we review the Roe-Higson index theorem. Defini-
tions of the Roe algebra, the Roe cocycle and its pairing are contained
in this section. In Section 5, we discuss the main theorem. As the
appendix, we review a part of properties of the Hilbert transformation.
These properties are used in Sections 4 and 5.
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1.4. Notations

Numbers.
N The set of positive integers.

Z+ The set of non-negative integers.

Z The set of integers.

Q The set of rational numbers.

R The set of real numbers.

C The set of complex numbers.

Z2 Z2 = Z/2Z.

Classes of maps.

Cr It means Cr-class. We use also C = C0.

C∞
c It means compactly supported C∞-class.

C0 It means continuous and vanishing at infinity.

Cb It means continuous and bounded.

L2 It means square integrable.

F (X;A) The set of A-valued functions defined on X of class F .

We use also F (X) = F (X;C).
F (X,E) The set of sections of a bundle E → X of class F .

S (Rn) The set of rapidly decreasing functions on Rn.

S ′(Rn) The topological dual of S (Rn).

K(X,Y ) The set of compact operators from X to Y .

We use also K(X) = K(X,X).

K The C∗-algebra of compact operators

on a Hilbert space of countably infinite dimension.

L(X, Y ) The set of bounded operators from X to Y .

We use also L(X) = L(X,X).

Not often used constructions.

E ⊠ F The exterior tensor product of two vector bundles E → X1 and F → X2:

E ⊠ F = p∗1E ⊗ p∗2F , where pi : X1 ×X2 → Xi is the projection.

A△B The symmetric difference of A and B: A△B = (A ∪B) \ (A ∩B).
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Operator K groups.
Let A be a Banach algebra.

A+ The unital algebra adjoining a unit of A: A+ = A⊕ C.
SA The suspension of A: SA = C0(R)⊗ A.

Mn(A) The set of n× n matrices of A.

M∞(A) The inductive limit of Mn(A): M∞(A) =
∪∞
n=1Mn(A).

In(A) The set of idempotents of Mn(A).

K0(A) The K0 group of A:

K0(A) = {[e]− [f ] ; e, f ∈ In(A
+) and e− f ∈Mn(A)}.

GLn(A
+) The set of n× n invertible matrices of A+.

GLn(A) GLn(A) = {u ∈ GLn(A
+) ; u− 1 ∈Mn(A)}.

GL∞(A) The inductive limit of GLn(A): GL∞(A) =
∪∞
n=1GLn(A).

K1(A) The K1 group of A: K1(A) = π0(GL∞(A)).

Let A be a C∗-algebra.

Pn(A) The set of projections of Mn(A).

Un(A
+) The set of n× n unitary matrices of A+.

Un(A) Un(A) = {u ∈ Un(A
+) ; u− 1 ∈Mn(A)}.

U∞(A) The inductive limit of Un(A): U∞(A) =
∪∞
n=1 Un(A).



CHAPTER 2

Preliminaries

In this chapter, we recall basic properties of the Dirac operator
on a complete Riemannian manifold and the index theorem for Dirac
operators on a closed manifold. Furthermore, we also recall the index
theorem for Toeplitz operators since the index of the Dirac operator on
odd-dimensional manifolds is always trivial. There are a lot of helpful
references for topics in this chapter, for example, [8], [9], [27], [31] and
[36].

2.1. Properties of the Dirac operator

Let M be a complete Riemannian manifold of dimension n with-
out boundary. Let (S, h) → M be a Clifford bundle, that is, S is a
Hermitian vector bundle equipped with a metric connection ∇S and
an action c ∈ C∞(M,Hom(Cl(TM),End(S))) of the complex Clifford
module bundle Cl(TM) of the tangent bundle TM such that

• h(c(X)s, t) + h(s, c(X)t) = 0,
• ∇S

X(c(Y )s) = c(∇XY )s+ c(Y )∇S
Xs,

for any X, Y ∈ C∞(M,TM) and s, t ∈ C∞(M,S); see [36, Definition
3.4]. By using ∇S and c, we can define the Dirac operator of S as a
composition of these maps:

D : C∞(M,S)
∇S

−→ C∞(M,T ∗M⊗S) ♯⊗id−→ C∞(M,TM⊗S) c−→ C∞(M,S).

Here, ♯ : T ∗M → TM is the isomorphism defined by using the Rie-
mannian metric of M . We often identify T ∗M with TM by using ♯.
By definition, the Dirac operator is a globally defined first-order elliptic
differential operator with the principal symbol ic(ξ). We can write

D =
n∑
i=1

c(ei)∇S
ei
,

where e1, . . . en is a local orthonormal frame of TM .
We often assume a Clifford bundle is Z2-graded, that is, S = S+ ⊕

S− is a Z2-graded Hermitian vector bundle, ∇S is an even operator

15
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and c(v) for v ∈ TM is an odd operator. When a Clifford bundle S is
Z2-graded, its Dirac operator is an odd operator by definition:

D =

[
0 D−

D+ 0

]
: C∞(M,S+)⊕C∞(M,S−) → C∞(M,S+)⊕C∞(M,S−)

We often say graded means Z2-graded.
Example 2.1.1.

• We can consider that the exterior tensor product
∧∗ T ∗M ⊗C

of the cotangent bundle T ∗M is a Clifford bundle. In this case,
the Dirac operator D is D = d + d∗, where d is the exterior
differential for differential forms on M .

• LetW →M be a holomorphic vector bundle with the canonical
connection on a Hermitian manifold M . Then

∧∗(T 0,1M)∗ ⊗
W is a Clifford bundle and its Dirac operator D is D =√
2(∂̄W + ∂̄∗W ) + A for a certain endomorphism A ∈ End(S).

In particular, if M is a Kähler manifold, then we have A = 0.
• Let M admits a spin structure. In this case, the spin bundle
∆ defined by its spin structure is a Clifford bundle. In this
case, the canonical spinor Dirac operator of ∆ is the Dirac
operator in our definition. If M is of even dimension, then
∆ is Z2-graded by the decomposition of positive and negative
spinors.

• Let D : C∞(M,S) → C∞(M,S) be the Dirac operator and
E → M a Hermitian vector bundle with a metric connection.
We assume a connection of S⊗E is the tensor product connec-
tion. Then S ⊗E is a Clifford bundle with the Clifford action
c⊗ 1. We denote by DE the Dirac operator on S ⊗ E. DE is
called the Dirac operator twisted by E.

Since the boundary of M is empty and S has the compatibility
conditions, the Dirac operator D is a formally self-adjoint operator.
Because of the completeness of the Riemannian metric of M , we have
the following important property.

Theorem 2.1.2. [15] D is an essentially self-adjoint operator, that
is, D has a self-adjoint closed extension D̄ on L2(M,S).

We often denote D̄ by D in the sequel. Denote by H1(M,S) the
domain of D. This space is a Hilbert space by the graph norm of D,
that is, the Sobolev first inner product

⟨u, v⟩H1 = ⟨u, v⟩L2 + ⟨Du,Dv⟩L2

defines a complete norm on H1(M,S). H1(M,S) is called the (first)
Sobolev space. More generally, we can define higher order Sobolev
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spaces for k ∈ N as follows:

Hk(M,S) = {u ∈ H1(M,S) ; ∥u∥Hk < +∞}.
Here, the Sobolev k-th norm ∥ · ∥Hk is defined by the following Sobolev
k-th inner product:

⟨u, v⟩Hk = ⟨u, v⟩L2 +
k∑
r=1

⟨Dru,Drv⟩L2 .

Hk(M,S) is a Hilbert space by the Sobolev k-th norm. SetH0(M,S) =
L2(M,S). We can define these Sobolev type spaces more general order
s ∈ R. However, we use only the case when k ∈ Z+.

The last of this subsection, we collect well-known properties of
Sobolev spaces which we use. Denote by Hk(K,S) the subspace of
Hk(M,S) with supported by a compact set K ⊂M . Since the princi-
pal symbol of the Dirac operator D is ic(ξ), D is a first order elliptic
differential operator. Thus, because of the elliptic estimate, our Sobolev
spaces coincide with ordinary Sobolev spaces on a compact set, that is,
Hk(K,S) coincides with the set of all k-th derivatives are of L2-class.

Theorem 2.1.3.

• The inclusion H l(M,S) → Hk(M,S) is continuous for l ≥ k.
• D : Hk+1(M,S) → Hk(M,S) is continuous.
• (The Sobolev embedding theorem) Let r ∈ Z+ and k > n/2+ r
and assume K ⊂ M is a compact subset. If u ∈ Hk(K,S),
then we have u ∈ Cr(M,S) and there exists C = C(n, r, s) > 0
such that we have ∥u∥r,∞ ≤ C∥u∥Hs. Here, ∥ · ∥r,∞ is the
uniform Cr norm.

• (The Rellich lemma) Assume K ⊂M is a compact subset and
l > k. Then the inclusion H l(K,S) → Hk(M,S) is a compact
operator.

• (The Maurin theorem) Assume K ⊂ M is a compact sub-
set and r > dimM/2. Then the inclusion Hk+r(K,S) →
Hk(M,S) is of Hilbert-Schmidt class.

2.2. The index theorem for Dirac operators

Let S → N be a Clifford bundle on a closed Riemannian manifold
N and D the Dirac operator of S, where closed means compact, ori-
ented and without boundary. Since D is self adjoint, the spectrum of D
is contained in R. Thus, resolvent operators (D± i)−1 are bounded on
L2(N,S). Furthermore, we can see (1+D2)−1 = (D+i)−1(D−i)−1 is a
bounded operator as Hk(N,S) → Hk+2(N,S). Thanks to the Rellich
lemma and the compactness of N , (1 + D2)−1 is a compact operator



18 2. PRELIMINARIES

on Hk(N,S). By using the spectral decomposition of the self-adjoint
compact operator (1 + D2)−1 ∈ K(L2(N,S)), we can show that the
set of spectra of closed operator D on L2(N,S) does not have a limit
point in R and contains only real eigenvalues with finite multiplicity.
Moreover, the definition of Sobolev spaces and the Sobolev embed-
ding theorem imply all eigensections are smooth. In particular, the
dimension of the kernel of D ∈ L(Hk+1(N,S), Hk(N,S)) is indepen-
dent of k. We note that D · D(D2 + 1)−1 = idHk − (D2 + 1)−1 and
D(D2 + 1)−1 ·D = idHk+1 − (D2 + 1)−1.

By above observations, D is a Fredholm operator and we can define
the Fredholm index of D. We recall the notion of a Fredholm operator.

Theorem 2.2.1 (The Atkinson theorem). Let H and H ′ are two
Hilbert spaces and T : H → H ′ a bounded operator. Then the followings
are equivalent:

• T is a Fredholm operator, that is, the image of T is closed and
we have dimKer(T ) <∞ and dimCoker(T ) <∞.

• There exists S ∈ L(H ′, H) such that ST−1 ∈ K(H), TS−1 ∈
K(H ′).

Let T ∈ L(H,H ′) be a Fredholm operator. We define the Fredholm
index of T as follows:

index(T ) = dimKer(T )− dimCoker(T ) ∈ Z.
The Fredholm index of D ∈ L(Hk+1(N,S), Hk(N,S)) is always 0

sinceD is self adjoint. In order to avoid this vanishing, we assume S is a
Z2-graded Clifford bundle. In this setting,D+ ∈ L(Hk+1(N,S+), Hk(N,S−))
is also Fredholm and the Fredholm index of D+ is independent of the
choice of k since we have dimCoker(D+) = dimKer(D−). Summariz-
ing the above, we can define the Fredholm index of D+:

index(D+) = dimKer(D+)− dimKer(D−) ∈ Z.
The Atiyah-Singer index theorem for the Dirac operator calculates

this quantity by geometrical information. By the Chern-Weil theory, a
differential form

Â(TN) =

[
det

(
R/4πi

sinhR/4πi

)]1/2
defines an element in the de Rham cohomology groupH4∗

dR(N ;C), where
R is a Riemannian curvature tensor of N . This is called the Â class
of TN . In fact, Â class defines an element in H4∗(N ;Q) since we can
expand it by a polynomial over Q of Pontrjagin classes as follows:

Â(TN) = 1− 1

24
p1+

1

5760
(−4p2+7p21)−

1

967680
(16p3−44p1p2+31p31)+· · ·
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On the other hand, we recall the spinor representation is defined by
the restriction of the irreducible representation of the complex Clifford
algebra. So a Clifford bundle S is equivalent locally to a tensor product
of the spinor bundle ∆|U of U with a coefficient vector bundle E|U
locally: S|U ∼= ∆|U⊗̂E|U . Of course, ifM is spin, then this equivalence
holds globally. When S is Z2-graded, E|U has been often Z2-graded.

Let K be the curvature of S and set

RS(ei, ej) =
1

4

∑
k,l

g(R(ei, ej)ek, el)c(ek)c(el).

Then RS is a globally defined operator and RS|U defines the curvature
of ∆|U . So F S = K − RS is a globally defined operator and F S|U
defines the curvature of E|U . By using the Chern-Weil theory again, a
differential form

chs(S/∆) = trs(exp(−
1

2πi
F S))

defines an element in H2∗
dR(N ;C). Here, we define trs(A0 + A1) =

tr(A0)− tr(A1) for A0 is an operator on the positive part and A1 is an
operator on the negative part.

We finished the preparation of the ingredients in the index formula.
The actual formula as follows:

Theorem 2.2.2 (Atiyah-Singer). [2] Let S → N be a Z2-graded
Clifford bundle on a closed Riemannian manifold N and D the Dirac
operator of S. Then the following formula holds:

index(D+) =

∫
N

Â(TN)chs(S/∆).

Example 2.2.3.

• Assume that D is equal to d+d∗ on a Clifford bundle
∧∗ T ∗N⊗

C with the Z2-grading the parity of differential forms. Then the
Atiyah-Singer formula implies the Gauss-Bonnet-Chern for-
mula:

χ(N) = index((d+ δ)+) =

∫
N

e(TN).

• Assume that D is equal to
√
2(∂̄W + ∂̄∗W ) + A on a Clifford

bundle
∧∗(T 0,1N)∗ ⊗W on a Hermitian manifold N with the

Z2-grading the parity of differential forms. Then we have
index(D+) = index((∂̄W+ ∂̄∗W )+). Therefore the Atiyah-Singer



20 2. PRELIMINARIES

formula implies the Riemann-Roch-Hirzebruch formula:
n∑
j=0

(−1)j dimH0,j(N,W ) = index((∂̄W + ∂̄∗W )+) =

∫
N

Td(TN)ch(W ).

It seems that the proof of this formula for a general Hermitian
manifold is only known this implication by the Atiyah-Singer
formula.

• Assume that DE is a spinor Dirac operator twisted by an un-
graded Hermitian vector bundle E on spin manifold N of even
dimension. Then DE is Z2-graded by the decomposition of pos-
itive and negative spinors. Then the Atiyah-Singer formula
becomes more clear:

index(D+
E) =

∫
N

Â(TN)ch(E).

2.3. Toeplitz operators

Let S → N be a Clifford bundle on a closed Riemannian mani-
fold N and D be the Dirac operator of S. Let assume N is of odd
dimension. By the Atiyah-Singer formula, we can see index(D+) = 0.
Moreover, the Fredholm index of every elliptic differential operator
on odd-dimensional closed manifold is always 0; see, for instance [4,
Proposition 9.2]. In order to avoid this vanishing, we should use non
“elliptic differential” operators. We use elliptic pseudo-differential op-
erators. The Toeplitz operator which is defined as follows gives the
most typical example of elliptic pseudo-differential operators.

Let H+ be the subspace of L2(N,S) generated by all eigensections
of D corresponding to a non-negative eigenvalue. Denote by P the
orthogonal projection onto H+. Let ϕ ∈ C(N ;Ml(C)) be a matrix
valued continuous function on N . By using these data, we define the
Toeplitz operator as follows:

Definition 2.3.1. [8, p.146] Define the bounded linear operator
Tϕ : H l

+ → H l
+ by Tϕs = P (ϕs). We call Tϕ the Toeplitz operator (with

symbol ϕ).

Example 2.3.2. We assume N = S1 = R/2πZ, the unit circle,
S = S1 ×C, the product bundle. Set D = −id/dx and ϕk(x) = eikx for
k ∈ Z. Then we obtain H+ = SpanC{einx ; n ∈ Z+}, which is called the
Hardy space. In this case, we can see the Toeplitz operator Tϕk : H+ →
H+ is a k-shift operator with respect to this basis: e0, eix, e2ix, e3ix, . . . .

The Toeplitz operator Tϕ is a Fredholm operator for ϕ ∈ C(N ;GLl(C))
[8, Lemma 2.10]. We see the outline of a reason why this property
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holds. As explained in Section 2.2, the set of spectra of closed operator
D on L2(N,S) does not have a limit point in R and contains only real
eigenvalues with finite multiplicity. Thus we have δ = inf{|λ| ; λ ∈
Spec(D) \ {0}} > 0. Therefore there exists f ∈ C∞(R; [0, 1]) such
that f |[0,∞) = 1, f |(−∞,−δ] = 0 and we have P = f(D). Here, the
right hand side of the last equality is defined by the functional cal-
culus. Thus P is a pseudo-differential operator of order 0 by [40,
Theorem XII.1.3]. Therefore, [P, ϕ] is a pseudo-differential operator
of order −1 when ϕ is smooth. This implies [P, ϕ] : L2(N,S) →
H1(N,S) is a bounded operator. By the Rellich lemma, we have
[P, ϕ] ∈ K(L2(N,S)). Therefore, we have [P, ϕ] ∈ K(L2(N,S)) for
any ϕ ∈ C(N ;Ml(C)) since the set of compact operators is closed set
in operator norm topology and C∞(N ;Ml(C)) is dense in C(N ;Ml(C)).
Thus we have TϕTϕ−1 − 1, Tϕ−1Tϕ − 1 ∈ K(H+) for ϕ ∈ C(N ;GLl(C)).
So Tϕ is a Fredholm operator. Thus we can deal with the Fredholm
index of Tϕ:

index(Tϕ) = dimKer(Tϕ)− dimCoker(Tϕ) ∈ Z.
Remark 2.3.3. Set

Dϕ =

[
Tϕ 0
0 1

]
: L2(N,SN)

l = H l
+ ⊕ (H l

+)
⊥ → H l

+ ⊕ (H l
+)

⊥

for ϕ ∈ C(N,GLl(C)). Then Dϕ is an elliptic pseudo-differential op-
erator of order 0.

There exists the index theorem of the Toeplitz operator. We can
consider that this index theorem is a corollary of the general Atiyah-
Singer index theorem. Let π : S∗N → N be the unit sphere bundle of
T ∗N . We denote by σ(x, ξ) ∈ End((π∗S)(x,ξ)) the principal symbol of
D for all (x, ξ) ∈ S∗N . Denote by S+

(x,ξ) the 1-eigenspace of σ(x, ξ) =

ic(ξ). Set S+ =
∪

(x,ξ) S
+
(x,ξ). Then S

+ is a subbundle of π∗S.

Theorem 2.3.4. [7, Corollary 24.8][8, Theorem 4] The Fredholm
index of the Toeplitz operator satisfies the following:

index(Tϕ) =

∫
S∗N

π∗Td(TN ⊗ C)ch(S+)π∗ch(ϕ).

Here, ch(ϕ) ∈ H2∗+1(N ;C) is an odd Chern character defined by

ch(ϕ) =
∞∑
n=0

(−1)nn!

(2n+ 1)!

1

(2πi)n+1
tr((ϕ−1dϕ)2n+1)

for ϕ ∈ C∞(N ;GLl(C)). In particular, if S → N is a spin bundle on a
spin manifold N and D is a spinor Dirac operator on S, this formula
becomes clear. This clear formula has proven independently in [22].
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Corollary 2.3.5. We assume D is a spinor Dirac operator on a
spin manifold N . Then we have

index(Tϕ) = −
∫
N

Â(TN)ch(ϕ).

The last of this section, we give an example and a remark for
Toeplitz operators.

Example 2.3.6. [23] We use the setting of Example 2.3.2. In this
case, we have index(Tϕk) = − deg(ϕk). Here, deg is the winding number
of ϕk.

Remark 2.3.7. The notion of Toeplitz operators appears in sev-
eral complex variables. Let Ω be a strictly pseudo-convex bounded do-
main and set N = ∂Ω. Then “H+ ⊂ L2(N)” is defined by the L2-
boundary values of holomorphic functions on Ω, and it is called a Hardy
space. Then the projection onto a Hardy space is called a Szegő pro-
jector. These ingredients are coincide with our definition in the case
when N = S1, that is, in the case when dimC Ω = 1. However, these
are different in the case when dimC Ω ≥ 2. In fact, Szegő projectors
are Heisenberg pseudo-differential operators, but not ordinary pseudo-
differential operators. See, for instance [21].



