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Abstract

After the cosmic recombination, there have been no luminous objects. This epoch is often
called the Dark Ages. The Dark Ages ended by the formation of first luminous objects,
because first luminous objects illuminated the Universe. According to the standard cosmo-
logical structure formation theory, massive objects such as galaxies started to form after
the end of Dark Ages, and ionizing photons from galaxies ionized the neutral hydrogen
gas distributed in the Universe. This global transition as known the cosmic reionization
dramatically proceeded. This epoch is called the Epoch of Reionization (EoR). Recent ob-
servations, such as QSO absorption lines, the Lyα luminosity function of galaxies, and the
optical depth of Thomson scattering, have provided us with a large amount of information
on the EoR. Ongoing and upcoming telescopes will start observation aimed at detecting
the 21 cm line signal from the Inter Galactic Medium(IGM) in the EoR. The 21 cm line
emission is due to the spin flip of neutral hydrogen atoms.

In this Thesis, I present the method to probe the thermal history of the IGM through
the 21 cm signal statistically with future large radio interferometers. First, I present a
detailed analysis of the 21 cm power spectrum by considering components which consist
of the 21 cm power spectrum in order to investigate what component mainly contributes
to the 21 cm power spectrum at each epoch. I also estimate one-point statistics such as
variance and skewness of the probability distribution function of the spin temperature to
understand physical behavior of the 21 cm power spectrum since previous works did not
focus on one-point statistical values in detail. I find that I can give physical interpretation of
the 21 cm power spectrum by combining skewness with variance. I also find that skewness
becomes good indicator of the epoch in which the X-ray heating becomes effective. Further,
I estimate the detectability of skewness with upcoming radio observations.

Then, I introduce the 21 cm bispectrum as a method to probe the Dark Ages and
the EoR. The reason why I introduce it is that various astrophysical processes such as
Wouthuysen-Field(WF) effect and the X-ray heating of the IGM expected to cause a non-
gaussian distribution of the brightness temperature field. I investigate scale and redshift
dependences of the 21 cm bispectrum first, then I study what component( the contribution
from the matter fluctuation, the spin temperature and neutral hydrogen fraction) and
configurations of the 21 cm bispectrum are dominant at the epoch where each astrophysical
process plays an important role. I find that the 21 cm bispectrum is scale invariant except
the case that dominant component of the 21 cm bispectrum is the matter fluctuation, and
find that the squeezed type of the bispectrum as function of redshift has correlation between
large and small scales. Further, I find that dependences on configuration and component
are different among redshifts. Therefore, I expect that the bispectrum helps us extract the
information on each component of the 21 cm bispectrum.

Finally, I perform the Fisher analysis to estimate an expected error for the EoR model
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parameters with MWA and LOFAR as supposed instruments. Because previous works
showed the 21 cm power spectrum analysis for the expected observation of these telescopes
cannot constrain the parameters, I, then, considered how to improve the constraint by using
the 21 cm bispectrum. I find that the bispectrum can put tight constraint on the EoR model
parameters compared with that obtained by the power spectrum for both telescopes, and
thus break the degeneracy.
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Chapter 1

Introduction

1.1 Historical review of modern cosmology

Here, we briefly give a historical review of modern cosmology from beginning of the Uni-
verse to present day. A schematic picture of evolution of the Universe is shown in Fig.1.1.
In our understanding, we think that the Universe began by the accelerating expansion
called inflation [114, 54]. At the epoch of inflation, it is thought that quantum fluctua-
tions, which are seeds for the large scale structure in the Universe, are embedded. After
inflation, the Universe keeps much dense and hot state because energy of inflation changes
to thermal energy (reheating). Due to the expansion of the Universe, the Universe gets
cooled less than ∼ 0.1MeV(∼ 109K). At this time, protons and neutrons start to produce
deuterium(p+n → D+γ). Once deuterium is produced, reactions to produce 3H,3 He,4He
via deuterium begin to occur. In addition to these elements, 7Li is also produced. A series
of these processes is called BigBang nucleosynthesis (BBN) [2, 3]. At the early Universe,
photons remain tightly couple to electrons via Compton scattering and electrons remain
couple to protons via Coulomb scattering. Below T ∼ 0.1eV(∼ 104K), free electrons are
coupled with protons and hydrogen atoms are produced via e−+p → H+γ. This reaction
is called recombination. At almost same time, an interaction between photons and baryons
becomes inefficient, and then photons are decoupled from baryons after last scattering.
The photons after last scattering can travel to us and these photons are called Cosmic
microwave background radiation (CMB, CMBR). Since there are no luminous objects after
recombination, this epoch is called the Dark Ages (DA) and the Universe keeps neutral
state at this epoch. At z ∼ 30, first generation luminous objects begin to form inside
a dark matter halo. As the result, these ones illuminate the Universe and this period is
called the Cosmic Dawn(CD). As structure formation proceeds, ionizing photons emitted
by galaxies start to ionize neutral hydrogen atoms in the Universe around z ∼ 15. This
epoch is called the Epoch of Reionization (EoR). Recent observations suggest that the EoR
finishes by z ∼ 6. After the EoR finishes, the Universe experiences some important events.
One of them is the accelerating expansion of the Universe. Observations of supernovae
indicate that the accelerating expansion of the Universe starts at z ∼ 0.5. If the Universe
consists of only matters which interact each other gravitationally, we cannot explain this
accelerating expansion. Consequently, we introduce the dark energy to explain this accel-
erating expansion. Other important discovery is existence of the large scale structure in
the Universe. A number of large surveys of galaxies finds that galaxies are not distributed
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12 CHAPTER 1. INTRODUCTION

randomly but have structure on the large scale.

Figure 1.1: History of the Universe. From left to right, the Universe evolves. credit:
https://the Universe-review.ca

We here briefly see observational evidences for modern cosmology. Through the end of
20th century to 21st century, Our knowledge on the Universe has increased rapidly thanks to
development of observational instruments. First, we introduce observational results which
confirm BBN[14]. Primeval 4He abundance is estimated from measurements of 4He/H in
hot and ionized regions of galaxies. D is measured vis absorption lines in spectrum of
distant QSOs(z ∼ 2 − 3). Primeval 7Li abundance is measured from the atmospheres of
oldest stars in our galaxy. However, most robust and precise estimate of the abundance
of these primeval elements is brought by baryon to photon ratio measured by the CMB
anisotropies. Thus, we show predicted abundance of these primeval elements obtained by
the CMB in Fig.1.2.

Next, we introduce observations of the CMB. Big discoveries are brought by COsmic
Background Explore (COBE) satellite. They succeed in finding anisotropies of the CMB
temperature(δT/T ∼ 10−5) and in determining the spectrum of the CMB precisely[10, 39,
120]. The latter shows that CMB photons are perfect blackbody radiation with Tγ,0 =
2.725± 0.001K. After COBE, Wilkinson Microwave Anisotropy Probe (WMAP)[121] and
Planck[98, 99] are launched to observe the anisotropies of the CMB with higher spacial
resolution. These satellites can measure the anisotropies of the CMB and determine the
cosmological parameters accurately. We show the comparison of the CMB temperature
maps observed by each satellite in Fig.1.3.

Finally, we show result of observations which measure the distribution of galaxies. The
large and deep redshift surveys find that the distribution of galaxies is not random and the
Universe has the large scale structure(see eg.[31, 32, 125]). As similar as case of the CMB,
this discovery also suggests that the Universe needs the deviation from smoothness. One of
the most important statistical values to estimate the density (or temperature) fluctuations
is a two-point correlation function (or called power spectrum in Fourier space). We also
can measure scale of the Baryon Acoustic Oscillation(BAO) by the two-point correlation
function(see eg. [125]).

These observations open up a new research and precision cosmology. We can establish
the ΛCDM model. The three pillars of the ΛCDM model are

(i) Dark matter and dark energy.



1.1. HISTORICAL REVIEW OF MODERN COSMOLOGY 13

Figure 1.2: This figure shows abundance of each primeval element (4He, D, 3He,7 Li from top
to bottom) as function of baryon to photon ratio. This relation is predicted by Bigbang
nucleosynthesis. The vertical band is range of baryon to photon ratio measured by the
CMB. Once we determine baryon to photon ratio, we can estimate abundance of each
primeval element. This figure is taken from [38].

Figure 1.3: Comparison of the CMB temperature maps observed by COBE, WMAP
and PLANCK satellites. The resolution becomes better from left to right. credit:
http://www.legaro.fr
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Figure 1.4: SDSS map of the Universe. Each point expresses a galaxy.(credit):
http://www.sdss.org/science/

(ii) The perturbation theory around zeroth order for density fluctuations to describe the
structure formation in the Universe.

(iii) The inflation model to generate the initial quantum fluctuations.

Based on the ΛCDM model, we can consider the evolution of the Universe. The ΛCDM
model is a paradigm for the modern cosmology confirmed by both theory and observation.

1.2 Through the Dark Ages to the EoR

We previous referred to the history of the Universe. We here focus on epochs through the
Dark Ages to the EoR since these epochs are the frontier for both observation and theory.
Recent observations of QSO, CMB and high redshift galaxies constrain neutral hydrogen
fraction at the EoR. Observations of distant QSO spectra and the luminosity function of
high redshift galaxies indicate that the EoR finishes by z ∼ 6. On the other hand, An
observation of the CMB polarization caused by Thomson scattering implies that the EoR
happens at z ∼ 9− 10 (see sec 3.2.1 in detail). We show current constraints on fraction of
neutral hydrogen atoms obtained by observations in Fig.1.5. Although these observations
give constraints on the EoR, we have yet to observe an epoch through the Dark Ages to
the EoR. Since we cannot check validness of a theoretical scenario without comparison of
theory with observation, we need to observe the epoch through the Dark Ages to the EoR
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in detail.

Figure 1.5: Constraint on neutral fraction 1 − QHII as function of redshift obtained by
observations(Lyα forest, Lyα galaxies, GRB, QSO). Each point corresponds to various
observations. This figure is taken from[108].

Next, we briefly introduce a scenario through the Dark Ages to the EoR. Based on a
hierarchical structure formation model, matter fluctuations grow gravitationally and dark
matter collapses. Collapsed dark matter makes a dark matter halo at over-dense regions.
Inside a dark matter halo, baryonic objects start to form primordial stars at z ∼ 30[142].
At the epoch when primordial stars form, there are no metals and only hydrogen atoms
(and helium) exist. In particular, primordial gas can be cooled via hydrogen molecular
cooling. As the result, the gas also collapses and then primordial stars can form. The
Cosmic Dawn starts when first luminous objects start to illuminate the Universe. Once the
Cosmic Dawn starts, various luminous objects such as supernova, quasar and X-ray binary
form. These objects affect not only thermal history of the IGM but also ionization history
of the IGM[35, 36, 133, 113]. The temperature of the IGM first decreases adiabatically
as the Universe evolves. However, the IGM is heated drastically by X-ray photons after
a certain epoch when X-ray sources such as X-ray binaries form. As the Universe evolves
more, neutral hydrogen atoms in the Universe are reionized by ionizing photons emitted
by galaxies[34].

We expect that next generation optical and infrared telescopes such as JWST(James
Webb Space Telescope) and TMT(Thirty Meter Telescope) can give fruitful information on
the neutral hydrogen fraction during the EoR by observing high redshift galaxies beyond
z ∼ 10. However these observations are also limited because they can observe the IGM
indirectly, thus we need to observe the IGM directly. The 21 cm signal is believed to be
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a good probe of the EoR because the 21 cm signal can trace the distribution of neutral
hydrogen atoms during the EoR and beyond the EoR. We expect that we can measure the
formation and evolution of ionized bubbles via the 21 cm signal.

