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Abstract

We define the algebraic part of motivic cohomology group with compact supportsH2r
c (X,Z(r))

of a smooth scheme X over an algebraically closed field. This generalizes the classical notion

of the algebraic part of the Chow group in codimension r of a smooth proper variety. We

then define algebraic representatives for these algebraic parts as the universal regular homo-

morphisms with targets in the category of semi-abelian varieties. We give a criterion for the

existence of a universal regular homomorphism and show the existence for r = 1, 2 and dimX.

(For the codimension one and two cases, we assume that the scheme X in question has a smooth

compactification X̄ with a simple normal crossing boundary divisor Z.) We prove that the al-

gebraic representative in codimension one agrees with the semi-abelian variety obtained as the

reduction of the identity component of the group scheme that represents the functor of relative

Picard groups, i.e. the functor that sends a scheme T to Pic(T × X̄, T × Z). This implies, as

in the classical case, that the algebraic representative in codimension one is an isomorphism.
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Convention

Schemes are assumed separated and of finite type over some field.

A curve means a connected (not necessarily smooth) scheme of pure dimension one.

The symbol k stands for an algebraically closed field except in Chapter 2.

By resolution of singularities, we mean that the base field k “admits resolution of singular-

ities” in the sense of [FV, Definition 3.4]:

• For any scheme X over k, there is a proper surjective morphism Y −→ X such that Y is

a smooth scheme over k.

• For any smooth scheme X over k and abstract blow-up q : X ′ −→ X, there exists a

sequence of blow-ups with smooth centers p : Xn −→ · · · −→ X1 = X such that p factors

through q.

These conditions are satisfied over any field of characteristic zero (Ibid. Proposition 3.5) by

Hironaka’s resolution of singularities ([Hi]).
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Chapter 1

Introduction

One classical theorem in the study of Chow groups and their algebraic part is the theorem

of Abel and Jacobi on smooth projective curves. It states that there is an isomorphism (known

as the Abel-Jacobi map) from the degree zero part of the Chow group of zero cycles to the

group of rational points of a certain abelian variety known as the Jacobian of the curve.

One generalization of the Abel-Jacobi map to higher dimensions is the concept of algebraic

representatives. Suppose X is a smooth proper connected scheme over an algebraically closed

field k. The subgroup Ar(X) of the Chow group CHr(X) consisting of cycles algebraically

equivalent to zero is called the algebraic part of CHr(X) (See the equation (3.1) in Section 3.1

for a precise definition). A group homomorphism from the algebraic part Ar(X) of the Chow

group CHr(X) to the group of rational points of an abelian variety A that is “continuous” in a

certain sense (see Definition 3.1.1) is called a regular homomorphism. A regular homomorphism

φ : Ar(X) −→ A(k) is said universal if, given any regular homomorphism φ′ : Ar(X) −→ A′(k),

there is a unique homomorphism of abelian varieties h : A −→ A′ such that h ◦φ = φ′ holds. If

such a universal regular homomorphism exists, we call it the algebraic representative of Ar(X).

It is a classical result that the algebraic representative exists for r = 1 and dimX. The case

r = 1 is the theory of Picard varieties and the case r = dimX coincides with the Albanese

variety. The existence for r = 2 is also known by Murre ([Mur, Theorem A]), but the existence

in other codimensions is unknown.

This thesis defines algebraic part and algebraic representatives for arbitrary smooth schemes

over k and proves analogues of some of the classical results in codimension one known for smooth

proper schemes. We replace Chow groups with motivic cohomology with compact supports1.

Below, DM−,eff
Nis (k) is Voevodsky’s triangulated category of effective motives over the base

field k, and M(X) (resp., M c(X)) is the motive (resp., motive with compact supports) of a
1Note that the latter agrees with motivic homology for smooth schemes under resolution of singularities.
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scheme X over k. DM−,eff
Nis (k) has a tensor structure, which is denoted by ⊗. The motive

M(Spec k) of the base field is denoted by Z and it is the unit of the tensor structure on

DM−,eff
Nis (k). Motivic cohomology with compact supports of X is, by definition,

Hm
c (X,Z(n)) := HomDM−,eff

Nis (k)(M
c(X),Z(n)[m]).

Recall that, if X is smooth and proper, there is a canonical isomorphism

H2r
c (X,Z(r)) ∼= CHr(X).

We shall also write

H0(X,Z)0 := ker{H0(X,Z) str∗−→ H0(Spec k,Z)},

where H0(X,Z) := HomDM−,eff
Nis (k)(Z,M(X)). For more details, see Section 2.3.

We define the algebraic part of motivic cohomology with compact supports as follows.

Definition 1.0.1 (Definition 3.2.1). Let X be a smooth scheme over k. The algebraic part

of the motivic cohomology group with compact supports H2r
c (X,Z(r)) is defined as

H2r
c,alg(X,Z(r)) :=

∪
T, smooth
connected

im{H0(T,Z)0×HomDM−,eff
Nis (k)(M(T )⊗M c(X),Z(r)[2r]) −→ H2r

c (X,Z(r))},

where the map sends a pair (z,Y) with

z ∈ H0(T,Z)0 ⊂ HomDM−,eff
Nis (k)(Z,M(T ))

and

Y ∈ HomDM−,eff
Nis (k)(M(T ) ⊗M c(X),Z(r)[2r])

to the composition

M c(X) ∼= Z ⊗M c(X)
z⊗idMc(X)−→ M(T ) ⊗M c(X) Y−→ Z(r)[2r]

in HomDM−,eff
Nis (k)(M

c(X),Z(r)[2r])
def
= H2r

c (X,Z(r)).

This definition agrees with the classical algebraic part of Chow groups of smooth proper

schemes over k as shown in Proposition 3.2.4. (See also Proposition 3.2.5.) The notion of

regular homomorphisms and algebraic representatives naturally generalizes to this setting.

Definition 1.0.2 (Definition 3.3.1). Let X be a smooth scheme over k and let S be a semi-
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abelian variety over k, i.e. an extension of an abelian variety over k by a torus Gm × · · · ×Gm

over k. A group homomorphism φ : H2r
c,alg(X,Z(r)) −→ S(k) is called regular if for any smooth

connected scheme T over k, t0 ∈ T (k) and Y ∈ HomDM−,eff
Nis (k)(M(T )⊗M c(X),Z(r)[2r]), the

composition

T (k) wY−→ H2r
c,alg(X,Z(r))

φ−→ S(k)

is induced by some scheme morphism T −→ S. Here, wY sends t ∈ T (k) to

Y ◦ (t⊗ idMc(X)) − Y ◦ (t0 ⊗ idMc(X)),

where t and t0 are regarded as morphisms from Z to M(T ) in DM−,eff
Nis (k).

Definition 1.0.3 (Definition 3.3.2). A regular homomorphism φ : H2r
c,alg(X,Z(r)) −→ S(k),

is said universal if for any regular homomorphism φ′ : H2r
c,alg(X,Z(r)) −→ S′(k), there is a

unique homomorphism of semi-abelian varieties a : S −→ S′ such that a◦φ = φ′. The universal

regular homomorphism, if it exists, is called the algebraic representative of H2r
c,alg(X,Z(r))

or the algebraic representative with compact supports of X in codimension r, and it

is written as

Φrc,X : H2r
c,alg(X,Z(r)) −→ Algrc,X(k).

Our main results are as follows.

Theorem 1.0.4 (Theorems 3.4.6 and 3.4.7). Let X be a smooth connected scheme of dimension

dX over an algebraically closed field k.

(i) If X has a good compactification (see Definition 3.4.5) and r = 1 or 2, then there is an

algebraic representative

Φrc,X : H2r
c,alg(X,Z(r)) −→ Algrc,X(k).

(ii) If r = dX , then the algebraic representative exists for an arbitrary connected smooth

scheme X.

Along the way, we obtain a motivic proof (Corollary 3.2.9) of the classical fact that alge-

braically equivalent cycles can be parametrized by abelian varieties.

For the case r = 1, we interpret the algebraic representative of H2
c,alg(X,Z(1)) in terms

of the relative Picard group of a good compactification of X. More precisely, we obtain the

following theorem.

Theorem 1.0.5 (Proposition 4.3.5, Theorem 4.3.6). Assume resolution of singularities. If X

is a smooth connected scheme over k, then the algebraic representative in codimension one has
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the form

φ0 : H2
c,alg(X,Z(1)) −→ Pic0X̄,Z,red(k)

and it is an isomorphism. Here, Pic0
X̄,Z,red

is the reduction of the identity component of the

group scheme representing the functor that sends T ∈ Sch/k to the relative Picard group Pic(T×

X̄, T × Z), where (X̄, Z) is a good compactification of X.

This theorem, in particular, implies that Pic0
X̄,Z,red

only depends on X.
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Chapter 2

Preliminaries

In this preliminary chapter, we review concepts and notations from Voevodsky’s homological

theory of motives and collect results relevant to us later.

2.1 The category of finite correspondences

Let k be a perfect field and Sm/k be the category of smooth schemes. For a smooth

schemes X and Y, a closed integral subscheme V of X × Y such that the projection of V

to X is finite and surjective over some connected component of X is called an elementary

correspondence. The group Cork(X,Y ) of finite correspondences from X to Y is defined

as the free abelian group generated by elementary correspondences. For X,Y, Z ∈ Sm/k,

there is a well-defined homomorphism of abelian groups

Cork(X,Y ) × Cork(Y,Z) −→ Cork(X,Z)

that sends the pair (V,W ) ∈ Cork(X,Y ) × Cork(Y, Z) of elementary correspondences to W ◦

V := p∗((V ×Z) ·(X×W )), where p∗ is the pushforward along the projection p : X×Y ×Z −→

X×Z, and the dot “ ·” indicates the intersection product. For finite correspondences V and W,

the cycles V × Z and X ×W intersect properly on X × Y × Z. Thus, the intersection product

is well-defined at the cycle level (see [MVW, Lemma 1.7]). The morphism p is not a proper

morphism in general, but it is proper along the support of (V × Z) · (X ×W ). This makes the

pushforward possible.

We define the category Cork of finite correspondences as the category whose objects are

smooth schemes over k and morphisms are the groups of finite correspondences, i.e.

HomCork
(X,Y ) := Cork(X,Y ).
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Cork is an additive category. We regard Sm/k as a subcategory of Cork by sending a scheme

morphism f : X −→ Y to its graph Γf ⊂ X × Y.

An additive presheaf on Cork with values in the category Ab of abelian groups is called a

presheaf with transfers. For a Grothendieck topology τ on Sm/k, a presheaf with transfers

is called a τ-sheaf with transfers if its restriction to Sm/k is a sheaf with respect to the

topology τ.

An important example of presheaf with transfers is Ztr(X) := Cork(−, X). Even when

X is not smooth, we may talk about presheaf Ztr(X). Indeed, in order to define the group

Cork(U,X) of finite correspondences and contravariant functoriality in U, the smoothness of

the first entry U is enough and X may be an arbitrary scheme.

Proposition 2.1.1. For an arbitrary scheme X over k, the presheaf with transfers Cork(−, X)

is a sheaf with respect to the étale topology; hence, a fortiori, for coarser topologies such as

Zariski and Nisnevich.

Proof. See [MVW, Lemma 6.2].

2.2 Motivic complexes

2.2.1 Voevodsky’s motivic complex

The open subscheme of the affine line A1
k with the origin 0 removed is denoted by Gm. We

consider Gm as a scheme pointed at 1 : Spec k −→ Gm.

For a pointed scheme (X, Spec k x−→ X), we define the presheaf with transfers Ztr(X,x) by

Ztr(X,x) := coker{Ztr(Spec k) x−→ Ztr(X)}.

Since X is a scheme over k, the structure morphism induces a splitting of the exact sequence

0 −→ Ztr(Spec k) x−→ Ztr(X) −→ Ztr(X,x) −→ 0.