CHAPTER 3

The Kasparov product and the index

We recall that we can define the Fredhlm index of the Dirac operator
D on a closed manifold. However, the Dirac operator on non-compact,
complete Riemannian manifold is not Fredholm in general. For exam-
ple, D = −id/dt on R is a Dirac operator but not Fredholm. Therefore,
we should generalize the notion of the Fredholm index in order to study
an index theorem on non-compact manifolds. In this chapter we see
its generalizations by using operator K-theory. A comprehensive text
for operator K-theory is [10].

3.1. The Fredholm index and K theory

Let us recall the Atkinson theorem 2.2.1. Let H be a separable
infinite dimensional Hilbert space and T ∈ L(H) a Fredholm operator.
By the Atkinson theorem, T is a Fredholm operator if and only if there
exists S ∈ L(H) such that we have ST −1, TS−1 ∈ K(H). Therefore,
T is a Fredholm operator if and only if T is an invertible element in
the Calkin algebra Q(H) = L(H)/K(H).

Let 0 → A
ι→ B

π→ C → 0 be a short exact sequence of Banach
algebras. There exist connecting maps ∂ : K1(C) → K0(A) and δ :
K0(C) → K1(A) defined by as follows: For any u ∈ GLn(C), let
w ∈ GL2n(B) satisfies

π(w) = u⊕ u−1 =

[
u 0
0 u−1

]
.

Set ∂([u]) = [wpnw
−1]− [pn], where we denote by

pn =

[
1n 0
0 0

]
∈M2n(C).

Then ∂([u]) turns out to be an element in K0(A). On the other hand,
for any e, f ∈ In(C

+) with e − f ∈ Mn(C), let x, y ∈ Mn(B
+) satisfy

π(x) = e and π(y) = f . Set δ([e] − [f ]) = [exp(2πix)] − [exp(2πiy)].
Then δ([e]− [f ]) turns out to be an element in K1(A).

23
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K0(A)
ι∗ // K0(B)

π∗ // K0(C)

δ
��

K1(C)

∂

OO

K1(B)π∗
oo K1(A)ι∗

oo

We apply ∂ for the following short exact sequence for C∗-algebras:

0 → K(H) → L(H)
π→ Q(H) → 0.

Since these three algebras K(H), L(H) and Q(H) are C∗-algebras, we
can take a representative element in K1(Q(H)) by a unitary element.
Let T ∈ L(H) be a Fredholm operator satisfies π(T )∗ = π(T )−1. Then
we have [π(T )] ∈ K1(Q(H)). Let V be the partial isometry part of the
polar decomposition of T : T = V |T |. Then we have V − T ∈ K(H)
by 1 − T ∗T ∈ K(H). By using the partial isometry V , a unitary
W ∈ U2(L(H)) defined by

W =

[
V 1− V V ∗

1− V ∗V V ∗

]
is a lift of π(T ) ⊕ π(T ∗). Then we have ∂([π(T )]) = [1 − V ∗V ] −
[1 − V V ∗] ∈ K0(K(H)). On the other hand, it is known that taking
the dimension of the image of an operator induces an isomorphism
K0(K(H)) → Z. Combining this isomorphism, we have ∂([π(T )]) =
dimKer(V ) − dimKer(V ∗) = index(V ) = index(T ) ∈ Z. By this
reason, ∂ is called an index map. On the other hand, δ is called an
exponential map.

We call an element in Kn(A) an index class in the general situation.

3.2. The Kasparov product

The group KKn(A,B) for two graded C∗-algebras A,B and the
Kasparov product are defined by G. G. Kasparov [30]. The notion
of KK groups is a generalization of that of K groups, K homology
groups and extension groups for C∗-algebras. The Kasparov product
is a generalization of an index map ∂ and an exponential map δ. Thus
the Kasparov product is a generalization of the Fredholm index. More
generally, the Kasparov product gives a bilinear map:

⊗̂D : KKn(A1, B1⊗̂D)×KKm(D⊗̂A2, B2) → KKn+m(A1⊗̂A2, B1⊗̂B2).

Here, A1 and A2 are separable graded C∗-algebras and B1, B2 and D
are any graded C∗-algebras. In this section, we review the Kasparov
product in the required range for our main theorem.
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3.2.1. Definition of KK groups. There are a lot of construc-
tions of KK groups. For example, it is made of the Kasparov module
due to Kasparov [30], the quasihomomorphism due to J. Cuntz [20],
the unbounded module due to S. Baaj and P. Julg [6], and so on. In this
subsection, we review a definition of KK groups by Kasparov modules
and we see that quasihomomorphisms and unbounded modules give
elements in KK groups. In this section, graded means Z2-graded. We
assume ungraded C∗-algebra B is also graded with respect to the triv-
ially grading B(0) = B and B(1) = 0. We often denote by Btri the
C∗-algebra B equipped with the trivially grading.

Definition 3.2.1. Let B be a C∗-algebra and E a C-linear space.
We assume E is a right B-module and the action of B is compatible
with C-scalar products: λ(xb) = (λx)b = x(λb) for any λ ∈ C, x ∈ E
and b ∈ B. Then E is a Hilbert B-module if there exists B-valued inner
product ⟨·, ·⟩E = ⟨·, ·⟩ : E × E → B such that

(i) ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩, ⟨x, λy⟩ = λ⟨x, y⟩,
(ii) ⟨x, yb⟩ = ⟨x, y⟩b,
(iii) ⟨x, y⟩ = ⟨y, x⟩∗,
(iv) ⟨x, x⟩ ≥ 0; ⟨x, x⟩ = 0 implies x = 0,

(v) E is complete with respect to the norm |x| = ∥⟨x, x⟩∥1/2B , where
∥ · ∥B is the norm of B,

for any x, y, z ∈ E, λ ∈ C, b ∈ B.
In addition, we assume B is graded. Then a Hilbert B-module E is

graded if E is a graded B-module with ⟨E(n), E(m)⟩ ⊂ B(n+m).

We note that the grading structure of E1⊕E2 for two graded Hilbert

B-modules E1 and E2 is defined by (E1 ⊕ E2)
(0) = E

(0)
1 ⊕ E

(0)
2 and

(E1 ⊕ E2)
(1) = E

(1)
1 ⊕ E

(1)
2 unless otherwise noted.

Example 3.2.2. Let B be a graded C∗-algebra. Then Bn is a
graded Hilbert B-module with respect to the inner product ⟨(ai), (bi)⟩ =∑n

i=1 a
∗
i bi. More generally, let HB be the set of the sequence (bn) for

bn ∈ B such that
∑
b∗nbn converges. Then HB is a graded Hilbert B-

module with respect to the inner product ⟨(an), (bn)⟩ =
∑
a∗nbn. We call

HB the Hilbert space over B. In particular, separable Hilbert spaces can
be regarded as Hilbert C-modules.

Set ĤB = HB ⊕Hop
B . Here,

op means the interchanged grading.

Kasparov modules are defined by using a graded Hilbert B-module.
Let B(E1, E2) be the set of adjointable homomorphisms of right B-
modules from E1 to E2. We call two Hilbert B-modules E1 and E2

are isomorphic if there is a unitary operator U ∈ B(E1, E2). When
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the above E1 and E2 are graded, E1 and E2 are isomorphic if there is
a grading preserving unitary operator U ∈ B(E1, E2). Similar to the
theory of Hilbert spaces, B(E) = B(E,E) is a C∗-algebra with respect
to the operator norm. Let K(E) be the closure of linear spans of finite
rank operators. K(E) is an ideal in B(E). We call an element in K(E)
a B-compact operator. For example, we have K(Bn) = Mn(B) and
K(HB) ∼= B ⊗K.

Definition 3.2.3. [30] Let A and B are two graded C∗-algebras.
The triple (E, ϕ, F ) is a Kasparov (A,B)-module if

• E is a countably generated graded Hilbert B-module such that
E ⊕ ĤB

∼= ĤB,
• ϕ : A→ B(E) is a graded ∗-homomorphism,
• F ∈ B(E) is an odd operator such that [F, ϕ(a)]s, (F

2−1)ϕ(a)
and (F ∗ − F )ϕ(a) are B-compact operators for any a ∈ A.
Here, [·, ·]s means a graded commutator.

Denote by E(A,B) the set of all Kasparov (A,B)-modules.

Remark 3.2.4. By using the above definition, we need not to care
B is σ-unital or not. Note that any countably generated graded Hilbert
B-module E for a σ-unital C∗-algebra B satisfies E⊕ ĤB

∼= ĤB by the
Kasparov stabilization theorem [29, §3].

AKasparov (A,B)-module (E, ϕ, F ) is degenerate if we have [F, ϕ(a)]s =
0, (F 2 − 1)ϕ(a) = 0 and (F ∗ − F )ϕ(a) = 0 for any a ∈ A. Denote by
D(A,B) the set of all degenerate Kasparov (A,B)-modules.

There are some examples of Kasparov modules.
Example 3.2.5.

• We have (E, 0, 0) ∈ D(A,B). We call it a 0-module.
• Let ϕ : A → B be a graded ∗-homomorphism. Then we have
(B, ϕ, 0) ∈ E(A,B).

• Let T : H → H ′ be a Fredholm operator such that we have
T ∗T − 1 ∈ K(H) and TT ∗ − 1 ∈ K(H ′). Then we have(

H ⊕H ′, 1,

[
0 T ∗

T 0

])
∈ E(C,C).

• (direct sum) Let (E1, ϕ1, F1) and (E2, ϕ2, F2) are two Kas-
parov (A,B)-modules. Then (E1, ϕ1, F1)⊕(E2, ϕ2, F2) = (E1⊕
E2, ϕ1 ⊕ ϕ2, F1 ⊕ F2) is also a Kasparov (A,B)-module.

Cuntz defined quasihomomorphisms and proved they determine
Kasparov modules for trivially graded C∗-algebras.



3.2. THE KASPAROV PRODUCT 27

Example 3.2.6 (The Cuntz picture [20]). We assume A and B
are trivially graded. Let (ϕ0, ϕ1) : A → B(HB) ▷ K(HB) = B ⊗ K be
a quasihomomorphism from A to B ⊗ K, that is, ϕ0, ϕ1 : A → B(HB)
are two ∗-homomorphisms such that we have ϕ0(a)−ϕ1(a) ∈ K(HB) ∼=
B ⊗K for any a ∈ A. Then we have(

ĤB,

[
ϕ0 0
0 ϕ1

]
,

[
0 1
1 0

])
∈ E(A,B).

On the other hand, any homotopy class of Kasparov (A,B)-modules
(see below Definition 3.2.10) are represented by a quasihomomorphism.

Baaj and Julg proved “good” unbounded operators determine Kas-
parov modules.

Example 3.2.7 (The Baaj-Julg picture [6]). Let E be a countably

generated graded Hilbert B-module such that E ⊕ ĤB
∼= ĤB, ϕ : A →

B(E) a graded ∗-homomorphism and D : E → E a self-adjoint odd
regular operator. Here, D is regular if D is densely defined operator
with densely defined adjoint D∗ and D∗D + 1 has a dense range. We
assume D satisfies the following:

• (1 +D2)−1/2ϕ(a) extends as an element in K(E),
• {a ∈ A ; [D,ϕ(a)]s is densely defined and extends as an element in B(E)}
is dense in A.

Then we have (E, ϕ,D(D2 + 1)−1/2) ∈ E(A,B).

Let Cln be the complex Clifford algebra with Cn. The grading of

Cl1 = C⊕C is defined by Cl(n)1 = {(a, (−1)na) ∈ C⊕C}. The grading
for higher n is induced by Cln+1

∼= Cln⊗̂Cl1. The Dirac operator on a
closed manifold is a self-adjoint regular operator on L2 sections. Thus
it determines a Kasparov module.

Example 3.2.8. Let N be a closed manifold and D : L2(N,S) →
L2(N,S) the Dirac operator. Let ψ : C(N) → L(L2(N,S)) is defined
by the multiplication operator. We assume D is graded. Then we have

[D] =
(
L2(N,S), ψ,D(D2 + 1)−1/2) ∈ E(C(N),C

)
.

On the other hand, if D is ungraded, then we have

[D] =
(
L2(N,S)⊕ L2(N,S), ψ ⊕ ψ,D(D2 + 1)−1/2 ⊕ (−D(D2 + 1)−1/2)

)
in E(C(N),Cl1), where the grading of L2(N,S) ⊕ L2(N,S) is defined
by (L2(N,S) ⊕ L2(N,S))(n) = {(u, (−1)nu)}. We note that we often
assume D is graded if dimN is even and ungraded if dimN is odd.

A KK group is the set of homotopy classes of Kasparov modules.
The homotopy of Kasparov modules is defined as follows:
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Definition 3.2.9. Let (E1, ϕ1, F1) and (E2, ϕ2, F2) are two Kas-
parov (A,B)-modules. Then (E1, ϕ1, F1) and (E2, ϕ2, F2) are unitary
equivalent if there exists an even unitary operator U ∈ B(E1, E2) such
that we have U∗ϕ2(a)U = ϕ1(a) for all a ∈ A and U∗F2U = F1. Denote
by ∼u this equivalence relation.

Definition 3.2.10. Let (E0, ϕ0, F0) and (E1, ϕ1, F1) are two Kas-
parov (A,B)-modules. Let fi : C([0, 1];B) → B be two evaluation
maps defined by f0(c) = c(0) and f1(c) = c(1). A homotopy con-
necting (E1, ϕ1, F1) and (E2, ϕ2, F2) is a Kasparov (A,C([0, 1];B))-
module (E, ϕ, F ) such that (E⊗̂fiB, fi ◦ ϕ, F ⊗ 1) ∼u (Ei, ϕi, Fi) for
i = 0, 1. Here, E⊗̂fiB is the completion of the algebraic tensor prod-
uct E⊙̂C([0,1];B)B regarded B as a left C([0, 1];B)-module via fi with
respect to the following pre-inner product (with its kernels divided out):
⟨x1⊗̂b1, x2⊗̂b2⟩ = b∗1fi(⟨x1, x2⟩E)b2. If a homotopy exists, then we de-
note by (E0, ϕ0, F0) ∼h (E1, ϕ1, F1).

Remark 3.2.11. A homotopy ∼h is an equivalence relation. There
are other equivalence relations in E(A,B). Indeed, the Kasparov (A,B)-
module (E, ϕ, F2) is a compact perturbation of (E, ϕ, F1) if we have
(F2−F1)ϕ(A) ⊂ K(E). The equivalence relation ∼cp is the equivalence
relation generated by ∼u and a compact perturbation. We note that
if (E, ϕ, F2) is a compact perturbation of (E, ϕ, F1), then (E, ϕ, F1) is
homotopic to (E, ϕ, F2).

A homotopy respects direct sum (see Example 3.2.5) of Kasparov
modules. Thus we obtain an abelian group E(A,B)/ ∼h.

Definition 3.2.12. [30] Set KK(A,B) = KK0(A,B) = E(A,B)/ ∼h.
More generally, set KKn(A,B) = KK0(A,B⊗̂Cln).

Remark 3.2.13. Every degenerate element is homotopic to a 0-
module. Thus, any degenerate elements represent 0 in KK(A,B).

KK groups KKn(A,B) has the following periodicity:

Remark 3.2.14. [30] It is known that one has KKn+2 ∼= KKn by
formal Bott periodicity:

KK1(A,B) ∼= KK(A⊗̂Cl1, B) and

KK(A,B) ∼= KK1(A,B⊗̂Cl1) ∼= KK1(A⊗̂Cl1, B) ∼= KK(A⊗̂Cl1, B⊗̂Cl1).
By this reason, we assume the upper script n of KKn is an element in
Z2 = {0, 1}.

It is also known that one has usual Bott periodicity:

KK1(A,B) ∼= KK(SA,B) ∼= KK(A, SB) and
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KK(A,B) ∼= KK1(A, SB) ∼= KK1(SA,B) ∼= KK(SA, SB).

Usual Bott periodicity is proved by using the Kasparov product.

A KK group KK(A,B) is depends on gradings of A and B in
general. However, if gradings of A and B are even, then KK(A,B) is
naturally isomorphic to KK(Atri, Btri).

Definition 3.2.15. Let A = A(0) ⊕ A(1) be a graded C∗-algebra.
Then A is evenly graded if there exists a self-adjoint unitary element
ϵ ∈ B(B), which is called the even grading, such that A(n) = {a ∈
A ; ϵa = (−1)naϵ}.

As noted in [10, §14.5, 17.8], KK theory for evenly graded C∗-
algebra is same as the case for trivially graded. In particular, the
natural identification KK(A,B) ∼= KK(A,Btri) for evenly graded B
is explicitly given by the following. We use it in Subsection 5.5.1 when
A is trivially graded.

Example 3.2.16. We assume B is evenly graded. Let (E⊕Eop, ϕ, F ) ∈
E(A,B) be a Kasparov (A,B)-module such that E is a countably gen-

erated graded Hilbert B-module with E ⊕ ĤB
∼= ĤB. We use the sta-

bilization E ⊕ ĤB
∼= ĤB and the even grading ϵ of B, then we can

induce the even grading ϵE ∈ B(B(E)) = B(E) of B(E) such that we
have ⟨ϵEe, f⟩E = (−1)deg(e)ϵ⟨e, f⟩E for e, f ∈ E. In particular, we
have ϵB = ϵ. We denote by Etri = E as the trivially graded Hilbert
Btri-module. Define a map U : E ⊕ Eop → Etri ⊕ (Etri)op by

U(e, eop) =

(
1 + ϵE

2
e+

1− ϵE
2

eop,
1− ϵE

2
e+

1 + ϵE
2

eop

)
,

for e ∈ E and eop ∈ Eop. We can check U is a unitary operator as
ungraded Hilbert Btri-modules and (Etri ⊕ (Etri)op, UϕU∗, UFU∗) is a
Kasparov (A,Btri)-module. In fact, this construction induces the iso-
morphism of KK groups:

UA : KK0(A,B) → KK0(A,Btri).

More generally, KKn(A,B) can be identified with KKn(A,Btri) by
using usual Bott periodicity.

Any Kasparov (A,B)-module can be normalized as follows:

Remark 3.2.17. Let x = [E, ϕ, F ] ∈ KK0(A,B). Then there exists
a self-adjoint operator G ∈ B(E) such that ∥G∥ ≤ 1 and x = [E, ϕ,G] ∈
KK0(A,B); see [10, Proposition 17.4.3].

By using the normalization in Remark 3.2.17, the isomorphism UA
in Example 3.2.16 is simplified when A is trivially graded.
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Remark 3.2.18. We assume A is trivially graded and B is evenly
graded. By the normalization in Remark 3.2.17, every element x ∈
KK0(A,B) is represented by x = [E, ϕ, F ], where F ∈ B(E) is a self-
adjoint operator with ∥F∥ ≤ 1. Adding a degenerate module (Eop, 0, F ),
we have

x = [E ⊕ Eop, ϕ⊕ 0, F ⊕ F ] ∈ KK0(A,B).

Thus we have x = [E ⊕ Eop, ϕ ⊕ 0, G] since (G − F ⊕ F )ϕ(a) is a
B-compact operator, where we set

G =

[
F ϵE(1− F 2)1/2

ϵE(1− F 2)1/2 F

]
.

Set F ′ = F + ϵE(1− F 2)1/2. Then we have

x =

[
Etri ⊕ (Etri)op,

1 + ϵE
2

ϕ⊕ 1− ϵE
2

ϕ,

[
0 F ′

F ′ 0

]]
∈ KK0(A,Btri)

under the isomorphism UA : KK0(A,B) ∼= KK0(A,Btri) in Example
3.2.16. In particular, every element in KK0(A,B) can be represented
by a quasihomomorphism by conjugating of F ′⊕1 and the stabilization
Etri⊕ (Etri)op ∼= ĤBtri. We often omit tri in the sequel when B is evenly
graded.

In the last of this subsection, we see relations to K groups, K
homology groups and extensions.

Example 3.2.19. If B is evenly graded, then we have KKn(C, B) ∼=
KKn(C, Btri) = Kn(B). In fact, we assume a, b ∈ P∞(B+) satisfy
a−b ∈M∞(B). Then we have [a]− [b] ∈ K0(B). Two homomorphisms
ϕ0, ϕ1 : C →M∞(B+) defined by ϕ0(1) = a and ϕ1(1) = b determine a
quasihomomorphism (ϕ0, ϕ1) : C → B(HB) ▷ B ⊗K.

Remark 3.2.20. We have KK(C,Cl1) = KK1(C,C) = {0} and
K0(Cl1) = K0(C ⊕ C) ∼= K0(C) ⊕K0(C) ∼= Z ⊕ Z. Thus KKn(C, B)
is not isomorphic to Kn(B) in general when B is not evenly graded.