1.3 21 cm line of neutral hydrogen

As we referred above, current observations for the EoR can access only the IGM at late
stage of the EoR. Thus, we need other observations to be able to access the IGM at the
EoR and the Cosmic Dawn. The 21 cm line emission due to the hyperfine structure of
a neutral hydrogen atom serves as a promising method to investigate the epoch we are
interested in. A neutral hydrogen atom emits or absorbs the radio wave corresponding to
the energy difference between the singlet and the triplet in neutral hydrogen. This energy
difference corresponds to 1420MHz or λ ∼21 cm wavelength radio wave. The transition
probability between the singlet and the triplet for a hydrogen atom is ∼ 2.9×10−15s−1. This
probability is very small, but hydrogen atoms constitute the bulk fraction of the Universe.
Therefore, we can access the IGM at the EoR and the cosmic dawn via the 21 cm signal.

The redshifted 21 cm line is suitable for studying thermal and ionized states of the
IGM as well as the first objects in the Cosmic Dawn and the EoR [43, 106, 117]. The
redshifted 21 cm line has rich information on the IGM. The fundamental value of the
21 cm line is the spin temperature which is determined by the CMB temperature, the
kinetic temperature of the IGM and the color temperature of the Lyman alpha (Lyα)
radiation field(the color temperature corresponds to the number of Lyα photons). The
kinetic temperature decreases adiabatically as the Universe evolves when there are no
heating sources. Once X-ray sources such as X-ray binaries form, the IGM begins to
be heated by X-ray photons and the gas kinetic temperature increases drastically [89,
20, 104, 36]. Typically, the color temperature is nearly equal to the kinetic temperature
because the Lyα scattering rate is very high and a frequent scattering of Lyα photons
brings the Lyα radiation field coupling with the IGM whose temperature is equal to the
kinetic temperature [43]. The spin temperature of neutral hydrogen atom couples with
the color temperature via Lyα photons (called the Wouthuysen-Field (WF) effect[139]).
Therefore, the spin temperature also couples with the kinetic temperature. Because of
this coupling, the spin temperature coupled with the kinetic temperature also increases
drastically after X-ray sources form, and exceeds the CMB temperature. As the heating
of the IGM proceeds, the thermal phase of the IGM changes and neutral hydrogen atoms
start to be reionized by UV radiation from early galaxies [79]. Note that we actually
observe the brightness temperature not the spin temperature. The brightness temperature
is the spin temperature offsetting from the CMB temperature and is governed by fraction of
neutral hydrogen atoms, matter fluctuations and the spin temperature. Therefore, we can
extract information on both thermal and ionization state of the IGM from the brightness
temperature.

Ongoing radio interferometers, such as Low Frequency Array (LOFAR) [110], Murchi-
son Wide Field Array (MWA) [126], and Precision Array for Probing Epoch of Reionization
(PAPER) [101], start observation and serve as a prototype of future high-sensitivity experi-
ments (Fig.1.6). However, the sensitivities of the ongoing experiments are not yet sufficient
to obtain image maps of the distribution of neutral hydrogen atoms at the Cosmic Dawn
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and the EoR. Alternatively, we try to detect the 21 cm signal statistically. One of the
statistical methods to extract the information on physical state of the IGM from the 21 cm
line is the power spectrum of the brightness temperature. [43, 104, 112, 4, 90, 102]. The
power spectrum of the 21 cm signal might be detectable by ongoing radio interferome-
ters [90]. Recent observations already constrain the 21 cm power spectrum and the IGM
temperature at high redshift [29, 1, 51].

Although recent observations put a loose constraint, it is expected that the 21 cm power
spectrum at z = 10 ∼ 30 can be measured much more accurately by the Square Kilometre
Array (SKA)[15]. SKA is also expected to have efficient specification to obtain image maps
of HI distribution. Furthermore, we can measure the state of the IGM by other method
with SKA. The method to measure power spectrum and image maps is based on 21 cm
emission lines, whereas another method uses 21 cm absorption lines. When we observe
spectrum of high-z radio background source, the 21cm absorption lines are seen in the
spectrum. The 21 cm absorption lines reflect distribution of neutral hydrogen atoms along
line of sight. This method is similar to the Lyα forest except using the 21 cm absorption
lines instead of Lyα absorption lines. Therefore, this method is called the 21 cm forest
[40, 21] and SKA is capable to detect the 21 cm forest.

Figure 1.6: Pictures of the antenna configuration of LOFAR(left) and
MWA(right). credit: (left) Astron[http://www.rug.nl] and (right) Natasha Hurley-
Walker[http://www.mwatelescope.org].

However, there remain some challenging problems to detect the 21 cm signal. In partic-
ular, foreground removal is a big issue for extracting the 21 cm signal from the total signal
(21 cm signal+foreground+thermal noise) [66, 67, 128]. Here, foreground includes Galactic
diffuse synchrotron emission, emission from supernova remnant, diffuse free-free emission
from our galaxy and extragalactic foregrounds such as radio galaxies. We show the simu-
lated 21 cm signal, foreground and thermal noise with LOFAR in Fig.1.7. Since foreground
is an 5-6 orders of magnitude greater than the 21 cm signal, we need to remove foreground
appropriately. In order to remove foreground, some methods such as a polynomial fit-
ting, correlated component analysis(CCA), Wp smoothing and GMCA are suggested as
algorithms to remove foreground [17]. On the other hand, some approaches try to avoid
foreground instead of removal. In this point of view, they measure the 2D(transverse and
line-of-sight components in Fourier space)-21 cm power spectrum in the region the EoR
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window which is free from effect of foreground[100, 74, 75, 30]. Here we show a schematic
image of the EoR window in Fig.1.8. The two methods, foreground removal and foreground
avoidance, for the recovery of the spacial 21 cm power spectrum are complementary to each
other. For the current observation noise levels, foreground avoidance recovers large k scales
well and foreground removal recovers small k scales well. As for SKA-level noise, fore-
ground removal can work well both at large k and small k[16]. As well as development
of instruments, algorithms for foreground removal and avoidance is going to be improved.
Thus, we expect that the 21 cm signal is detectable near future.

Figure 1.7: Angular power spectra of the simulated EoR signal(dotted redline), simulated
foreground(solid black line) and three levels of simulated noise for LOFAR. The dashed
line is noise for single beam line with one year of integration time, the dash-dotted line is
noise for five beams with one year of integration time and the dashed-dotted-dotted line
represents noise with five beams after four years of integration time. This figure is taken
from [66].

1.4 Outline of this Thesis

In this Thesis, we studied the cosmological 21 cm line signal which is a powerful tool to
know the state of the IGM at the Dark Ages and the EoR. It is important to extract the
information on the IGM from the 21 cm signal. Some ongoing telescopes such as MWA and
LOFAR have already started observation to detect the cosmological 21 cm signal. Future
observations like HERA and SKA, planned to start observation in 2020s, are expected to
reveal the evolution of the Universe through the Dark Ages and the EoR to present. The
21 cm cosmology fascinates us because it opens up a new window for the high-z Universe.

Considering the above benefits, we investigated statistical methods to extract the infor-
mation on both the thermal and ionization histories of the IGM by using the cosmological
21 cm signal in preparation for detection of the cosmological 21 cm signal statistically.
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Figure 1.8: EoR window. Larger k⊥ is limited by the array configuration (spacial resolution)
and smaller k⊥ is limited by the Field of View(FoV). Large k∥ is limited by the spectral
resolution and smaller k∥ is limited by foreground and the bandwidth. This figure is taken
from [74].
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First, we proposed a one-point statistics, such as the variance and skewness, as an
indicator to approach the thermal history of the IGM. We focused on the variance and
skewness of the spin temperature because the thermal information on the IGM is included in
the spin temperature. Consequently, we calculated one point statistics values and discussed
how these statistical values would give the information. We also estimated the signal to
noise ratio of skewness assuming MWA, LOFAR and SKA.

Second, we calculated the bispectrum of the brightness temperature. Since astrophysical
processes are expected to introduce a non-gaussianity on distribution of the brightness
temperature field, we introduced the 21 cm bispectrum as a method to probe a non-
gaussianity in the brightness temperature field. We also investigate the property of 21 cm
bispectrum and the difference between the 21 cm power spectrum and the bispectrum.

Finally, as the application of the 21 cm bispectrum, we performed the Fisher forecast for
the EoR model parameters by using the 21 cm bispectrum. In particular, we estimate how
we can put constraints on the EoR model parameters with MWA and LOFAR telescopes.
We also compare the constraints obtained by the 21 cm power spectrum with the one
obtained by the 21 cm bispectrum.

This Thesis is organized as follows. In Chapter 2, we briefly review the knowledge
of the cosmology to understand structure formation in the Universe. In this chapter, we
start from the Friedmann equations and summarize the evolution of the matter fluctuations
based on the linear perturbation theory, nonlinear structure formation, the Press-Schechter
mass function and the condition to form first luminous objects in a dark matter halo.

In Chapter 3, we briefly summarize the EoR model and introduce current constraints
on the EoR. In Chapter 4, we summarize the fundamental physics related to the 21 cm
line. Since various astrophysical processes affect the 21 cm line, we briefly introduce each
process.

Our main results are presented in Chapter 5, 6 and 7. In Chapter 5, we introduce the
one-point statistics for the 21 cm brightness temperature field and then, we discuss how
useful these statistical values are to analyze 21 cm signal.

In Chapter 6, we suggest the 21 cm bispectrum as a method to probe the statistical
nature of the 21 cm brightness temperature field. We investigate the scale dependence,
redshift dependence of the 21 cm bispectrum and the components of the 21 cm bispectrum.

In Chapter 7, we apply the Fisher analysis to the EoR model parameters by using the
21 cm bispectrum and estimate the expected error of the parameters obtained by MWA
and LOFAR observations.

Finally, we summarize the conclusion and future works in Chapter 8.



Chapter 2

Basic knowledge of cosmology

In this chapter, we first give a review of basic knowledge of cosmology which is required to
understand this Thesis. First of all, we derive the Friedmann Universe based on the general
theory of relativity (GR). Second, we give a description of the structure formation in the
Universe based on the linear perturbation theory and introduce statistical values such as a
two-point correlation function and the power spectrum to analyze the density fluctuations
field. Finally, we briefly describe the basics of the nonlinear structure formation with a
spherical collapse model, the Press-Schecther formalism and the Zel’dovich approximation.
This chapter is based on [27, 84].

2.1 Friedmann Universe

A picture of the modern Universe relies on the cosmological principle. The cosmological
principle is that the distribution of matter in the Universe is isotropic and homogeneous.
This means that the Universe has no special point and direction. However, we know that
there are stars, galaxies and galaxy clusters in the Universe. It is well-known that the
Universe is inhomogeneous observationally at the scales less than ∼ 100hMpc−1. On the
other hand, the distribution of matter in the Universe is almost all homogeneous and
isotropic at larger scales than ∼ 100hMpc−1. We can derive the geometry of the Universe
from the GR under homogeneous and isotropic distributions of matter with the Friedmann-
Robertson-Walker(FRW) metric [eq.(2.1)].

ds2 = gµνdx
µdxν = dt2 − a2(t)

[
dr2

1− kr2
+ r2(d2θ2 + sin2 θdφ2)

]
, (2.1)

where gµν is the metric tensor. a(t) denotes the scale factor which relates to redshift such
as 1 + z = 1/a(t). (r, θ,φ) expresses comoving coordinate system. k is a curvature of the
Universe. In the case of k > (<)0, the Universe is opened (closed) and the Universe is flat
in the case of k = 0.

Next, we consider the time evolution of the scale factor a(t). This describes the ex-
pansion history of the Universe. We can follow the evolution of the scale factor based on
Einstein equation shown in eq.(2.2).

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν , (2.2)

21
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where Rµν is the Einstein Ricci tensor and R is the Ricci scalar. They are expressed by
the FRW metric and its derivatives. Λ is the cosmological constant. Tµν is the energy
momentum tensor. Under the assumption of homogeneous and isotropic Universe, the
energy momentum tensor can be described in the form of the perfect fluid such as

Tµν = (ρ+ p)uµuν + pgµν , (2.3)

where uµ is the four velocity of the fluid, ρ and p are the mass density and the pressure
at the rest frame, respectively. Substituting this energy momentum tensor for eq.(2.2), we
can get following equations.