Therefore, Ztr(X,x) is a direct summand of Ztr(X). This implies that Ztr(X,x) is a sheaf if

Ztr(X) is.

In particular, Ztr(Gm, 1) is a sheaf with transfers in the étale topology by Proposition 2.1.1.

Similarly, the following generalization is known.

Definition 2.2.1. Let (X,x) be a pointed scheme and n be a positive integer. The presheaf
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with transfers Ztr((X,x)∧n) is defined as the cokernel

Ztr((X,x)∧n) := coker{
⊕

i=1,··· ,n
Ztr(X×· · ·×X×Spec k×X×· · ·×X) id×···×id×x×id×···×id−→ Ztr(X×· · ·×X)}.

Lemma 2.2.2. With the same notation as above, the canonical surjection

Ztr(X × · · · ×X) −→ Ztr((X,x)∧n)

is split surjective. In particular, Ztr((X,x)∧n) is a sheaf if Ztr(X × · · · ×X) is a sheaf.

Proof. See [MVW, Lemma 2.13].

Let ∆n be the n-th algebraic simplex. Given a presheaf F : Sm/k −→ Ab, we define the

complex C∗F of presheaves as the complex

· · · −→ F (−× ∆n+1) −→ F (−× ∆n) −→ F (−× ∆n−1) −→ · · ·F(−× ∆0) −→ 0,

where this is regarded as a cochain complex with F (− × ∆n) placed in degree −n and the

differentials are given by the alternating sums of the maps induced by the face maps of algebraic

simplices. As we can easily see, if F is a presheaf (resp., sheaf) with transfers, then C∗F is a

complex of presheaves (resp., sheaves) with transfers.

A presheaf F : Sm/k −→ Ab is called homotopy invariant if for any X ∈ Sm/k, the map

F (X) −→ F (X × A1) induced by the projection is an isomorphism. Here is an elementary but

important property.

Proposition 2.2.3. The homology presheaves of C∗F are homotopy invariant for any presheaf

F.

Proof. See [MVW, Corollary 2.19].

Definition 2.2.4. The complex of presheaves with transfers Z(n) := C∗Ztr((Gm, 1)∧n)[−n] is

called Voevodsky’s motivic complex.

Proposition 2.2.5. Voevodsky’s motivic complex Z(n) is a complex of sheaves with respect to

the étale and, a fortiori, coarser topologies.

Proof. Clear from Proposition 2.1.1 and Lemma 2.2.2.

2.2.2 Suslin-Friedlander’s motivic complex and Bloch’s cycle complex

Let X be any scheme over k. We define the presheaf

zequi(X, r) : Sm/k −→ Ab
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by sending U ∈ Sm/k to the free abelian group generated by closed integral subschemes of

U ×X that is dominant and equidimensional of relative dimension r over U. This is known to

be a sheaf with respect to the étale topology and covariant in X for proper morphisms and

contravariant in X for flat morphisms after appropriate shifting of dimension r (see [MVW,

Lecture 16, p.125]). Note that zequi(X, 0) = Ztr(X) if X is a proper scheme.

Definition 2.2.6. The complex of (pre)sheaves Z(n)SF := C∗zequi(An, 0)[−2n] is called the

Suslin-Friedlander’s motivic complex. This is a complex of sheaves in the étale topology.

Bloch’s cycle complex, which can naturally be regarded as a complex of sheaves on a small

Zariski site, is related to Suslin-Friedlander’s motivic complex.

Theorem 2.2.7 ([MVW, Theorem 19.8]). Let X be a smooth scheme over k. On the small

Zariski site XZar, the map of complexes of Zariski sheaves

Z(n)SF [2n] −→ zn(−× An, •)

given by the inclusion is a quasi-isomorphism for all non-negative integers n.

One notable feature of Bloch’s cycle complex is the Zariski descent property:

Theorem 2.2.8 ([MVW, Proposition 19.12]). For any scheme X, Bloch’s cycle complex zn(−×

T, •) satisfies Zariski descent, i.e. the canonical map

CHn(X × T,m)
def
= H−m(zn(X × T, •))

∼=−→ H−m
Zar(X, z

n(−× T, •))

is an isomorphism. In particular, for T = An, we have

CHn(X,m)
∼=−→ CHn(X × An,m)

∼=−→ H−m
Zar(X, z

n(−× An, •)).

2.2.3 Voevodsky’s and Susin-Friedlander’s motivic complexes

Theorem 2.2.9 ([MVW, Theorem 16.7]). There is a quasi-isomorphism of complexes of

sheaves on the big Zariski site (Sm/k)Zar :

Z(n) ' Z(n)SF .

Combining Theorems 2.2.7, 2.2.8 and 2.2.9, we obtain:

Corollary 2.2.10 ([MVW, Theorem 19.1]). For a smooth scheme X over k, there is a natural

isomorphism

Hm
Zar(X,Z(n))

∼=−→ CHn(X, 2n−m).
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The naturality of the isomorphism follows from [MVW, Proposition 19.16].

2.3 Voevodsky’s triangulated category of motives

The construction of Voevodsky’s triangulated category of motives starts with the category

Sm/k of smooth schemes over k. We imbed it into the category Cork of finite correspondences

and then into the category ShNis(Cork) of Nisnevich sheaves with transfers. Then, consider

the bounded above cochain complexes of Nisnevich sheaves with transfers and take the derived

category D−(ShNis(Cork)).

Definition 2.3.1. Voevodsky’s triangulated category of effective motives DM−,eff
Nis (k)

over k is the Verdier localization of the bounded above derived category D−(ShNis(Cork)) of

Nisnevich sheaves with transfers with respect to the class of all morphisms of the form Ztr(X ×

A1)
proj.−→ Ztr(X) for X ∈ Sm/k.

The image of Ztr(X) (resp., zequi(X, 0)) inDM−,eff
Nis (k) is denoted byM(X) (resp., M c(X)).

By the definition of the Verdier localization, all morphisms inD−(ShNis(Cork)) whose cones

belong to the smallest thick subcategory that contains all cones of Ztr(X×A1)
proj.−→ Ztr(X) (X ∈

Sm/k) are invertible in DM−,eff
Nis (k). These morphisms are called A1-weak equivalences. It

can be shown that for a complex K• of Nisnevich sheaves with transfers the canonical map

K• −→ TotC∗K• is an A1-weak equivalence ([MVW, Lemma 14.4]). In particular, M(X)

(resp., M c(X)) is isomorphic to C∗Ztr(X) (resp., C∗zequi(X, 0)) in DM−,eff
Nis (k).

The localization functorD−(ShNis(Cork)) −→ DM−,eff
Nis (k) is a tensor triangulated functor

with appropriate tensor structures on both categories (see [MVW, Definition 14.2] and the

subsequent discussion). These tensor structures respect the product of schemes, i.e. we have

M(X×Y ) ∼= M(X)⊗M(Y ). Moreover, M c(X×Y ) ∼= M c(X)⊗M c(Y ) holds ([MVW, Corollary

16.16]).

For an arbitrary scheme X over k and integers m and n, four motivic homology theories are

defined in [V00]:

• motivic homology: Hm(X,Z(n)) := HomDM−,eff
Nis (k)(Z(n)[m],M(X)),

• motivic cohomology: Hm(X,Z(n)) := HomDM−,eff
Nis (k)(M(X),Z(n)[m]),

• motivic homology with compact supports: HBM
m (X,Z(n)) := HomDM−,eff

Nis
(Z(n)[m],M c(X)),

• motivic cohomology with compact supports: Hm
c (X,Z(n)) := HomDM−,eff

Nis (k)(M
c(X),Z(n)[m]).

The index m is called a degree and n a twist. For negative twist n, the above definition
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means, for example,

Hm(X,Z(n)) := HomDM−,eff
Nis (k)(M(X),Z(n)[m]) := HomDM−,eff

Nis (k)(M(X) ⊗ Z(−n),Z[m])

(cf. [V10]).

An object L ∈ D−(ShNis(Cork)) is called A1-local if it does not see A1-weak equivalence

in the sense that HomD−(ShNis(Cork))(−, L) sends an A1- weak equivalence to an isomorphism.

Consequently, we have

HomD−(ShNis(Cork))(K,L)
∼=−→ HomDM−,eff

Nis (k)(K,L)

for all K ∈ D−(ShNis(Cork)) if L is A1-local. An A1-local object can be characterized as

follows.

Proposition 2.3.2. A bounded above complex K• of Nisnevich sheaves with transfers is A1-local

if and only if the homology sheaves are strictly A1-homotopy invariant, i.e. for all X ∈ Sm/k

and i the canonical maps

Hm
Nis(X,H

i(K•)Nis) −→ Hm
Nis(X × A1,Hi(K•)Nis)

is an isomorphism in every degree m.

Proof. Since the Nisnevich cohomological dimension is finite, the hypercohomology spectral

sequence converges. Thus, we may assume that the complex K• is just a single sheaf. This case

is immediate from the definitions.

One of the deepest results in the theory of presheaves with transfers is the following.

Theorem 2.3.3 ([MVW, Theorem 24.1]). Let k be a perfect field as usual. If F : Cork −→ Ab

is a homotopy invariant presheaf with transfers, then Hn
Nis(−, FNis) is a homotopy invariant

presheaf with transfers for all n.

Note that the n = 0 case claims that the Nisnevich sheafification of a homotopy invariant

presheaf with transfers is homotopy invariant.

Corollary 2.3.4. Voevodsky’s motivic complex Z(n) is A1-local. In particular, it computes mo-

tivic cohomology of a smooth scheme X with non-negative twist as Nisnevich hypercohomology,

i.e. for n ≥ 0,

Hm(X,Z(n))
def
= HomDM−,eff

Nis
(M(X),Z(n)[m]) ∼= Hm

Nis(X,Z(n)).
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Proof. This follows from Definition 2.2.4, Propositions 2.2.3, 2.3.2, Theorem 2.3.3 and an easy

lemma [MVW, Exercise 13.5], which claims that

HomD−(ShNis(Cork))(Ztr(X),K•[m])) ∼= Hm
Nis(X,K•)

for any X ∈ Sm/k and any complex K• of Nisnevich sheaves with transfers.

The Nisnevich hyercohomology group in the statement of Corollary 2.3.4 can actually be

calculated in the Zariski topology.

Lemma 2.3.5 ([MVW, Corollary 11.2]). Let F : Cork −→ Ab be a homotopy invariant presheaf

with transfers. If F (Spec K) = 0 for all fields K, then FZar = 0.

With this lemma, we can prove the following.

Proposition 2.3.6. Let F : Cork −→ Ab be a homotopy invariant Nisnevich sheaf with trans-

fers. Then, for all smooth schemes X over k and integers m, the canonical map

Hm
Zar(X,F ) −→ Hm

Nis(X,F )

is an isomorphism.

A similar statement holds for hypercohomology of bounded above complex of Nisnevich

sheaves with transfers with homotopy invariant cohomology sheaves, for example Voevodsky’s

motivic complex Z(n).

Proof. We prove the first half of the proposition. The second claim follows from the first by a

formal argument. For details, see [MVW, Proposition 13.10].

Let o be the forgetful functor sending Nisnevich sheaves to Zariski sheaves. It is enough to

show that Rio∗F = 0 for all i > 0. Now, Rio∗F is the Zariski sheafification of the presheaf with

transfers

U 7→ Hi
Nis(U,F ).

Lemma 2.3.5 says that it suffices to that for any field F, we have Hi
Nis(K,F ) = 0 for i > 0. But

this is clear becaue any Nisnevich cover over a field Spec F can be refined by the trivial cover

id : Spec F −→ Spec F.