Example 3.2.21. If A is evenly graded, then we have Kn(A,C) ∼=
Kn(A). In particular, any element in K0(A) is represented by (H,ϕ, F ),
where H is a graded Hilbert space, ϕ : A→ L(H) is a graded representa-
tion of A and F : H → H satisfies (F 2−1)ϕ(a), (F ∗−F )ϕ(a), [F, ϕ(a)]s ∈
K(H). On the other hand, any element in K1(A) is represented by
(H,ψ, T ), where H is an ungraded Hilbert space, ψ : A → L(H) is a
representation of A and T satisfies (T 2−1)ϕ(a), (T ∗−T )ϕ(a), [T, ψ(a)] ∈
K(H).
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Example 3.2.22. We assume A and B are trivially graded. Then
every element in KK1(A,B) is represented by a pair (ψ, P ) satisfies
the following:

• ψ : A→ B(HB) is a ∗-homomorphism
• P ∈ B(HB)
• (P 2−P )ψ(a) ∈ K(HB), (P

∗−P )ψ(a) ∈ K(HB) and [P, ψ(a)] ∈
K(HB) for a ∈ A.

We see this pair defines a Kasparov module. In fact, (HB⊕HB, ψ⊕
ψ, (2P − 1) ⊕ (1 − 2P )) is a Kasparov (A,B⊗̂Cl1)-module. Here, the
grading of HB⊕HB is defined by (HB⊕HB)

(n) = {(u, (−1)nu)}. Thus,
it defines an element in KK1(A,B).

On the other hand, such pair (ψ, P ) defines an extension of A by
B ⊗K:

0 → B ⊗K → E → A→ 0.

Here, we set

E = {(a, b) ∈ A⊕ B(HB) ; Pψ(a)P − b ∈ K(HB)}.

3.2.2. The Kasparov product. We review the Kasparov prod-
uct. In general, the Kasparov product defines a bilinear map

⊗̂D : KKn(A1, B1⊗̂D)×KKm(D⊗̂A2, B2) → KKn+m(A1⊗̂A2, B1⊗̂B2).

However, we do not use this general form. We use it only in the case
when A1 = A2 = B1 = C, D = A is trivially graded and B2 = B
is evenly graded in the statement and the proof of the main theorem.
We note that the isomorphism in Example 3.2.16 commutes with the
Kasparov product, that is, we have

UC(x⊗̂Ay) = x⊗̂AUA(y) ∈ KKn+m(C, Btri) = Kn+m(B)

for x ∈ KKn(C, A) = Kn(A) and y ∈ KKm(A,B). Thus, the following
Kasparov product can be obtained by using KK(A,Btri):

⊗̂A : Kn(A)×KKm(A,B) → Kn+m(B)

when A is trivially graded and B is evenly graded.
First, we review the Kasparov product ⊗̂A : Kn(A)×KK0(A,B) →

Kn(B). We use this case in the main theorem. The Cuntz picture gives
clear formulation of the Kasparov product [20, Remark 1, Theorem
3.3]. See also [32, Chapter 3], which contains an explicit formula.

Example 3.2.23 (The case for n = 0). Take x = [p] ∈ K0(A)
for any projection p ∈ P∞(A). Let (ϕ0, ϕ1) : A → B(HB) ▷ B ⊗ K be
a quasihomomorphism. Then we have ϕ0(p) − ϕ1(p) ∈ B ⊗ K. This
implies we have [ϕ0(p)]− [ϕ1(p)] ∈ K0(B⊗K) ∼= K0(B). Then we have
x⊗̂A[ϕ0, ϕ1] = [ϕ0(p)]− [ϕ0(q)] ∈ K0(B).
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Example 3.2.24 (The case for n = 1). Set x = [u] ∈ K1(A) for u ∈
GL∞(A). Let (ϕ0, ϕ1) : A→ B(HB) ▷B⊗K be a quasihomomorphism.
We extend ϕ0 and ϕ1 as unital ∗-homomorphisms to M∞(A+). We
denote this extension by the same letter. Namely, we set ϕi([ajk +
λjk]) = [ϕi(ajk) + λjk]. Therefore, we have ϕ0(u)ϕ1(u)

−1 ∈ GL∞(B ⊗
K). Then we have x⊗̂A[ϕ0, ϕ1] = [ϕ0(u)ϕ1(u)

−1] ∈ K1(B).

The Kasparov product corresponds to the Fredholm index of the
Dirac operator as follows:

Example 3.2.25. Let D : L2(N,S) → L2(N,S) be a graded Dirac
operator on a closed manifold N and i : C → C(N) an inclusion map.
D defines a K-homology element [D] = [L2(N,S), ψ,D(D2 + 1)−1/2] ∈
KK0(C(N),C) and i defines 1 ∈ K0(C(N)), a class of a constant
function. Then we have 1⊗̂C(N)[D] = index(D+).

Next, we review the case when m = 1. This case is related to the
Fredholm index of the Toeplitz operator. As we can see in Example
3.2.22, [ψ, P ] ∈ KK1(A,B) defines an extension: 0 → B ⊗ K → E →
A→ 0. In this case, the Kasparov product is calculated by connecting
homomorphisms.

Example 3.2.26 (Extensions and the Kasparov product). Let x ∈
K0(A) and y ∈ K1(A). Then we have x⊗̂A[ψ, P ] = δ(x) ∈ K1(B) and
y⊗̂A[ψ, P ] = ∂(y) ∈ K0(B). Here, δ (resp. ∂) is an exponential map
(resp. index map) defined by the short exact sequence as in Example
3.2.22.

By using this formula, we see a relationship between the Fredholm
index of the Toeplitz operator with the Kasparov product.

Example 3.2.27 (Toeplitz operators and the Kasparov product).
Let D : L2(N,S) → L2(N,S) be the Dirac operator on a closed mani-
fold N . D defines an element

[D] = [L2(N,S)⊕L2(N,S), ψ⊕ψ,D(D2+1)−1/2⊕ (−D(D2+1)−1/2)]

in KK1(C(N),C); see Example 3.2.8. By the spectral decomposition
of D, [D] is equal to [ψ, P ] ∈ KK1(C(N),C). Here, P is a spectral
projection of D onto [0,∞) as in Section 2.3. This pair (ψ, P ) defines
the Toeplitz extension

0 → K(H+) → T π→ C(N) → 0,

where T is a C∗-algebra generated by Toeplitz operators and K(H+).
Let ϕ ∈ C(N ;Ul(C)). Then we have [ϕ]⊗̂C(N)[D] = ∂([ϕ]) ∈ K0(C).

Moreover, we have ∂([ϕ]) = index(Tϕ) ∈ Z since π(Tϕ) = ϕ. This is
proved by a similar argument in Section 3.1.
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3.3. The cyclic cohomology and Connes’ pairing

As explained above, we can generalize the notion of the Fredholm
index as an element in K groups. We call this element an index class.
However, it is hard to check that an index class vanishes or not in
general. By this reason, we need tools to pick up some numerical
information from an index class. We use the cyclic cohomology and
Connes’ pairing map withK-theory [18]. We deal with only the pairing
with a K1 group since we use it only in this case in the main theorem.

3.3.1. The definition of the cyclic cohomology. We recall the
definition of the cyclic cohomology.

Proposition 3.3.1. [18, p.101] Let A be an associative algebra
over C.

• Let ϕ : An+1 → C be an (n+ 1)-multilinear map, and set

bϕ(a0, . . . , an+1) =
n∑
j=0

(−1)jϕ(a0, . . . , ajaj+1, . . . , an+1)

+(−1)n+1ϕ(an+1a0, a1, . . . , an).

Then bϕ is an (n+2)-multilinear map on A and we have b2ϕ =
bbϕ = 0.

• Assume that an (n+1)-multilinear map ϕ : An+1 → C satisfies

(1) ϕ(a0, . . . , an) = (−1)nϕ(an, a0, . . . , an−1).

Then we have

bϕ(a0, . . . , an+1) = (−1)n+1bϕ(an+1, a0, . . . , an).

The condition (1) is called a cyclic condition. By using this propo-
sition, we can define the cyclic cohomology.

Definition 3.3.2. [18, p.102] Let A be an associative algebra over
C. Set

Cn
λ (A) = {ϕ : An+1 → C ; ϕ is (n+1)-multilinear and satisfies a cyclic condition}.

By Proposition 3.3.1, b defines a linear map b : Cn
λ (A) → Cn+1

λ (A).
Thus C∗

λ(A) = {(Cn
λ (A), b)}n≥0 is a cochain complex.

We call an element in Zn
λ (A) = Ker(b : Cn

λ (A) → Cn+1
λ (A)) a

cyclic n-cocycle. Moreover, the cohomology group H∗
λ(A) of the cochain

complex C∗
λ(A) = {(Cn

λ (A), b)}n≥0 is called the cyclic cohomology group
of A.
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3.3.2. Connes’ pairing with a K1 group. In this subsection, we
review Connes’ pairing with cyclic (2m − 1)-cocyle with a K1 group.
In the main theorem, we use it in the case when m = 1.

Let A be a Banach algebra. For any ϕ ∈ Cn
λ (A), we set

ϕ̃(a0 + λ0, a1 + λ1, . . . , an + λn) = ϕ(a0, a1, . . . , an)

for aj ∈ A and λj ∈ C. Then we have ϕ̃ ∈ Cn
λ (A

+). We often denote

ϕ̃ by the same letter ϕ. Under this assumption, we can define Connes’
pairing of a cyclic cohomology with a K1 group.

Definition 3.3.3. [18, p.109], [19, §3.3, Corollary 4] Let A be a
Banach algebra. The following linear map ⟨·, ·⟩ : K1(A)×Hodd

λ (A) → C
is well defined:

⟨[u], [ϕ]⟩

=
2−2m−1(2πi)−m

(m− 1/2)(m− 3/2) . . . 1/2

∑
1≤j0,...,j2m≤k

ϕ(u−1
j0j1

, uj1j2 , · · · , u−1
j2m−1j2m

, uj2mj0)

for [u] ∈ K1(A) and [ϕ] ∈ H2m−1
λ (A). Here, we assume u = [ujk]jk ∈

GLl(A).

We use Connes’ pairing like the following.

Remark 3.3.4. [18, p.92] Let A and A be two Banach algebras.
We assume A is a subalgebra in A and closed under holomorphic func-
tional calculus in A. Let ϕ : A 2m−1 → C be a cyclic (2m − 1)-cocycle
on a Banach algebra A . The domain of ϕ may not be extended to
A. However, if A is dense in A, then the inclusion A → A induces
the isomorphism K1(A ) ∼= K1(A). Thus Connes’ pairing induces the
following linear map:

⟨·, [ϕ]⟩ : K1(A) → C.
For example, the ideal of operators of Schatten p-class is closed

under holomorphic functional calculus in the C∗-algebra of compact
operators. Similar to this property, we obtain the following:

Example 3.3.5. [18, p.92 Proposition 3] Let A be a Banach al-
gebra and H a countably infinite dimensional Hilbert space. We as-
sume ϕ : A → L(H) is an action of A on H. Let F ∈ L(H) satis-
fies F 2 = 1, F ∗ = F and [F, ϕ(a)] ∈ K(H) for any a ∈ A. Such a
triple (H,ϕ, F ) is called a Fredholm module over A. Set Ap = {a ∈
A ; [F, ϕ(a)] is of Schatten p-class }. Then Ap is a Banach algebra with
a norm ∥a∥Ap = ∥ϕ(a)∥ + ∥[F, ϕ(a)]∥p, where ∥T∥p = Tr(|T |p)1/p is a
Schatten p-norm. Then Ap is closed under holomorphic functional cal-
culus in A.



CHAPTER 4

The Roe-Higson index theorem

In this section, we review the index theorem for partitioned man-
ifolds due to J. Roe and N. Higson. We call this theorem “the Roe-
Higson index theorem”. For bounded operators T and S, T ∼ S means
that T − S is a compact operator.

4.1. The Roe algebra

In this section, we review the Roe algebra, which is a C∗-algebra
introduced by Roe [34]. The definition in [34] makes sense for a com-
plete Riemannian manifold. Today, we can extend the notion of the
Roe algebra to coarse spaces, for example, proper metric spaces; see
[27]. We use a definition of the later one. Of course, its definition
coincides with Roe’s first one; see Remark 4.1.10.

4.1.1. The definition of the Roe algebra. Let (M, g) be a
complete Riemannian manifold, d a complete metric defined by g and
S → M a Hermitian vector bundle over M . Firstly, we introduce the
notion of finite propagation.

Definition 4.1.1. [27, p.148, Definition 6.3.3] Let T ∈ L(L2(M,S))
be a bounded operator and U, V ⊂M a non-empty open subset. T is 0
on U × V if one has fTg = 0 for any f ∈ C0(U) and g ∈ C0(V ). Set

Supp(T ) = (M×M)\
∪{

U×V ; U, V ⊂M is open and T is 0 on U×V
}
.

We call Supp(T ) the support of T .

Definition 4.1.2. [27, p.152] For any T ∈ L(L2(M,S)), we set

Prop(T ) = sup{d(x, y) ; (x, y) ∈ Supp(T )}.
It is called the propagation of T . If we have Prop(T ) < ∞, we call T
has finite propagation.

The propagation of T ∈ L(L2(M,S)) measures expansion of the
support of a section.

Proposition 4.1.3. Let T ∈ L(L2(M,S)). The followings are
equivalent:

35
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• We have Prop(T ) ≤ R.
• We have Supp(Ts) ⊂ (Supp(s))R for any s ∈ C∞

c (M,S).
Here, we set (Supp(s))R = {x ∈M ; d(x, Supp(s)) ≤ R}.

Example 4.1.4. [27, Example 6.3.4] Let T ∈ L(L2(M,S)) has a
continuous kernel k ∈ C(M×M,S⊠S∗). Namely, T forms as follows:

Ts(x) =

∫
M

k(x, y)s(y)dy.

Then we have Prop(T ) ≤ R if and only if we have Supp(k) ⊂ ∆(M)R.
Here, we set ∆(M)R = {(x, y) ∈M ×M ; d(x, y) ≤ R}.

Example 4.1.5. [27, Proposition 10.3.1], [36, Proposition 7.20] Let
D be the Dirac operator on M . Then we have Prop(eitD) ≤ |t|.

Combining finite propagation and the following compactness con-
dition, we define the Roe algebra.

Definition 4.1.6. Let T ∈ L(L2(M,S)).

• T is pseudolocal if [f, T ] ∼ 0 for any f ∈ C0(M).
• T is locally compact if fT ∼ 0 and Tf ∼ 0 for any f ∈ C0(M).

Of course, locally compactness implies pseudolocality. Since these
properties are closed under the operations of ∗-algebras, we have the
following.

Definition 4.1.7. [27, Definition 6.3.8] Set

D∗(M) = {T ∈ L(L2(M,S)) ; T has finite propagation and is pseudolocal}
and

C∗(M) = {T ∈ L(L2(M,S)) ; T has finite propagation and is locally compact}.
Taking completions of these algebras, we define

D∗(M) = D∗(M)
∥·∥
, C∗(M) = C∗(M)

∥·∥
.

We call C∗(M) the Roe algebra.

Remark 4.1.8. Pseudolocality and locally compactness are closed
conditions, that is, every u ∈ D∗(M) is pseudolocal and every u ∈
C∗(M) is locally compact. D∗(M) is a unital ∗-algebra and C∗(M) is
an ideal in D∗(M). Thus D∗(M) is a unital C∗-algebra and C∗(M) is
an ideal in D∗(M). In particular, C∗(M) is a C∗-algebra.

Remark 4.1.9. We assume M is compact. In this case, we have
C∗(M) = K(L2(M,S)) by 1 ∈ C0(M) = C(M).

The last of this subsection, we remark on Roe’s first definition of
the Roe algebra.
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Remark 4.1.10. We denote by X the ∗-subalgebra of L(L2(M,S))
with the element has a smooth integral kernel and finite propagation.
We denote by X the closure of X [34, Definition 1.2]. I think the fact
that C∗(M) = X is well known, but not well documented. So I write
an outline of a proof.

We define H ⊂ L(L2(M,S)) by the following. T ∈ H if and only if
T has finite propagation and is an integral operator with an integral ker-
nel k satisfies the following property: k|K×M , k|M×K ∈ L2(M ×M,S ⊠
S∗) for any compact set K ⊂ M . Firstly, H is dense in C∗(M), since
the set of Hilbert-Schmidt class operators is dense in the set of compact
operators and every Hilbert-Schmidt class operator on L2(M,S) has an
L2 kernel. Secondly, X is dense in H, since the set of compactly sup-
ported smooth sections is dense in the set of L2 sections. These two
properties imply C∗(M) = H = X .

4.1.2. Functional calculus and the Roe algebra. In this sub-
section, we obtain elements in D∗(M) and C∗(M) by the functional
calculus. Let D : L2(M,S) → L2(M,S) be the Dirac operator over
a complete Riemannian manifold M and A ∈ End(S) a self-adjoint
endomorphism. Then we have Prop(eit(D+A)) ≤ |t|. We often denote
D + A by the same letter D. Let F : S (R) → S (R) be the Fourier
transformation:

f̂(ξ) = F [f ](ξ) =

∫
R
e−ixξf(x)dx.

As well known, the Fourier transformation is extended as a continuous
linear map F : S ′(R) → S ′(R).

Proposition 4.1.11. [27, Lemma 10.5.5] Let f ∈ Cb(R) satisfies

Supp(f̂) ⊂ (−R,R). Then we have Prop(f(D)) ≤ R.

Proof. By the Fourier inversion formula, we have

⟨f(D)σ, τ⟩ = 1

2π
⟨f̂(t), ⟨eitDσ, τ⟩L2⟩t

for σ, τ ∈ C∞
c (M,S). Take σ ∈ C∞

c (M,S) and τ ∈ C∞
c (M,S) satisfy

Supp(τ) ⊂ ((Supp(σ))R)
c. By Supp(eitDσ) ⊂ (Supp(σ))|t|, we have

⟨eitDσ, τ⟩L2 = 0 for |t| ≤ R. Thus the support of the smooth function

t 7→ ⟨eitDσ, τ⟩L2

is contained in (−R,R)c. On the other hand, since the support of f̂ is
contained in (−R,R), we have

⟨f(D)σ, τ⟩ = 1

2π
⟨f̂(t), ⟨eitDσ, τ⟩L2⟩t = 0.
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This implies Prop(f(D)) ≤ R. □

By using Proposition 4.1.11, we get an element in the Roe algebra.

Proposition 4.1.12. [34, Proposition 2.3]We have f(D) ∈ C∗(M)
for any f ∈ C0(R).

Proof. Set ϕ±(x) = 1/(x ± i). Take g ∈ C∞
c (M) and a compact

set K ⊂M satisfying Supp(g) ⊂ K. Then we have

∥gϕ±(D)s∥H1(K,S)

≤ ∥g(D ± i)−1s∥L2 + ∥gD(D ± i)−1s∥L2 + ∥[D, g](D ± i)−1s∥L2

≤ 2(∥g∥+ ∥grad(g)∥)∥s∥L2

for any s ∈ L2(M,S). By using the Rellich lemma, this implies
gϕ±(D) ∼ 0. Thus we have gϕ±(D) ∼ 0 for any g ∈ C0(M) since
C∞
c (M) is dense in C0(M). On the other hand, we have ϕ±(D)g =

(ḡϕ∓(D))∗ ∼ 0.
We note that C0(R) is generated by ϕ+(x) as a C∗-algebra by

the Stone-Weierstrass theorem for a locally compact Hausdorff space.
Thus, we obtain gf(D) ∼ 0 and f(D)g ∼ 0. Therefore, f(D) is a
locally compact.

We approximate f(D) by an operator of a locally compact with
finite propagation. Take 0 < ϵ < 1/4. Then, there exists ϕ ∈ S (R)
such that ∥f − ϕ∥ < ϵ since S (R) is dense in C0(R). Moreover, since
C∞
c (R) is dense in S (R), there exists ψ ∈ S (R) such that we have

ψ̂ ∈ C∞
c (R) and dS (ϕ̂, ψ̂) < ϵ. Here, dS is a distance on S (R) defined

by the following system of semi norms:

pm(ϕ) =
∑
r,α≥0

0≤α+r≤m

sup
x∈R

|(1 + x2)rϕ(α)(x)|.

Thus, we have

∥f − ψ∥ ≤ ∥f − ϕ∥+ ∥ϕ− ψ∥ ≤ ∥f − ϕ∥+ 1

2
p1(ϕ̂− ψ̂).