(
ȧ

a

)2

≡ H2(t) =
8πG

3c2
ρ− kc2

a2
+

c2Λ

3
(2.4)

ä

a
= −4πG

3c2
(ρ+ 3p) +

c2Λ

3
(2.5)

Here, H(t) is the Hubble parameter which is an expanding rate of the Universe. Eq.(2.4)
represents the time evolution of the scale factor. This equation is called the Friedmann
equation. On the other hand, Eq.(2.5) represents the spacial components. Combing with
eq.(2.4), eq.(2.5) becomes

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (2.6)

These two equations (eqs.(2.4) and (2.6)) describe the time evolution of the scale factor
and the entropy conservation in isotropic and homogeneous Universe, respectively.

2.2 Evolution of matter fluctuations

As far, we introduced the Friedmann equation which describes the isotropic and homoge-
neous Universe. At the early Universe, the homogeneity is almost satisfied and only slight
inhomogeneity is present. However, no structure cannot be formed if the Universe would be
perfect isotropic and homogeneous. We require slight anisotropies and inhomogeneities to
form structures in the present Universe. These slight anisotropies and inhomogeneities are
amplified through the gravitational instability. In this section, we consider the evolution
of the matter fluctuations based on the linear perturbation theory.

2.2.1 Linear perturbation theory

Since the matter fluctuations behave as the perfect fluid, we can follow the time evolution
of the density fluctuations by using three fluid equations. (i) The Euler equation which
describes the motion of the fluid by relating with the velocity field v, the pressure field
p, the density field ρ and the gravitational potential φ. (ii) The continuum equation
which represents the conservation law. (iii) The Poisson equation which describes how the
gravitational potential is generated by the density field. These three equations are written
by eq.(2.7)-eq.(2.8).
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∂v

∂t
+ (v ·∇)v = −∇p

ρ
−∇φ : Euler equation (2.7)

∂ρ

∂t
+∇ · (ρv) = 0 : Continuum equation (2.8)

∆φ = 4πGρ : Poisson equation (2.9)

Note that these equations are described under the physical scale coordinate system.
Therefore, we have to rewrite these equations in the form of comoving values to apply to
the expanding Universe.

A physical scale r is related to comoving scale x with the scale factor such as r = ax.
We define the comoving velocity field as u ≡ aẋ. Then, the physical velocity can be written
by

v = ṙ = ȧx+ aẋ = Hr+ u. (2.10)

Next we introduce the gravitational potential under the comoving coordinate system
Φ ≡ φ + aä|x|2/2. We also introduce the density fluctuations δ(x, t) and the pressure
fluctuations δp(x, t) as follows:

δ(x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
(2.11)

δp(x, t) = p(x, t)− p̄(t) (2.12)

Here, ρ̄ is the isotropic and homogeneous component of ρ, and p̄(t) is the component of
p in the Friedmann Universe. With these fluctuations, fluid equations can be rewritten by

∂u

∂t
+Hu+

1

a
(u ·∇)u = − ∇(δp)

aρ̄(1 + δ)
− 1

a
∇Φ : Euler equation (2.13)

∂δ

∂t
+

1

a
∇ ·

[
(1 + δ)u

]
= 0 : Continuum equation (2.14)

∆Φ = 4πGa2ρ̄δ : Poisson equation (2.15)

These three equations describe the evolution of the density fluctuations under the grav-
itational potential and govern the structure formation in the expanding Universe.

2.2.2 Jeans instability

In the case that each fluctuation δ, δp and u is too small, we can regard the terms higher than
second order of these quantities as negligible. As the result, we can obtain the linearized
Euler and continuum equations as follows:
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∂u

∂t
+Hu+

∇(δp)

aρ̄
+

1

a
∇Φ = 0 (2.16)

∂δ

∂t
+

1

a
∇ · u = 0. (2.17)

Combined with eq.(2.15), we can get following equation

∂2δ

∂t2
+ 2H

∂δ

∂t
−
[
4πGρ̄δ +

∆(δp)

a2ρ̄

]
= 0. (2.18)

Here, we assume that the equation of state can be written in the form of p = p(ρ, S),
where S represents the entropy in the fluid. Under the linear approximation, the pressure
perturbation can be written by

δp =

(
∂p

∂ρ

)

S

ρ̄δ +

(
∂p

∂S

)

ρ

δS. (2.19)

The coefficient of the first term in eq.(2.19) corresponds to square of the sound speed of
the fluid,

c2s =

(
∂p

∂ρ

)

S

. (2.20)

If we can ignore the entropy perturbation, the evolution equation of the density pertur-
bation can be rewritten by

∂2δ

∂t2
+ 2H

∂δ

∂t
−
[
4πGρ̄δ +

c2s∆δ

a2

]
= 0 (2.21)

In the Fourier space, eq.(2.21) becomes

∂2δ̃

∂t2
+ 2H

∂δ̃

∂t
−
[
4πGρ̄− c2sk

2

a2

]
δ̃ = 0. (2.22)

Here δ̃ is the matter fluctuation in the Fourier space. From this equation, we can see that
each Fourier mode evolves independently and different Fourier modes are not mixed with
each other. This is a typical property of the linear perturbation theory.

Eq.(2.22) can be regarded as an equation of motion for δ̃. Then, we evaluate the
behavior of the solution without solving this equation . The first term of eq.(2.22) represents
an acceleration of δ̃, the second term denotes the friction by the expanding Universe in
proportion to the velocity of δ̃. The third term expresses the potential power depending
on δ̃. Therefore, eq.(2.22) is equivalent to a one-dimensional equation of the motion in

the potential V (δ̃) = −(4πGρ̄ − c2sk
2

a2 )δ̃/2 with the friction force. If the (4πGρ̄ − c2sk
2

a2 )

is negative, δ̃ oscillates decreasingly and cannot grow. This phenomenon occurs if the
sound speed is sufficiently large. Then, the density fluctuations cannot grow because the
gravitational contraction is inhibited by the pressure. On the other hand, if the (4πGρ̄ −
c2sk

2

a2 ) is positive, the density fluctuations can grow because the gravitational contraction
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overcomes the pressure. The wave number which distinguishes these situations is called
the Jeans wave number. The Jeans wave number is represented by

kJ =
a
√
4πGρ̄

cs
, (2.23)

or, expressed in the form of the wavelength. This wavelength is called the Jeans length and
written by

λJ ≡ 2πa

kJ
= cs

√
π

Gρ̄
(2.24)

In the case that a wavelength of the density fluctuation is larger than the Jeans length,
the density fluctuation can grow and begin the structure formation, whereas it cannot grow
in the opposite case. We can define the Jeans mass by considering the mean mass density
ρ̄ which is included in a sphere with the Jeans radius. The Jeans mass can be represented
by

MJ =
4πρ̄

3

(
λJ

2

)3

=
π5/2

6

c3s√
G3ρ̄

(2.25)

The Jeans mass gives a criterion of mass above which the structure formation can start.

2.2.3 Growth of the density fluctuations by the gravitational in-
stability

We here focus on the scales larger than the Jeans length and on the density fluctuations of
non-relativistic matter. In this case, the evolution of the density fluctuations in the Fourier
space is given by

∂2δ̃

∂t2
+ 2H

∂δ̃

∂t
− 4πGρ̄δ̃ = 0 (2.26)

Eq.(2.26) has two independent solutions as follows:

D+(t) ∝ H(a)

∫ a

0

da

a3H3
(2.27)

D−(t) ∝ H(a) (2.28)

The former mode expresses the growth mode and the latter is the decaying mode, respec-
tively. We ignore the decaying mode because this mode cannot contribute to the structure
formation in the Universe. Therefore, we only focus on the growing mode. We call this
growth mode solution the linear growth factor. Hereafter we denote D(a) instead of D+(a).
The linear growth factor is described by

D(a) =
5

2
aΩm

∫ 1

0

dx

(Ωm/x+ ΩΛx2 + 1− Ωm − ΩΛ)3/2
(2.29)

Here, we choose a normalized parameter which satisfies D → 0 when a → 0. We can
express the evolution of density fluctuations with the linear growth factor as follows:
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δ(x, t) = D(t)δ0(x), (2.30)

where δ0 is the present density fluctuations.

2.2.4 Statistical property of the density fluctuations

The fundamental observable value of the Universe is the density fluctuations. However, we
cannot predict the values of the density fluctuations at each point theoretically although we
can determine the density fluctuations at each point observationally. Instead of a prediction
for the density fluctuations at each point, the cosmological model can predict the nature of
the density fluctuations statistically. Therefore, we need a method to extract the statistical
information from the observable values to compare with theory.

Here, we introduce a two-point correlation function at certain two points. The two-point
correlation function connects the theoretical predictions with observations. The two-point
correlation function is defined by

⟨δ(x)δ(x′
)⟩ ≡ ξ(x− x

′
). (2.31)

For the gaussian random field, the two-point correlation function can describe the statis-
tical property of the field perfectly. In the Fourier space, the two point correlation function
is expressed by

⟨δ̃(k)δ̃(k′
)⟩ = (2π)3δD(k+ k

′
)P (k) (2.32)

Here, we defined

P (k) =

∫
d3xe−ik·xξ(|x|)

This P (k) is called the power spectrum. There is a Fourier relation between the two-
point correlation function and the power spectrum. Note that the power spectrum does
not depend on directions under the isotropic Universe.

The power spectrum P (k) is can be expressed by the transfer function T (k, t), the linear
growth factor D(a) and the initial power spectrum Pini(k) as follows;

P (k, t) =
T 2(k, t)D2(t)

D2(tini)
Pini(k). (2.33)

From eq.(2.33), we can see that this form shows that the power for each mode is in
proportion to the initial power and independent on other modes. The initial power spectrum
is predicted by inflation theories. Generally, they predict the initial power spectrum in the
form of power law for wavenumber;

Pini(k) = Akn (2.34)

A is an amplitude of the initial power spectrum. ns is the spectral index. Most of
inflation models predict ns ∼ 1. ns = 1 case is called the Harrison Zel

′
dovich spectrum.
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Figure 2.1: Variance of the density fluctuations as function of mass for various redshifts.

The transfer function T (k, t) describes how the initial power spectrum of each mode
evolves inside the Hubble scale.

As a next step, we focus on a normalization of the power spectrum. We use the vari-
ance of the density fluctuations averaged over a sphere with a radius R = 8h−1Mpc−1 to
determine a normalization factor of the power spectrum. The density fluctuations averaged
over a sphere with a radius R are given by

σ2(R) = σ2(M) ≡
〈(

δM

M

)2
〉

=

∫
k2dk

2π2
W 2(kR)P (k) (2.35)

W (kR) is a window function. W (kR) can extract information on the scales k ! 1/R. The
top-hat type of the window function can be described by

W (kR) =
3

(kR)3
[sin(kR)− kR cos(kR)] (2.36)

We show the variance of the density fluctuations as function of the mass in Fig.2.1.

2.3 Nonlinear structure formation

So far, we see the structure formation based on the linear perturbation theory. However,
we can use the linear perturbation theory only in the case of δ ≪ 1. For the density fluc-
tuations with δ > 1, we cannot use the linear perturbation theory. We call this regime the
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nonlinear regime. An analytic evaluation of the nonlinear regime is more difficult than that
of the linear regime. In this chapter, we introduce a method to treat the nonlinear regime
such as the spherical collapse model, the Press-Schechter formalism and the Zel

′
dovich

approximation.