Combining Corollaries 2.2.10 and 2.3.4 and Proposition 2.3.6, we obtain

Theorem 2.3.7. For any smooth scheme X over k. There are natural isomorphisms

Hm(X,Z(n)) ∼= Hm
Nis(X,Z(n)) ∼= Hm

Zar(X,Z(n)) ∼= CHn(X, 2n−m).
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Chapter 3

Algebraic representatives

The aim of this chapter is to define and study the existence of algebraic representatives

for arbitrary smooth schemes. We replace Chow groups with motivic cohomology groups with

compact supports and use Voevodsky’s triangulated category of motives to generalize the notion

of algebraic equivalence to this setting. To motivate our discussion, we review the classical case

of smooth proper schemes.

3.1 The case of smooth proper schemes

For a smooth proper scheme X over an algebraically closed field k, the free abelian group

Zr(X) generated by the set of cycles of codimension r is endowed with equivalence relations

known as rational equivalence (∼rat) and algebraic equivalence (∼alg). The group of rational

equivalence classes Zr(X)/∼rat is denoted by CHr(X) and called the Chow group of X in

codimension r. The subset of cycles algebraically equivalent to zero forms a subgroup of Zr(X)

and its image Ar(X) in CHr(X) is called the algebraic part of CHr(X). In other words,

Ar(X) :=
∪

T, smooth, proper
connected

{CH0(T )0 × CHr(T ×X) −→ CHr(X)}, (3.1)

where the map sends a pair (
∑
i niti, Y ) ∈ CH0(T )0 ×CHr(T ×X) to

∑
niYti ∈ CHr(X). Yti

denotes the pullback of Y along ti : Spec k −→ T.

In order to study Ar(X) by means of abelian varieties, the concept of regular homomor-

phisms was introduced ([Sam]). Roughly, a regular homomorphism is a group homomorphism

from Ar(X) to the group of rational points A(k) of an abelian variety A such that any family

of codimension r cycles on X algebraically equivalent to zero that is parametrized by a smooth

proper connected scheme T gives rise to a scheme morphism from T to A. We may say that a
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regular homomorphism Ar(X) −→ A(k) records such a family of cycles on X parametrized by

T as a T -point of the abelian variety A. Here is a precise definition.

Definition 3.1.1 ([Sam, Section 2.5]). For an abelian variety A over k, a group homomorphism

φ : Ar(X) −→ A(k) is called regular if, for any connected smooth proper scheme T over k

pointed at a rational point t0, and for any cycle Y ∈ CHr(T ×X), the composition

T (k) wY−→ Ar(X)
φ−→ A(k)

is induced by a scheme morphism T −→ A. Here, wY maps t ∈ T (k) to Yt − Yt0 . Yt stands

for the image of the intersection of cycles (t × X) · Y ∈ CHdimT+r(T × X) under the proper

pushforward along the projection T ×X −→ X.

The definition in the above form can be found in [Ha, Section 4] and [Mur, Definition 1.6.1].

A regular homomorphism φ : Ar(X) −→ A(k) is said universal ([Sam, Section 2.5, Remarque

(2)]) if for any regular homomorphism φ′ : Ar(X) −→ A′(k), there is a unique homomorphism

of abelian varieties a : A −→ A′ such that a ◦ φ = φ′. The universal regular homomorphism,

if it exists, is called the algebraic representative of Ar(X) (or of X in codimension r) and

written as

ΦrX : Ar(X) −→ AlgrX(k).

We also refer to the target abelian variety AlgrX itself as the algebraic representative.

Remark 3.1.2 ([Sam, Section 2.5, Remarque (2)][Mur, Section 1.8 and Theorem A]). The

algebraic representatives exist if r = 1, 2 or dX for any smooth proper connected scheme X of

dimension dX .

For r = 1, it is given by the isomorphism

w−1
P : A1(X)

∼=−→ Pic0X,red(k),

where P ∈ CH1(Pic0X,red×X) is the divisor corresponding to the Poincaré bundle on Pic0X,red×

X.

The case r = dX coincides with the Albanese map

albX : AdX (X) −→ AlbX(k),

i.e. the map1 sending
∑
i ni · xi ∈ AdX (X) to

∑
i niap(xi) ∈ AlbX(k), where ap : X −→ AlbX

is the canonical map that sends p ∈ X(k) to the unit 0 ∈ AlbX(k).
1As ap = aq +ap(q) for all rational points p and q of X (the universality of Albanese varieties), the Albanese

map albX is independent of the choice of p.
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The algebraic representatives encode properties of the algebraic parts of Chow groups in

the following sense.

Theorem 3.1.3. Let X be as above. The algebraic representative ΦrX : Ar(X) −→ AlgrX(k)

is an isomorphism if r = 1 and induces an isomorphism on torsion parts if r = dX . If, in

addition, k = C, it is an isomorphism on torsion for r = 2 as well.

Proof. The case r = 1 is the theory of Picard varieties (see [Kl, Proposition 9.5.10]). The case

r = dX is known as Rojtman’s theorem [R, Bl, Mi82], and the codimension 2 case is [Mur,

Theorem C].

3.2 The algebraic part

In this section, we define the algebraic part of motivic cohomology groups with compact

supports H2r
c (X,Z(r)). We simply write DM for Voevodsky’s (tensor) triangulated category

DM−,eff
Nis (k) of effective motives; see Section 2.3.

Let X be a smooth scheme over k. We consider the map

H0(T,Z) ×HomDM (M(T ) ⊗M c(X),Z(r)[2r]) −→ H2r
c (X,Z(r))

that sends a pair (z, Y ) with z ∈ H0(T,Z) def= HomDM (Z,M(T )) and Y ∈ HomDM (M(T ) ⊗

M c(X),Z(r)[2r]) to Y ◦ (z ⊗ idMc(X)) ∈ HomDM (M c(X),Z(r)[2r]) def= H2r
c (X,Z(r)).

The structure morphism of X induces the degree map on the zeroth motivic homology group

deg : H0(X,Z) −→ H0(k,Z) ∼= Z. We set H0(X,Z)0 := ker(deg).

Definition 3.2.1. Let X be a smooth scheme over k and T be a class of connected k-schemes.

The algebraic part by T-parametrization of the motivic cohomology group with compact

supports H2r
c (X,Z(r)) is defined as

H2r
c,T(X,Z(r)) :=

∪
T∈T

im{H0(T,Z)0 ×HomDM (M(T ) ⊗M c(X),Z(r)[2r]) −→ H2r
c (X,Z(r))}.

If T is the class of connected smooth schemes, H2r
c,T(X,Z(r)) is written as H2r

c,alg(X,Z(r))

and simply called the algebraic part of H2r
c (X,Z(r)).

Proposition 3.2.2. Let X be a smooth scheme over k. Then, H2r
c,alg(X,Z(r)) is a subgroup of

H2r
c (X,Z(r)).

Proof. We need to show that H2r
c,alg(X,Z(r)) is closed under addition and taking inverses.

For taking inverses, let x ∈ H2r
c,alg(X,Z(r)). Then, there is a smooth connected scheme T,
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Z ∈ H0(T,Z)0 and Y ∈ HomDM (M(T ) ⊗M c(X),Z(r)[2r]) such that x = Y ◦ (Z ⊗ idMc(X)).

Now, by the additivity of the categoryDM, we have −x = Y ◦(−Z⊗idMc(X)) ∈ H2r
c,alg(X,Z(r)).

For the closedness under addition, take another x′ ∈ H2r
c,alg(X,Z(r)), and choose a smooth

connected scheme T ′, an element Z ′ ∈ H0(T,Z)0 and Y ′ ∈ HomDM (M(T ′)⊗M c(X),Z(r)[2r])

such that x′ = Y ′ ◦ (Z ′ ⊗ idMc(X)). It is clear that x+ x′ belongs to H2r
c,alg(X,Z(r)) if Y = Y ′.

We shall reduce the general case to this.

Let us write Z =
∑
i niti and Z ′ =

∑
i n

′
it
′
i with ni, n

′
i ∈ Z, ti ∈ T (k) and t′i ∈ T ′(k), and

choose s ∈ T (k) and s′ ∈ T ′(k). Define

Y ′′ := Y ◦ (p⊗ idMc(X)) + Y ′ ◦ (p′ ⊗ idMc(X)),

where p : M(T × T ′) −→ M(T ) and p′ : M(T × T ′) −→ M(T ′) are the morphisms induced by

the projections. Consider the diagram

M(T ) ⊗M c(X)
Y

''PPPPPPPPPPPP

M c(X) ∼= Z ⊗M c(X)
P

ni(ti×s′)⊗id//

P

niti⊗id
//

P

nis
′⊗id=0 //

M(T × T ′) ⊗M c(X)
p⊗id

55jjjjjjjjjjjjjjj

p′⊗id

))TTTTTTTTTTTTTTT
Y ′′

// Z(r)[2r]

M(T ′) ⊗M c(X)
Y ′

77nnnnnnnnnnnn

with
∑
nis

′ ⊗ id = 0 because
∑
i ni = 0. We have

x = Y ◦
( ∑

i

niti ⊗ idMc(X)

)
= Y ◦

( ∑
i

niti ⊗ idMc(X)

)
+ Y ′ ◦

(∑
i

nis
′ ⊗ idMc(X)

)
= Y ◦ (p⊗ idMc(X)) ◦

( ∑
i

ni(ti × s′) ⊗ idMc(X)

)
+ Y ′ ◦ (p′ ⊗ idMc(X)) ◦

( ∑
i

ni(ti × s′) ⊗ idMc(X)

)
=

(
Y ◦ (p⊗ idMc(X)) + Y ′ ◦ (p′ ⊗ idMc(X))

)
◦

( ∑
i

ni(ti × s′) ⊗ idMc(X)

)
= Y ′′ ◦

( ∑
i

ni(ti × s′) ⊗ idMc(X)

)
.

(3.2)

Similarly, we have

x′ = Y ′′ ◦
( ∑

i

n′i(t
′
i × s′) ⊗ idMc(X)

)
.

Therefore, we conclude that

x+ x′ = Y ′′ ◦
(( ∑

i

ni(ti × s′) +
∑
i

n′i(t
′
i × s′)

)
⊗ idMc(X)

)
∈ H2r

c,alg(X,Z(r)).
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For smooth proper schemes, our definition of algebraic part agrees with the classical notion.

Lemma 3.2.3. Let T(1) be the subclass of T consisting of schemes of dimension one. If T is

either the class of connected smooth schemes or that of connected smooth proper schemes, we

have

H2r
c,T(X,Z(r)) = H2r

c,T(1)
(X,Z(r)).

Proof. Any two rational points of T ∈ T belong to the image of some smooth connected curve

C ([Mum, Chapter II, Section 6, Lemma]). (We may choose C to be additionally proper if T

is proper.) Therefore, the lemma follows from the commutativity of the following diagram:

H0(C,Z)0

��

× HomDM (M(C) ⊗M c(X),Z(r)[2r]) // H2r
c (X,Z(r))

H0(T,Z)0 × HomDM (M(T ) ⊗M c(X),Z(r)[2r])

OO

// H2r
c (X,Z(r)).

Proposition 3.2.4. Suppose X is a smooth proper scheme over k. Then, there is a natural

isomorphism

H2r
c,alg(X,Z(r))

∼=−→ Ar(X).

Proof. The isomorphism is given as a restrictions of the natural isomorphism

H2r
c (X,Z(r)) = H2r(X,Z(r)) F−→ CHr(X)

in Theorem 2.3.7.

Recall that, by definition,

Ar(X) :=
∪

T, sm, conn
proper

im{CH0(T )0 × CHr(T ×X) −→ CHr(X)},

where the map sends the pair of
∑
i niti ∈ CH0(X)0 and Y ∈ CHr(T ×X) to

∑
i niYti . Since

Yti is the pullback of Y along ti × idX , the (contravariant) naturality of the comparison map

F implies the commutativity of the diagram

H0(T,Z)0 × HomDM (M(T ) ⊗M c(X),Z(r)[2r])

F ∼=
��

// H2r
c (X,Z(r))

F ∼=
��

CH0(T )0 × CHr(T ×X) // CHr(X)
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for all smooth and proper X and T. Therefore, F induces an isomorphism

H2r
c,P(X) −→ Ar(X),

where P is the class of smooth proper connected schemes.