Now, we have p1(ϕ̂− ψ̂) < 4ϵ by

1

2

p1(ϕ̂− ψ̂)

1 + p1(ϕ̂− ψ̂)
≤ dS (ϕ̂, ψ̂) < ϵ.

Thus, we have ∥f(D) − ψ(D)∥ ≤ ∥f − ψ∥ < 3ϵ. This implies f(D) ∈
C∗(M) since ψ(D) is an element in C∗(M).

□
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We got an element in C∗(M), but we have to use an element in
D∗(M). The class of functions which makes an element in D∗(M) is
the following:

Definition 4.1.13. We define χ ∈ S if we have χ ∈ C(R; [−1, 1])
and limx→±∞ χ(x) = ±1.

This class S contains chopping functions, that is, [−1, 1]-valued
continuous odd functions which satisfy limx→±∞ χ(x) = ±1. Moreover,
it contains good functions as follows:

Example 4.1.14. [27, Exercises 10.9.3] Let g ∈ C∞
c (R;R) be an odd

function which satisfies Supp(g) ⊂ [−R,R] and g ̸= 0. Set f = g ∗ g
and we assume f(0) = 1/π. Set

χ(x) =

∫ ∞

−∞

eitx − 1

it
f(t)dt.

Then we have χ ∈ S, χ is a smooth monotone function, and we have
χ(x) > 0 for any x > 0. Moreover, the Fourier transformation χ̂ ∈
S ′(R) satisfies Supp(χ̂) ⊂ [−2R, 2R] and xχ̂ ∈ C∞

c (R).

Proof. By definition, f is an even function and we have f ∈
C∞
c (R;R) and Supp(f) ⊂ [−2R, 2R]. Thus χ is a smooth function.

Because of

χ′(x) =

∫ ∞

−∞
eitxf(t)dt = 2πF−1[f ](x) = 2π(F−1[g](x))2 > 0,

χ is monotone increasing.
On the other hand, χ is an odd function by

χ(−x) =
∫ ∞

−∞

e−itx − 1

it
f(t)dt =

∫ ∞

−∞

e−itx − 1

it
f(−t)dt

=

∫ ∞

−∞

eitx − 1

−it
f(t)dt = −χ(x).

Combining χ′ > 0, we have χ(x) > 0 for any x > 0.
Since χ is an odd function and we have

2 lim
x→∞

χ(x) = lim
x→∞

χ(x)− lim
x→−∞

χ(x) =

∫ ∞

−∞
χ′(x)dx

=

∫ ∞

−∞
2πF−1[f ](x)dx

= 2πF [F−1[f ]](0) = 2πf(0) = 2,

we have limx→±∞ χ(x) = ±1.
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xχ̂ ∈ C∞
c (R) and Supp(xχ̂) ⊂ [−2R, 2R] is proved by

xχ̂(x) = −iχ̂′(x) = −iF [2πF−1[f ]](x) = −2πif(x).

Let ϕ ∈ S (R) satisfies Supp(ϕ) ⊂ [−2R, 2R]c. Then we have
ϕ/x ∈ S (R). Thus, we have Supp(χ̂) ⊂ [−2R, 2R] since ⟨χ̂, ϕ⟩ =
⟨xχ̂, ϕ/x⟩ = 0. □

We prove an element in S makes an element in D∗(M). For this
purpose, we need two lemmas.

Lemma 4.1.15. [27, Lemma 10.6.3] Take χ1, χ2 ∈ S. Then we have
χ1(D)g ∼ χ2(D)g and gχ1(D) ∼ gχ2(D) for any g ∈ C0(M).

Lemma 4.1.16 (The Kasparov lemma). [27, Lemma 5.4.7] Let T ∈
L(L2(M,S)). Then, the followings are equivalent.

• We have [T, f ] ∈ K(L2(M,S)) for any f ∈ C0(M)+.
• We have fTg ∈ K(L2(M,S)) for any f, g ∈ C0(M)+ with
Supp(f) ∩ Supp(g) = ∅.

Here, C0(M)+, the set of continuous functions defined on M constant
at infinity, acts on L2(M,S) as a multiplication operator.

Proposition 4.1.17. [27, Lemma 10.6.4] We have χ(D) ∈ D∗(M)
for any χ ∈ S.

Proof. First, we prove χ(D) is pseudolocal. It suffices to show
that fχ(D)g ∼ 0 for any f, g ∈ C0(M)+ satisfying Supp(f)∩Supp(g) =
∅ and Supp(g) ⊂ M by the Kasparov lemma 4.1.16. Take R > 0 sat-
isfying d(Supp(f), Supp(g)) > R. Then, |t| ≤ R implies feitDg = 0.
Thanks to Example 4.1.14, there exists χ1 ∈ S such that Supp(χ̂1) ⊂
[−R,R]. Then we have fχ1(D)g = 0 by Proposition 4.1.11. By Lemma
4.1.15, we have 0 = fχ1(D)g ∼ fχ(D)g. This implies χ(D) is pseu-
dolocal.

Combining Proposition 4.1.11, we have χ1(D) ∈ D∗(M). Now,
f = χ − χ1 ∈ C0(R) and f(D) ∈ C∗(M) ⊂ D∗(M) implies χ(D) =
f(D) + χ1(D) ∈ D∗(M).

□

4.2. The odd index

In this section, we review the odd index. It is defined by an expo-
nential map of this short exact sequence:

0 → C∗(M) → D∗(M) → D∗(M)/C∗(M) → 0.

Take χ ∈ S. By χ2− 1 ∈ C0(R), we have χ(D)2 ≡ 1 mod C∗(M).
Thus we obtain an element [(χ(D) + 1)/2] ∈ K0(D

∗(M)/C∗(M)).
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Now, if we take χ1, χ2 ∈ S, then we have χ1(D) − χ2(D) ∈ C∗(M)
by χ1 − χ2 ∈ C0(R). Therefore, a K-theory class [(χ(D) + 1)/2] ∈
K0(D

∗(M)/C∗(M)) is independent of the choice of an element in S.
We send an element [(χ(D) + 1)/2] ∈ K0(D

∗(M)/C∗(M)) by an
exponential map δ : K0(D

∗(M)/C∗(M)) → K1(C
∗(M)) defined by the

above short exact sequence. Thus we obtain an element in K1(C
∗(M)).

Definition 4.2.1. [34, Definition 2.7] Let D : L2(M,S) → L2(M,S)
be the Dirac operator over a complete Riemannian manifold M and
χ ∈ S. Set ind(D) = δ([(χ(D) + 1)/2]) ∈ K1(C

∗(M)). We call ind(D)
the odd index.

The odd index vanishes when M is compact.

Remark 4.2.2. [34, Proposition 2.8] If the spectrum of D has a
gap, then we have ind(D) = 0. In particular, if M is compact, then we
have ind(D) = 0.

We use a special function in S. Then the odd index is represented
by the Cayley transform of D.

Remark 4.2.3. Set

χ(x) =
1

π
Arg

(
−x− i

x+ i

)
for x ∈ R.

Here, we choose a principal value of the argument of a complex number
z is −π < Arg(z) ≤ π. By

−x− i

x+ i
= −1− 1/x2

1 + 1/x2
+ i

2x

x2 + 1
,

χ is monotone increasing and we have

lim
x→∞

χ(x) =
1

π
π = 1 and lim

x→−∞
χ(x) = − 1

π
π = −1.

Therefore, we have χ ∈ S.
On the other hand, we have

δ([(χ(D) + 1)/2]) = −[exp(πiχ(D))] =

[
D − i

D + i

]
∈ K1(C

∗(M)).

4.3. Roe’s cyclic one-cocycle associated to a partition

We want to study the odd index which is defined in Section 4.2.
For this purpose, we take Connes’ pairing of a certain cyclic cocycle
with it. We define such a cyclic cocycle, which is defined by a partition
of a manifold. Its cocycle is called the Roe cocycle.
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Definition 4.3.1. Let M be an oriented complete Riemannian
manifold. We assume the triple (M+,M−, N) satisfies the following
conditions:

• M+ and M− are submanifolds of M of the same dimension as
M , ∂M+ ̸= ∅ and ∂M− ̸= ∅,

• M =M+ ∪M−,
• N is a closed submanifold of M of codimension one,
• N =M+ ∩M− = −∂M+ = ∂M−.

Then we call (M+,M−, N) a partition of M . M is also called a parti-
tioned manifold.

Figure 4.3.1. Partitioned manifold

For example, we can consider R×N is partitioned by (R+×N,R−×
N, {0}×N), where we set R+ = {t ∈ R ; t ≥ 0} and R− = {t ∈ R ; t ≤
0}.

We fix the notation of two functions which are defined by a parti-
tion.

Definition 4.3.2. We assume M is partitioned by (M+,M−, N).
Then we denote by Π the characteristic function of M+ and set Λ =
2Π− 1.

We can prove a commutator condition of these functions with an
element in the Roe algebra C∗(M). Recall that we have C∗(M) = X .
Here, X is the ∗-subalgebra of L(L2(S)) with the element has a smooth
integral kernel and finite propagation; see Remark 4.1.10.

Proposition 4.3.3. If M is a partitioned manifold, then the fol-
lowing holds:

(i) For all u ∈ C∗(M), one has [Π, u] ∼ 0 and [Λ, u] ∼ 0.
(ii) For all u ∈ C∗(M) and φ ∈ C(M) satisfies φ = Π on the com-

plement of a compact set in M , one has [φ, u] ∼ 0 .

Proof. Due to [34, Lemma 1.5], [Π, u] is of trace class for all
u ∈ X . So (i) is proved by Remark 4.1.10. Since the support of Π−φ
is compact, there exists f ∈ C0(M) such that f(Π− φ) = (Π− φ)f =
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Π − φ. Thus we have [φ, u] ∼ [φ − Π, u] = (φ − Π)u − u(φ − Π) =
(φ− Π)fu− uf(φ− Π) ∼ 0. This proves (ii).

□
We describe the definition of the Roe cocycle, which is a cyclic

1-cocycle defined on X .

Definition 4.3.4. For any A,B ∈ X , set

ζ(A,B) =
1

4
Tr(Λ[Λ, A][Λ, B]).

We call ζ : X × X → C the Roe cocycle.

Proposition 4.3.5. [34, Proposition 1.6] ζ is a cyclic 1-cocycle on
X .

In an index theorem for partitioned manifolds, we take the pairing
of ζ with the index class in K1(C

∗(M)). For this purpose, we have to
extend a domain of ζ.

Definition 4.3.6. Let M be a partitioned manifold and S → M
a Hermitian vector bundle. Then we define a subalgebra A in C∗(M)
such that one has u ∈ A if [Λ, u] is of trace class.

As noted in Example 3.3.5, A is a Banach algebra with a norm
∥u∥A = ∥u∥ + ∥[Λ, u]∥1, where ∥ · ∥ is the operator norm and ∥ · ∥1 is
the trace norm.

Proposition 4.3.7. Let M be a partitioned manifold and S →
M a Hermitian vector bundle. Then A is dense and closed under
holomorphic functional calculus in C∗(M).

Proof. Because of X ⊂ A ⊂ C∗(M), A is dense in C∗(M). By
Example 3.3.5 and Proposition 4.3.3 (i), A is closed under holomorphic
functional calculus in C∗(M).

□
Therefore, the inclusion i : A → C∗(M) induces an isomorphism

i∗ : K1(A ) ∼= K1(C
∗(M)); see Remark 3.3.4. By using this isomor-

phism, we can take the pairing of the Roe cocycle with an element in
K1(C

∗(M)) as follows:

Definition 4.3.8. [18, p.109] Define the map

⟨·, ζ⟩ : K1(C
∗(M)) → C

by ⟨[u], ζ⟩ = 1
8πi

∑
i,j ζ((u

−1)ji, uij), where we assume [u] is represented

by an element u ∈ GLl(A ) and uij is the (i, j)-component of u. We
note that this is Connes’ pairing of cyclic cohomology with K-theory,
and 1/8πi is a constant multiple in Connes’ pairing.
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We can write its pairing by a Fredholm index.

Proposition 4.3.9. [18, p.75] For any u ∈ GLl(C
∗(M)), one has

⟨[u], ζ⟩ = − 1

8πi
index(ΠuΠ : Π(L2(M,S))l → Π(L2(M,S))l).

Proof. Since both sides of this equation do not change by homo-
topy of u ∈ GLl(C

∗(M)), it suffices to show the case when u ∈ GLl(A ).
Then we obtain

8πi⟨[u], ζ⟩ = 1

4

∑
i,j

Tr(Λ[Λ, (u−1)ij][Λ, uji]) =
1

4
Tr(Λ[Λ, u−1][Λ, u]).

Because of

Π− Πu−1ΠuΠ = −Π[Π, u−1][Π, u]Π,

Π − Πu−1ΠuΠ and Π − ΠuΠu−1Π are of trace class on Π(L2(M,S))l.
Therefore we get

index(ΠuΠ : Π(L2(M,S))l → Π(L2(M,S))l)

= Tr(Π− Πu−1ΠuΠ)− Tr(Π− ΠuΠu−1Π)

by [18, p.88]. Thus we have

index(ΠuΠ : Π(L2(M,S))l → Π(L2(M,S))l) = −1

4
Tr(Λ[Λ, u−1][Λ, u]).

This implies

⟨[u], ζ⟩ = − 1

8πi
index(ΠuΠ : Π(L2(M,S))l → Π(L2(M,S))l).

□
The last of this section, we see a relationship between Connes’

pairing of the Roe cocycle ζ with K1(C
∗(M)) and an extension. Set

H = Π(L2(M,S)). Let q : L(H) → Q(H) be the quotient map to
the Calkin algebra. Define σ : C∗(M) → L(H) by σ(A) = ΠAΠ and
τ : C∗(M) → Q(H) by τ = q ◦ σ. Set

E = {(A, T ) ∈ C∗(M)⊕ L(H) ; τ(A) = q(T )}.
Then we get an extension τ of C∗(M):

0 → K(H) ↪→ E → C∗(M) → 0.

This extension is defined by a Fredholm module (L2(M,S),Λ) over
C∗(M); see Examples 3.2.21 and 3.2.22. By the definition of an index
pairing ⟨·, ·⟩ind : K1(C

∗(M))×Ext(C∗(M)) → Z and Proposition 4.3.9,
we obtain ⟨[u], ζ⟩ = ⟨[u], [τ ]⟩ind = index(ΠuΠ) up to a certain constant
multiple for any [u] ∈ K1(C

∗(M)).
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Moreover, we can prove these are equal to the connecting homomor-
phism of this extension: ∂ : K1(C

∗(M)) → K0(K(H)) ∼= Z. In fact, for
any unitary u ∈ U(C∗(M)), denote by v(u) the partial isometry part
of the polar decomposition of σ(u). Then we have τ(u) = q(v(u)) since
σ(u) is an essential unitary operator on H. Therefore, (u, v(u)) ∈ E is
a partial isometry lift of u. So we obtain ∂([u]) = [Π − v(u)∗v(u)] −
[Π − v(u)v(u)∗] ∈ K0(K(H)). By the identification K0(K(H)) ∼= Z,
we have ∂([u]) = index(v(u)) = index(σ(u)). Therefore, we obtain
⟨[u], ζ⟩ = ⟨[u], [τ ]⟩ind = [u]⊗̂C∗(M)[L

2(M,S),Λ] = ∂([u]) = index(ΠuΠ)
up to a certain constant multiple.

4.4. The Roe-Higson index theorem

In this section, we describe the Roe-Higson index theorem. As ex-
plained in [35, Section 6.1], the Roe cocycle ζ is related to the Poincaré
dual pd(N) ∈ H1

c (M) of N . In fact, there exists uniquely the element
in the coarse cohomology α ∈ HX1(M) such that the character map
HX1(M) → H1

c (M) sends α to pd(N). Moreover, the character map
HX1(M) → HC1(X ) sends α to [ζ]. By this relationship with ζ and
N , it is expected that Connes’ pairing of ζ has some information about
N . The Roe-Higson index theorem asserts this expectation is true.

4.4.1. Statement of the Roe-Higson index theorem. Let M
be a partitioned manifold, S →M a Clifford bundle overM and D the
Dirac operator on S. Set SN = S|N . We can induce a structure of a
Clifford bundle on SN by the induced connection ∇SN and the Clifford
action. Moreover, we can induce the Z2-graded structure on SN . Let
ν be the outward pointing normal unit vector field on N = ∂M−;
see Figure 4.3.1. Then ic(ν)|SN

is Z2-grading of SN since we have
(ic(ν)|SN

)2 = 1, where c is the Clifford action on S. By definition, SN
is a graded Clifford bundle. Let DN be the graded Dirac operator on
SN . We note that this formulation makes sense for any dimension of
M .

Theorem 4.4.1 (The Roe-Higson index theorem). [34, Theorem
3.3] By using above notations, we have

⟨ind(D), ζ⟩ = − 1

8πi
index(D+

N).

Remark 4.4.2. [26] Let φ ∈ C∞(M) be a smooth function such
that we have φ = Π on the complement of a compact set in M . Higson
proved a version of Theorem 4.4.1:

index(1− φ+ φuD) = index(D+
N),
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where uD = (D− i)(D+ i)−1 = 1−2i(D+ i)−1 is the Cayley transform
of D.

We see −8πi⟨ind(D), ζ⟩ = index(1 − φ + φuD). By Remark 4.2.3
and Proposition 4.3.9, we have

−8πi⟨ind(D), ζ⟩ = index(ΠuDΠ : Π(L2(M,S)) → Π(L2(M,S))).

Because of Proposition 4.3.3, the right hand side equals to

index(1− Π+ΠuDΠ) = index(1− Π+ΠuD) = index(1− φ+ φuD).

See also [24, §7].

Remark 4.4.3. As noted in Section 2.3, the Fredholm index of the
Dirac operator on an odd-dimensional manifold is always 0. Thus the
Roe-Higson index ⟨ind(D), ζ⟩ is trivial when M is of even dimension.
The main theorem in this thesis is motivated by this fact.

4.4.2. The case for R×N . In this subsection, we prove Theorem
4.4.1 for M = R×N . Our proof is similar to that of [32, §7.4.2]. We
recall that R×N is partitioned by (R+×N,R−×N, {0}×N). Let SN →
N be a graded Clifford bundle. Denote by ϵ the Z2-grading operator
on SN , cN the Clifford action on SN and DN the Dirac operator of SN .
Let p : R×N → N be a projection map and set S = p∗SN . Then S is
a Clifford bundle by the pullback connection and the following Clifford
action c:

c(d/dt) = −iϵ, c(X) = cN(X) for all X ∈ C∞(N, TN).

Thus we can describe the Dirac operator D on S as follows:

D =

[
−i d

dt
D−
N

D+
N i d

dt

]
.

We note that by the identification L2(M,S) = L2(R)⊗ L2(N,SN), we
identify the characteristic function Π on M+ = R+ × N with that of
R+. Then Λ = 2Π− 1 is identified with the signature function. As we
noted in Remark 4.4.2, it suffices to show that

index(ΠuDΠ : Π(L2(R))⊗ L2(N,SN) → Π(L2(R))⊗ L2(N,SN))

= index(D+
N).

We calculate

index(ΠuDΠ : Π(L2(R))⊗ L2(N,SN) → Π(L2(R))⊗ L2(N,SN)).

For this purpose, we use the Hilbert transformation. Properties about
the Hilbert transformation which we use are in Appendix A. Let F :
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L2(R) → L2(R) be the Fourier transformation:

F [f ](ξ) =

∫
R
e−ixξf(x)dx.

Let H : L2(R) → L2(R) be the Hilbert transformation

Hf(t) = − i

π
p.v.

∫
R

f(y)

t− y
dy = − i

π
lim
ϵ↓0

∫
|t−y|>ϵ

f(y)

t− y
dy,

where p.v. is the Cauchy principal value. Due to ΛF = −FH, we
have F−1ΠF = (1 −H)/2. Set P̂ = (1 −H)/2. On the other hand,
by F−1d/dtF = −it, we have

D̂ = F−1DF =

[
−t D−

N

D+ t

]
.

Thus we obtain

index(ΠuDΠ : Π(L2(R))⊗ L2(N,SN) → Π(L2(R))⊗ L2(N,SN))

= index(P̂ uD̂P̂
∗ : H− ⊗ L2(N,SN) → H− ⊗ L2(N,SN)),

where uD̂ is the Cayley transform of D̂ and H− is the image of P̂ , that
is, the −1-eigenspace of H.

Set H = H− ⊗ Ker(DN), v = uD̂|H⊥ , D0 = (DN ⊗ 1)|H⊥ and
σ = iϵD0|D0|−1. Then we have the following properties by direct com-
putations:

(i) P̂ uD̂(H) ⊂ H,
(ii) σ(H⊥) ⊂ H⊥,
(iii) σ2 = 1,
(iv) σD0 = −D0σ. This implies σv = v−1σ.