2.3.1 Spherical collapse model

We here introduce a spherical collapse model as a simple model to describe the structure
formation in the nonlinear regime. Let us consider spherical matter distribution around a
certain point. In this situation, it is a simple one-dimension problem to study the evolution
of matter by the gravitational force. The equation of the motion for the matter distributed
inside a sphere with a radius R is written by

d2R

dt2
= −GM

R2
, (2.37)

where M is the mass inside a sphere. The solution of this equation is expressed with a
parameter θ,

R = (GM)1/3A2(1− cos θ) (2.38)

t =
A3

√
GM

(θ − sin θ) (2.39)

A is an integral constant. The mass density is ρ = 3M/4πR3. The mean mass density
ρ̄ is given by ρ̄ = 1/6πGt2 in the Einstein-de-Sitter. Then, the density fluctuation inside
sphere becomes

δ(t) =
ρ

ρ̄
− 1 =

9GMt2

2R3
− 1 =

9

2

(θ − sin θ)2

(1− cos θ)3
− 1 (2.40)

R reaches a maximum at θ = π. At this point, R and t become

Rturn = 2(GM)1/3A2 (2.41)

tturn = πA3. (2.42)

At this point, the matter density fluctuations become δturn=9π2/16 − 1 ∼ 4.55. After R
reaches a maximum, radius turns to decrease with time and it becomes 0 (the collapse
point) at tcoll = 2tturn = 2πA3 (θ = 2π). At the collapse point, mass density fluctuations
become infinity. The duration from tturn to tcoll is called the free fall time. The free fall
time tff is given by

tff = tcoll − tturn = πA3 =
π

2

√
R3

turn

2GM
=

√
3π

32Gρturn
(2.43)

The free fall time gives a characteristic time scale that takes objects to collapse under
the gravitational force.
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If δ is sufficiently small, we should be able to describe the evolution of δ in the context
of the linear perturbation theory even if δ is obtained by the spherical collapse model.

Applying the linear perturbation theory to the matter density fluctuations at t =
tturn, tcoll with the spherical collapse model, we can obtain the fluctuations at t = tturn, tcoll

δL(tturn) =
3(6π)2/3

20
∼ 1.06 (2.44)

δL(tcoll) =
3(12π)2/3

20
∼ 1.69. (2.45)

The matter density becomes infinity at δL ∼ 1.69 which is evolved by the linear pertur-
bation theory.

2.3.2 Virial equilibrium

In the previous section, we considered a spherical collapse model. In this model, the matter
density diverge at a collapse point. However, this never happens actually. Instead of this,
the collapsed objects begin to form at that point. Here, we introduce the virial theorem
which can be realized under a system bound by the gravitational forces. According to the
virial theorem, the potential energy U is related to the kinetic energy K in the form of
U + 2K = 0 once virialized state is realized.

Within a context of the spherical collapse model, it is supposed that the virialized state
is realized when the density fluctuations reach δcoll. At the virialized state, it is known that
the density fluctuation becomes δcoll ∼ 177, and then objects begin to collapse. At high
density regions, the collapsed objects can easily form. In such regions, the dark matter and
galaxies are concentrated within a spherical region. This structure is called a halo.

We here introduce the virial radius rvir and the virial temperature Tvir as values defined
at the virialized state. At high z, these are written by [5],

rvir = 0.784

(
M

108h−1M⊙

)1/3[Ωm

Ωz
m

∆c

18π2

]−1/3

×
(
1 + z

10

)−1

h−1[kpc]. (2.46)

Tvir = 1.32× 104
(

µ

0.6

)(
M

108h−1M⊙

)2/3

×
[
Ωm

Ωz
m

∆c

18π2

]1/3(1 + z

10

)
[K]. (2.47)

Here, M⊙ is a solar mass andM is a collapsed mass of a halo at redshift z . ∆c is given by
∆c = 18π2+82d−39d2, d = Ωz

m−1 at redshift z with Ωz
m = Ωm(1+z)3/(Ωm(1+z)3+ΩΛ).

2.3.3 Zel’dovich Approximation

We introduce the Zel’dovich approximation which gives the nonlinear evolution of fluc-
tuations approximately. We start initial matter distribution which is considered to be
homogeneous. If the initial Lagrangian coordinate of the particle is described by q, then
the Eulerian coordinate of the particle at t is given by
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x = q+ p(q, t), (2.48)

where p(q, t) is displace vector. Here, we consider mass density ρ(x, t) at time t and that
at initial time ti. Since the matter distribution is regarded to be homogeneous at initial
time, matter density at initial time, ρ̄(t), is independent on time. Then, mass conservation
law requires ρ(x, t)d3x = ρ̄(t)d3q. This leads

δ(x, t) =
ρ(x, t)

ρ̄(t)
− 1 ≃= −tr

(
∂p

∂q

)
= −∇q · p. (2.49)

Here, ∇p = ∂/∂q is a gradient in the Lagrangian coordinate and δ(x, t) is density fluc-
tuation. If the density fluctuations are sufficiently small, this solution should consistent
with that obtained by the linear perturbation theory. We determine p as it gives a growth
solution obtained by the linear perturbation theory and extrapolate this p to nonlinear
regime. Compared eq.(2.49) with eq.(2.30), we can determine p as follows:

p(q, t) = D(t)∇qφ0(q), (2.50)

where φ0(q) is the time independent potential in the Lagrangian coordinate and it satisfies
with Laplace equation ∆qφ0(q) = −δ0(q).

Finally, the motion of particle is given by

x = q+ p(q, t) = q+D(t)∇qφ0(q). (2.51)

Although this equation holds while the density fluctuations are small, we extrapolate the
motion described by this equation into nonlinear regime in the Zel’dovich approximation.

2.4 Press-Schechter formalism

So far, we introduced a structure formation model based on the linear perturbation theory
and the Zel’dovich approximation. In this section, we estimate how many haloes form
for a certain mass based on the Press-Schechter formalism[103]. In the Press-Schechter
formalism, we combine the linear perturbation theory with the nonlinear theory.

One of the important points for the Press-Schechter theory is that initial density fluc-
tuations are assumed to follow in the gaussian distribution. This assumption is reasonable
because many inflation models predict this nature. In the gaussian type of distribution,
the probability distribution function is given by

P (δ)dδ =
1√
2πσ2

exp

(
− δ2

2σ2

)
(2.52)

Here, σ = ⟨δ2⟩ is the variance of the density fluctuations. According to the linear pertur-
bation theory, the time evolution of the density fluctuations is written by δ ∝ δiniD(t).
Hence, the gaussian distribution keeps its shape with the time evolution.

Let us consider a sphere with a radius R and density ρ̄. Inside this sphere, the mass
M is given by M = 4πR3ρ̄/3. Next, we take the density fluctuations averaged inside the
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sphere. The density fluctuations δM averaged by the mass scale M inside the sphere also
follow in the gaussian distribution statistically,

P (δM)dδM =
1√

2πσ2(M)
exp

(
− δ2M

2σ2(M)

)
(2.53)

We here focus on a fraction of a certain region with the density fluctuation δM and
its time evolution. When δM exceeds a critical density δc, the fraction is thought to be
incorporated by an object with a mass M in the Press-Schechter formalism. We adopt
δc = 1.69 which corresponds to the density fluctuation at the collapsed point in the spherical
collapse model. Then, the ratio of the fraction which is incorporated by an object more
than mass M is given by

P>δc(M) =

∫ ∞

δc

P (δM)dδM =
1

2
erfc

[
δc

2σ2(M)

]
(2.54)

By using this ratio, we can calculate the fraction incorporated by objects whose mass
is ranged from M to M + dM . In other word, we can estimate a total amount of mass
which ranges from M to M + dM in a unit of comoving volume. This total amount is
given by ρ̄P>δc(M) − ρ̄P>δc(M + dM). Meanwhile, the total amount of mass also can be
described by n(M)MdM , where n(M)dM is the number density of objects whose mass
range is from M to M + dM . There are, however, two problems here. First, the objects
which are once incorporated into a larger object are not taken in account. This is called
cloud-in-cloud problem. Secondly, the initial density fluctuations which have negative value
are never incorporated into objects. If the structure formation proceeds, we can take a limit
of σM → ∞ because of δ ∝ D(t). In this limit, eq.(2.54) approaches 1/2. This means that
a half of mass existing in the Universe never contributes to the structure formation. This
does not reflect the actual structure formation. In the Press-Schechter prescription, we
avoid this cloud-in-cloud problem simply by multiplying a factor of 2. As the result, we
can describe the total amount mass ranged from M to M + dM by relating the probability
distribution function with the number density of objects;

n(M)MdM = 2 |ρ̄P>δc(M)− ρ̄P>δc(M + dM)| = 2ρ̄

∣∣∣∣
dP>δc

dσ(M)

∣∣∣∣

∣∣∣∣
dσ(M)

dM

∣∣∣∣ dM (2.55)

By substituting eq.(2.54) for eq.(2.55), we can obtain

n(M) =

√
2

π

ρ̄

M2

∣∣∣∣
d ln σ(M)

d lnM

∣∣∣∣
δc

σ(M)
exp

(
− δ2c

2σ2(M)

)
(2.56)

This mass number density is called the Press-Schechter mass function. In Fig.2.2, we
plot the Press-Schechter mass function. Note that a factor of 2 is justified by the excursion
set theory based on random walk model[12, 72].

2.5 Extended Press-Schechter formalism

In this section, we present the excursion set formalism which is also called the extended
Press-Schechter(EPS) formalism[72]. The EPS formalism naturally explains a factor 2
introduced to solve cloud-in-cloud problem in the the Press-Schecther formalism.
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Figure 2.2: Press-Schechter mass function as a function of halo massM for various redshifts.
Since halos with smaller mass are easily formed, the number density of smaller mass halos
is larger.

In the EPS formalism, we adopt S ≡ σ2(M) as mass variable. For the ΛCDM cosmology,
S is a monotonically declining function of halo mass as shown in Fig.2.1, so that there is
a clear one-to-one relation between S and M . First, we take density field δ(x). For each
value of the filtering mass M , we consider density field δ(M,x) smoothed by scale M . This
smoothed density field is also expressed by δS(x). The smoothed density field with sharp
k-space filter is expressed by

δS(x) =

∫
d3kW̃k(kR)δke

ik·x =

∫

k<kc

d3kδke
ik·x (2.57)

where W̃ is a window function, δk are Fourier modes of δ(x) and kc = 1/R is the size of
the top-hat in k-space.

If we have M → ∞, then S → 0. Hence, each trajectory starts at (S, δS) = (0, 0).
For sharp k-space smoothing filter, the trajectories wonder Markov random walk because
changing S adds new and independent modes. We show a schematic representation of
random walk in Fig.2.3.

We consider a given mass scale M1, corresponding to S1 as indicated by vertical solid
line. According to the Press-Schechter(PS) ansatz, the mass elements whose trajectories
are δS > δc at S1 reside in dark mater haloes with M > M1. This means that neither
trajectories A or B are in halo with M > M1. However, according to the PS ansatz, mass
element associated with trajectory B should be incorporated in halo with M > M3 > M1

because δS > δc is satisfied over the interval S2 < S < S3. Clearly the PS ansatz is not
self-consistent. This problem happens because it fails to account for the mass elements
with trajectories such as trajectory B. In order to correct this problem, we consider the
trajectory B’ from (S2, δc) to (S1, Q2). The trajectory B’ is obtained by mirroring B for
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Figure 2.3: A schematic representation of random walk trajectories in (S, δs) space. Three
trajectories correspond to three different mass elements in a Gaussian random field. The
horizontal dashed line indicates the critical density for spherical collapse, δs = δc. Note
that B’ is obtained by mirroring trajectory B in the line δS = δc for S ≥ S2.

S ≥ S2 in δS = δc. The fraction of mass in halos with M ≥ M1 is therefore given by twice
as the fraction of trajectories crossing S1 at δS > δc. This gives a natural explanation for
the factor 2 in the original PS formalism.