We claim that H2r
c,P(X) = H2r

c,alg(X). By definition, we have the inclusion H2r
c,P(X) ⊂

H2r
c,alg(X). For the other inclusion H2r

c,P(X) ⊃ H2r
c,alg(X), by Lemma 3.2.3, it is enough to prove

H2r
c,{smooth proper curves}(X) ⊃ H2r

c,{smooth curves}(X).

It is enough to observe the surjectivity of i∗ in the following commutative diagram for a

smooth curve C and its smooth compactification i : C ↪→ C̄ :

H0(C,Z)0

i∗

��

× HomDM (M(C) ⊗M c(X),Z(r)[2r]) // H2r
c (X,Z(r))

H0(C̄,Z)0 × HomDM (M(C̄) ⊗M c(X),Z(r)[2r])

i∗

OO

// H2r
c (X,Z(r)).

But the map i∗ is surjective because there is a commutative diagram

HomDM (M(C̄) ⊗M c(X),Z(r)[2r]) i∗ //

F ∼=
��

HomDM (M(C) ⊗M c(X),Z(r)[2r])

F ∼=
��

CHr(C ×X) i∗ // // CHr(C̄ ×X)

For a smooth proper connected schemeX over k, we have AdX (X) = CH0(X)0. This extends

to our non-proper situation.

Proposition 3.2.5. Let X be a smooth connected scheme of dimension dX over k. Under the

assumption of resolution of singularities, there is a canonical morphism (induced by the duality

isomorphism)

H2dX

c,alg(X,Z(dX)) ∼= H0(X,Z)0.

Proof. Under resolution of singularities, the duality isomorphism ([V00, Theorem 4.3.7 (3)])

M c(X)∗ ∼= M(X)(−dX)[−2dX ]
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in the category DM−(k) gives the equality

H2dX

c,alg(X,Z(dX)) =
∪

T, smooth
connected

im{H0(T,Z)0 ×HomDM (M(T ),M(X))
composition−→ H0(X,Z)}.

Here, we used the fact that DM is a full tensor triangulated subcategory of the closed ten-

sor triangulated category DM−(k). The fully faithfulness is Voevodsky’s cancellation theorem

([V10]), and the compatibility of the two tensor triangulated structures follows from the con-

struction of DM−(k) together with [MVW, Exercise 8A.8, Corollaries 8A.11 and 15.8].

Let {Xi} be the set of connected components of X. Since Xi is smooth and connected,

H2dX

c,alg(X,Z(dX)) ⊃ im{H0(Xi,Z)0 ×HomDM (M(Xi),M(X))
composition−→ H0(X,Z)}

⊃ im{H0(Xi,Z)0 × {M(inc) : M(Xi) →M(X)} inclusion−→ H0(X,Z)}

= H0(Xi,Z)0

for all i. Hence, H2dX

c,alg(X,Z(dX)) ⊃ H0(X,Z)0.

For the other inclusion, we need to show that for any smooth connected scheme T, the

composition of any morphism a ∈ HomDM (Z,M(T )) that satisfies str◦a = 0 (strT : M(T ) → Z

is the morphism induced by the structure morphism of T ) and any b ∈ HomDM (M(T ),M(X))

belongs to H0(X,Z)0, i.e. the large triangle of the diagram in DM

Z a //

0
""DD

DD
DD

DD
D M(T )

strT

��

b // M(X)

strX

zzuuuuuuuuuu

Z

is commutative if the left triangle is commutative.

Since T is smooth and connected, the group HomDM (M(T ),Z) ∼= Z is generated by strT .

Thus, there is an integer n such that strX ◦b = n ·strT . Hence, strX ◦b◦a = n ·strT ◦a = 0.

Proposition 3.2.6. Let X be a smooth scheme over k. Then, the group H2r
c,alg(X,Z(r)) is

divisible.

Proof. The algebraic part is generated by the images of H0(C,Z)0 with C being smooth curves

by Lemma 3.2.3. Thus, it suffices to show the divisibility of H0(C,Z)0. If C is proper, it is a

consequence of the Abel-Jacobi theorem. If C is not proper, take the smooth compactification

C ↪→ C̄ with Z := C̄\C endowed with the induced reduced structure. The localization sequence

for motivic cohomology with compact supports yields

· · · −→
⊕

k∗ −→ H0(C,Z)
f−→ H0(C̄,Z) −→ 0.
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This gives the short exact sequence

0 −→ ker f −→ H0(C,Z)0 −→ H0(C̄,Z)0 −→ 0

The kernel of f is divisible because it is an image of
⊕
k∗, and H0(C̄,Z)0 is also divisible by

the smooth proper case. Hence, the middle group is divisible as well.

In the rest of this section, we show that certain classes of algebraic groups are enough to

define the algebraic part and algebraic part by proper parametrization.

Lemma 3.2.7. Suppose 0 −→ N
i−→ G

p−→ H −→ 0 be an exact sequence of smooth commu-

tative algebraic groups over k. Then, G is an (N ×k H)-torsor over H in the fppf topology.

Proof. Since p is a morphism between connected smooth schemes and all fibers have the same

dimension, it is flat by [Ma, Corollary to Theorem 23.1]. For p is also surjective, it is an

fppf cover. We claim that the map G ×k N −→ G ×H G that sends (g, n) to (g, g · n) is an

isomorphism.

Let N ,G and H be the fppf sheaves on Sch/k represented respectively by N,G and H. It is

enough to prove that the corresponding map

G ×N −→ G ×H G ∼= G ×G̃/N G

of fppf sheaves is an isomorphism. (G̃/N denotes the fppf sheafification of the quotient G/N

as presheaves.) Now, this map is nothing but the sheafification of the map of presheaves

G ×N −→ G ×G/N G

that sends, for each scheme U, a pair of sections (gU , nU ) ∈ G(U) × N (U) to (gU , gU · nU ) ∈

G(U) ×G(U)/N (U) G(U), but this is clearly an isomorphism.

Proposition 3.2.8. Let X be a smooth scheme over k and S be the class of semi-abelian

varieties over k. Then,

H2r
c,alg(X,Z(r)) = H2r

c,S(X,Z(r)).

Proof. The inclusion “⊃” is obvious. By the same argument as in the proof of Proposition 3.2.2,

H2r
c,S(X,Z(r)) is a subgroup of H2r

c (X,Z(r)). Thus, for the other inclusion, Lemma 3.2.3 implies

that it is enough to show

H2r
c,{smooth curves}(X,Z(r)) ⊂ H2r

c,S(X,Z(r)).
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Let x ∈ H2r
c,{smooth curves}(X,Z(r)). Then there are a smooth affine curve C, Z ∈ H0(C,Z)0

and Y ∈ HomDM (M(C) ⊗M c(X),Z(r)[2r]) such that x = Y ◦ (Z ⊗ idMc(X)). (If we find a

proper curve C, just remove one point not supporting the divisor Z.)

Let Cl be the l-th power and C(l) the l-th symmetric power of the curve C. Write the

quotient morphism as f : Cl −→ C(l) and the diagonal as ∆ : C −→ Cl. Consider the following

commutative diagram.

H0(C(l),Z)0 × HomDM (M(C(l)) ⊗M c(X),Z(r)[2r])

−◦f
��

α−→ H2r
c (X,Z(r))

H0(Cl,Z)0

f◦−

OO

× HomDM (M(Cl) ⊗M c(X),Z(r)[2r])

−◦tΓf

UU

−◦∆
��

β−→ H2r
c (X,Z(r))

H0(C,Z)0

∆◦−

OO

× HomDM (M(C) ⊗M c(X),Z(r)[2r])

−◦P

UU

γ−→ H2r
c (X,Z(r)).

Here, P :=
∑
i=1,··· ,l pi, where pi : Cl −→ C is the i-th projection and the summation is taken

in HomDM (M(Cl),M(C)). tΓf is a finite correspondence because f : Cl −→ C(l) is a finite

surjective morphism ([Mi86b, Propositions 3.1 and 3.2]).

By inspection, we may see that tΓf ◦f ◦∆ =t Γf ◦(f ◦∆) = m ·∆ in Cork(C,Cl) (m is some

intersection multiplicity). Since P ◦∆ = l · idC , we have P ◦tΓf ◦f ◦∆ = P ◦(m ·∆) = m · l · idC .

Therefore, since γ(Z, Y ) = x, the commutativity of the diagram gives

α(f ◦ ∆ ◦ Z, Y ◦ (P ⊗ idMc(X)) ◦ (tΓf ⊗ idMc(X)))

= γ(Z, Y ◦ (P ⊗ idMc(X)) ◦ (tΓf ⊗ idMc(X)) ◦ (f ⊗ idMc(X)) ◦ (∆ ⊗ idMc(X)))

= γ(Z, Y ◦ ((P ◦t Γf ◦ f ◦ ∆) ⊗ idMc(X)))

= γ(Z, l ·m · Y )

= l ·m · x.

Thus, we have a commutative diagram

H0(C(l),Z)0
αY ◦P◦tΓf // H2r

c (X,Z(r))

H0(C,Z)0

f◦∆◦−

OO

γl·m·Y

55jjjjjjjjjjjjjjj

where αY ◦P◦tΓf
:= α(−, Y ◦ (P ⊗ idMc(X)) ◦ (tΓf ⊗ idMc(X)) and γl·m·Y := γ(−, l · m · Y ).

Therefore,

im(αY ◦P◦tΓf
) ⊃ im(γl·m·Y ) = l ·m · im(γY ) = im(γY ).
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The last equality holds becauseH0(C,Z)0 is divisible. Since this is true for all Y ∈ HomDM (M(C)⊗

M c(X),Z(r)[2r]), we conclude that im(α) ⊃ im(γ).

Now, since C is an affine curve, C(l) is an affine bundle over the smooth connected commuta-

tive algebraic group Pic0(C+) if l is sufficiently large by [Wi, Appendix] (C+ := C̄
∐
C̄\C Spec k

for a smooth compactification C̄ of C). By Chevalley’s theorem (see [BLR, Chapter 9, Sec-

tion 2, Theorem 1]), there is a smooth connected affine commutative algebraic subgroup L of

Pic0(C+). By [Bo, Theorem 10.6 (i) and (ii)], L has a connected unipotent algebraic subgroup

U such that the quotient L/U is a torus. Hence, the quotient Pic0(C+)/U is a semi-abelian va-

riety. Moreover, by [Bo, Corollary 15.5 (ii)], there is a composition series consisting of connected

algebraic subgroups

U = U0 ⊃ U1 ⊃ · · · ⊃ Un = {e}

such that each quotient algebraic group Ui/Ui+1 is isomorphic to Ga. We are given with the

exact sequence

0 −→ Ga(∼= Un−1) −→ Pic0(C+) −→ Pic0(C+)/Un−1 −→ 0

of algebraic groups. Now, Pic0(C+) is a Ga-torsor (in the fppf topology) over Pic0(C+)/Un−1

by Lemma 3.2.7. We claim that it is locally trivial in the Zariski topology as well.