By (iv), we obtain

σP̂vP̂ ∗σ = σP̂
D̂ − i

D̂ + i
P̂ ∗σ = P̂

D̂ + i

D̂ − i
P̂ ∗ = P̂ v−1P̂ ∗ on H⊥.

Combining this computation and index(σ) = 0, we have

index(P̂ vP̂ ∗ : H⊥ → H⊥) = index(P̂ v−1P̂ ∗ : H⊥ → H⊥)

= −index(P̂ vP̂ ∗ : H⊥ → H⊥).

This implies index(P̂ vP̂ ∗ : H⊥ → H⊥) = 0.
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Thus, we finish a proof as follows:

index
(
P̂ uD̂P̂

∗ : H− ⊗ L2(N,SN) → H− ⊗ L2(N,SN)
)

= index

(
P̂

[
(−t− i)/(−t+ i) 0

0 (t− i)/(t+ i)

]
P̂ ∗ : H → H

)
+ index(P̂ vP̂ ∗ : H⊥ → H⊥)

= index

(
P̂
t+ i

t− i
P̂ ∗ : H− ⊗Ker(D+

N) → H− ⊗Ker(D+
N)

)
+ index

(
P̂
t− i

t+ i
P̂ ∗ : H− ⊗Ker(D−

N) → H− ⊗Ker(D−
N)

)
=dimKer(D+

N)− dimKer(D−
N)(∗)

= index(D+
N).

Here, the equality (∗) is obtained by Example A.5.

4.4.3. The general case. In this subsection, we complete to prove
the Roe-Higson index theorem by a reduction to the case when a prod-
uct manifold R×N . For this purpose, we will cover Higson’s reduction
argument [26]. In our main theorem, we use a similar argument to
Higson’s argument. Firstly, we state a cobordism invariance.

Lemma 4.4.4. [26, Lemma 1.4] Let (M+,M−, N) and (M+′,M−′, N ′)
be two partitions of M . We assume these two partitions are cobordant,
that is, symmetric differences M±△M∓′ are compact. Let Π and Π′

be the characteristic function of M+ and M+′, respectively. Then one
has index(ΠuDΠ) = index(Π′uDΠ

′).

We use Lemma 4.4.4 in order to construct a Clifford bundle when
we change the general manifold to R×N . Secondly, we state Higson’s
Lemma.

Lemma 4.4.5. [26, Lemma 3.1] Let M1 and M2 be two partitioned
manifolds and Sj → Mj a Clifford bundle. Denote by Dj the Dirac
operator of Sj. Let Πj be the characteristic function ofM+

j . We assume

that there exists an isometry γ :M+
2 →M+

1 which lifts a Clifford bundle
isomorphism γ∗ : S1|M+

1
→ S2|M+

2
. Then one has index(Π1uD1Π1) =

index(Π2uD2Π2).
Similarly, if there exists an isometry γ : M−

2 → M−
1 which lifts

a Clifford bundle isomorphism γ∗ : S1|M−
1

→ S2|M−
2
, then one has

index(Π1uD1Π1) = index(Π2uD2Π2).

By using Lemma 4.4.4 and 4.4.5, we can reduce the general case
to the case when R × N by replacing a manifold without changing
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index. Let (−δ, δ) × N be diffeomorphic to a tubular neighborhood
of N in M . Due to Lemma 4.4.4, we may change a partition of
M to (M+ ∪ ([−δ, 0] × N),M− \ ((−δ, 0] × N), {−δ} × N) without
changing index(ΠuDΠ). Then, due to Lemma 4.4.5 we may change
M+ ∪ ([−δ, 0] × N) to [−δ,∞) × N without changing index(ΠuDΠ).
Here a metric on [0,∞) × N is product. We denote this manifold by
M ′ = ([−δ,∞) × N) ∪ (M− \ ((−δ, 0] × N)). M ′ is partitioned by
([−δ,∞)×N,M− \ ((−δ, 0]×N), {−δ}×N). We apply a similar argu-
ment to M ′, we may change M ′ to a product R×N without changing
index(ΠuDΠ). Now we have changed M to R×N .

4.5. Applications

In this section we review two applications of the Roe-Higson index
theorem.

4.5.1. The cobordism invariance of the index. Let W be a
compact manifold of odd dimension with boundary ∂W = N . We
assume all geometric structures near ∂W are product. Let DW be the
Dirac operator on W and DN the induced Dirac operator on N . We
also assume DN is graded by using the unit normal vector field on N .
It is well-known fact that we have index(D+

N) = 0; see [33, Theorem
XVII.3]. This fact is called the cobordism invariance of the index.

We can prove the cobordism invariance of the index independently
by using the Roe-Higson index theorem [26]. We can construct the
Dirac operator D1 on (−∞, 0]×N by using DN as in Subsection 4.4.2.
Let D be the Dirac operator on M = ((−∞, 0] × N) ∪N W defined
by using DW and D1. M is a partitioned manifold partitioned by
(W, (−∞, 0]×N, {0}×N). We can construct the Dirac operator on N
as in Subsection 4.4.1, but its Dirac operator coincides with DN .

We use Higson’s set up as in Remark 4.4.2. Let φ ∈ C∞(M) be
a smooth function such that φ is equal to the characteristic function
of W on the complement of a compact set in M . By the Roe-Higson
index theorem, we have

index(1− φ+ φuD) = index(D+
N).

By the way, since W is compact, we can use φ = 0, the constant
function onM . Thus the left hand side is equal to index(idL2(M,S)) = 0.
Therefore we have index(D+

N) = 0.

4.5.2. Existence of a Riemannian metric with its scalar
curvature is uniformly positive. Let M be a non-compact parti-
tioned manifold of odd dimension. We assume thatM can be equipped
with a spin structure. We fix a spin structure on M . In this case, we
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can get necessarily condition for existence of a Riemannian metric with
its scalar curvature is uniformly positive.

Theorem 4.5.1. [34, Theorem 9.1] If there exists a Riemannian
metric on M with its scalar curvature κ is uniformly positive, then we
have

∫
N
Â(TN) = 0.

We review the sketch of proof. Denote by D the canonical spinor
Dirac operator on M . N is also spin by the induced spin structure
and then DN is also the canonical spinor Dirac operator. By the
Lichnerowicz-Weitzenbock formula, we have D2 = ∇S∗∇S + 1

4
κ > 0.

This implies the spectrum of D has a gap near 0. Therefore, we have
ind(D) = 0 by Remark 4.2.2. Combine the Atiyah-Singer index theo-
rem and the Roe-Higson index theorem, and we have∫

N

Â(TN) = index(D+
N) = 0.



CHAPTER 5

Main theorem

In this chapter, we discuss the main theorem. Let (M, g) be a
complete Riemannian manifold, S →M a graded Clifford bundle with
the Clifford action c and the grading ϵ. Denote by D the graded Dirac
operator of S. As noted in Remark 4.4.3, the Roe-Higosn index is
trivial when M is of even dimension. An index class which is used in
the main theorem gives a non-trivial index in this case.

5.1. Definition of the index class

In this section, we define an index class in K1(C
∗(M)). Set ∥f∥ =

supx∈M |f(x)| for f ∈ C(M) and ∥X∥ = supx∈M
√
gx(X,X) for X ∈

C∞(M,TM).

Definition 5.1.1. Define W (M) by the subset in C∞(M) such that
one has f ∈ W (M) if ∥f∥ < +∞, ∥grad(f)∥ < +∞. Define Cw(M)
by the closure of W (M) by the uniform norm on M .

Proposition 5.1.2. W (M) is a unital ∗-subalgebra of Cb(M). There-
fore, Cw(M) is a unital C∗-algebra.

Proof. The proof of this proposition is a routine work. □
We will see a reason why we shall need this C∗-algebra Cw(M) in

Section 5.3 and Subsection 5.4.1. We define a Kasparov (Cw(M), C∗(M))-
module which is made of the Dirac operator D. C∗(M) is an evenly
graded C∗-algebra, where the grading is induced by ϵ. Since χ0(x) =
x(1 + x2)−1/2 is a chopping function, the left composition of FD =
D(1 + D2)−1/2 ∈ D∗(M) on an element in C∗(M) is an odd operator
on C∗(M).

Proposition 5.1.3. Let µ : Cw(M) → B(C∗(M)) be the left com-
position of the multiplication operator: µ(f)u = fu ∈ C∗(M) for
f ∈ Cw(M) and u ∈ C∗(M). Then one has [D] = [C∗(M), µ, FD] ∈
KK0(Cw(M), C∗(M)).

Proof. Our proof is similar to the Baaj-Julg picture of Kasparov
modules [6, Proposition 2.2]. Firstly, we obtain FD ∈ B(C∗(M)), since

51
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FD is a self-adjoint bounded operator on L2(M,S) and we have FDu ∈
C∗(M) for any u ∈ C∗(M). Now, because of 1 − F 2

D = 1 − D2(1 +
D2)−1 = (1 + D2)−1 ∈ C∗(M) = K(C∗(M)) and F ∗

D = FD, it suffices
to show [µ(f), FD] ∈ C∗(M).

Now, the following integral formula

[µ(f), FD]

=
1

π

∫ ∞

0

λ−1/2[f,D(1 +D2 + λ)−1]dλ

=
1

π

∫ ∞

0

λ−1/2(1 + λ)(1 +D2 + λ)−1[f,D](1 +D2 + λ)−1dλ

+
1

π

∫ ∞

0

λ−1/2D(1 +D2 + λ)−1[D, f ]D(1 +D2 + λ)−1dλ

is uniformly integrable for any f ∈ W (M) since we have ∥(1 + D2 +
λ)−1∥ ≤ (1+λ)−1 and ∥D(1+D2 +λ)−1∥ ≤ (1+λ)−1/2 for any λ ≥ 0,
and [f,D] = −c(grad(f)) ∈ D∗(M) for any f ∈ W (M). So we obtain
[µ(f), FD] ∈ C∗(M) for any f ∈ W (M) by (1+D2 + λ)−1, D(1+D2 +
λ)−1 ∈ C∗(M) for any λ ≥ 0. Thus, we obtain [µ(f), FD] ∈ C∗(M)
for any f ∈ Cw(M), since we have ∥[µ(f), FD]∥ ≤ 2∥f∥ for any f ∈
W (M) and W (M) is dense in Cw(M). This implies (C∗(M), µ, FD) is
a Kasparov (Cw(M), C∗(M))-module. □

Remark 5.1.4. Let χ be a chopping function, that is, χ ∈ C(R; [−1.1])
is an odd function and one has χ(x) → 1 as x → +∞. Then one
has χ(D) − FD ∈ C∗(M) by χ − χ0 ∈ C0(M). We note that χ(D)
is an odd operator since χ is an odd function. Therefore, we obtain
[D] = [C∗(M), µ, χ(D)], that is, [D] is independent of the choice of a
chopping function χ.

Any ϕ ∈ GLl(Cw(M)) induces [ϕ] ∈ K1(Cw(M)). By using the
Kasparov product

⊗̂Cw(M) : K1(Cw(M))×KK0(Cw(M), C∗(M)) → K1(C
∗(M)),

we get the index class in K1(C
∗(M)) as follows.

Definition 5.1.5. For any ϕ ∈ GLl(Cw(M)), set

Ind(ϕ,D) = [ϕ]⊗̂Cw(M)[D] ∈ K1(C
∗(M)).

5.2. Main theorem

Roughly speaking, our main theorem is Connes’ pairing of the Roe
cocycle with Ind(ϕ,D) ∈ K1(C

∗(M)) is calculated by the Fredholm
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index of the Toeplitz operator on a hypersurface N . In this section, we
firstly define its operator.

Let M be a partitioned manifold partitioned by (M+,M−, N). Let
ν ∈ C∞(N, TN) be the outward pointing normal unit vector field on
N = ∂M−; see Figure 4.3.1 in Section 4.3.

Set SN = S+|N . Define cN ∈ C∞(N,Hom(TN,End(SN))) by
cN(X) = c(ν)c(X). Then SN is a Clifford bundle over N with the
induced metric and connection and the Clifford action cN . Denote
by DN the Dirac operator of SN . We denote the restriction of ϕ ∈
GLl(Cw(M)) to N by the same letter ϕ. Let Tϕ be the Toeplitz opera-
tor with symbol ϕ. This Toeplitz operator Tϕ is the operator on N in
our main theorem.

Now, we can state our main theorem as follows:

Theorem 5.2.1. Let M be a partitioned manifold partitioned by
(M+,M−, N). Let S →M be a graded Clifford bundle with the grading
ϵ and denote by D the graded Dirac operator of S. We denote the
restriction of ϕ ∈ GLl(Cw(M)) to N by the same letter ϕ. Then the
following formula holds:

⟨Ind(ϕ,D), ζ⟩ = − 1

8πi
index(Tϕ).

Use the explicit formula of Ind(ϕ,D) and the index theorem for
Toeplitz operators, and we obtain the following topological formula:

Corollary 5.2.2. Let M be a partitioned manifold partitioned by
(M+,M−, N), and Π the characteristic function ofM+. Let S →M be
a graded Clifford bundle with the grading ϵ and denote by D the graded
Dirac operator of S. We assume that ϕ ∈ C∞(M ;GLl(C)) satisfies
∥ϕ∥ <∞, ∥grad(ϕ)∥ <∞ and ∥ϕ−1∥ <∞. Then one has

index

(
Π(D + ϵ)−1

[
ϕ 0
0 1

]
(D + ϵ)Π : Π(L2(M,S))l → Π(L2(M,S))l

)
=

∫
S∗N

π∗Td(TN ⊗ C)ch(S+)π∗ch(ϕ).

The proof of Theorem 5.2.1 and Corollary 5.2.2 is provided in Sec-
tion 5.6.

5.3. Wrong way functoriality

We see a correspondence between an index theorem for partitioned
manifolds with Connes’ wrong way functoriality. Let f : X → Y be
a K-oriented smooth map, that is, f is smooth and TX ⊕ f ∗TY is a
spinc vector bundle. Connes [16, 17] defined wrong way functoriality
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f ! ∈ KKdimX+dimY (C0(X), C0(Y )). Roughly speaking, f ! is defined
by a family of Dirac operators on X parametrized by Y . Note that if
g : Y → Z is a K-oriented smooth map, then g ◦ f is also K-oriented
and we have (g ◦ f)! = f !⊗̂C0(Y )g! ∈ KKdimX+dimZ(C0(X), C0(Z)).

We assumeM = R×N withN closed. Let i : {pt} → R be an inclu-
sion map defined by i(pt) = 0, and p : R → {pt} a constant map. Due
to Connes, they define wrong way functoriality i! ∈ KK1(C, C0(R)),
(i × idN)! ∈ KK1(C(N), C0(M)) and p! ∈ KK1(C0(R),C), respec-
tively. We note the following:

i!⊗C0(R) p! = (p ◦ i)! = 1C ∈ KK0(C,C).

Let DN be the Dirac operator on N and DR the Dirac operator
on R defined by a spin structure of R. These Dirac operators define
elements in K-homology, that is, they define [DN ] ∈ KK∗(C(N),C)
and [DR] = p! ∈ KK1(C0(R),C), respectively. Moreover, DN and DR
determine the Dirac operator DM on M = R × N satisfies [DM ] =
[DR]⊗̂C[DN ] ∈ KK∗+1(C0(M),C).

Firstly, we assume ∗ = 0. Let [[E]] ∈ KK0(C0(M), C0(M)) be a
KK-element defined by a vector bundle E →M by using the inclusion
map KK0(C, C0(M)) → KK0(C0(M), C0(M)). Then we have

(i× idN)!⊗̂C0(M)([[E]]⊗̂C0(M)[DM ]) = [[E|N ]]⊗̂C(N)i!⊗̂C0(M)([DR]⊗̂C[DN ])

= [[E|N ]]⊗̂C(N)(i!⊗̂C0(R)[DR])⊗̂C(N)[DN ]

= [[E|N ]]⊗̂C(N)(i!⊗̂C0(R)p!)⊗̂C(N)[DN ]

= [[E|N ]]⊗̂C(N)[DN ].

Therefore, by using the map e : KK0(C(N),C) → KK0(C,C) ∼= Z
induced by the map to one point, we have

e((i× idN)!⊗̂C0(M)([[E]]⊗̂C0(M)[DM ])) = index(DE|N ),

where the right hand side is the Fredholm index of the Dirac operator
on N twisted by E|N . This is a similar formula to the Roe-Higson index
theorem. Combine the Roe-Higson index theorem, and this implies the
composition of the assembly map A : K0(C0(M)) → K1(C

∗(M)) with
Connes’ pairing of ζ is equal to e(i!⊗̂C0(M)−):

⟨A(x), ζ⟩ = e(i!⊗̂C0(M)x).

Note that we have A([DM ]) = ind(DM), the odd index of DM .
On the other hand, we assume ∗ = 1. Take ϕ ∈ GLl(C0(M)),

then it defines an element [[ϕ]] ∈ KK1(C0(M), C0(M)) by using the
inclusion map KK1(C, C0(M)) → KK1(C0(M), C0(M)). The similar
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argument in ∗ = 0 implies

⟨A([[ϕ]]⊗̂C0(M)[DM ]), ζ⟩ = e((i×idN)!⊗̂C0(M)([[ϕ]]⊗̂C0(M)[DM ])) = index(Tϕ|N ).

However, since ϕ is constant ( ̸= 0) at infinity, ϕ|N is homotopic to
a constant function in GLl(C(N)). Thus the right hand side is always
0. This vanishing comes from that we take a function ϕ in C0(M)+.
So we have to use a larger algebra than C0(M)+ in order to get non-
trivial index. On the other hand, we take ϕ in Cw(M) in our situation.
Cw(M) is a suitable larger algebra in this situation.

5.4. Remarks on the odd index class

5.4.1. A reason why we use Cw(M). In this subsection, we see
a reason why we use a C∗-algebra Cw(M). Firstly, we compare the
Higson algebra Ch(M) and Cb(M) with Cw(M).

Remark 5.4.1. Let Ch(M) be the Higson algebra of M , that is,
Ch(M) is the C∗-algebra generated by all smooth and bounded functions
defined on M of which gradient is vanishing at infinity [25, p.26]. By
definition, one has Ch(M) ⊂ Cw(M) ⊂ Cb(M).

We assumeM = R. Then one has sinx /∈ Ch(R) but sinx ∈ Cw(R).
This implies Ch(R) ⊊ Cw(R). On the other hand, any f ∈ W (R) is
a ∥f ′∥-Lipschitz function. In particular, f is uniformly continuous
on R. Thus the uniform limit of Cauchy sequence {fn} ⊂ W (R) is
also uniformly continuous. Therefore, one has sin(x2) /∈ Cw(R) but
sin(x2) ∈ Cb(R). This implies Cw(R) ⊊ Cb(R).

We assume M = R × N and ϕ ∈ C∞(N). In this case, we have
1⊗ϕ ∈ Cw(M) but 1⊗ϕ ̸∈ Ch(M) in general. For example, if ϕ(x) = eix

for x ∈ S1, then we have 1⊗ ϕ ∈ Cw(R× S1) but 1⊗ ϕ ̸∈ Ch(R× S1).
This is a merit of using Cw(M) (see Subsection 5.6.1).

5.4.2. A relationship with Roe’s odd index. In this subsec-
tion, we give a formal discussion about a relationship with Roe’s odd
index. Firstly, we recall the definition of Roe’s odd index ind(D); see
Section 4.2. Let M be a complete Riemannian manifold, S → M a
Clifford bundle, D the Dirac operator of S and χ a chopping function.
Then we have χ(D) ∈ D∗(M) and q(χ(D)) is independent of a choice
of χ, where q : D∗(M) → D∗(M)/C∗(M) is a quotient map. Moreover,
we have [q((χ(D) + 1)/2)] ∈ K0(D

∗(M)/C∗(M)) by χ2 − 1 ∈ C0(R).
Set ind(D) = δ([q((χ(D) + 1)/2)]) ∈ K1(C

∗(M)).
Secondly, we reconstruct this odd index in terms of KK-theory.

Define c· : C → Cw(M) by cz(x) = z for z ∈ C and x ∈ M . Then we
have c· ∈ KK(C, Cw(M)) since this map c· is a ∗-homomorphism. On
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the other hand, we have [C∗(M) ⊕ C∗(M), µ ⊕ µ, χ(D) ⊕ (−χ(D))] ∈
KK1(Cw(M), C∗(M)) since χ0(x) = x(x2 + 1)−1/2 is a chopping func-
tion and we have χ−χ0 ∈ C0(R). We denote by [D]o this KK element.
Then we obtain c·⊗̂Cw(M)[D]o = ind(D).