Now, we study the fraction of trajectories that are above the threshold of fluctuation
δc at some mass scale M1 but are below this threshold for all mass scales larger than
M(S < S1). This is equivalent to identifying the fraction of trajectories which have first
upcrossing of δS = δc at S > S1 like trajectory A in Fig.2.3. In the Press-Schechter
prescription, we associate these trajectories with the mass elements incorporated into mass
M < M1. Clearly, such trajectories have to satisfy with (δS(S1) < δc). These include
trajectories such as B, which has the first upcrossing of the barrier at S < S1 and we have
to exclude these trajectories. In order to do this, we once again use mirror symmetry of
B. The trajectories B and B’ have equal probabilities. Indeed, all trajectories that pass
through (S1, Q1) having δS > δc for some S < S1 have a mirror trajectory that passes
thorough (S, δS) = (S1, Q2), where Q2 = Q1 +2(δc −Q1) = 2δc −Q1. Thus, the fraction of
trajectory with a first upcrossing at S > S1 is simply given by

F (> S1) =

∫ δc

−∞
[P (δS, S1)− P (2δc − δS, S1)]dδS

=

∫ δc

−∞

1√
2πS

[
exp

(
− δ2S
2S

)
− exp

(
−(2δc − δS)2

2S

)]
dδS, (2.58)

where we have used that density fluctuations obey gaussian random field. As discussed
above, the fraction given by eq.(2.58) is equal to the fraction F (< M1), of mass elements
incorporated into halos with M < M1. Each mass element in the Universe is expected to
be in collapsed objects or not. Consequently, F (> M) = 1− F (< M). With this fact, we
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can obtain the halo mass function as follows:

n(M, t)MdM = ρ̄
∂F (> M)

∂M
dM = ρ̄fFU(S, δc)

∣∣∣∣
dS

dM

∣∣∣∣ dM, (2.59)

where

fFU(S, δc)dS =
∂F (> M)

∂S
dS =

1√
2π

δc
S3/2

exp

[
− δ2c
2S

]
dS (2.60)

is the fraction of trajectories that have their first upcrossing through the threshold in
the interval (S, S + dS). Simply, substituting eq.(2.60) into eq.(2.59) yields the PS mass
function without having a factor of 2. The cumulative mass fraction in halos above some
mass M is given by integrating eq.(2.60) from S=0,

P (> M, t) = P (< S,Q) = erfc

[
δc(t)√
2σ(M)

]
. (2.61)

Other advantage of the excursion set approach is that it allows us to examine how halos
relate to one another and evolve over time. We take a spherical region of mass M2 at
t2, corresponding to a mass variance S2 = σ2(M2), with linear overdensity δ2 ≡ δc(t2) =
δc/D(t2). We now are interested in the fraction of M2 that was in collapsed objects of a
certain mass at an earlier time t1(t1 < t2). In this case, we can adopt the excursion set
approach. We calculate the probability for a random walk originating at (S, δS) = (S2, δ2)
to execute a first upcrossing of the barrier δS = δ1 ≡ δc(t1) at S = S1, corresponding to mass
scale M1. These trajectories represent that haloes at t1 in the mass range(M1,M1 + dM1)
have merged to form larger haloes M2 at t2(> t1). This is exactly the same problem as
before except for a translation of the origin in the (S, δS) plane. Hence the probability we
want is given by

fFU(S1, δ1|S2, δ2)dS1 =
1√
2π

δ1 − δ2
(S1 − S2)3/2

exp

[
− (δ1 − δ2)2

2(S1 − S2)

]
dS1, (2.62)

which follows form eq.(2.61) upon replacing δc by δ1− δ2 and S by S1−S2. This yields the
cumulative mass fraction which represents collapsed fraction ranged from M1 to M2

P (M2 > M1, t1, t2) = erfc

[
(δc(t1)− δc(t2))√
2[σ(M1)− σ(M2)]

]
. (2.63)

Later, we use this formalism to introduce an analytic model for the EoR.

2.6 Baryonic object formation inside a dark matter
halo

In previous sections, we show that the Press-Schechter mass function gives the number
density of halos for a certain mass. Once objects realize virial equilibrium and make a dark
matter halo, baryonic objects such as star and galaxy begin to form inside the dark matter
halo. In this section, we investigate a condition for the formation of the baryonic objects
inside a dark matter. We focus on a cooling process of the gas inside the dark matter halo.
If the baryonic gas remains hot, the radiative pressure prevents the gas from contracting
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by the gravitational force, and then no baryonic objects form. Thus, we need to consider
the cooling process of the gas to relieve the radiation energy to realize formation of the
baryonic objects.

2.6.1 Cooling of gas and the gravitational collapse

One of the important things for formation of the baryonic inside a halo is the gravitational
collapse of the gas. Since the gravitational force is in proportion to inverse square of a
radius, the gravitational force becomes larger as the gravitational contraction proceeds.
However, the radiative pressure by the gas itself prevents the gas from contracting by the
gravitational force. Consequently, we need to consider balance between the gravitational
force and the radiative pressure.

Let us consider the gas cloud which has mass M and a radius R. The potential energy
of the gas EG is expressed by

EG = −a
GM2

R
(2.64)

Here, a is a coefficient with a factor of 1, which is determined by the distribution of the
gas. Meanwhile, the energy of the pressure Ep is written by

EP = bR3P̄ (2.65)

P̄ is the mean pressure and b is a coefficient with a factor of 1 determined by the
shape of the gas. The variation of the potential energy due to the contraction of the gas is
re-written by

∆EG ∝ R−1 ∝ ρ̄1/3 (2.66)

ρ̄ is the mean density.
In the case that the gas contracts adiabatically, the pressure P is in proportion to the

mass density such as P ∝ ργ with an adiabatic index γ. Therefore, the variation of the
pressure energy is given by

∆EP ∝ R3ρ̄γ ∝ ρ̄γ−1 (2.67)

If we consider a monoatomic molecule or ionized gas, γ is given by 5/3. This leads
to ∆EP/∆EG ∝ ρ̄1/3 > 1. Thus, the variation of the pressure energy is larger than that
of the potential energy, and then the gravitational contraction is prevented by the gas
pressure because a gradient of the pressure exceeds the gravitational force immediately.
Consequently, in order to form the baryonic objects, the gas has to be cooled efficiently to
suppress the pressure.

2.6.2 Process of the gas cooling

An atomic excitation, the free-free emission and other radiation are considered as radiative
cooling process. The radiation due to physical interaction among particles removes the
energy from the gas and the gas can be cooled. For example, the gas emits photon according
to an excitation which is caused by collision between two particles constituting of the gas.
At this case, the cooling rate is in proportion to the square of the number density of the
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gas n2 because of two-body reaction. Then, the cooling rate |Ėcool| per unit volume per
unit time can be expressed by 　

∣∣∣Ėcool

∣∣∣ = n2Λ(T ) (2.68)

Here, Λ(T ) is called the cooling function which is determined by quantum mechanical
process.

Let us consider a time scale that the thermal energy Ek = 3nkBT/2 is lost due to the
radiative cooling. This time scale is called the cooling time and given by

tcool =
Ek∣∣∣Ėcool

∣∣∣
=

3

2

kBT

nΛ(T )
(2.69)

The condition whether the objects form or not is determined by the balance between
the free fall time and the cooling time as follows.

○ tff > tcool

In the case that the free fall time is longer than the cooling time, the pressure of the gas
decreases first. Then, it is possible to occur the gravitational contraction by overcoming
the gas pressure. Therefore, the gas cloud is divided and star formation proceeds.

○ tff < tcool

On the other hand, if the cooling time is longer than the free fall time, the cooling
process is not efficient. As the result, the gravitational contraction is prevented by the
pressure gradient of the gas because the gas pressure is higher than the gravitational force.
Therefore, star formation does not proceed in a halo.



Chapter 3

From the Dark Ages to the EoR

In previous section, we briefly introduced the structure formation in the Universe based
on ΛCDM model. After a dark matter halo begins to form, formation of first stars starts
inside a dark matter halo. As the result of this, first luminous objects play an important
role on thermal history of the IGM. We call this epoch the Cosmic Dawn (z ∼ 30). As
the structure formation in the Universe proceeds, the IGM is ionized by ionizing photons
emitted by star-forming galaxies and the EoR begins in the Universe (z ∼ 15). In this
chapter, we first introduce formation and evolution of the first luminous objects. Next, we
summarize the EoR from both observational and theoretical aspects.

3.1 First luminous objects

3.1.1 First stars

After dark matter halos formed, first stars begin to form inside a dark matter halo. The
mass corresponding to the virial temperature Tvir ∼ 104[K] (Atomic cooling becomes ef-
fective above this temperature) is 108M⊙. Below Tvir ∼ 104[K], atomic transition is not
effective because collisions among hydrogen atoms do not carry sufficient energy to excite
the atoms, and then hydrogen atoms emit no radiation via de-excite. Since the first gas
cloud has a virial temperature Tvir ! 104[K], we require alternative coolant, which can
work at low temperature, for cooling and fragmentation of the gas. Hydrogen molecules
can work as coolant to satisfy this requirement. As shown in Fig.3.1, molecular cooling
becomes effective at M ∼ 106M⊙ with 3σ fluctuations at z ∼ 25 − 30. Thus, the mass of
host halo for first stars is expected to be M ∼ 106M⊙.

Hydrogen molecules can form through rare chemical reactions in which free electrons
act as catalysts as follows:

H + e− → H− + γ (3.1)

H− +H → H2 + e−. (3.2)

After the cosmological recombination, H2 abundance in the Universe is negligible. However,
there are sufficient free electrons to catalyze H2 inside the first gas clouds. Consequently,
the minimum temperature achievable by H2 cooling is ∼ 200 [K] because the energy spacing

37
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of the two rotational levels of molecule is ∼ 512[K]( the limit is somewhat smaller than that
nominal value because of the high-velocity tail of the Maxwell-Boltzmann distribution). At
this temperature, the number density of hydrogen gas is nH ∼ 104cm−3.

Figure 3.1: This figure shows characteristic properties of collapsed halo mass. The solid
lines show mass corresponding to 1σ, 2σ, 3σ fluctuations (from left to right) and the dashed
lines show mass which corresponds to minimum virial temperature required for efficient
cooling, atomic cooling(top curve) and molecular cooling(bottom curve). Molecular cooling
becomes effective for M ∼ 106M⊙with 3σ fluctuation at z ∼ 24. Above this mass scale,
first stars begin to form via molecular cooling. This figure is taken from [5].

Further collapse requires enough large mass for the gas cloud to overcome gas pressure.
In other words, the clump mass beyond the local Jeans mass is required to collapse. At
T ∼ 200K (or nH ∼ 104cm−3), the local Jeans mass is

MJ ∼ 700

(
T

200K

)3/2 ( nH

104cm−3

)−1/2

M⊙. (3.3)

Inside core of this gas cloud, protostar begins to form with M ∼ 10−2M⊙ and gets mass
from the gas cloud around the core. As the result of accumulation of mass, the primordial
star forms. We refer this metal-free primordial star which is formed by hydrogen atoms as
Population III (PopIII), whereas we call star with low metallicity Population II (PopII).
In Fig.3.2, we show evolution of gas distribution around protostar.

We next consider accretion of the gas onto protostar as process to get mass. The initial
mass of protostar is similar for the primordial and present stars. However, accretion process
which determines final stellar mass is expected to be rather different. The accretion rate
is described as

dM

dt
= φ

M

tff
, (3.4)

where φ is dimensionless parameter which depends on the properties of medium and is
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Figure 3.2: Projected gas distribution around protostar from a numerical simulation. (A)
gas distribution around the cosmological halo. (B) star-forming cloud. (C) the central part
of fully molecular core. (D) the final protostar. This figure is taken from [143].

expected to be φ ∼ 1. M is mass of the protostar. For self-gravitating clump, mass can
approximate M ∼ MJ ∼ c3s/

√
G3ρ. Thus, the accretion rate can be expressed by

dM

dt
∼ c3s

G
∝ T 3/2. (3.5)

In a present-day star formation, heavy metal elements cool the gas to temperature as
low as T ∼ 10[K], whereas the primordial gas is cooled as low as T ∼ 200 − 300[K] via
hydrogen molecular cooling. This indicates that the accretion rate of the primordial gas is
two orders of magnitude higher than that of present-day gas and the first stars can be much
more massive than present-day stars. If we can ignore radiative feedback, first stars are
expected to be M ∼ 102 − 103M⊙ by accumulation of mass from the gas cloud. However,
we expect that radiative feedback from protostar affects evolution of accretion. Thus, we
need to take radiative feedback into account to estimate final mass of first stars. One of
the examples of radiative feedback is photodissociation of H2. As protostar heats up, it
produces UV radiation which photodissociates H2. As the result of photodissociation of
H2, cooling turns off and this leads to increases of radiative pressure. Thus, accretion rate
decreases and protostar cannot get much mass from the gas cloud. Other radiative feedback
is photoevaporation of the accretion disk. Ionizing photons emitted by protostar heat the
disk around protostar, and then the gas is evaporated from disk. Thus, the accretion of
the gas stops and protostar cannot accumulate mass. Recent studies show that final mass
of first star varies from 10M⊙ to 103M⊙ according depending on the properties of radiative
feedback (such as different gas accretion rate and different protostellar evolution) and host
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halo mass [61, 58].
So far, we have described formation of first stars starting from initial condition that gas

is nearly neutral. This initial condition is of course proper for first star formation in a halo.
But this initial condition is changed after first stars formed. Since first stars produce a large
amount of ionizing photons, HII regions are generated around and within host dark matter
halos. At this HII regions, ionized gas would collapse and first stars begin to form. As well
as ionizing photon by first stars, powerful blast waves generated by explosion of stars would
ionize nearby the gas. This initial condition starting from ionized gas results in different
scenario for formation of first stars. These first stars starting from ionized gas are referred
as Population III.2, whereas classical population III stars are referred as Population III.1.
Because the initial gas in PopIII.2 is highly ionized and high temperature, large fraction
of H2 and HD gas can contribute to cooling process. HD cooling can cool gas temperature
lower than H2 cooling since J=1→0 energy transition in HD corresponds to temperature
of ∼ 130[K] which is about 4 times smaller than that of H2. Therefore, mass of PopIII.2
stars are likely to be smaller than that of PopIII.1 (recall MJ ∝ T 2/3).