By [Mi80, Chapter III, Proposition 3.7], the canonical map

H1
Zar(Pic

0(C+)/Un−1,Ga) −→ H1
fppf (Pic

0(C+)/Un−1,Ga)

is an isomorphism because Ga is coherent. Now, let PHSGa(Pic0(C+)/Un−1) (resp. PHSGa

Zar(Pic
0(C+)/Un−1))

denote the isomorphism classes of Ga-torsors over Pic0(C+)/Un−1 locally trivial in the fppf

(resp. Zariski) topology. Consider the following commutative diagram

PHSGa(Pic0(C+)/Un−1)
∼=

Yoneda
// {sheaf Ga-torsors on

(
Pic0(C+)/Un−1

)
fppf

} ∼=
a

// H1
fppf (Pic

0(C+)/Un−1,Ga)

PHSGa

Zar(Pic
0(C+)/Un−1)
?�

ι, inclusion

OO

∼=
Yoneda

// {sheaf Ga-torsors on
(
Pic0(C+)/Un−1

)
Zar

}
∼=
b

// H1
Zar(Pic

0(C+)/Un−1,Ga)

∼=

OO

The Yoneda imbeddings are isomorphisms By [Mi80, Chapter III, Theorem 4.3(a)] and its

variant in the Zariski topology, and the maps a and b are isomorphisms by [ibid., Proposition

4.6] and its Zariski variant. Therefore, the inclusion ι is an isomorphism. This means that the

Ga-torsor Pic0(C+) over Pic0(C+)/Un−1 is locally trivial already in the Zariski topology.

By Mayer-Vietoris exact triangle ([MVW, (14.5.1)]) and A1-homotopy invariance in DM,
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we may see that the canonical map

M(q) : M(Pic0(C+)) −→M(Pic0(C+)/Un−1)

is an isomorphism. By repeating this process, we obtain the canonical isomorphism

M(Pic0(C+))
∼=−→M(Pic0(C+)/U).

Now, the isomorphisms

M(C(l))
∼=−→M(Pic0(C+))

∼=−→M(Pic0(C+)/U)

mean

im(α) = im{H0(Pic0(C+)/U,Z)0×HomDM (M(Pic0(C+)/U)⊗M c(X),Z(r)[2r]) −→ H2r
c (X,Z(r))}.

This equality holds for all smooth affine curves C. Since Pic0(C+)/U is a semi-abeian variety,

we conclude

H2r
c,S(X,Z(r)) ⊃ H2r

c,{smooth affine curves}(X,Z(r)) = H2r
c,{smooth curves}(X,Z(r)).

We recover the following classical result (see, for example, [La, p.60, Theorem 1]) on the

algebraic part Ar(X) of the Chow group of cycles of codimension r.

Corollary 3.2.9. Let X be a smooth proper scheme over k and A be the class of abelian

varieties over k. Then,

Ar(X) =
∪
A∈A

im{CH0(A)0 × CHr(A×X) −→ CHr(X)}.

Proof. The right hand side is equal to H2r
c,A(X,Z(r)). By Propositions 3.2.4 and 3.2.8, the left

hand side is equal to H2r
c,S(X,Z(r)). Thus, it is enough to show that

∪
S∈S

im{H0(S,Z)0 ×HomDM (M(S) ⊗M(X),Z(r)[2r]) −→ H2r(X,Z(r))}

=
∪
A∈A

im{H0(A,Z)0 ×HomDM (M(A) ⊗M(X),Z(r)[2r]) −→ H2r(X,Z(r))}.

We claim that for a semi-abelian variety S with the Chevalley decomposition 0 → Gs
m →

33



S → A→ 0, there is an inclusion

im{H0(S,Z)0 ×HomDM (M(S) ⊗M(X),Z(r)[2r]) −→ H2r(X,Z(r))}

⊂ im{H0(A,Z)0 ×HomDM (M(A) ⊗M(X),Z(r)[2r]) −→ H2r(X,Z(r))}.

We prove this by induction on the torus rank s. If s = 0, the claim is trivially true. Suppose

that the claim is true for semi-abelian varieties of torus rank s− 1, and let S be a semi-abelian

variety with torus rank s. There is a short exact sequence of algebraic groups

0 −→ Gm −→ S −→ S′ −→ 0.

By a similar argument in the proof of Proposition 3.2.8 this time with Hilbert’s Satz 90

([Mi80, Chapter III, Proposition 4.9]) instead of [Ibid., Chapter III, Proposition 3.7], we can

see that S is a Gm-torsor over S′ in the Zariski topology. Hence, there is an associated line

bundle p : E −→ S′ with a zero section s : S′ −→ E such that E \ s(S′) ∼= S. By A1-homotopy

invariance, p induces an isomorphism of motives M(E)
∼=−→M(S′).

Hence, there is a commutative diagram

H0(S,Z)0

inc∗

��

× HomDM (M(S) ⊗M(X),Z(r)[2r]) α−→ H2r(X,Z(r))

H0(E,Z)0

p∗ ∼=
��

× HomDM (M(E) ⊗M(X),Z(r)[2r])

−◦(inc⊗idM(X))

OOOO

−→ H2r(X,Z(r))

H0(S′,Z)0 × HomDM (M(S′) ⊗M(X),Z(r)[2r])

−◦(p⊗idM(X)) ∼=

OO

β−→ H2r(X,Z(r)).

The upper middle map is surjective because it can be identified with the pullback CHr(E ×

X) −→ CHr(S × X) along the open immersion S × X ↪→ E × X. The commutativity of the

diagram implies that

im(α) ⊂ im(β).

Since the torus rank of S′ is s− 1, the induction hypothesis gives

im(β) ⊂ im{H0(A,Z)0 ×HomDM (M(A) ⊗M(X),Z(r)[2r]) −→ H2r(X,Z(r))}.

Hence, the claim is proved.
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3.3 Regular homomorphisms

The classical definition (Definition 3.1.1) naturally generalizes to our setting.

Definition 3.3.1. Let X be a smooth scheme over k and S be a semi-abelian variety over

k. A group homomorphism φ : H2r
c,alg(X,Z(r)) −→ S(k) is called regular if for any smooth

connected scheme T pointed at t0 ∈ T (k) and Y ∈ HomDM (M(T ) ⊗ M c(X),Z(r)[2r]), the

composition

T (k) wY−→ H2r
c,alg(X,Z(r))

φ−→ S(k)

is induced by some scheme morphism T −→ S. Here, wY sends t ∈ T (k) = HomSch/k(Spec k, T )

to

Y ◦ (t⊗ idMc(X)) − Y ◦ (t0 ⊗ idMc(X)),

i.e.

M c(X) ∼= Z ⊗M c(X)
t⊗idMc(X)−t0⊗idMc(X)−→ M(T ) ⊗M c(X) Y−→ Z(r)[2r]

where t and t0 are regarded as morphisms from Z to M(T ) in DM.

A regular homomorphism φ : H2r
c,alg(X,Z(r)) −→ S(k) is said universal if for any regular

homomorphism φ′ : H2r
c,alg(X,Z(r)) −→ S′(k), there is a unique homomorphism of semi-abelian

varieties a : S −→ S′ such that a ◦ φ = φ′.

Definition 3.3.2. The universal regular homomorphism, if it exists, is called the algebraic

representative of H2r
c,alg(X,Z(r)) or the algebraic representative with compact sup-

ports of X in codimension r, and it is written as

Φrc,X : H2r
c,alg(X,Z(r)) −→ Algrc,X(k).

The target semi-abelian variety Algrc,X itself is often referred to as the algebraic representative

with compact supports.

Proposition 3.3.3. Let X be a smooth scheme over k. Then, given a regular homomorphism

φ : H2r
c,alg(X,Z(r)) −→ S(k), there is a semi-abelian variety S0 (pointed at the unit) and

Y0 ∈ HomDM (M(S0) ⊗M c(X),Z(r)[2r]) such that im(φ ◦ wY0) = im(φ).

Proof. We follows the method of [Mur, Proof of Lemma 1.6.2 (i)]. Consider the diagram

S′(k)
wY ′−→ H2r

c,alg(X,Z(r))
φ−→ S(k)

where S′ is a semi-abelian variety pointed at the unit and Y ′ ∈ HomDM (M(S′)⊗M c(X),Z(r)[2r]).

Since the composition is induced by the homomorphism of semi-abelian varieties, the image of
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φ ◦ wY ′ has a structure of a semi-abelian variety.

Choose S0 and Y0 so that the dimension of im(φ ◦ wY0) becomes maximal among such

diagrams. We claim that they have the desired property im(φ ◦ wY0) = im(φ).

Suppose that im(φ ◦ wY0) 6= im(φ). Then, there is an element x ∈ H2r
c,alg(X,Z(r)) such

that φ(x) /∈ im(φ ◦ wY0). Using Proposition 3.2.8, we find a semi-abelian variety S1 and Y1 ∈

HomDM (M(S1) ⊗M c(X),Z(r)[2r]) for which φ(x) ∈ im(φ ◦ wY1).

Now, let

S2 := S0 × S1

and

Y2 := Y0 ◦ (p0 ⊗ idMc(X)) + Y1 ◦ (p1 ⊗ idMc(X)),

where pi : M(S0×S1) −→M(Si) is the morphism induced by the projection. Then, im(φ◦wY2)

contains φ(x), but

im(φ ◦ wY2) ⊃ im(φ ◦ wY0) 63 φ(x).

This contradicts the maximality of the dimension of im(φ ◦ wY0).

Corollary 3.3.4. If φ : H2r
c,alg(X,Z(r)) −→ S(k) is a regular homomorphism, then the image

of φ has a structure of a semi-abelian subvariety of S.

Proof. By Proposition 3.3.3, there are semi-abelian varieties S0 and Y0 ∈ HomDM (M(S0) ⊗

M c(X),Z(r)[2r]) such that im(φ) = im(φ ◦ wY0). Since φ ◦ wY0 is a homomorphism between

semi-abelian varieties, its image im(φ) is a semi-abelian variety.

Proposition 3.3.5. Suppose Φrc,X : H2r
c,alg(X,Z(r)) −→ Algrc,X(k) is an algebraic represen-

tative. Then, it is surjective, and it also induces a surjective homomorphism on the torsion

parts.

Proof. The surjectivity of Φrc,X is immediate from Corollary 3.3.4. As for the claim on the

torsion parts, by Proposition 3.3.3, there is a semi-abelian variety S0 and a surjective homo-

morphism, say, f : S0(k) −→ Algrc,X(k) that factors through H2r
c,alg(X,Z(r)). Since the kernel

of f is an extension of a finite group by a divisible group, ker(f) ⊗ Q/Z = 0. This implies that

f induces a surjection on the torsion parts.

3.4 Existence of algebraic representatives

We prove the existence of algebraic representatives Algrc,X of H2r
c,alg(X,Z(r)) for r = 1 and

2 (for smooth X with a good compactification) and r = dX (for all smooth X). We use the

method of Serre [Se], Saito [Sai] and Murre [Mur].
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We define an analogue of a maximal morphism (cf. [Se, Définition 2]), which we shall call

a maximal homomorphism (Definition 3.4.1). We characterize the algebraic representatives as

the maximal homomorphisms whose target semi-abelian variety has the maximal dimension

(Proposition 3.4.4). This is a generalization of [Sai, Theorem 2.2] as presented in [Mur, Propo-

sition 2.1] to our non-proper setting. It then remains to bound the dimension of the targets of

maximal homomorphisms to obtain the existence of algebraic representatives. To achieve this,

we use the Beilinson-Lichtenbaum conjecture, which is now a theorem by the work of Rost and

Voevodsky and others (cf. [GL, Corollary 2.1]).

Throughout this section, X is a smooth connected scheme over k.

Definition 3.4.1. A regular homomorphism φ : H2r
c,alg(X,Z(r)) −→ S(k) is called maximal

if it is surjective and for any factorization

S′(k)

∀π, isogeny

��
H2r
c,alg(X,Z(r))

φ
//

∀ regular
88qqqqqqqqqq
S(k),

π is an isomorphism.

Lemma 3.4.2. Let φ : H2r
c,alg(X,Z(r)) −→ S(k) be a regular homomorphism. Then, there is a

factorization

H2r
c,alg(X,Z(r))

φ //

g
&&MMMMMMMMMM

S(k)

S′(k)
h

<<yyyyyyyyy

where g is a maximal homomorphism and h is a finite morphism.