Finally, we see our Kasparov product is a counter part of Roe’s odd
index. We composite the suspension isomorphism KK(C, Cw(M)) →
KK1(C, Cw(M)⊗ C0(R)) and a homomorphism induced by the inclu-
sion map Cw(M) ⊗ C0(R) → Cw(M) ⊗ C(S1) → Cw(M × S1). Thus
we get a homomorphism

σ : KK(C, Cw(M)) → KK1(C, Cw(M × S1)).

On the other hand, there is a homomorphismKK1(Cw(M), C∗(M)) →
KK1(Cw(M), C∗(M×S1)) since KK1-group is stably isomorphic. Let
DS1 be the Dirac operator on S1. DS1 induces [DS1 ] ∈ KK1(C(S1),C).
By the composition of the Kasparov product [DS1 ]⊗̂C− and a map in-
duced by this ∗-homomorphism Cw(M × S1) ∋ f 7→ f |M×{1} ⊗ 1 ∈
Cw(M)⊗ C(S1), we get a homomorphism

τ : KK1(Cw(M), C∗(M)) → KK(Cw(M × S1), C∗(M × S1)).

Consequently, by using homomorphisms σ and τ , we may see the Kas-
parov product which we use is a counterpart of Roe’s odd index.

5.4.3. On KKn(Cw(M), C∗(M)). Let N be a closed manifold and
D a Dirac operator on N . D defines an element [D] ∈ KKn(C(N),C).
Since KK groups are stably isomorphic, we have

[D] ∈ KKn(C(N),C) ∼= KKn(C(N),K).

Recall that C∗(N) = K; see Remark 4.1.9. Thus the groupKKn(Cw(M), C∗(M))
is a variation ofKKn(C(N),K) in the case whenM is non compact. Of
course, the element [D] ∈ KK0(Cw(M), C∗(M)) in Proposition 5.1.3
is a variation in the case when M is non compact.

We assume the Dirac operator D is graded. By using the Kasparov
product

⊗̂Cw(M) : K0(Cw(M))×KK0(Cw(M), C∗(M)) → K0(C
∗(M)),

we have [1]⊗̂Cw(M)[D] = [eD]− [p], where we set

eD = (1 +D2)−1

[
1 D−

D+ D−D+

]
and p =

[
0 0
0 1

]
.

This class is studied in [35] and [42], for instance.

5.5. Calculation of the index class

In this section, we calculate our index class explicitly.
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5.5.1. Explicit formula of the index class. In this subsection,
we represent the index class by an element in GLl(C

∗(M)). For this
purpose, we present [D] by the Cuntz picture of KK(Cw(M), C∗(M))
and then we calculate Kasparov product [ϕ]⊗̂Cw(M)[D]. Set

C∗
b (M) =

{
u+

[
f 0
0 g

]
; u ∈ C∗(M), f, g ∈ Cb(M)

}
.

Then C∗
b (M) is a unital C∗-subalgebra of D∗(M) and contains C∗(M)

as an essential ideal. Let χ ∈ C(R; [−1, 1]) be a chopping function. Set
η(x) = (1− χ(x)2)1/2 ∈ C0(R). Then η is a positive even function and
we have η(D) ∈ C∗(M).

Proposition 5.5.1. Let ι : C∗
b (M) ↪→M∞(C∗

b (M)) be the standard
inclusion. We use a standard inclusion M∞(C∗

b (M)) ↪→ B(HC∗(M)).
Set Dχ = χ(D) + ϵη(D) ∈ D∗(M),

ψχ,+(f) = ι

(
Dχ

[
f 0
0 0

]
Dχ

)
and ψ−(f) = ι

([
0 0
0 f

])
.

Then

(ψ+, ψ−) : Cw(M) → B(HC∗(M)) ▷ C
∗(M)⊗K

is a quasihomomorphism from Cw(M) to C∗(M) ⊗ K and one has
[D] = [ψ+, ψ−] under the natural identification KK(Cw(M), C∗(M)) ∼=
KK(Cw(M), C∗(M)tri). We note that we omit the subscript χ for the
simplicity.

Proof. We use Remark 3.2.18. Since the even grading of C∗(M)
is defined by the decomposition of S+⊕S− and η is equal to (1−χ2)1/2

by definition, we have

[D] =

[
E = C∗(M)⊕ C∗(M),

[
µ 0
0 0

]
⊕

[
0 0
0 µ

]
,

[
0 D
D 0

]]
under the isomorphism:

KK0(Cw(M), C∗(M)) ∼= KK0(Cw(M), C∗(M)tri).

Here, we assume as follows:[
µ 0
0 0

]
,

[
0 0
0 µ

]
: Cw(M) → C∗

b (M) ⊂ B(C∗(M)).

Now, we conjugate by D ⊕ 1 ∈ B(E). Then we obtain

[D] =

[
C∗(M)⊕ C∗(M),

[
D(µ⊕ 0)D 0

0 0⊕ µ

]
,

[
0 1
1 0

]]
.
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Since

(
HC∗(M) ⊕HC∗(M), 0,

[
0 1
1 0

])
is a degenerate module, we ob-

tain

[D] =

[
E,

[
D(µ⊕ 0)D 0

0 0⊕ µ

]
,

[
0 1
1 0

]]
⊕
[
HC∗(M) ⊕HC∗(M), 0,

[
0 1
1 0

]]
=

[
(C∗(M)⊕HC∗(M))

2,

[
(D(µ⊕ 0)D)⊕ 0 0

0 (0⊕ µ)⊕ 0

]
,

[
0 1
1 0

]]
.

Then we define a unitary operator W : C∗(M)⊕HC∗(M) → HC∗(M) by
W (a0, (ai)

∞
i=1) = (ai)

∞
i=0 and conjugate by W ⊕W . So we obtain

[D] =

[
HC∗(M) ⊕HC∗(M),

[
ψ+ 0
0 ψ−

]
,

[
0 1
1 0

]]
.

We can show ψ+(f) ∈M∞(C∗
b (M)) by using[[

ψ+ 0
0 ψ−

]
,

[
0 1
1 0

]]
∈ K(ĤC∗(M)).

Therefore, a pair

(ψ+, ψ−) : Cw(M) → B(HC∗(M)) ▷ C
∗(M)⊗K

is a quasihomomorphism from Cw(M) to C∗(M) ⊗ K and we obtain
[D] = [ψ+, ψ−].

□

Remark 5.5.2. By definition, one has

D
[
f 0
0 0

]
D −

[
0 0
0 f

]
= D

[
fη(D)+ [f, χ(D)−]

0 η(D)−f

]
∈ C∗(M)

for any f ∈ Cw(M). This is a direct proof of ψ+(f) ∈M∞(C∗
b (M)).

We recall that the Cuntz picture of Kasparov modules suits the
Kasparov product with an element in K1-group; see Example 3.2.24.

Proposition 5.5.3. For any ϕ ∈ GLl(Cw(M)), one has

Ind(ϕ,D) =

[
D
[
ϕ 0
0 1

]
D
[
1 0
0 ϕ−1

]]
∈ K1(C

∗(M)).

Proof. Firstly, we obtain

ψ+(ϕ− 1) + 1 = j

(
D
[
ϕ 0
0 1

]
D
)

and ψ−(ϕ− 1) + 1 = j

([
1 0
0 ϕ

])
,
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where j : GLl(C
∗
b (M)) → GL∞(C∗

b (M)) is the standard inclusion.
Thus we obtain

Ind(ϕ,D) = [{ψ+(ϕ− 1) + 1}{ψ−(ϕ− 1) + 1}−1]

=

[
D
[
ϕ 0
0 1

]
D
[
1 0
0 ϕ−1

]]
∈ K1(C

∗(M)).

□
The last of this subsection, we back to Connes’ pairing in our main

theorem.

Remark 5.5.4. By Proposition 4.3.9, one has

⟨Ind(ϕ,D), ζ⟩

= − 1

8πi
index

(
ΠD

[
ϕ 0
0 1

]
D
[
1 0
0 ϕ−1

]
Π : Π(L2(M,S))l → Π(L2(M,S))l

)
.

On the other hand, ΠuΠ is Fredholm operator for any u ∈ GLl(C
∗
b (M))

by [f,Π] = 0 for any f ∈ Cb(M). This implies

−8πi⟨Ind(ϕ,D), ζ⟩ = index

(
ΠD

[
ϕ 0
0 1

]
DΠ

)
+ index

(
Π

[
1 0
0 ϕ−1

]
Π

)
= index

(
ΠD

[
ϕ 0
0 1

]
DΠ

)
.

In order to use bellow sections, we fix notation. Set uχ,ϕ = Dχ

[
ϕ 0
0 1

]
Dχ

and vχ,ϕ = uχ,ϕ −
[
1 0
0 ϕ

]
. Then we obtain

vχ,ϕ = Dχ

[
(ϕ− 1)η(D)+ [ϕ, χ(D)−]

0 η(D)−(ϕ− 1)

]
.

5.5.2. Another formula in the special case. By Remark 5.5.4,
our main theorem is the coincidence of two Fredholm indices:

index (Πuχ,ϕΠ) = index(Tϕ).

Both sides of this equation do not change a homotopy of ϕ. There-
fore, it suffices to show the case when ϕ ∈ GLl(W (M)). In this
case, ϕ : M → GLl(C) is a smooth function such that ∥ϕ∥ < ∞,
∥grad(ϕ)∥ <∞ and ∥ϕ−1∥ <∞. Moreover, we also assume that ϕ sat-
isfies [|D|, ϕ] ∈ L(L2(M,S)). This condition is a technical assumption
in this subsection. Set W1(M) = {f ∈ W (M); [|D|, f ] ∈ L(L2(M,S))}.
In this subsection, we use χ0(x) = x(1+x2)−1/2 as a chopping function,
that is, D = Dχ0 .
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In order to prove our main theorem, we perturb the operatorD
[
ϕ 0
0 1

]
D

by a homotopy. Firstly, for any t ∈ [0, 1], set Ft = t + (1 − t)(1 +
D2)−1/2 ∈ D∗(M). For any t ∈ [0, 1] and x ∈ R, set

ft(x) =
1

t+ (1− t)(1 + x2)−1/2
.

We assume t ∈ (0, 1]. Then we obtain F−1
t = ft(D) ∈ D∗(M) by

ft − 1/t ∈ C0(M).
Secondly, because of

(D + ϵ)−1

[
f 0
0 0

]
(D + ϵ)σ −

[
0 0
0 f

]
σ = (D + ϵ)−1

[
f −c(grad(f))−
0 f

]
σ

for any f ∈Ml(W (M)) and σ ∈ C∞
c (M,S), we obtain∥∥∥∥(D + ϵ)−1

[
f 0
0 0

]
(D + ϵ)σ

∥∥∥∥
L2

≤ (2∥f∥+ ∥grad(f)∥)∥σ∥L2 .

This implies

ρ(f) = (D + ϵ)−1

[
f 0
0 0

]
(D + ϵ) ∈ L(L2(M,S))

since C∞
c (M,S) is dense in L2(M,S). Moreover, we obtain ρ(f) ∈

C∗
b (M) by (D + ϵ)−1 ∈ C∗(M) and[

f −c(grad(f))−
0 f

]
∈ D∗(M).

Finally, set ρ0(f) = D
[
f 0
0 0

]
D and ρt(f) = F−1

t ρ(f)Ft for any

t ∈ (0, 1] and f ∈ W (M). Formally, we set F−1
0 = (1 +D2)1/2. Then

we obtain ρt(f) = F−1
t ρ(f)Ft ∈ L(L2(M,S)) for any t ∈ [0, 1] and

f ∈ W (M). Note that we have

ρ0(f) = D
[
f 0
0 0

]
D and ρ1(f) = ρ(f).

This family of bounded operator t 7→ ρt(f) is continuous in C
∗
b (M) for

f ∈ W1(M).

Proposition 5.5.5. For any t ∈ [0, 1] and f ∈ Ml(W1(M)), one
has ρt(f) ∈ Ml(C

∗
b (M)). Moreover, [0, 1] ∋ t 7→ ρt(f) ∈ Ml(C

∗
b (M)) ⊂

Ml(L(L2(M,S))) is continuous.
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Proof. It suffices to show the case when l = 1.
Firstly we show ρt(f) ∈ C∗

b (M). When t = 0, 1, we already proved.
We assume t ∈ (0, 1). We have

ρt(f)−
[
0 0
0 f

]
=F−1

t (D + ϵ)−1

[
tf + (1− t)f(1 +D2)−1/2 tc(grad(f))− + (1− t)[f,D−(1 +D2)−1/2]

0 tf + (1− t)(1 +D2)−1/2f

]
.

Because of F−1
t ∈ D∗(M), (D + ϵ)−1 ∈ C∗(M) and[

tf + (1− t)f(1 +D2)−1/2 tc(grad(f))− + (1− t)[f,D−(1 +D2)−1/2]
0 tf + (1− t)(1 +D2)−1/2f

]
∈ D∗(M),

we obtain ρt(f) ∈ C∗
b (M).

Next, we show continuity of t 7→ ρt(f). F−1
t , ρ(f) and Ft are

bounded operators for any t ∈ (0, 1], and [0, 1] ∋ t 7→ Ft ∈ L(L2(M))
is continuous. Thus t 7→ ρt(f) is continuous on (0, 1]. The rest of proof
is continuity at t = 0. First, we show ∥(D + ϵ)−1F−1

t ∥ ≤ 2 for any
t ∈ [0, 1]. Set

gt(x) =
x

(1 + x2)(t+ (1− t)(1 + x2)−1/2)
=
xft(x)

1 + x2
and

ht(x) =
1

(1 + x2)(t+ (1− t)(1 + x2)−1/2)
=

ft(x)

1 + x2
.

Then we have

|gt(x)| =
1

t(|x|+ 1/|x|) + (1− t)
√
1 + 1/x2

≤ 1

2t+ 1− t
≤ 1

and |ht(x)| ≤ 1. Thus we obtain ∥(D + ϵ)−1F−1
t ∥ ≤ 2 by

(D+ ϵ)−1F−1
t = D(1 +D2)−1F−1

t + ϵ(1 +D2)−1F−1
t = gt(D) + ϵht(D).

By using ∥(D + ϵ)−1F−1
t ∥ ≤ 2, we can prove continuity at t = 0. For

any t > 0, we can calculate

ρt(f)− ρ0(f)

=(D + ϵ)−1F−1
t

[
tf − tf(1 +D2)−1/2 tc(grad(f))− − t[f,D−(1 +D2)−1/2]

0 tf − t(1 +D2)−1/2f

]
+ {(D + ϵ)−1F−1

t −D}
[
f(1 +D2)−1/2 [f,D−(1 +D2)−1/2]

0 (1 +D2)−1/2f

]
.

So the first term converges to 0 with the operator norm as t→ 0.



62 5. MAIN THEOREM

We show the second term converges to 0 with the operator norm as
t→ 0. Because of

D − (D + ϵ)Ft = t(D + ϵ){1− (1 +D2)−1/2},

the second term is equal to

t(D+ϵ)−1F−1
t {(1+D2)−1/2−1}(1+D2)1/2

[
f(1 +D2)−1/2 [f,D−(1 +D2)−1/2]

0 (1 +D2)−1/2f

]
.

Therefore, if (1+D2)1/2f(1+D2)−1/2 and (1+D2)1/2[f,D(1+D2)−1/2]
are bounded, the second term converges to 0 with the operator norm as
t→ 0. We show that (1+D2)1/2f(1+D2)−1/2 and (1+D2)1/2[f,D(1+
D2)−1/2] are bounded. By using following equalities

(D2 + 1)1/2f(D2 + 1)−1/2 = [(D2 + 1)1/2, f ](D2 + 1)−1/2 + f

and

(D2 + 1)1/2[f,D(D2 + 1)−1/2] = [(D2 + 1)1/2, f ]D(D2 + 1)−1/2 + [f,D],

it suffices to show [(D2 + 1)1/2, f ] is a bounded operator. Because of
α(x) =

√
x2 + 1 − |x| ∈ C0(R), we have α(D) ∈ L(L2(M,S)). This

implies [(D2+1)1/2, f ] is bounded if and only if [|D|, f ] is bounded. We
note that boundness of [|D|, f ] is required the definition of the algebra
W1(M). Hence (D2+1)1/2f(D2+1)−1/2 and (D2+1)1/2[f,D(D2+1)−1/2]
are bounded. Thus the second term converges to 0 as t→ 0. Therefore,
t 7→ ρt(f) is continuous.

□

Due to Proposition 5.5.5, the following maps

Π{ρt(ϕ− 1) + 1}Π : Π(L2(M,S))l → Π(L2(M,S))l

determine a continuous family of Fredholm operators for any ϕ ∈
GLl(W1(M)). Therefore, we obtain

⟨Ind(ϕ,D), ζ⟩ = − 1

8πi
index

(
Π(D + ϵ)−1

[
ϕ 0
0 1

]
(D + ϵ)Π

)
for any ϕ ∈ GLl(W1(M)).

Remark 5.5.6. In the definition of ρt, we don’t use the assumption
[|D|, f ] ∈ L(L2(M,S)). In particular, one has ρ(f) ∈ C∗

b (M) for f ∈
W (M). Set ϱ(ϕ) = ρ(ϕ − 1) + 1 for any ϕ ∈ GLl(W (M)). Then the
operator Πϱ(ϕ)Π is Fredholm for all ϕ ∈ GLl(W (M)).
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5.6. Proof of Main theorem

We prove our main theorem. The proof is made of two Steps. The
first step is the proof in the case when R×N . The second step is the
reduction to R×N . This strategy is a common strategy for the proof
of an index theorem for partitioned manifolds.

5.6.1. The case for R×N . Let N be a closed manifold. In this
subsection, we prove Theorem 5.2.1 in the case when M = R × N .
Recall that R ×N is partitioned by (R+ ×N,R− ×N, {0} ×N). Let
SN → N be a Clifford bundle, cN the Clifford action on SN and DN

the Dirac operator on SN . Given ϕ ∈ C∞(N ;GLl(C)), we define the

map ϕ̃ : R ×N → GLl(C) by ϕ̃(t, x) = ϕ(x). We often denote ϕ̃ by ϕ
in the sequel. Note that we have ϕ ∈ GLl(W1(R×N)).

Let p : R×N → N be the projection to N . Set S = p∗SN ⊕ p∗SN
and ϵ = 1⊕(−1), where ϵ is the grading operator on S. Then we define
a Clifford action c on S by

c(d/dt) =

[
0 1
−1 0

]
and c(X) =

[
0 cN(X)

cN(X) 0

]
for all X ∈ C∞(N, TN). Here d/dt is a coordinate unit vector field on
R. Then S →M is a Clifford bundle and the Dirac operator D of S is
given by

D =

[
0 d/dt+DN

−d/dt+DN 0

]
.

Denote by H+ the subspace of L2(N,SN) which is generated by non-
negative eigenvectors of DN . Also denote by H− the orthogonal com-
plement of H+ in L2(M,S). Set F = 2P −1, where P is the projection
to H+.

Due to Subsection 5.5.2, it suffices to show

index

(
Π(D + ϵ)−1

[
ϕ 0
0 1

]
(D + ϵ)Π

)
= index(Tϕ).

For this purpose, we perturb the operator Πϱ(ϕ)Π by a homotopy. We
firstly estimate the supuremum of some functions to prove a continuity
of the homotopy.

Lemma 5.6.1. (i) Set

fs(x) =
x

x2 + (1− s)2
and gs(x) =

1

x2 + (1− s)2

for all s ∈ [0, 1] and x ∈ R\(−s, s). Then one has supx |fs(x)| ≤ 2
and supx |gs(x)| ≤ 2 for all s ∈ [0, 1].
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(ii) Set

µλ,s(x) =
1

x2 + {(1− s)λ+ ssgn(λ)}2 + (1− s)2

and

νλ,s(x) =
x

x2 + {(1− s)λ+ ssgn(λ)}2 + (1− s)2

for all λ ∈ R, s ∈ [0, 1) and x ∈ R, where sgn(λ) is 1 if λ ≥ 0 or
−1 if λ < 0. Then one has

sup
x

|µλ,s(x)| ≤
1

(1− s)2(λ2 + 1)
and sup

x
|νλ,s(x)| ≤

1

2(1− s)
√
λ2 + 1

for all λ ∈ R, s ∈ [0, 1).

Proof. (i) For 0 ≤ s ≤ 1/2, we have |fs(x)| ≤ fs(1 − s) ≤ 1. For
1/2 ≤ s ≤ 1, we have |fs(x)| ≤ fs(s) ≤ 2. This implies supx |fs(x)| ≤ 2.
On the other hand, we have |gs(x)| ≤ gs(s) ≤ 2.
(ii) For λ ≥ 0, we have (1 − s)λ + ssgn(λ) ≥ (1 − s)λ ≥ 0. On the
other hand, for λ < 0, we have (1− s)λ+ ssgn(λ) ≤ (1− s)λ < 0. So
we obtain |µλ,s(x)| ≤ hλ,s(0) ≤ 1/(1− s)2(λ2 + 1).