3.1.2 The end states of PopIII stars

In previous subsection, we considered formation and evolution of first stars. In this sub-
section, we consider end state of PopIII stars. It is important to consider the end state of
PopIII stars because objects formed after death of PopIII stars affect environment in the
Universe. The expected fate of PopIII stars are expected to be determined by their stellar
mass. Here, we list the fate of PopIII stars below.

• M < 8 − 10M⊙; stars end their lives as white dwarfs, just as present-day low-mass
stars do. Although they can produce light elements during their asymptotic giant
branch phases, they do it with much longer timescales that the < 1Gyr Hubble time at
z > 6. Thus, their fates are unimportant to understand history of the early Universe.

• M ∼ 10−40M⊙; stars undergo Type II supernovae with low metallicity and they leave
neutron star behind supernovae. These supernovae are responsible for the enrichment
of heavy elements in the Universe during the Cosmic Dawn.

• M ∼ 40 − 100M⊙; blackholes forms after stars directly collapse without producing
supernova and hence without enrichment of metals around blackholes.

• M ∼ 100 − 140M⊙; the enormous core following helium burning heats up rapidly,
leading to the production of electron-positron pairs as a result of collisions between
energetic gamma-ray photons and atomic nuclei. This production of electron-positron
pairs reduces thermal pressure inside star’s core because a part of energy is used to
generate rest mass of the pairs. As the result, the star can contract due to low gas
pressure. The core is compressed and heated up due to contraction of the star, thereby
increasing energy absorbed by electron-positron pair creation. This instability creates
mass-ejecting pulsations with supernova. The entire hydrogen envelope of the star
is ejected, relieving the instability and allowing the reminder of stellar evolution to
proceed as for a low-mass star, and the iron core eventually collapses to blackhole.
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• M ∼ 140 − 260M⊙; stars are likely to explode as pair-instability supernovae. This
pair-instability is described in the case of 100 − 140M⊙. Since the pressure drops
off due to energy investment into rest mass energy of electron-positron pairs, star
collapses partially and then explosion blows up the star without leaving remnant.
The energy of pair-instability supernova can reach around 1053 ergs which is two
order of magnitude larger than kinetic energy of typical supernova. Further, the
light curves of pair-instability supernova is quite different from typical supernova. It
is expected to be highly extended, with peak luminosity at around one year after
occurring.

• M > 260M⊙; the helium cores directly collapse to blackholes. Above this mass
scale, PopIII stars do not enrich metallicity around stars because stars themselves
are swallowed up into the blackholes.

3.1.3 Gamma-ray bursts

Gamma-ray bursts(GRBs) are one of the bright flushes with extremely energetic explosion
that is observed in distant galaxies(some GRBs are discovered at z > 9). One of properties
of GRBs is afterglow. Initially GRBs are brightest at short wavelengths and fade away
at longer wavelength, starting in X-ray band and shifting to UV band , optical band and
finally IR and radio band. We notice that some long duration GRBs are accompanied
by core-collapse supernova. This indicates that long duration GRBs are associated with
death of massive stars. Although it is unknown whether PopIII stars produce long duration
GRBs, if they can do, the GRBs might be detectable and can be used as probe of cosmic
gas at high redshift.

3.2 Epoch of Reionization

The observation of the CMB indicates that neutral hydrogen atoms formed after recombi-
nation and the Universe was full of the neutral hydrogen atoms. However, observations of
early galaxies, QSO spectra and gamma-ray bursts as well as the CMB indicate transition
of the atomic state in the Universe. Neutral hydrogen atom is back to its constituent pro-
tons and electrons by ionizing photons from galaxies. This process is know as reionization.
In this section, first of all, we introduce current observational constraint on the EoR. Next,
we discuss physics of the EoR. In particular, we focus on formation and evolution of HII
regions (or ionized bubbles) during the EoR. This section is based on [46]

3.2.1 Observational constraint on the EoR

Thanks to improvement of instruments, we can impose constraint on the EoR model from
observations. In this section, we briefly summarize such current constraints.

Gunn-Peterson trough

We first show constraint on the IGM at late stage of the EoR with observation of QSO
spectra. The QSO spectra is a measurement to probe the IGM and it is sensitive to neutral
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hydrogen column density. The UV lines which have shorter wavelength than that of Lyα
photon(=1216Å) in the rest frame are absorbed by neutral hydrogen atom. The lines
bluewards of Lyα emission line are not seen in the spectra of QSO and produce absorption
trough known as Gunn-Peterson trough. This trough appears in bluewards of Lyα emission
line in the spectra of distant QSO.

The Lyα optical depth, which expresses the strength of absorption (see chapter 4.3), is
given by

τα = 4.9× 105
(
Ωmh2

0.13

)−1/2 (Ωbh2

0.02

)(
1 + z

7

)3/2(nHI

nH

)
. (3.6)

Since the transmission of photons is expressed by e−τα , the Lyα features are shown with
mild absorption if τα ! 1. In order to satisfy this condition, the number density of neutral
hydrogen atoms is required in order of 10−4. Thus, the fact that we can observe the Lyα
emission line means that the Universe is highly ionized and remaining neutral hydrogen
atoms are sufficiently small. We show the spectra of high redshift QSO in Figs.3.3 and
3.4. From the observation of spectra of high redshift QSO, we can know the epoch when
cosmological reionization finishes.

LAE galaxy

Next, we introduce another observation to constrain the EoR based on Lyα emitter galax-
ies(LAEs). The LAEs are young, star-forming galaxies which emit strong Lyα photons.
One of the weak points of method to observe QSO spectra for constraint of the EoR history
is that the transmission of Lyα photons is easily saturated because the optical depth of
Lyα photon is too sensitive to column density of neutral hydrogen atoms. Thus, even if
small amount of neutral hydrogen atoms exists, we cannot observe Lyα emission line. This
means that we cannot apply the method based on observation of QSO spectra to higher
redshift where fraction of neutral hydrogen atoms is higher than ∼ 10−4. On the other
hand, the method to observe luminosity function(LF) of LAEs is not limited by fraction
of neutral hydrogen atoms. Since the amplitude of luminosity function of LAEs depends
on neutral hydrogen fraction, we can constrain neutral hydrogen fraction by comparing
observed Lyα LF with simulation results[82]. We can also constrain that by comparing ob-
served Lyα transmission relating to LF density with theoretical studies[71]. However, the
method based on LF of LAEs suffers from substantial atmospheric absorption and strong
night sky lines in the IR bands. Furthermore, it is also challenging problem to find sample
of high redshift galaxies. However, this method can provide us with information on state
of the IGM higher redshift than that obtained by QSO spectra. We show the Lyα LF and
constraint on fraction of neutral hydrogen atoms obtained by the Lyα luminosity function
in Fig.3.5.

CMB polarization

The CMB polarization power spectrum provides important information on the EoR inde-
pendent on QSO spectra and LAEs observations. If the CMB photons are scattered later
due to free electrons origin in reionization(Thomson scattering) and incident radiation has
a quadrupole moment, large scale E-mode pattern of linear polarization emerges on CMB
photons. This large scale E-mode pattern is not caused on the last scattering surface. In
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Figure 3.3: Spectra for high redshift SDSS quasars at z=5.74-6.07. Clearly, we can see the
Gunn-Peterson trough bluewards of the Lyα emission line at high redshift. This indicates
that the Universe is highly neutral. On the other hand, at lower redshift, we can observe
absorption lines bluewards of the Lyα line with less absorption since the amount of neutral
hydrogen atoms is small. This figure is taken from[34].



44 CHAPTER 3. FROM THE DARK AGES TO THE EOR

Figure 3.4: This figure shows constraint on the fraction of neutral hydrogen atoms as
function of redshift obtained by QSO spectra. This figure is taken from[34].

Figure 3.5: (Left) The luminosity function of LAEs for z=5.7, 6,6, 7.3. (Right) The evolu-
tion of neutral hydrogen fraction obtained by observations of the Lyα luminosity function.
These figures are taken from [71].
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Fig.3.6, we show the CMB E-mode angular power spectrum obtained by Planck. One can
deduce the optical depth to Thomson scattering from the CMB E-mode polarization power
spectrum. Thomson scattering optical depth is given by

τT =

∫ zdec

0

σTne
cH−1

0 dz

(1 + z)
√
Ωm(1 + z)3 + ΩΛ

, (3.7)

Here, zdec is the redshift when the CMB photons decouple from baryons, σT is Thomson
scattering cross section and ne is the number density of electrons. Given a model for
ne, this optical depth could be turned into measurement of global reionization history.
Based on instantaneous reionization model, we can measure τT = 0.067± 0.023 and zre =
8.9+2.5

−2.0(reionization redshift) by Planck result[98, 99].

Figure 3.6: CMB E-mode polarization power spectrum as function of multipole l obtained
by Planck. Solid line expresses theoretical one and points show data. We can see bump at
low l, which is caused by Thomson scattering due to the EoR. This figure is taken from
[99].

3.2.2 Basic physics of the EoR

In previous subsection, we summarized observational evidences for the EoR. Here, we
describe basic physics of reionization process to discuss important aspects of the EoR.
We first consider evolution of local ionized fraction of neutral hydrogen atoms xHII. It is
governed by following equation.

dxHII

dt
= kcol(T )(1− xHII)ne − α(T )xHIIne + kph(1− xHII), (3.8)
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where kcol is the collisional ionization coefficient, ne is the number density of electrons and
α(T ) is recombination coefficient. kph is the photoionization rate expressed by

kph =

∫
dΩ

∫ ∞

νL

Iν
hν

σνdν, (3.9)

where Iν is the local specific intensity, σν ∼ 6.3 × 10−18(ν/νL)−3cm−2 is the ionization
cross-section[132] and νL is the Lyman limit frequency. The first term in RHS of eq.(3.11)
expresses collision ionization, the second term expresses recombination and the third term
shows photoionization.

The photoionization process is tightly coupled to energy equation. The energy equation
is given by

du

dt
=

Γ− Λ

ρ
, (3.10)

where u is internal energy of the gas per unit mass, Γ is the heating rate per unit volume
and Λ is the cooling rate per volume. Both heating rate and cooling rate include fol-
lowing radiative processes; photo-heating, adiabatic heating(cooling), collisional ionization
cooling, recombination cooling, collisional excitation cooling, Bremsstrahlung cooling and
Compton heating(cooling). Photo-heating rate can be expressed by

Γph = nHI

∫
dΩ

∫ ∞

νL

Iν
hν

(hν − hνL)σνdν. (3.11)

Ionized gas can be heated up to 10, 000− 20, 000[K] and pressure of the gas increases.
This heating prevents the gas from collapsing gravitationally and small structures are
smoothed by the pressure(photo-evaporation).