Proof. We follow the proof of [Se, Théorème 1]. By Corollary 3.3.4, we may assume that φ is

surjective. If φ is maximal, there is nothing to prove.

If φ is not maximal, there is a factorization

S1(k)

π1

��
H2r
c,alg(X,Z(r))

φ
// //

φ1, regular
88 88qqqqqqqqqqq
S(k),

where π1 is an isogeny that is not an isomorphism. Here, φ1 is surjective because π1 is an

isogeny. If φ1 is maximal, there is nothing more to do.
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Repeat this process. Suppose that we obtain an infinite tower

...

π3, isog., not an isom.

��
S2(k)

π2, isog., not an isom.

��
S1(k)

π1, isog, not an isom.

��
H2r
c,alg(X,Z(r))

φ
// //

φ1, reg.qqqq

88 88qqqq

φ2, reg.��������

@@ @@��������

S(k).

By Proposition 3.3.3, choose a semi-abelian variety S0 and Y0 ∈ HomDM (M(S0)⊗M c(X),Z(r)[2r])

such that φ ◦ wY0 is surjective. Then, since πi’s are isogeny, φi ◦ wY0 is surjective for all i.

Then, we obtain the diagram of function fields

...

K(S2)
Rr

����
��

��
��

��
��

��
��

?�

not an isom.

OO

K(S1)
L l

zzuuuuuuuuu

?�

not an isom.

OO

K(S0) K(S)? _oo
?�

not an isom.

OO

Thus, we have

K(S0) ⊃
∪
i≥1

K(Si) ⊃ K(S),

where the extension
∪
i≥1K(Si)/K(S) is not finitely generated. However, the extensionK(S0)/K(S)

is finitely generated. Since a subextension of a finitely generated field extension is finitely gen-

erated ([Se, Lemme 1]), this is a contradiction.

We need one more lemma before giving a criterion for the existence of an algebraic repre-

sentative.

Lemma 3.4.3. Let φ : H2r
c,alg(X,Z(r)) −→ S(k) be a surjective regular homomorphism and

φ′ : H2r
c,alg(X,Z(r)) −→ S′(k) be any regular homomorphism. Then, there is at most one
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scheme morphism f : S −→ S′ that makes the following diagram commutative:

H2r
c,alg(X,Z(r))

φ // //

φ′
&&NNNNNNNNNN
S(k)

f

��
S′(k).

Proof. Choose a semi-abelian variety S0 and Y0 ∈ HomDM (M(S0) ⊗ M(X),Z(r)[2r]) as in

Remark 3.3.3. Then, since φ ◦ wY0 : S0 −→ S is a morphism between connected smooth

schemes and all fibers have the same dimension, it is flat by [Ma, Corollary to Theorem 23.1].

It is also surjective, so it is a strict epimorphism. In particular,

HomSch(S, S′)
−◦φ◦wY0−→ HomSch(S0, S

′)

is injective. Hence, the lemma follows.

Proposition 3.4.4. There is an algebraic representative of H2r
c,alg(X,Z(r)) if and only if there

is a constant c such that dimS ≤ c for any maximal homomorphism

φ : H2r
c,alg(X,Z(r)) −→ S(k).

In fact, the maximal homomorphism with the maximal dimensional target is the algebraic

representative.

Proof. “ ⇒ ” is clear. We prove the converse by combining the arguments for [Se, Théorème 2]

and [Mur, Proposition 2.1].

Let φ0 : H2r
c,alg(X,Z(r)) −→ S0(k) be a maximal homomorphism with the maximal dimen-

sional target S0. Suppose that φ : H2r
c,alg(X,Z(r)) −→ S(k) is a regular homomorphism.

Now, φ0×φ : H2r
c,alg(X,Z(r)) −→ (S0×S)(k) is a regular homomorphism. By Lemma 3.4.2,

there is a factorization

φ0 × φ : H2r
c,alg(X,Z(r))

g, max.−→ S1(k)
i, fin.−→ (S0 × S)(k)

with some maximal homomorphism g.
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Consider the commutative diagram

S0(k)

H2r
c,alg(X,Z(r))

g, max.// //

φ0, max.
11 11

φ --

S1(k)
i //

isom.

99ssssssssss

%%KKKKKKKKKK
(S0 × S)(k)

p0

OO

p

��
S(k)

Since p0 ◦ i is surjective and S0 has the maximal dimension, we must have dimS0 = dimS1.

Hence, p0 ◦ i is an isogeny. Since φ0 is a maximal homomorphism, p0 ◦ i is an isomorphism. Let

us put

r := (p0 ◦ i)−1 : S0 −→ S1,

and define h := p ◦ i ◦ r : S0 −→ S. Then,

h ◦ φ0 = p ◦ i ◦ r ◦ φ0

= p ◦ i ◦ g

= φ.

By Lemma 3.4.3, h is the only scheme morphism for which φ = h ◦ φ0 holds. Therefore, φ0

is the algebraic representative of H2r
c,alg(X,Z(r)).

Definition 3.4.5. A smooth connected scheme X over k is said to have a good compact-

ification if there is a smooth proper scheme X̄ with an open immersion X ↪→ X̄ such that

Z := X̄ \X is a simple normal crossing divisor on X̄.

Theorem 3.4.6. Let X be a smooth connected scheme over k with a good compactification.

Then, there is an algebraic representative of H2r
c,alg(X,Z(r)) if r = 1 or 2.

Proof. By Proposition 3.4.4, it suffices to show that the dimensions of the target semi-abelian

varieties of surjective regular homomorphisms are bounded.

Let φ : H2r
c,alg(X,Z(r)) −→ S(k) be a surjective regular homomorphism. By Proposi-

tion 3.3.3, we may choose a semi-abelian variety S′ and Y ∈ HomDM (M(S′)⊗M c(X),Z(r)[2r])

such that the composition f : S′(k) wY−→ H2r
c,alg(X,Z(r))

φ−→ S(k) becomes a surjective homo-

morphism. We shall write the corresponding homomorphism of semi-abelian varieties by the

same symbol f.

Let l be a prime relatively prime to the characteristic of the base field k and the index

(ker f : ker f0), where ker f0 is the identity component (it is a semi-abelian variety) of the

group scheme ker f.
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Let us look at the l-torsion parts:

lS
′(k)

lf

55
lwY // lH2r

c,alg(X,Z(r)) lφ //
lS(k).

We claim that lφ is surjective. In fact, lf is surjective. For this, by the snake lemma, it is

enough to show that ker f/l ·ker f = 0. Since ker f0 is a semi-abelian variety and (ker f : ker f0)

is prime to l, another application of the snake lemma to the diagram

0 // ker f0 //

l

��

ker f //

l

��

ker f/ ker f0 //

l

��

0

0 // ker f0 // ker f // ker f/ ker f0 // 0

yields the desired result.

Now, we have

H2r−1
c (X,Z/l(r)) // // lH2r

c (X,Z(r)) ⊃ lH
2r
c,alg(X,Z(r)) lφ // //

lS(k). (3.3)

Since the dimension of S less than or equal to the l-rank of S, it is now enough to prove that

H2r−1
c (X,Z/l(r)) is a finite group.

Since l 6= char k, there is a localization sequence ([Ke, Proposition 5.5.5])

· · · −→ H2r−2(Z,Z/l(r)) −→ H2r−1
c (X,Z/l(r)) −→ H2r−1(X̄,Z/l(r)) −→ · · · . (3.4)

Therefore, it suffices to show the finiteness of H2r−2(Z,Z/l(r)) and H2r−1(X̄,Z/l(r)).

Since X̄ is smooth and 2r ≤ r + 2, the finiteness of the latter group follows from the

injectivity of the Geisser-Levine cycle map ([GL, Corollary 2.1])

H2r−1(X̄,Z/l(r)) ↪→ H2r−1
ét (X̄,Z/l(r)) (3.5)

and the finiteness of the étale cohomology group H2r−1
ét (X̄,Z/l(r)) by [Mi80, Chapter VI,

Corollary 2.8].

For the finiteness of H2r−2(Z,Z/l(r)) (Z is a simple normal crossing divisor) consider the

abstract blow-up

Z1 × (
∪
i 6=1 Zi) //

��

∪
i 6=1 Zi

p

��
Z1

inc.
// Z =

∪
i=1,··· ,r Zi,
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where Zi’s are the irreducible components of Z. Now, Z1×(
∪
i6=1 Zi) is a simple normal crossing

divisor (on Z1) of dimension less than that of Z. Hence, by using the abstract blow-up sequence

([Ke, Proposition 5.5.4]) associated with this square, the induction on the dimension and on

the number of irreducible components of Z reduces the finiteness of H2r−2(Z,Z/l(r)) to the

smooth proper case.

Let us deal with the zero cycle case.

Theorem 3.4.7. If X is a connected smooth scheme of dimension d, H2d
c,alg(X,Z(d)) has an

algebraic representative.

Proof. By proceeding as in the proof of Theorem 3.4.6, we need to show the finiteness of

H2d−1
c (X,Z/l(d)). Since l is prime to the characteristic of k, this group is isomorphic to the

motivic homology group H1(X,Z/l) by [Ke, Theorem 5.5.14] ([V00, Theorem 4.3.7(3)] under

resolution of singularities). But H1(X,Z/l) is finite because its dual is isomorphic to the

finite group H1
ét(X,Z/l) ([MVW, Theorem 10.9]; cf. [SV96, Corollary 7.8] under resolution of

singularities).
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Chapter 4

Study in codimension one

The theory of algebraic representatives of smooth proper schemes in codimension one is part

of the theory of Picard schemes (see Remark 3.1.2). We give a similar interpretation of Alg1
c,X

for an arbitrary smooth scheme.

4.1 Motivic cohomology with compact supports as cdh

hypercohomology

For our purpose, we need to interpret motivic cohomology with compact supports as sheaf

hypercohomology. Let us begin with the definition of cdh cohomology with compact sup-

ports. Sch/k is the category of schemes over k, and D−
cdh stands for the derived category

D−(Shcdh(Sch/k)) of the bounded above complex of cdh sheaves on Sch/k.

Definition 4.1.1 ([FV, Section 3]). For a bounded above complex F of cdh sheaves on Sch/k,

the cdh cohomology with compact supports of X ∈ Sch/k with coefficients in F is

defined as

Hm
c (Xcdh,F) := HomD−

cdh
(Zc(X)cdh,F [m]),

where Zc(X)cdh is the cdh sheafification of the presheaf that sends an irreducible scheme U

to the free abelian group Zc(X)(U) generated by closed subschemes Z of U ×X such that the

projection Z −→ U is an open immersion.

Proposition 4.1.2. Under resolution of singularities, for any X ∈ Sch/k and non-negative

integers m and n, there is an isomorphism

Hm
c (X,Z(n))

∼=−→ Hm
c (Xcdh,Z(n)cdh).
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Proof. If X is proper, this is [SV, Theorem 5.14].

For a non-proper X, choose a compactification X ↪→ X̄ with Z := X̄ \X. Then the propo-

sition follows from the exact sequence of cdh sheaves ([FV, Corollary 3.9]):

0 −→ Z(Z)cdh −→ Z(X̄)cdh −→ Zc(X)cdh −→ 0, (4.1)

where Z(S) is the presheaf of abelian groups freely generated by the presheaf of sets represented

by S in Sch/k.

Remark 4.1.3. Let F be a bounded above complex of cdh sheaves on Sch/k and let I• be

the total complex of a Cartan-Eilenberg resolution of F in Shcdh(Sch/k). In view of the short

exact sequence (4.1) in the proof of Proposition 4.1.2, we can express the cdh cohomology with

compact supports more explicitly as:

Hm
c (Xcdh,F) ∼= Hn(cone(I•(X̄) −→ I•(Z))[−1]).

In this chapter, we are interested in the cohomology group H2
c (X,Z(1)) for a smooth scheme

X. In order to study this group with Proposition 4.1.2, we would like to explicitly know what

Z(1)cdh is.