On the other hand, we obtain

|νλ,s(x)| ≤ νλ,s

(√
{(1− s)λ+ ssgn(λ)}2 + (1− s)2

)
≤ 1

2(1− s)
√
λ2 + 1

.

□

Proposition 5.6.2. Set

Ds =

[
0 d/dt+ (1− s)DN + sF

−d/dt+ (1− s)DN + sF 0

]
for all s ∈ [0, 1] and

uϕ,s = (Ds + (1− s)ϵ)−1

[
ϕ 0
0 1

]
(Ds + (1− s)ϵ).

Then the map [0, 1] ∋ s 7→ uϕ,s ∈ L(L2(M,S)l) is continuous.

Proof. It suffices to show the case when l = 1. Since we have
(d/dt)∗ = −d/dt and DN is the Dirac operator on N , Ds is a self-
adjoint closed operator densely defined on domain(Ds) = domain(D).

Next we show σ(Ds) ∩ (−s, s) = ∅ for all s ∈ (0, 1]. Set

Ts =

[
0 d/dt+ (1− s)DN

−d/dt+ (1− s)DN 0

]
and J =

[
0 F
F 0

]
.
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These operators Ts and J are self-adjoint and we have Ds = Ts + sJ
and TsJ + JTs = 2(1 − s)DNF ≥ 0 on domain(D). So for any σ ∈
domain(D), we obtain

∥Dsσ∥2L2 = ∥Tsσ∥2L2+s2∥Jσ∥2L2+s⟨(TsJ+JTs)σ, σ⟩L2 ≥ s2∥Jσ∥2L2 = s2∥σ∥2L2 .

This implies σ(Ds) ∩ (−s, s) ̸= ∅. In particular, D1 has a bounded
inverse.

On the other hand, when s ∈ [0, 1), we have (Ds + (1 − s)ϵ)−1 ∈
L(L2(M,S)) since (Ds + (1 − s)ϵ)2 = D2

s + (1 − s)2 is invertible.
Therefore, uϕ,s is well defined as a closed operator on L2(M,S) with
domain(uϕ,s) = domain(D) for all s ∈ [0, 1]. Thus we obtain uϕ,s ∈
L(L2(M,S)) by

uϕ,s =

[
1 0
0 ϕ

]
+(Ds+(1−s)ϵ)−1

[
(1− s)(ϕ− 1) −(1− s)cN(grad(ϕ)) + s[ϕ, F ]

0 (1− s)(ϕ− 1)

]
.

Next we show continuity of [0, 1] ∋ s 7→ uϕ,s ∈ L(L2(M,S)). First,
because of

(Ds + (1− s)ϵ)−1 = fs(Ds) + (1− s)ϵgs(Ds),

we have

(∗) ∥(Ds + (1− s)ϵ)−1∥ ≤ sup
x

|fs(x)|+ (1− s) sup
x

|gs(x)| ≤ 4

by Lemma 5.6.1. Therefore, {∥(Ds + (1 − s)ϵ)−1∥}s∈[0,1] is a bounded
set.

Next, for any s, s′ ∈ [0, 1], we obtain

uϕ,s − uϕ,s′

=(Ds + (1− s)ϵ)−1

[
(s′ − s)(ϕ− 1) (s− s′)cN(grad(ϕ)) + (s− s′)[ϕ, F ]

0 (s′ − s)(ϕ− 1)

]
+ {(Ds + (1− s)ϵ)−1 − (Ds′ + (1− s′)ϵ)−1}[

(1− s′)(ϕ− 1) −(1− s′)cN(grad(ϕ)) + s′[ϕ, F ]
0 (1− s′)(ϕ− 1)

]
=: αs,s′ + βs,s′ .

The first term αs,s′ converges to 0 with the operator norm as s→ s′.
The rest of proof is the second term βs,s′ converges to 0. First, we

assume s′ = 1. Then we obtain

βs,1 = {(Ds + (1− s)ϵ)−1 −D−1
1 }

[
0 [ϕ, F ]
0 0

]
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and

(Ds + (1− s)ϵ)−1 −D−1
1

= (s− 1)(Ds + (1− s)ϵ)−1D−1
1

[
0 DN

DN 0

]
+ (1− s)(Ds + (1− s)ϵ)−1(J − ϵ)D−1

1

sinceDN commutes F and d/dt on domain(D), respectively. Therefore,
the following operator

βs,1 = (s− 1)(Ds + (1− s)ϵ)−1D−1
1

[
0 0
0 DN [ϕ, F ]

]
+ (1− s)(Ds + (1− s)ϵ)−1(J − ϵ)D−1

1

[
0 [ϕ, F ]
0 0

]
converges to 0 with the operator norm as s → 1 since DN [ϕ, F ] is a
pseudodifferential operator of order 0 on N and ∥(Ds + (1 − s)ϵ)−1∥,
∥J∥, ∥ϵ∥ and ∥D−1

1 ∥ are uniformly bounded.
We assume 0 ≤ s′ < 1. Since an operator[

(1− s′)(ϕ− 1) −(1− s′)cN(grad(ϕ)) + s′[ϕ, F ]
0 (1− s′)(ϕ− 1)

]
is bounded, it suffices to show

∥(Ds + (1− s)ϵ)−1 − (Ds′ + (1− s′)ϵ)−1∥ → 0

as s→ s′. We have

(Ds + (1− s)ϵ)−1 − (Ds′ + (1− s′)ϵ)−1

=(s− s′)(Ds + (1− s)ϵ)−1

[
0 DN

DN 0

]
(Ds′ + (1− s′)ϵ)−1

+ (s′ − s)(Ds + (1− s)ϵ)−1(J − ϵ)(Ds′ + (1− s′)ϵ)−1

and the second term converges to 0 with the operator norm as s → s′

by (∗). So it suffices to show

U =

[
0 DN

DN 0

]
(Ds′ + (1− s′)ϵ)−1

=

[
DNA

−1
s′ (−d/dt+ (1− s′)DN + s′F ) −(1− s′)DNA

−1
s′

(1− s′)DNA
−1
s′ DNA

−1
s′ (d/dt+ (1− s′)DN + s′F )

]
is a bounded operator on L2(M,S) = L2(R)2 ⊗ L2(N,SN), where set

As′ = −d2/dt2 + {(1− s′)DN + s′F}2 + (1− s′)2.

Now, if DNA
−1
s′ , iDNA

−1
s′ d/dt and DNA

−1
s′ DN are bounded, then U is

also bounded. We show DNA
−1
s′ DN is bounded. Denote by Eλ the
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λ-eigenspace of DN . Then DNA
−1
s′ DN acts as

λ2{−d2/dt2 + ((1− s′)λ+ s′sgn(λ))
2
+ (1− s′)2}−1

on L2(R) ⊗ Eλ. This operator equals to λ2µλ,s′(id/dt) and we have
∥λ2µλ,s′(id/dt)∥ ≤ 1/(1 − s′)2 by Lemma 5.6.1. Therefore, we obtain
∥DNA

−1
s′ DN∥ ≤ 1/(1−s′)2. Similarly, we can show ∥DNA

−1
s′ ∥ ≤ 1/(1−

s′)2 (use µλ,s′) and ∥iDNA
−1
s′ d/dt∥ ≤ 1/2(1− s′) (use νλ,s′). Thus U is

bounded. Therefore, we obtain

∥(Ds + (1− s)ϵ)−1 − (Ds′ + (1− s′)ϵ)−1∥ → 0

as s→ s′ as required.
□

By Proposition 5.6.2, Πuϕ,sΠ is a continuous path in L(Π(L2(M,S))l).
In fact, this continuous path is a desired homotopy of Fredholm oper-
ators.

Proposition 5.6.3. Set

vϕ,s = uϕ,s −
[
1 0
0 ϕ

]
for all s ∈ [0, 1]. One has [Π, vϕ,s] ∼ 0. Therefore Πuϕ,sΠ : Π(L2(M,S)) →
Π(L2(M,S)) is a Fredholm operator.

Proof. It suffices to show the case when l = 1. Due to Proposition
5.6.2 and closedness of K(L2(M,S)), we may assume s ∈ [0, 1).

First, we show g · (Ds + (1 − s)ϵ)−1 ∼ 0 for any g ∈ C0(R). Since
C∞
c (R) is dense in C0(R), it suffices to show the case when g ∈ C∞

c (R).
Because Ts (see in the proof of Proposition 5.6.2) is a first order elliptic
differential operator and g commutes with a operator on N , we have

∥g(Ds + (1− s)ϵ)−1u∥H1

≤ C(∥g(Ds + (1− s)ϵ)−1u∥L2 + ∥Tsg(Ds + (1− s)ϵ)−1u∥L2)

≤ C ′∥u∥L2

for any u ∈ L2(M,S). Here, ∥ · ∥H1 is the Sobolev first norm on a
compact set Supp(g) × N and C ′ > 0 depends only on ∥g∥ and ∥g′∥.
By the Rellich lemma, we have g(Ds + (1 − s)ϵ)−1 ∼ 0. Thus we also
have (Ds + (1− s)ϵ)−1g = (ḡ(Ds + (1− s)ϵ)−1)∗ ∼ 0.

Second, we show [φ, (Ds + (1 − s)ϵ)−1] ∼ 0 for any φ ∈ C∞(R)
satisfying φ = Π on the complement of a compact set in M . Since φ
commutes with a operator on N , we have

[φ, (Ds+(1−s)ϵ)−1] = (Ds+(1−s)ϵ)−1

[
0 φ′

−φ′ 0

]
(Ds+(1−s)ϵ)−1 ∼ 0.
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By a similar proof in the proof of Proposition 4.3.3 (ii), we have
[Π, (Ds + (1− s)ϵ)−1] ∼ 0. Therefore, we have

Πvϕ,s = Π(Ds + (1− s)ϵ)−1

[
(1− s)(ϕ− 1) −(1− s)cN(grad(ϕ)) + s[ϕ, F ]

0 (1− s)(ϕ− 1)

]
∼ (Ds + (1− s)ϵ)−1Π

[
(1− s)(ϕ− 1) −(1− s)cN(grad(ϕ)) + s[ϕ, F ]

0 (1− s)(ϕ− 1)

]
= vϕ,sΠ.

This implies Πuϕ,sΠ : Π(L2(M,S)) → Π(L2(M,S)) is a Fredholm
operator.

□

Due to Propositions 5.6.2 and 5.6.3,

index(Πϱ(ϕ)Π : Π(L2(M,S)) → Π(L2(M,S)))

is equal to index(Πuϕ,1Π). Let H : L2(R) → L2(R) be the Hilbert
transformation:

Hf(t) = − i

π
p.v.

∫
R

f(y)

t− y
dy.

Then the eigenvalues of H are only 1 and −1 by H2 = 1 and H ̸=
±1. Let H− be the (−1)-eigenspace of H and P̂ : L2(R) → H− the
projection to H−.

Proposition 5.6.4. Set Tϕ = (−it+F )−1ϕ(−it+F ). Then P̂TϕP̂
∗

is a Fredholm operator and one has

index(Πϱ(ϕ)Π : Π(L2(M,S)) → Π(L2(M,S))) = index(P̂TϕP̂
∗ : X → X),

where we set X = H− ⊗ L2(N,SN).

Proof. Due to Propositions 5.6.2 and 5.6.3, we have

index(Πϱ(ϕ)Π : Π(L2(M,S)) → Π(L2(M,S)))

=index(Πuϕ,0Π : Π(L2(M,S)) → Π(L2(M,S)))

=index(Πuϕ,1Π : Π(L2(M,S)) → Π(L2(M,S))).

Now, because of

uϕ,1 =

[
0 (−d/dt+ F )−1

(d/dt+ F )−1 0

] [
ϕ 0
0 1

] [
0 d/dt+ F

−d/dt+ F 0

]
=

[
1 0
0 (d/dt+ F )−1ϕ(d/dt+ F )

]
,



5.6. PROOF OF MAIN THEOREM 69

we have

index(Πϱ(ϕ)Π : Π(L2(M,S)) → Π(L2(M,S)))

= index(Π(d/dt+ F )−1ϕ(d/dt+ F )Π on Π(L2(R))⊗ L2(N,SN)).

Let F : L2(R) → L2(R) be the Fourier transformation:

F [f ](ξ) =

∫
R
e−ixξf(x)dx.

Then, we have F−1ΠF = (1−H)/2 = P̂ and F−1d/dtF = −it. This
implies

index(Πϱ(ϕ)Π : Π(L2(M,S)) → Π(L2(M,S)))

= index(Π(d/dt+ F )−1ϕ(d/dt+ F )Π on Π(L2(R))⊗ L2(N,SN))

= index(P̂TϕP̂
∗ : X → X).

□

Thus, it suffices to calculate index(P̂TϕP̂
∗) in order to prove the

main theorem. For this purpose, we use eigenfunctions of the Hilbert
transformation; see Theorem A.3.

Proposition 5.6.5. One has index(P̂TϕP̂
∗) = index(Tϕ). There-

fore, Theorem 5.2.1 for M = R×N holds.

Proof. Set X0 = C{a0} ⊗H+ and X1 = (SpanC{an}n≥1 ⊗H+)⊕
(H− ⊗ H−). Note that we have X0 ⊕ X1 = H− ⊗ L2(N,SN) = X.
Let p : H− → C{a0} be the projection to C{a0}. Then p0 = p ⊗ P :
X → X0 is the projection to X0 and p1 = idX − p0 : X → X1 is the
projection to X1.

By the decomposition of L2(N,SN) = H+ ⊕H−, we have

Tϕ =

[
idL2(R) ⊗ PϕP ∗ t−i

t+i
⊗ Pϕ(1− P )∗

t+i
t−i ⊗ (1− P )ϕP ∗ idL2(R) ⊗ (1− P )ϕ(1− P )∗

]
.

So we obtain

P̂TϕP̂
∗p∗0 = p∗ ⊗ PϕP ∗ = idC{a0} ⊗ Tϕ

and

TϕP̂
∗p∗1 =

[
(P̂ − p)∗ ⊗ PϕP ∗ t−i

t+i
P̂ ∗ ⊗ Pϕ(1− P )∗

t+i
t−i(P̂ − p)∗ ⊗ (1− P )ϕP ∗ P̂ ∗ ⊗ (1− P )ϕ(1− P )∗

]
.

This implies Image(P̂TϕP̂
∗p∗0) ⊂ X0, Image(TϕP̂

∗p∗1) ⊂ X1 and

(P̂Tϕ−1P̂ ∗p∗1)(P̂TϕP̂
∗p∗1) = P̂Tϕ−1TϕP̂

∗p∗1 = idX1 .
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So P̂TϕP̂
∗ forms a direct sum of an invertible part P̂TϕP̂

∗p∗1 and an-

other part P̂TϕP̂
∗p∗0:

P̂TϕP̂
∗ =

[
P̂TϕP̂

∗p∗0 0

0 P̂TϕP̂
∗p∗1

]
on X0 ⊕X1.

This proves index(P̂TϕP̂
∗) = index(P̂TϕP̂

∗p∗0) = index(Tϕ). □

We note that we also get

index (Πuχ,ϕΠ) = index(Tϕ).

5.6.2. The general case. In this section we reduce the proof for
the general partitioned manifold to that of R × N . Our argument is
similar to Higson’s argument in Subsection 4.4.3. However, we should
rewrite Higson’s argument to suit our theorem. By above sections, it
suffices to show the case when ϕ ∈ GLl(W (M)). Firstly, we shall show
a cobordism invariance.

Lemma 5.6.6. Let (M+,M−, N) and (M+′,M−′, N ′) be two par-
titions of M . Assume that these two partitions are cobordant, that
is, symmetric differences M±△M∓′ are compact. Let Π and Π′ be
the characteristic function of M+ and M+′, respectively. Take ϕ ∈
GLl(W (M)). Then one has index(Πuχ,ϕΠ) = index(Π′uχ,ϕΠ

′) and
index(Πϱ(ϕ)Π) = index(Π′ϱ(ϕ)Π′).

Proof. It suffices to show the case when l = 1. By [ϕ,Π] = 0 and
[uχ,ϕ,Π] ∼ 0, we obtain

index(Πuχ,ϕΠ : Π(L2(M,S)) → Π(L2(M,S)))

=index

(
(1− Π)

[
1 0
0 ϕ

]
+Πuχ,ϕΠ : L2(M,S) → L2(M,S)

)
=index

(
(1− Π)

[
1 0
0 ϕ

]
+Πuχ,ϕ : L

2(M,S) → L2(M,S)

)
=index

([
1 0
0 ϕ

]
+Πvχ,ϕ : L

2(M,S) → L2(M,S)

)
.

Therefore, it suffices to show Πvχ,ϕ ∼ Π′vχ,ϕ. Now, sinceM
±△M∓′ are

compact, there exists f ∈ C0(M) such that Π−Π′ = (Π−Π′)f . So we
obtain Πvχ,ϕ − Π′vχ,ϕ = (Π − Π′)fvχ,ϕ ∼ 0. By the similar argument,
we can prove index(Πϱ(ϕ)Π) = index(Π′ϱ(ϕ)Π′).

□

Secondly, we shall prove an analogue of Higson’s Lemma.
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Lemma 5.6.7. Let M1 and M2 be two partitioned manifolds and
Sj →Mj a Hermitian vector bundle. Let Πj be the characteristic func-
tion of M+

j . We assume that there exists an isometry γ : M+
2 → M+

1

which lifts an isomorphism γ∗ : S1|M+
1
→ S2|M+

2
. We denote the Hilbert

space isometry defined by γ∗ by the same letter γ∗ : Π1(L
2(M1, S1)) →

Π2(L
2(M2, S2)). Take uj ∈ GLl(C

∗
b (Mj)) such that γ∗u1Π1 ∼ Π2u2γ

∗.
Then one has index(Π1u1Π1) = index(Π2u2Π2).

Similarly, if there exists an isometry γ : M−
2 → M−

1 which lifts an
isomorphism γ∗ : S1|M−

1
→ S2|M−

2
and γ∗u1Π1 ∼ Π2u2γ

∗, then one has

index(Π1u1Π1) = index(Π2u2Π2).

Proof. It suffices to show the case when l = 1. Let v : (1 −
Π1)(L

2(M1, S1)) → (1 − Π2)(L
2(M2, S2)) be any invertible operator.

Then V = γ∗Π1 + v(1 − Π1) : L2(M1, S1) → L2(M2, S2) is also an
invertible operator. Hence we obtain

V ((1− Π1) + Π1u1Π1)− ((1− Π2) + Π2u2Π2)V

= γ∗Π1u1Π1 − Π2u2Π2γ
∗

∼ γ∗u1Π1 − Π2u2γ
∗ ∼ 0.

Therefore, we obtain index(Π1u1Π1) = index(Π2u2Π2) since V is an
invertible operator and one has index(ΠjujΠj) = index((1 − Πj) +
ΠjujΠj) for j = 1, 2.

□

Applying Lemma 5.6.7, we prove the following:

Corollary 5.6.8. Let M1 and M2 be two partitioned manifolds.
Let Sj →Mj be a graded Clifford bundle with the grading ϵj, and denote
by Dj the graded Dirac operator of Sj. We assume that there exists
an isometry γ : M+

2 → M+
1 which lifts isomorphism γ∗ : S1|M+

1
→

S2|M+
2

of graded Clifford structures. Moreover, we assume that ϕj ∈
GLl(W (M)) satisfies ϕ1(γ(x)) = ϕ2(x) for all x ∈ M+

2 . Then one has
index(Π1uχ,ϕ1Π1) = index(Π2uχ,ϕ2Π2).

Proof. Fix small R > 0. It suffices to show γ∗uχ,ϕ1Π1 ∼ Π2uχ,ϕ2γ
∗

the case when a chopping function χ ∈ C(R; [−1, 1]) satisfies Supp(χ̂) ⊂
(−R,R). Set N2R = {x ∈ M+

1 ; d(x,N1) ≤ 2R}. Let φ1 be a smooth
function on M1 such that Supp(φ1) ⊂ M+

1 \ N2R and assume that
there exists a compact set K ⊂ M1 such that φ1 = Π1 on M1 \ K.
Set φ2(x) = φ1(γ(x)) for all x ∈ M+

2 and φ2 = 0 on M−
2 . Then we

have γ∗vχ,ϕ1Π1 ∼ γ∗vχ,ϕ1φ1 and Π2vχ,ϕ2γ
∗ ∼ φ2vχ,ϕ2γ

∗. Thus, if one
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has γ∗vχ,ϕ1φ1 ∼ φ2vχ,ϕ2γ
∗, then we obtain

γ∗uχ,ϕ1Π1 ∼ γ∗vχ,ϕ1φ1+γ
∗
[
1 0
0 ϕ1

]
Π1 ∼ φ2vχ,ϕ2γ

∗+Π2

[
1 0
0 ϕ2

]
γ∗ ∼ Π2uχ,ϕ2γ

∗.