Here, we roughly evaluate key physical quantities in the EoR environments.

Mean free path of ionizing photons

In homogeneous medium, the mean free path of ionizing photons is evaluated by

l =
1

σνnHI
∼ 2

(
10

1 + z

)2( ν

νL

)3

cMpc. (3.12)

Since width of ionization front is around the mean free path, ionization front becomes
sharp in the case of UV radiation. On the other hand, the mean free path of X-ray photon
(E " 1keV) is ∼ 1cGpc and this provides most uniform ionization field.

Recombination time

Another important quantity is the recombination time. In the ionized gas, temperature is
kept around T ∼ 104K. For this ionized gas, the recombination time at the average density
of the Universe is evaluated by

trec =
1

α(T )nH
∼ 240

(
10

1 + z

)3

Myr. (3.13)
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At high redshift(1 + z > 10), the recombination time of dense structure(such as minihalos
and filaments) is much shorter time of ∼ 10Myr and these structures act as photon sinks
until photo-evaporation becomes effective.

Next we consider the ionization processes. The important processes for ionization is
escape of the ionizing photons from galaxies and radiative feedback by galaxies. We briefly
introduce these two processes.

Escape of the ionizing photons

In order to understand ionization history, it is important to estimate the number of ionizing
photons escaping from galaxies. It is useful to divide this quantity into the star formation
rate(SFR) and escape fraction fesc. Although observational estimate of escape fraction is
difficult because of strong absorption by the IGM, some observations provide constraint
on escape fraction at z ∼ 3[124, 65]. These observations suggest that fesc ∼ 0.04 − 0.3.
A few observational studies provide tentative result of escape fraction at higher redshift
(z ∼ 5−8) based on simple model that stellar sources are main contributor to reionization.
Theoretically, we can estimate fesc by running numerical simulations including ionizing con-
tinuum radiative transfer and the dynamics of the gas[50, 136, 140, 138]. Although results
do not converge since they do not use similar modeling nor resolution, these simulations
show that escape fraction decreases with the mass of host halo and increases with redshift.

Feedback on primordial galaxies

Another important aspect of ionizing process is radiative feedback such as radiative pres-
sure, photo-heating, photo-evaporation of the gas in galaxies and of accreting gas[64, 137,
57]. These radiative process affect not only star formation rate but also escape fraction.
Further, photo-dissociation destroys hydrogen molecules which are responsible to cooling
process at the early Universe. Thus, this radiative feedback also affects star formation rate.
It is important to treat radiative feedback adequately for evaluating the amount of ionizing
photons from galaxies.

3.3 Analytic model for the EoR

Process of hydrogen reionization has different stages shown in Fig.3.7. Initial phase of
reionization is pre-overlap stage in which individual ionizing sources emit ionizing photons
and ionize their surroundings. The first galaxies at high redshift form in high-density
regions. At such regions, the recombination rate is also high. Thus, the ionizing photons
escaping from galaxies must pass through such high-density regions. Once pre-overlap
phase starts, the ionization fronts propagate to low-density regions. During this stage, the
IGM is separated by two phases. The first one is highly ionized regions separated from
neutral regions due to the ionization fronts and the other is high-density, neutral regions.

Since first luminous objects are highly clustered, the pre-overlap phase easily enters
next phase called overlap phase of reionization. At this phase, two or more HII regions
surrounding each individual galaxies begin to overlap and these galaxies are common in the
overlap bubble. Thus, each point in this common ionized bubble has common boundary
which is exposed to common ionizing photons from each galaxy. Because each galaxy
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Figure 3.7: Phases of reionization. (left) pre-overlap phase: In this phase, galaxies are
separated from others and isolated HII regions grow around sources. (middle) overlap
phase: In this phase, two or more ionized bubbles begin to intersect rapidly. However, the
regions which have a highly recombination rate enough to prevent themselves from being
ionized remain neutral. (right) post-overlap phase: As HII regions grow sufficiently, neutral
regions are forced to be ionized gradually.

inside overlap ionized bubble can contribute to reionization, HII regions grows rapidly
during overlap phase. This allows highly ionized regions to expand into IGM where once
cannot be ionized due to high recombination rate enough to keep neutral state. During
this phase, ionizing photons can travel in the IGM without absorption because many parts
of the gas are highly ionized and this makes inhomogeneous structure of the Universe. On
the other hand, some regions remain neutral pockets of the IGM due to extremely high
recombination rate. These neutral regions absorb any ionizing photons and prevent the
HII regions from continuing to grow. Eventually, ionized regions become much larger and
they provide neutral regions with so large amount of ionizing photons that these regions
are gradually ionized. This final stage is called post-overlap phase.

As we saw in sec 3.2.2, we need to understand each astrophysical process related to
the ionization and recombination in order to calculate reionization process accurately. In
particular, the post-overlap stage of reionization needs to solve complex physics of ionizing
sources and sinks of ionizing photons. Some previous works study how HII region evolves
by means of booth analytic and numerical methods[41, 42, 112]. However, reionization
proceeds straightforward until post-overlap phase. It requires simple physics, that is, to
count photons contributing to ionization. Thus, an analytic model can give physical insight
into morphology of reionization. In this section, we introduce analytic model for the EoR
to get physical insight into evolution of ionization history.

3.3.1 Propagation of ionization fronts

We begin to discuss how a single, isolated galaxy ionizes regions around itself. The forma-
tion of HII regions or ionized bubble by ionizing photons escaping from galaxies is funda-
mental process that drives reionization. Although the assumption that galaxies are isolated
is realized only at early stage of reionization, we consider this condition for simplicity.

Let us consider a spherical ionized volume V , which is separated from neutral region. If
we can ignore recombination of hydrogen atoms, each hydrogen atom in the IGM is ionized
only once. At this situation, the proper ionized volume Vp is determined by
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n̄HVp = Qion, (3.14)

where n̄H is the mean number density of hydrogen atoms and Qion is total number of
ionizing photons produced by a single source.

In order to estimate Qion roughly, we introduce a parameter called ionizing efficiency
ζ,

ζ = f∗fescNion, (3.15)

where f∗ is a fraction of baryons incorporated into stars, fesc is escape fraction from galaxies
into the IGM and Nion is the number of ionizing photons per baryon inside star. Typically,
Nion is∼ 4000 for Pop II stars suggested by present Initial Mass Function (IMF).

If we can neglect recombinations, the maximum comoving radius of HII region is roughly
estimated by

rmax =

(
3

4π

Qion

n̄0
H

)1/3

=

(
3

4π

ζ

n̄0
H

Ωb

Ωm

M

mp

)1/3

(3.16)

= 680

(
ζ

40

M

108M⊙

)1/3

[kpc], (3.17)

where n̄0
H = 2.1 × 10−7[cm−3] is the present number density of hydrogen atoms and M is

mass of a halo. Here we used f∗ = 0.1 and fesc = 0.08 as fiducial values in the case of Pop
II star.

However, recombinations actually cannot be ignored because high density region of the
IGM exists. Hence this simple estimation should be improved. Bengt Strömgren studied
the same problem for the hot star surrounded by Inter Stellar Medium(ISM). In the case
of steady ionizing sources without effect of the expanding Universe, steady-state volume
termed a Strömgren sphere is reached. Inside a Strömgren sphere, recombination is balanced
with ionization:

αBn̄
2
HVp =

dQion

dt
. (3.18)

The left-hand-side term expresses recombination rate, αB is the recombination coefficient.
Here, we assume a case-B recombination rate. Case-B recombination is that a hydrogen
atom recombines indirectly to the ground state and does not re-emit photons capable of
ionizing neutral hydrogen atom.

Including non-steady ionizing sources, recombination and expansion of the Universe, we
can write down the evolution of H II region as follows:

n̄H

(
dVp

dt
− 3HVp

)
=

dQion

dt
− αB⟨nHne⟩Vp. (3.19)

We used that the mean density n̄H evolves n̄H ∝ a−3(t). The ⟨nHne⟩ is a volume average
of the product of the number density of hydrogen atoms and that of electrons. The recom-
bination rate is proportional to the square of the number density. Thus, inhomogeneities
are going to play an important role in determining the evolution of HII region. We often
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account for the IGM inhomogeneity by introducing a volume-averaged clumping factor C
defined by

C =
⟨n2

e⟩
⟨n̄2

e⟩
(3.20)

Generally, a clumping factor depends on time. For homogeneous Universe, C=1.
Switching to the comoving volume V, eq.(3.19) becomes

dV

dt
=

1

n̄0
H

dQion

dt
− αB

C

a3
n̄0
HV. (3.21)

The solution for this equation is given by

V (t) =

∫ t

ti

1

n̄0
H

dQion

dt
eF (t

′
,t)dt

′
. (3.22)

Here, HII region around a source turns on t = ti and F (t
′
, t) is

F (t
′
, t) = −αBn̄

0
H

∫ t

ti

C(t
′′
)

a3(t′′)
dt

′′
. (3.23)

Note that this comoving volume V is filled by the fully ionized gas. Instead of V , we
can obtain the solution for the total number of ionized atoms Ni . Ni is related to V via
Ni = n̄0

HV . This simple model is not accurate because this model considers only single
sources. However it is useful for steady source where recombination is unimportant and it
can help understand global ionization history in next subsection.

3.3.2 Global ionization history

Next step to understand reionization is to compute evolution of the average neutral hy-
drogen fraction (or average HII region fraction) in the Universe. First of all, we introduce
a simple model which connects HII region to the number of ionizing photons emitted by
galaxies. The efficiency parameter ζ is the number of ionizing photons impacting the IGM
produced per baryon inside galaxies. By using this efficiency parameter, we can write down
the average filling factor of ionized bubbles (i.e, the fraction of the volume of the Universe
inside HII regions), QHII, in the case without taking recombination into account:

QHII = ζfcoll. (3.24)

fcoll is the collapse fraction which expresses the fraction of matter incorporated into halo[see
sec 2.5]. fcoll depends on the threshold halo mass in which star formation can start, specified
volume size and overdensity inside this volume. If we assume that only atomic cooling is
effective as a cooling process in a halo during reionization, the minimum mass typically
corresponds to a halo of virial temperature Tvir = 104[K][see eq.(2.47)]. Given the ionizing
efficiency ζ and fcoll, we can estimate the filling factor QHII. Note that the eq.(3.24) assumes
that ionizing photons are produced instantaneously.

Since we ignore recombination in eq.(3.24), we next improve this simple model by taking
recombination into account. In order to do so, we treat each ionizing source as producing



3.3. ANALYTIC MODEL FOR THE EOR 51

an isolated bubble and assume that each bubble volume is added to give the total filtering
factor. In fact, overlap of ionized regions becomes important after reionization proceeds
sufficiently. However, this assumption remains good approximation until Q reaches unity
even if two or more bubbles overlap because the total recombination rate is in proportion
to the number of ionized volume independent of topology of HII regions.

With above discussion, we convert eq.(3.21), which describes the evolution of individual
HII regions by ionizing photons emitted by a single isolated galaxies, to the equation which
governs global evolution of QHII in the Universe as follows:

dQHII

dt
= ζ

dfcoll
dt

− α(T )
C

a3
n̄0
HQHII. (3.25)

α(T ) is the recombination rate depending on temperature. As with the discussion about
ionization by a single galaxy, this equation has a solution such as

QHII(t) =

∫ t

0

ζ
dfcoll
dt′

eF (t
′
,t)dt

′
(3.26)

where F (t
′
, t) is given by eq.(3.23).

Although this solution has a simple form, it includes some uncertain parameters. We
need to know properties such as the star formation efficiency and the escape fraction of
ionizing photons from galaxies into the IGM to determine Ionizing efficiency ζ and also
to solve the time evolution of a clumping factor C, which depends on morphology of the
ionization field.

We show that time evolution of QHII in the case of C=0, 1, 10, 30 in Fig.3.8. Note that
if C ∼ 1, then effect of recombination is unimportant. However, if C " 10, recombination
affects the evolution of QHII and delays reionization.