Lemma 4.1.4. Suppose that X ∈ Sch/k is a simple normal crossing divisor on some smooth

scheme. Then, under resolution of singularities, the restriction Z(1)cdh,X of Z(1)cdh to the

small Zariski site on X is quasi-isomorphic to the Zariski sheaf Gm,X [−1] of units on X.

Proof. There is a quasi-isomorphism Z(1)
qis−→ Gm[−1] of complexes of presheaves on Sm/k

([MVW, Theorem 4.1]). Therefore, we need to show that the restriction of the cdh sheafification

of Gm to the small Zariski site on X agrees with Gm,X , i.e. the canonical map a : Gm,X −→

Gm,cdh,X on XZar is an isomorphism. Note that, if X is smooth, this follows from [MVW,

Proposition 13.27] since Gm has the structure of a homotopy invariant Nisnevich sheaf with

transfers.

For the injectivity, it is enough to show that for any affine open subscheme U = Spec A of

X, the map a induces an injection aU : Gm,X(U) ↪→ Gm,cdh,X(U). Let Uj ’s be the irreducible

components of U corresponding to the minimal ideals pj ’s of A. Note that {Uj −→ U}j is a

cdh cover by smooth schemes Uj as X is a strict normal crossing divisor. Now, consider the

composition

A∗ = Gm,X(U) aU−→ Gm,cdh,X(U)
res
↪→

∏
j

Gm,cdh,X(Uj) =
∏

(A/pj)∗.
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The last equality follows from the smooth case. Suppose that s ∈ Gm,X(U) = A∗ is mapped to

the unit under aU . Then, the image of s under the above composition of maps is also, of course,

the unit 1. This means that s− 1 ∈
∩
j pj =

√
(0). Since U is reduced, we conclude that s = 1.

For the surjectivity, first note that X is equidimensional, and the lemma is true if d = 0 or

r = 1 (i.e. the case where X is smooth). We prove the lemma by induction on the number r of

irreducible components of X and the dimension d of X.

Suppose now that the lemma holds for r ≤ r0 and for dimensions less than that of X.

We prove the surjectivity of a for a strict normal crossing divisor X with r0 + 1 irreducible

components X0, X1, · · · , Xr0 . Let us put Y := X1∪· · ·∪Xr0 and consider the abstract blow-up

with all arrows closed immersions

X0 ∩ Y
i′ //

p′

��

Y

p

��
X0 i

// X

Put f := p ◦ i′. There is a commutative diagram of Zariski sheaves on X :

0 // Gm,cdh,X
(p],i]) // p∗Gm,cdh,Y ⊕ i∗Gm,cdh,X0

p′]

i′] //

ind. hypo.

f∗Gm,cdh,X0∩Y

smaller dim. case

Gm,X
(p],i]) //

� ?

a

OO

p∗Gm,Y ⊕ i∗Gm,X0

p′]

i′] // f∗Gm,X0∩Y

(4.2)

where the upper row is exact because the blow-up square is a cdh cover.

For the surjectivity of a, it suffices to show the exactness of the lower row in the dia-

gram (4.2). We may do this at the stalks. Let x ∈ X be a closed point of X and R := OX,x

be the stalk of the structure sheaf at x. Let us only deal with the case where x lies in X0 ∩ Y

because the other cases are simpler1.

In this case, since X is a simple normal crossing divisor, OX0.x = R/(f), where f is the

defining equation of X0, and OYx = R/(g) for g :=
∏
i=1,···s gi where gi is the defining equations

of the irreducible components of Y passing through x. We need to show that

R∗ −→ (R/(f))∗ ⊕ (R/(g))∗ −→ (R/(f, g))∗

is exact. Suppose that (t̄, t̄′) ∈ (R/(f))∗ ⊕ (R/(g))∗ is mapped to the unit in (R/(f, g))∗. Since

R is a local ring, t̄ and t̄′ are respectively represented by units t and t′ in R. Therefore, there

exist elements a and b in R such that t/t′−1 = af+bg. Hence, we have t−t′af = t′+t′bg =: t0.

The element t0 is invertible in the local ring R because t is invertible and t′af belongs to the

1If x 6∈ X0 ∩ Y, then the map (p], i]) : Gm,X −→ p∗Gm,Y ⊕ i∗Gm,X0 becomes an isomorphism.
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maximal ideal. Since t0 ∈ R∗ is mapped to (t̄, t̄′) under the first arrow, the exactness follows.

4.2 Relative Picard groups

We need the following results on relative Picard groups.

Definition 4.2.1 ([SV96, Section 2]). For X ∈ Sch/k and a closed subscheme Z
i
↪→ X, the

relative Picard group Pic(X,Z) is the group consisting of isomorphism classes of pairs

(L, u), where L is a line bundle on X and u is a trivialization u : L|Z
∼=−→ OZ . The group

structure is given by the tensor product. The pair (L, u) is called a line bundle on (X,Z).

Lemma 4.2.2. Suppose that i : Z ↪→ X is a closed subscheme of a scheme X over k. Then,

there is a canonical isomorphism

Pic(X,Z) ∼= H1
Nis(X, cone(Gm,X −→ i∗Gm,Z)[−1]).

Proof. By [SV96, Lemma 2.1] we have canonical isomorphisms

Pic(X,Z) ∼= H1
Zar(X, cone(Gm,X −→ i∗Gm,Z)[−1])

∼=−→ H1
ét(X, cone(Gm,X −→ i∗Gm,Z)[−1]).

The above arrow, which is induced by the change of sites, factors as

H1
Zar(X, cone(Gm,X −→ i∗Gm,Z)[−1])

change of sites

��

∼= // H1
ét(X, cone(Gm,X −→ i∗Gm,Z)[−1])

H1
Nis(X, cone(Gm,X −→ i∗Gm,Z)[−1])

change of sites

33ggggggggggggggggggggggggggggggg

Since the change of sites maps of a sheaf cohomology in degree one are injective, the lemma

follows.

Definition 4.2.3. Let X and Z as above. The relative Picard functor of the pair (X,Z)

is the functor

PicX,Z : Sch/k −→ Ab

that sends T ∈ Sch/k to the relative Picard group Pic(T ×X,T × Z).

On the representability of the relative Picard functor, the following result is known.

Proposition 4.2.4 ([B-VS, Lemma 2.1 and Appendix]). Let X be a connected smooth proper

scheme over k and Z 6= ∅ be a simple normal crossing divisor on X. Then, the relative Picard

functor PicX,Z is representable by a group scheme locally of finite type over k.
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The group scheme representing the relative Picard functor PicX,Z is denoted by the same

symbol PicX,Z . The identity component Pic0X,Z has the following structure.

Proposition 4.2.5 ([B-VS, Proposition 2.2]). Let X be a connected smooth proper scheme over

k and Z be a simple normal crossing divisor with irreducible components Zi on X. Then, there

is an exact sequence of semi-abelian varieties over k

0 −→ TX,Z −→ Pic0X,Z,red −→ AX,Z −→ 0,

where TX,Z is the torus over k representing the functor

Sch/k 3 T 7→ coker{Gm(T ×X) −→ Gm(T × Z)} ∈ Ab,

and AX,Z is the abelian variety (ker{Pic0X −→
⊕

i Pic
0
Zi
})0red.

4.3 Algebraic representatives in codimension one

By relative Nisnevich cohomology, we mean the following:

Definition 4.3.1. Let F be a bounded above complex of Nisnevich sheaves on Sch/k. For a

closed immersion Z ↪→ X, the relative Nisnevich cohomology of the pair (X,Z) with

coefficients in F is defined as

Hm
Nis(X,Z;F) := Hm(cone(I•(X) −→ I•(Z))[−1]),

where I• is the total complex of a Cartan-Eilenberg resolution of F in ShNis(Sch/k).

Unlike the cdh case, this does not only depend on X \Z. It is clear from the definition that

there is a long exact sequence of cohomology groups

· · · −→ Hm
Nis(X,F) −→ Hm

Nis(Z,F) −→ Hm+1
Nis (X,Z;F) −→ Hm+1

Nis (X,F) −→ · · · .

We shall interpret relative Picard groups in terms of relative Nisnevich cohomology.

Proposition 4.3.2. Let i : Z ↪→ X be a closed subscheme of X over k. Then, there is a

canonical isomorphism

Pic(X,Z) ∼= H1
Nis(X,Z; Gm).

Proof. Let Gm −→ I• be an injective resolution in ShNis(Sch/k). Then, its restriction Gm,X −→

I•
X to the small Nisnevich site on X is also an injective resolution. Similarly, so is Gm,Z −→ I•

Z .
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Since i : Z ↪→ X is a closed immersion, i∗ : Sh(ZNis) −→ Sh(XNis) is exact and preserves

injectives (as its left adjoint i∗ is exact). Hence, i∗Gm,Z −→ i∗I•
Z is an injective resolution on

XNis. Therefore,

Pic(X,Z) ∼= H1
Nis(X, cone(Gm,X −→ i∗Gm,Z)[−1]) (by Lemma 4.2.2)

∼= H1
Nis(X, cone(I•

X −→ i∗I•
Z)[−1])

= H1(cone(I•(X) −→ I•(Z))[−1])

= H1
Nis(X,Z; Gm).

Suppose that X̄ is a smooth proper scheme and Z is a simple normal crossing divisor on

X̄. We shall give a motivic interpretation (on Sm/k) of the relative Picard functor of the pair

(X̄, Z). We start with a lemma.

Lemma 4.3.3. Under resolution of singularities, for any schemes X and T, there is a canonical

isomorphism natural in T

HomDM (M(T )⊗M c(X),Z(n)[m])
∼=−→ HomD−(Shcdh(Sch/k))(Z(T )cdh⊗Zc(X)cdh,Z(n)cdh[m]).

Proof. Let us write as (Sm/k)t the restriction of the cdh topology to Sm/k, and recall that

Sht(Sm/k) is equivalent to Shcdh(Sch/k) ([FV, Proof of Lemma 3.6]). The reason is that any

scheme has a smooth cdh cover by resolution of singularities.

For any scheme S ∈ Sch/k, there is a composition fm,nT,S of canonical maps

HomDM (M(T ) ⊗M c(S),Z(n)[m]) def= HomDM (Ztr(T ) ⊗ Zctr(S),Z(n)[m])

(a)
= HomD−(Shtr

Nis(Sm/k))(Ztr(T ) ⊗ zequi(S, 0),Z(n)[m])

(b)→ HomD−(ShNis(Sm/k))(Z(T ) ⊗ Zc(S),Z(n)[m])

(c)→ HomD−(Sht(Sm/k))(Z(T )t ⊗ Zc(S)t,Z(n)t[m])
(d)∼= HomD−(Shcdh(Sch/k))(Z(T )cdh ⊗ Zc(S)cdh,Z(n)cdh[m]).

Here, (a) is an equality because Z(n) is an A1-local object by Corollary 2.3.4. (b) is induced by

the inclusions Z(T ) ↪→ Ztr(T ) and Zc(S) ↪→ zequi(S, 0). (c) is induced by the t-sheafification,

and (d) is due to the equivalence of categories between Sht(Sm/k) and Shcdh(Sch/k). By

the construction, fm,nT,S is functorial in T with respect to pushforwards along all morphisms

and functorial in S with respect to pushforwards along proper morphisms and pullbacks along

flat morphisms. Therefore, the localization triangles in DM ([MVW, Theorem 16.15]) and in
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D−(Shcdh(Sch/k)) ([FV, Corollary 3.9]) associated with a good compactification X ↪→ X̄ of X

with the boundary divisor Z give rise to the commutative diagram (Note that DM is a tensor

triangulated category ([MVW, p.110]), and −⊗Z(T )cdh is exact in Shcdh(Sch/k) because Z(T )

is a presheaf of free abelian groups and sheafification is exact.)