We shall show γ∗vχ,ϕ1φ1 ∼ φ2vχ,ϕ2γ
∗. Now, we have γ∗vχ,ϕ1φ1 =

vχ,ϕ2γ
∗φ1 since we have γ∗D = Dγ∗ on M+ and the propagation

of χ(D) and η(D) is less than R, respectively. Moreover, we have
[vχ,ϕ2 , φ2] ∼ 0 by vχ,ϕ2 ∈Ml(C

∗(M)). Therefore, we have

γ∗vχ,ϕ1φ1 = vχ,ϕ2γ
∗φ1 = vχ,ϕ2φ2γ

∗ ∼ φ2vχ,ϕ2γ
∗.

□
In order to prove Corollary 5.2.2, we apply Lemma 5.6.7 as follows:

Corollary 5.6.9. We also assume as in Corollary 5.6.8. Then
one has index(Π1ϱ(ϕ1)Π1) = index(Π2ϱ(ϕ2)Π2).

Proof. It suffices to show γ∗ϱ(ϕ1)Π1 ∼ Π2ϱ(ϕ2)γ
∗. Let φ1 be a

smooth function on M1 such that Supp(φ1) ⊂ M+
1 and assume that

there exists a compact set K ⊂M1 such that φ1 = Π1 on M1 \K. Set
φ2(x) = φ1(γ(x)) for all x ∈M+

2 and φ2 = 0 onM−
2 . Set vϕj = ϱ(ϕj)−[

1 0
0 ϕj

]
. Then we have γ∗vϕ1Π1 ∼ γ∗vϕ1φ1 and Π2vϕ2γ

∗ ∼ φ2vϕ2γ
∗.

Thus, if one has γ∗vϕ1φ1 ∼ φ2vϕ2γ
∗, then we obtain

γ∗ϱ(ϕ1)Π1 ∼ γ∗vϕ1φ1+γ
∗
[
1 0
0 ϕ1

]
Π1 ∼ φ2vϕ2γ

∗+Π2

[
1 0
0 ϕ2

]
γ∗ ∼ Π2ϱ(ϕ2)γ

∗.

We shall show γ∗vϕ1φ1 ∼ φ2vϕ2γ
∗. In fact, we obtain

γ∗vϕ1φ1 − φ2vϕ2γ
∗

= γ∗(D1 + ϵ1)
−1

[
ϕ1 − 1 −c(grad(ϕ1))

−

0 ϕ1 − 1

]
φ1

− φ2(D2 + ϵ2)
−1

[
ϕ2 − 1 −c(grad(ϕ2))

−

0 ϕ2 − 1

]
γ∗

= {γ∗(D1 + ϵ1)
−1φ1 − φ2(D2 + ϵ2)

−1γ∗}
[
ϕ1 − 1 −c(grad(ϕ1))

−

0 ϕ1 − 1

]
∼ {γ∗φ1(D1 + ϵ1)

−1 − (D2 + ϵ2)
−1γ∗φ1}

[
ϕ1 − 1 −c(grad(ϕ1))

−

0 ϕ1 − 1

]
= (D2 + ϵ2)

−1{(D2 + ϵ2)γ
∗φ1 − γ∗φ1(D1 + ϵ1)}(D1 + ϵ1)

−1

[
ϕ1 − 1 −c(grad(ϕ1))

−

0 ϕ1 − 1

]
∼ (D2 + ϵ2)

−1γ∗[D1, φ1](D1 + ϵ1)
−1

[
ϕ1 − 1 −c(grad(ϕ1))

−

0 ϕ1 − 1

]
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∼ 0

since grad(φ1) has a compact support and [D1, φ1] = c(grad(φ1)). Thus
we get γ∗uϕ1Π1 ∼ Π2uϕ2γ

∗. Therefore, we obtain index(Π1uϕ1Π1) =
index(Π2uϕ2Π2) by Lemma 5.6.7.

□
Proof of Theorem 5.2.1, the general case. We assume ϕ ∈

GLl(W (M)). Firstly, let a ∈ C∞([−1, 1]; [−1, 1]) satisfies

a(t) =


−1 if − 1 ≤ t ≤ −3/4

0 if − 2/4 ≤ t ≤ 2/4

1 if 3/4 ≤ t ≤ 1

.

Let (−4δ, 4δ)×N be diffeomorphic to a tubular neighborhood of N in
M satisfies

sup
(t,x),(s,y)∈[−3δ,3δ]×N

|ϕ(t, x)− ϕ(s, y)| < ∥ϕ−1∥−1.

Set ψ(t, x) = ϕ(4δa(t), x) on (−4δ, 4δ)×N and ψ = ϕ onM\(−4δ, 4δ)×
N . Then we obtain ψ ∈ GLl(W (M)) and ∥ψ − ϕ∥ < ∥ϕ−1∥−1. Thus
a map [0, 1] ∋ t 7→ ψt = tψ + (1 − t)ϕ ∈ GLl(W (M)) is continuous
with the uniform norm. Therefore, it suffices to show the case when
ϕ ∈ GLl(W (M)) satisfies ϕ(t, x) = ϕ(0, x) on (−2δ, 2δ) × N . Due to
Lemma 5.6.6, we may change a partition of M to (M+ ∪ ([−δ, 0] ×
N),M− \ ((−δ, 0] × N), {−δ} × N) without changing index(Πuχ,ϕΠ).
Due to Corollary 5.6.8, we may changeM+∪([−δ, 0]×N) to [−δ,∞)×
N without changing index(Πuχ,ϕΠ). Here ϕ is equal to ϕ(0, x) on
[−δ,∞) × N and the metric on [0,∞) × N is product. We denote
this manifold by M ′ = ([−δ,∞) × N) ∪ (M− \ ((−δ, 0] × N)). M ′ is
partitioned by ([−δ,∞)×N,M−\((−δ, 0]×N), {−δ}×N). We apply a
similar argument toM ′, we may changeM ′ to a product R×N without
changing index(Πuχ,ϕΠ). Now we have changed M to R×N . □

Proof of Corollary 5.2.2, the general case. Similar. □

5.7. Example

In this section, we deal with M = R × S1 and ϕk(x) = eikx as an
example of the main theorem. We can calculate independently both
sides of our main formula. This calculation is contained in [38]. The
Dirac operator D on S = R×S1×C2 is given by the following formula:

D =

[
0 ∂/∂t− i∂/∂x

−∂/∂t− i∂/∂x 0

]
,

where we use the coordinate (t, x) ∈ R× S1.
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Due to Subsection 5.5.2, we have

⟨Ind(ϕk, D), ζ⟩ = − 1

8πi
index

(
Π(D + ϵ)−1

[
ϕk 0
0 1

]
(D + ϵ)Π

)
.

In order to calculate the right hand side of the above, we firstly
perturb this operator by a homotopy.

Proposition 5.7.1. For any s ∈ [0, 1], set

Ds =

[
0 ∂/∂t+ s/2− i∂/∂x

−∂/∂t+ s/2− i∂/∂x 0

]
= D +

[
0 s/2
s/2 0

]
and uk,s = (Ds + (1− s)ϵ)−1

[
ϕk 0
0 1

]
(Ds + (1− s)ϵ).

Then [0, 1] ∋ s 7→ uk,s ∈ GL1(C
∗
b (M)) is continuous.

Proof. For the simplicity, we omit the subscript k in this proof.
We note that ∥Dsf∥L2 ≥ s∥f∥L2/2 for any f ∈ domain(Ds) = domain(D)
and s ∈ (0, 1]. Moreover, Ds is self-adjoint. Therefore, the spec-
trum of Ds and (−s/2, s/2) are disjoint, in particular, we have D−1

1 ∈
L(L2(M,S)).

Because of (Ds + (1− s)ϵ)2 = D2
s + (1− s)2, we obtain

(Ds + (1− s)ϵ)−1 =
Ds

D2
s + (1− s)2

+ (1− s)
ϵ

D2
s + (1− s)2

∈ C∗(M).

Therefore, us is well defined as a closed operator densely defined on
domain(us) = domain(D). By simple computation, we obtain

us =

[
1 0
0 ϕ

]
+ (Ds + (1− s)ϵ)−1

[
(1− s)(ϕ− 1) i∂ϕ/∂x

0 (1− s)(ϕ− 1)

]
and us ∈ GL1(C

∗
b (M)).

Next we show ∥us − us′∥ → 0 as s → s′ for all s′ ∈ [0, 1]. First, we
show {∥(Ds+(1−s)ϵ)−1∥}s∈[0,1] is a bounded set. Set fs(x) =

x
x2+(1−s)2

and gs(x) =
1

x2+(1−s)2 for x ∈ R \ (−s/2, s/2). By simple computation,

we can show

sup
|x|≥s/2

|fs(x)| ≤
5

2
and sup

|x|≥s/2
|gs(x)| ≤

5

4
.

Therefore, we obtain

∥(Ds + (1− s)ϵ)−1∥ ≤ ∥(D2
s + (1− s)2)−1Ds∥+ ∥(1− s)(D2

s + (1− s)2)−1∥
≤ sup

|x|≥s/2
|fs(x)|+ sup

|x|≥s/2
|gs(x)| ≤ 15/4(∗)
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for all s ∈ [0, 1]. On the other hand, we have

us − us′ ={(Ds + (1− s)ϵ)−1 − (Ds′ + (1− s′)ϵ)−1}
[
(1− s)(ϕ− 1) iϕ′

0 (1− s)(ϕ− 1)

]
+ (Ds′ + (1− s′)ϵ)−1

[
(s′ − s)(ϕ− 1) 0

0 (s′ − s)(ϕ− 1)

]
and then the second term converges to 0 with the operator norm as s→
s′, thus it suffices to show ∥(Ds+(1− s)ϵ)−1− (Ds′ +(1− s′)ϵ)−1∥ → 0
as s→ s′. But this is proved by (∗) as follows:

∥(Ds + (1− s)ϵ)−1 − (Ds′ + (1− s′)ϵ)−1∥
=∥(Ds + (1− s)ϵ)−1((s− s′)ϵ+Ds′ −Ds)(Ds′ + (1− s′)ϵ)−1∥

≤3

2
|s− s′|∥(Ds′ + (1− s′)ϵ)−1∥∥(Ds + (1− s)ϵ)−1∥

≤32|s− s′| → 0.

□
Due to Proposition 5.7.1, we obtain

index

(
Π(D + ϵ)−1

[
ϕk 0
0 1

]
(D + ϵ)Π

)
= index(Πuk,0Π) = index(Πuk,1Π).

Set

Tk = Π(∂/∂t+ 1/2− i∂/∂x)−1ϕk(∂/∂t+ 1/2− i∂/∂x)Π.

By Πuk,1Π =

[
Π 0
0 Tk

]
, it suffices to calculate

index
(
Tk : Π(L

2(R))⊗ L2(S1)l → Π(L2(R))⊗ L2(S1)l
)
.

Next, we treat the Fredholm index of Tk . Since the Fourier trans-
formation F induces an invertible operator from H− to Π(L2(R)), so
we obtain

index
(
Tk : Π(L

2(R))⊗ L2(S1) → Π(L2(R))⊗ L2(S1)
)

=index
(
F−1TkF : H− ⊗ L2(S1) → H− ⊗ L2(S1)

)
.

Set

T̂k = F−1TkF = P̂ (−it+ 1/2− i∂/∂x)−1ϕk(−it+ 1/2− i∂/∂x)P̂ ∗.

In order to calculate the Fredholm index of T̂k, we use Example A.5.
Let Eλ = C{eiλx} be the λ-eigenspace of −i∂/∂x. On H− ⊗ Eλ, T̂k

acts as

P̂ (−it+ 1/2 + λ+ k)−1(−it+ 1/2 + λ)P̂ ∗ ⊗ ϕk.
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Thus T̂k(H− ⊗ Eλ) is contained in H− ⊗ Eλ+k. Therefore, we obtain

index(T̂k)

=
∞∑

λ=−∞

index

(
P̂

t+ i(λ+ 1/2)

t+ i(λ+ k + 1/2)
P̂ ∗ ⊗ ϕk : H− ⊗ Eλ → H− ⊗ Eλ+k

)
=− k

by Example A.5.
Summarizing, we have

⟨Ind(ϕk, D), ζ⟩ = k

8πi
.

On the other hand, index(Tϕk) = −k calculates the right hand side of
the main theorem.



APPENDIX A

The Hilbert transformation

In this appendix, we recall the Hilbert transformation and the index
theorem for Wiener-Hopf operators. We can see its index theorem is a
variant of that of the Toeplitz operators.

Let F : L2(R) → L2(R) be the Fourier transformation:

F [f ](ξ) =

∫
R
e−ixξf(x)dx.

Let H : L2(R) → L2(R) be the Hilbert transformation 1:

Hf(t) = − i

π
p.v.

∫
R

f(y)

t− y
dy = − i

π
lim
ϵ↓0

∫
|t−y|>ϵ

f(y)

t− y
dy,

where p.v. is the Cauchy principal value. Let sgn be the signature
function, that is, sgn(x) is equal to 1 if x ≥ 0 or −1 if x < 0. Then H
can be verified H = −F−1sgnF . By this formula, we have H2 = id
and H∗ = H. Thus L2(R) is decomposed by H+, the 1-eigen space of

H, and H−, the −1-eigen space of H. Denote by P̂ : L2(R) → H− the

projection to H−, that is, we set P̂ = 1
2
(id−H).

Proposition A.2. We have the following.

(i) We assume f ∈ L2(R) can be extended to {z ∈ C ; Im(z) ≥ 0} as
follows: f is holomorphic on {z ∈ C ; Im(z) ≥ 0} and there exists
C > 0 such that we have

∫
R |f(x + iy)|2dx < C for any y ≥ 0.

Then we have Hf = −f .
(ii) We assume f ∈ L2(R) can be extended to {z ∈ C ; Im(z) ≤ 0} as

follows: f is holomorphic on {z ∈ C ; Im(z) ≤ 0} and there exists
C > 0 such that we have

∫
R |f(x + iy)|2dx < C for any y ≤ 0.

Then we have Hf = f .

Proof. We show only (i). Set Cr(t) = {reiω + t ; 0 ≤ ω ≤ π} for
r > 0 and t ∈ R. We assume the orientation of Cr(t) is counterclock-
wise. Take a, b > |t| and sufficiently small ϵ > 0, and let C be a integral
cycle as in Figure A.1. Since f is a holomorphic function on the upper

half plane, we have
∫
C
f(z)
z−t dz = 0.

1In literature, the coefficient of the Hilbert transformation in the right hand side is
usually 1/π. We need i times in order to get H2 = id.
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Figure A.1. Integral cycle C

Because of f(±a+ iy) → 0 as a→ +∞ for any y ≥ 0, we have∣∣∣∣∫ a+ib

a

f(z)

z − t
dz

∣∣∣∣ ≤ ∫ b

0

|f(a+ iy)|
|a+ iy| − |t|

dy → 0 as a→ +∞ and∣∣∣∣∫ −a

−a+ib

f(z)

z − t
dz

∣∣∣∣ ≤ ∫ b

0

|f(−a+ iy)|
| − a+ iy| − |t|

dy → 0 as a→ +∞.

On the other hand,
∫
R |f(x+ iy)|2dx < C implies∣∣∣∣∫ −∞+ib

∞+ib

f(z)

z − t
dz

∣∣∣∣ ≤ ∫ ∞

−∞

|f(x+ ib)|
|x− t+ ib|

dx

≤
(∫ ∞

−∞
|f(x+ ib)|2dx

)1/2(∫ ∞

−∞

1

(x− t)2 + b2
dx

)1/2

<
π

b
C1/2 → 0 as b→ +∞.

Moreover, we have

lim
ϵ↓0

∫
Cϵ(t)

f(z)

z − t
= πif(t).

By the way, a formula

0 =

∫
C

f(z)

z − t
dz =

∫
−Cϵ(t)

+

∫ a

t+ϵ

+

∫ a+ib

a

+

∫ −a+ib

a+ib

+

∫ −a

−a+ib
+

∫ t−ϵ

−a

f(z)

z − t
dz

and taking ϵ→ 0 and a→ ∞ imply

0 = −πif(t) + p.v.

∫
R

f(y)

y − t
dy +

∫ −∞+ib

∞+ib

f(z)

z − t
dz.

Finally, taking b→ ∞, we have

0 = −πif(t) + p.v.

∫
R

f(y)

y − t
dy.
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Hence we have

p.v.

∫
R

f(y)

t− y
dy = −πif(t).

This implies Hf = −f .
□

For example, L2-functions an(t) = (t− i)n/(t+ i)n+1 satisfy condi-
tions in Proposition A.2. These functions determine a basis of L2(R)
which is defined by eigenvectors of H.

Theorem A.3. [41, Theorem 1] Set

an(t) =
(t− i)n

(t+ i)n+1

for any n ∈ Z and t ∈ R. Then {an/
√
π} is an orthonormal basis of

L2(R) and we have H+ = SpanC{an ; n < 0} and H− = SpanC{an ; n ≥
0}.

Proof. Since we have

⟨an, am⟩L2 =

∫
R

(t− i)n−m−1

(t+ i)n−m+1
dt =

{
π n = m

0 n ̸= m
,

{an/
√
π} is an orthonormal system of L2(R). Due to Proposition A.2,

we have Han = an for any n < 0 and Han = −an for any n ≥ 0.
We prove a completeness of {an}. Basically, our proof is adopted

from [11, p.99]. Let c : R → S1 ⊂ C be the Cayley transformation,
that is, we set c(t) = t−i

t+i
. Define Φ : L2(S1) → L2(R) by

Φ(g)(t) =
1

t+ i
g(c(t)) t ∈ R.

Then Φ is linear and we have ∥Φ(g)∥L2(R) = ∥g∥L2(S1)/
√
2. On the

other hand, define Ψ : L2(R) → L2(S1) by

Ψ(f)(z) = (c−1(z) + i)f(c−1(z)) z ∈ S1 \ {1}.
Then Ψ is the inverse of Φ. Thus we can see L2(S1) ∼= L2(R) by Φ. By
the way, since Φ(zn) = an and {zn} is a basis of L2(S1), {an} is also a
basis of L2(R).

□
By this proof, we can calculate the Fredholm index of the Wienor-

Hopf operator.

Remark A.4. Let f ∈ C(R;GLl(C)) such that

lim
t→∞

f(t) = lim
t→−∞

f(t) ∈ GLl(C).
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By Φ−1fΦ = f ◦ c−1 and Φ−1P̂Φ = P as linear operators on L2(S1)l,
we have

index(P̂ f P̂ ∗ : H l
− → H l

−) = index(Tf◦c−1) = −deg(det(f ◦ c−1)).

Here the last equality is obtained by the index theorem of the Toeplitz
operator on S1.

In particular, we can calculate directly the following Fredholm in-
dices.

Example A.5. For any α, β ̸= 0, P̂
t+ iβ

t+ iα
P̂ ∗ ∈ L(H−) is a Fred-

holm operator and one has

index

(
P̂
t+ iβ

t+ iα
P̂ ∗

)
=


0 if αβ > 0

−1 if α > 0, β < 0

1 if α < 0, β > 0

.

Proof. We can calculate∣∣∣∣ t+ iβ

t+ iα

∣∣∣∣2 = t2 + β2

t2 + α2
> 0

and limt→±∞
t+iβ
t+iα

= 1. Therefore, P̂ t+iβ
t+iα

P̂ ∗ is a Fredholm operator.

We calculate index(P̂ t+iβ
t+iα

P̂ ∗). Set sgn(α) =

{
1 if α ≥ 0

−1 if α < 0
. Then

we define a homotopy of Fredholm operators from P̂ t+iβ
t+iα

P̂ ∗ to P̂ t+isgn(β)
t+isgn(α)

P̂ ∗

by

P̂
t+ i(sβ + (1− s)sgn(β))

t+ i(sα + (1− s)sgn(α))
P̂ ∗

for s ∈ [0, 1]. Therefore, we obtain

index

(
P̂
t+ iβ

t+ iα
P̂ ∗

)
= index

(
P̂
t+ isgn(β)

t+ isgn(α)
P̂ ∗

)
=


0 if αβ > 0

−1 if α > 0, β < 0

1 if α < 0, β > 0

by H− = SpanC{an ; n ≥ 0}.
□
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