// Hm−1(T × X̄,Z(n)) //

fm−1,n

T,X̄
∼=

��

Hm−1(T × Z,Z(n)) //

fm−1,n
T,Z

∼=
��

HomDM (M(T ) ⊗M c(X),Z(n)[m])

fm,n
T,X

��
// Hm−1

cdh (T × X̄, Z̃(n)) // Hm−1
cdh (T × Z, Z̃(n)) // HomD−

cdh
(Z̃(T ) ⊗ Z̃c(X), Z̃(n)[m])

// Hm(T × X̄,Z(n)) //

fm,n

T,X̄
∼=

��

Hm(T × Z,Z(n))

fm,n
T,Z

∼=
��

//

// Hm
cdh(T × X̄, Z̃(n)) // Hm

cdh(T × Z, Z̃(n)) //

where “ ∼ ” stands for the cdh sheafification. The four arrows between the cohomology groups

are isomorphisms by [MVW, Theorem 14.20], so the middle map is also an isomorphism.

Proposition 4.3.4. Let X and T be smooth schemes over k and let X̄ be a good compactifi-

cation of X with the boundary divisor Z. Under resolution of singularities, there is a natural

isomorphism in T ∈ Sm/k

F : Pic(T × X̄, T × Z)
∼=−→ HomDM (M(T ) ⊗M c(X),Z(1)[2])

such that F is compatible with the change of sites maps in the sense that the following diagram

is commutative:

H0
Nis(T × Z,Gm) //

∼= change of sites

��

Pic(T × X̄, T × Z) //

F

��

H1
Nis(T × X̄,Gm)

∼= change of sites

��
H1
cdh(T × Z,Z(1)cdh) // HomDM (M(T ) ⊗M c(X),Z(1)[2]) // H2

cdh(T × X̄,Z(1)cdh).

Proof. Let Gm,cdh −→ I• be an injective resolution in Shcdh(Sch/k) and Gm −→ J • in

ShNis(Sch/k). Since I• is still a complex of injective sheaves when restricted to the Nisnevich

site, there is an augmentation-preserving chain map (unique up to chain homotopy) f : J • −→

I• of complexe of Nisnevich sheaves on Sch/k.

The short exact sequence

0 −→ Z(T )cdh ⊗ Z(Z)cdh −→ Z(T )cdh ⊗ Z(X̄)cdh −→ Z(T )cdh ⊗ Zc(X)cdh −→ 0

in Shcdh(Sch/k) induces the top horizontal sequence which is exact in each degree in the
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following commutative diagram of complexes of presheaves in T ∈ Sm/k with values in Ab :

0 // HomShcdh
(Z̃(T ) ⊗ Z̃c(X), I•) //

HomShcdh
( ˜Z(T × X̄), I•) // HomShcdh

( ˜Z(T × Z), I•) // 0

HomShNis(Z(T × X̄), I•)

adjunction ∼=

OO

// HomShNis(Z(T × Z), I•)

adjunction ∼=

OO

cone(h)[−1] //

∃ k in D−(PSh(Sm/k))

OO

HomShNis(Z(T × X̄),J •)

f◦−

OO

h
// HomShNis

(Z(T × Z),J •)

f◦−

OO

Here, “ ∼ ” stands for the cdh sheafification. The dotted arrow k exists in the derived cate-

gory D−(PSh(Sm/k)) of presheaves on Sm/k. Now, taking cohomology groups, we obtain the

following commutative diagram natural2 in T ∈ Sm/k :

H0
Nis(T × X̄,Gm) //

a∼=
��

H0
Nis(T × Z,Gm) //

b∼=
��

H1
Nis(T × X̄, T × Z; Gm)

k′, induced by k
��

H0
cdh(T × X̄, G̃m) // H0

cdh(T × Z, G̃m) // HomD−
cdh

(Z̃(T ) ⊗ Z̃c(X), G̃m[1])

(4.3)

// H1
Nis(T × X̄,Gm) //

c∼=
��

H1
Nis(T × Z,Gm)

d

��

//

// H1
cdh(T × X̄, G̃m) // H1

cdh(T × Z, G̃m) //

where all solid vertical arrows induced by the change of sites. The maps a and c are isomor-

phisms by [MVW, Theorem 14.20] and b is an isomorphism by Lemma 4.1.4.

In view of Proposition 4.3.2 and Lemma 4.3.3, it remains to show that the map k′ is an

isomorphism. For this, we claim that d is injective.

It is enough to prove that the composition

f : H1
Zar(T × Z,Gm)

change of sites
↪→ H1

Nis(T × Z,Gm) d−→ H1
cdh(T × Z, G̃m)

is injective because the first injective map is an isomorphism by Hilbert’s Satz 90 ([Mi80,

Chapter III, Proposition 4.9]). By the construction of d, f factors through H1
Zar(T ×Z, G̃m) as

H1
Zar(T × Z,Gm)

i ∼=
��

f // H1
cdh(T ×X, G̃m)

H1
Zar(T × Z, G̃m)

( � g, change of sites

55lllllllllllll

where i is an isomorphism by Lemma 4.1.4 and g is injective because it is a change of sites in

2The naturality in T follows because the map k was constructed in the derived category of presheaves.
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degree one. Therefore, d is injective.

We are now ready to compare the algebraic representative with compact supports of a

smooth scheme with relative Picard variety.

Proposition 4.3.5. Assume resolution of singularities. For any connected smooth scheme X

over k with a good compactification X̄ with the boundary divisor Z, the canonical homomorphism

H2
c,alg(X,Z(1))

i:=inc
↪→ H2

c (X,Z(1))
g−→ Pic(X̄, Z)

ψ∼= PicX̄,Z(k)

(g is the inverse of F in Proposition 4.3.4 evaluated at T = Spec k, and ψ is as in Proposi-

tion 4.2.4) factors through Pic0
X̄,Z,red

(k) as

H2
c,alg(X,Z(1))

φ0 ((PPPPPPPPPPPP

ψ◦g◦i // PicX̄,Z(k)

Pic0
X̄,Z,red

(k)

77ppppppppppp

and the homomorphism φ0 is regular.

Proof. It is enough to show that for any smooth connected scheme T over k pointed at t0 ∈ T (k)

and Y ∈ HomDM (M(T ) ⊗M c(X),Z(1)[2]), the composition

T (k) wY−→ H2
c,alg(X,Z(1))

ψ◦g◦i−→ PicX̄,Z(k)

is induced by a scheme morphism, where wY as in Definition 3.3.1. Indeed, it is because the

image of T is connected and contains the identity and Pic0
X̄,Z,red

is a semi-abelian variety by

Proposition 4.2.5.

Observe that there is a commutative diagram

T (k)
wY // H2

c,alg(X,Z(1))
_�

i

��
H2
c (X,Z(1))

g

��
T (k)

BF−1(Y ) // Pic(X̄, Z)
ψ // PicX̄,Z(k).

Here, F is the map defined in Proposition 4.3.4. Let (L, u : L|T×Z ∼= OT×Z) be the line

bundle on the pair (T × X̄, T ×Z) that represents F−1(Y ). BF−1(Y ) is defined as the map that

sends t ∈ T (k) to (Lt ⊗ Ľt0 , ut ⊗ ǔt0), where Lt means the pullback of the line bundle along

t : Spec k −→ T, ut is the restriction of u to {t} ×X, and −̌ signifies dual invertible sheaves.
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The commutativity of the diagram follows from the naturality of F.

Now, let (P, p) be the Poincaré bundle, which is by definition the line bundle (P, p) represent-

ing the class in Pic(PicX̄,Z×X̄, P icX̄,Z×Z) corresponding to the identity inHomSch/k(PicX̄,Z , P icX̄,Z).

The representability of the relative Picard functor means that F−1(Y ) is the pullback of (P, p)

along some scheme morphism h : T −→ PicX̄,Z . Hence, we are given with the commutative

diagram

T (k)

h &&MMMMMMMMMMM

BF−1(Y )// Pic(X̄, Z)
ψ // PicX̄,Z(k)

PicX̄,Z(k)

W(P,p)

OO

id−h(t0)

44iiiiiiiiiiiiiiiii

(4.4)

where PicX̄,Z is considered pointed at h(t0) in defining B(P,p).

Since ψ ◦BF−1(Y ) = (id− h(t0)) ◦ h, we conclude that ψ ◦BF−1(Y ) is induced by a scheme

morphism.

Theorem 4.3.6. Assume resolution of singularities. If X is a smooth connected scheme over

k with a good compactification X̄ with the boundary divisor Z, then the regular homomorphism

in Proposition 4.3.5

φ0 : H2
c,alg(X,Z(1)) −→ Pic0X̄,Z,red(k)

is an isomorphism. In particular, it is the algebraic representative with compact supports in

codimension one.

Proof. The injectivity of φ0 follows because ψ ◦ g : H2
c (X,Z(1)) −→ PicX̄,Z(k) is an isomor-

phism. For the surjectivity, observe that

im(g ◦ i) =
∪

T, smooth
connected

im{H0(T,Z)0 × Pic(T × X̄, T × Z)
pullback−→ Pic(X̄, Z)} =: Picalg(X̄, Z).

Thus, it remains to show that the elements of Picalg(X̄, Z) correspond to the rational points

on Pic0
X̄,Z,red

. If Z = ∅, it is the classical smooth proper case. See [Kl, Proposition 9.5.10].

The case Z 6= ∅ is simpler because the relative Picard functor is already an fppf sheaf

without taking the sheafification. We include the proof for the convenience of the reader. Let

us consider (L, u) ∈ Pic(X̄, Z) and the corresponding rational point α ∈ PicX̄,Z(k).

Suppose that (L, u) belongs to Picalg(X̄, Z). Then, there are a smooth connected scheme T,

rational points t0, t1 ∈ T (k) and (M, v) ∈ Pic(T ×X̄, T ×Z) (cf. the proof of Proposition 3.2.2)

such that

(L, u) = (Mt1 , vt1) − (Mt0 , vt0).

Now, (M, v) defines a morphism τ : T −→ PicX̄,Z , and we have α = τ(t1) − τ(t0). Since τ is
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continuous, T is connected, and the image of the map σ := τ(−) − τ(t0) : T (k) −→ PicX̄,Z(k)

contains the identity, the image of σ is contained in the identity component of PicX̄.Z , i.e.

σ(T (k)) ⊂ Pic0
X̄,Z

(k). In particular,

α = τ(t1) − τ(t0)
def= σ(t1) ∈ Pic0X̄,Z(k).

Conversely, suppose that α ∈ Pic0
X̄,Z

(k). The inclusion Pic0
X̄,Z

↪→ PicX̄,Z corresponds to

an element (N , w) ∈ Pic(Pic0
X̄,Z

× X̄, P ic0
X̄,Z

× Z). Then, (Nα, wα) = (L, u) and (N0, w0) =

(OX̄ , idOZ ) (The subscript 0 signifies the identity of Pic0
X̄,Z

) because for any rational point

p ∈ Pic0
X̄,Z

(k), the diagram

N ∈ Pic(Pic0
X̄,Z

× X̄, P ic0
X̄,Z

× Z)

(−)t

��

∼= HomSch/k(Pic0X̄,Z , P icX̄,Z) 3 inc

−◦p
��

Nt ∈ Pic(Spec k × X̄, Spec k × Z) ∼= HomSch/k(Spec k, P icX̄,Z) 3 t

commutes. Therefore, we have

(L, u) = (L, u) − (OX̄ , idOZ
) = (Nα, wα) − (N0, w0) ∈ Picalg(X̄, Z).

The last assertion of the theorem follows from the first part because there is a commutative

diagram:

H2
c,alg(X,Z(1))

Φ1
c,X // //

φ0

isom. ((PPPPPPPPPPPP
Alg1

c,X(k)

∃! by universality

��
Pic0

X̄,Z,red
(k)
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