Figure 3.8: Evolution of QHII as function of redshift solved by semi-numerical method.
This figure is taken from [5]. Each curve corresponds QHII for C=0, 1, 10, 30 from left to
right.
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3.3.3 The morphology of reionization

Obviously, morphology of the ionization field depends on distribution of galaxies which
drive reionization. Given physics of ionizing sources and sinks of ionizing photons in the
IGM, it seem that we can determine the morphology of the ionization field and its evolution.
Recent numerical simulations suggest that reionization proceeds from high density regions
to low density regions on large scale[123]. This is called inside-out reionization. On the
other hand, on sufficiently small scale, reionization proceeds from low-density region to
high-density region since high-density blobs remain neutral state partially due to its high
recombination rate. This model is called outside-in reionization [93].

In [41, 42], they developed an analytic formalism to study morphology of ionized regions
based on inside-out model. In this analytic model, they associate ionized regions with
density fluctuations and use the excursion set theory formalism(see sec 2.5) to model size
distribution of ionized regions. We consider condition that neutral region can be ionized.
We assume that a galaxy with mass mgal can ionize the gas with mass of mion = ζmgal.
ζ is ionizing efficiency. Under this assumption, we count the number of ionizing photons
and that of neutral hydrogen atoms inside some specified regions. If the former exceeds
the latter, the regions can be ionized. We put condition for the region to be ionized by
ζfcoll ≥ 1, where fcoll is the fraction of halos mass collapsed above mmin. If the regions
satisfy with this condition, this region is regarded as being fully ionized. In the extended
Press-Schechter theory(see sec2.5), fcoll is given by

fcoll = erfc

[
δc(z)− δm√
[σ2

min − σ2(m)]

]
, (3.27)

where δm is matter overdensity at the regions., σ2(m) is the variance of density fluctuations
on smoothed scale m, σ2

min = σ2(mmin) , and δc(z) is the critical density for collapse. We
generally set mass corresponding to Tvir = 104K as mmin. This is because atomic cooling
becomes effective at this virial temperature.

The condition ζδm ≥ 1can be rewritten by

δm ≥ δx(m, z) = δc(z)−
√
K(ζ)[σ2

min − σ2(m)]1/2, (3.28)

where K(ζ) = erf−1(1− ζ−1). We see that regions with sufficiently large overdensities will
be able to “self-ionize”. This condition is used in 21cmFAST to judge whether regions can
be ionized or not(see sec4.6.1).

According to [41, 42], the barrier δx is well approximated by a linear function of σ2(m)
such as δx ∼ B(m, z) = B0 + B1σ2(m), where B0 and B1 are fitting constant. This linear
barrier is reasonable approximation to the true barrier for σ2(m) that are not too large.

With this barrier B, the mass function of HII regions can be given by an analogy with
the Press-Schecther prescription as follows;

m
dn

dm
=

√
2

π

ρ̄

m

∣∣∣∣
d log σ

d logm

∣∣∣∣
B0

σ(m)
exp

[
−B2(m, z)

2σ2(m)
,

]
(3.29)

where ρ̄ is the mean density of the Universe. This is the comoving number density of HII
regions with mass in the range(m,m + dm). We show the HII region size distribution as
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function of comoving R for z=18, 16, 14, 13, 12 in Fig.3.9. We have normalized each curve
by Q̄ defined by

Q̄ =

∫
dm

dn

dm
V (m), (3.30)

where, V (m) is the comoving volume of a bubble of mass m.
When reionization does not proceed, the regions are small, with characteristic sizes

! 0.5Mpc. However, the sizes rapidly increase as reionization proceeds and the typical size
of bubbles become several megaparsecs. We also can see that the number of small bubbles
decrease and that of large bubbles increase as reionization proceeds.

Figure 3.9: HII bubble size distribution as function of R (comoving size). From left to right,
these lines correspond to z=18, 16, 14, 13, 12, respectively. This figure is taken from[41].





Chapter 4

Basic physics of the cosmological
21 cm line

A promising tool to measure the epoch through the Dark Ages to cosmic reionization is
the 21 cm line due to the hyperfine structure of a neutral hydrogen. A hydrogen atom in
the triplet state undergoes the spin-flip transition with emission which has a wavelength
of 21 cm in the rest frame (Fig.4.1). This transition per atom occurs with a rate of
2.9 × 10−15s−1. This weak transition enables us to access the IGM during the Dark Ages
and the EoR because the effective optical depth of the IGM to the 21 cm line is relatively
small compared with that of the IGM to Lyα photons. The rare transition rate seems
to make us difficult to observe this transition. However, the column density of hydrogen
atoms in the IGM is sufficiently large. As the result, we can observe this transition in the
Universe. This is why the 21 cm emission is powerful tool to observe the Universe through
the Dark Ages to the EoR. In this section, we study basic physics of the 21 cm line based
on [43, 106, 46].

Figure 4.1: Hyperfine structure of a neutral hydrogen atom. The 21 cm line emission arises
from the hyperfine splitting of the 1S ground state due to the interaction of the magnetic
moments between the proton and the electron.

55
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4.1 Radiative transfer

In this section, we introduce a radiative transfer equation to describe the propagation of the
radiation in the IGM based on [111]. The radiative transfer equation for an infinitesimal
distance ds is written by

dIν
ds

= −ανIν + jν . (4.1)

Here, the subscript ν denotes frequency. Iν is the intensity of the incident light and αν

is an absorption coefficient. The incident light passing through the IGM is absorbed and
the intensity of the incident light decreases by ανIν . jν is the emission coefficient jν [erg
cm−3 s−1 ster−1Hz−1]. Here, we define a new parameter called the optical depth, which is
related to the absorption coefficient such as dτν ≡ ανds . We also define the source function
as Sν ≡ jν/αν . Then, eq.(4.1) is re-written by

dIν
dτν

= −Iν + Sν . (4.2)

The source function is expressed by the Planck function under the thermal equilibrium
state.

Sν = Bν =
2hν3/c2

exp(hν/kBT )− 1
. (4.3)

In this case, the solution of eq.(4.2) is given by

Iν = Iν(0)exp(−τν) + Bν

∫ τν

0

exp[−(τν − τ
′

ν)]dτ
′

ν

= Iν(0) exp(−τν) + Bν [1− exp(−τν)]. (4.4)

The physical meaning of this equation is following one. The first term expresses the extinct
incident light absorbed by the IGM with the optical depth τν and the second term shows
extinct emission from the source as shown in Fig.4.2. Note that we can obtain this solution
only in the case that the source function does not include the intensity Iν . If we have to
take the scattering account into, the source function includes Iν , we cannot obtain a simple
solution such as eq.(4.4).

Since we are interested in the 21 cm line radio emission, we can use the Rayleigh-Jeans
approximation. By using the Rayleigh-Jeans approximation, Iν , Iν(0) and Bν can be given
by Iν = 2kBTbν2/c2, Iν(0) = 2kBTR(ν)ν2/c2 and Bν = 2kBTexν2/c2, respectively. Tb, Tex

and TR are called the brightness temperature, the excitation temperature and the brightness
temperature of the radio background source, respectively. The brightness temperature
is used instead of the intensity with the Rayleigh-Jeans approximation. The excitation
temperature is defined by a ratio of the number density of electrons between the two
energy states as follows:

n2

n1
=

g2
g1

exp

(
− hν

kBTex

)
. (4.5)
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Figure 4.2: A schematic figure of the radiative transfer.

Here, n1 and n2 are the number density of the energy state for state 1 and state 2 re-
spectively, g1 and g2 are the statistical degree of freedom for each state. Eq.(4.4) can be
re-written in the form of temperature as

Tb = TR(ν) exp(−τν) + Tex[1− exp(−τν)] (4.6)

In the case of the 21 cm line emission, the spin temperature is known as the excitation
temperature and the CMB temperature is regarded as TR. The spin temperature is defined
by the ratio between the triplet and the singlet.

n1

n0
=

g1
g0

exp

(
− hν21

kBTS

)

= 3 exp

(
− T∗

TS

)
(4.7)

n1 and n0 are the number density of electrons for the triplet and the singlet respectively.
g1 and g0 are the statistical degree of freedom for each state and g1/g0 becomes 3 for the
case of a neutral hydrogen atom. ν21 = 1420MHz corresponding to the frequency of the
emission with λ = 21cm in the rest frame. hν21/kB ≡ T∗ = 0.068K.

Thus, eq.(4.6) becomes

Tb = Tγ(ν) exp(−τν) + TS[1− exp(−τν)], (4.8)

where Tγ is the CMB temperature. In order to calculate the brightness temperature, we
need to consider the TS and τν in detail. Thus, we investigate these following two sections.

4.2 Spin temperature

The spin temperature of neutral hydrogen atom is determined by following three interac-
tions:
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(1) Absorption of the CMB photons

(2) Collisions with other hydrogen atoms and free electrons

(3) Resonant scattering of Lyα photons

Here, we let C10 and P10 be the de-excitation rates from collisions and the UV scattering,
respectively. We also let C01 and P01 be the excitation rates. We consider the equilibrium
state between the excitation and the de-excitation as follows;

n1(C10 + P10 + A10 +B10ICMB) = n0(C01 + P01 +B01ICMB), (4.9)

where A10, B01 and B10 are the Einstein coefficients. A10 coefficient denotes a sponta-
neous emission. B01 and B10 are the appropriate Einstein coefficients. ICMB is the energy
flux of the CMB photon. The first and second terms in left-hand-side express the transition
from the triplet to the singlet due to collision and UV scattering respectively, third and
fourth terms in left-hand-side express the transition from triplet to the singlet due to the
spontaneous emission and stimulated emission due to the CMB photons, respectively. Con-
versely, first and second terms in right-hand-side mean the transition from the singlet to
the triplet by the collisions and UV scattering, respectively. Third term in right-hand-side
expresses the stimulated transition from the singlet to the triplet cause by the absorption
of the CMB photons.

There are following relations among the Einstein coefficients;

A10 =
2hν3

21

c2
B10 (4.10)

B01 = 3B10. (4.11)

With Rayleigh-Jeans approximation, CMB intensity is expressed by the form of the
CMB temperature Tγ = 2.73(1 + z),

ICMB =
2ν2

21

c2
kBTγ. (4.12)

The excitation and de-excitation rates due to collision satisfy

C01

C10
=

g1
g0

exp

(
− T∗

TK

)
∼ 3 exp

(
1− T∗

TK

)
, (4.13)

where TK is the kinetic temperature and generally TK ≫ T∗ = 0.082mK. Here, we also
define the color temperature of the UV radiation field TC analogous to the kinetic temper-
ature:

P01

P10
≡ 3

(
1− T∗

Tc

)
. (4.14)

Now, we rewrite eq.(4.7) with eq.(4.9)-eq.(4.14).

3

(
1− T∗

TS

)
=

3(1− T∗/TK)C10 + 3(1− T∗/TC)P10 + 3A10Tγ/T∗

C10 + P10 + A10(1 + Tγ/T∗)
(4.15)

=⇒
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T∗

TS
=

(C10 + P10) + A10(1 + Tγ/T∗)− (1− T∗/TK)C10 − (1− T∗/TC)P10 − A10Tγ/T∗

(C10 + P10) + A10(1 + Tγ/T∗)

=
A10 + C10T∗/TK + P10T∗/TC

(C10 + P10) + A10 + A10Tγ/T∗
(4.16)

Then, the inverse of TS becomes

T−1
S =

T−1
γ + C10T∗

A10Tγ
T−1
K + P10T∗

A10Tγ
T−1
C

(C10 + P10)T∗/(A10Tγ) + 1 + T∗/Tγ
. (4.17)

Here, we define the coupling coefficients for collisions and UV scattering, xc, xα as
follows;

xc ≡
C10T∗

A10Tγ
(4.18)

xα ≡ P10T∗

A10Tγ
, (4.19)

Finally, we can obtain

T−1
S =

T−1
γ + xcT

−1
K + xαT

−1
C

1 + xc + xα
(4.20)

Note that we ignore T∗/Tγ because of T∗/Tγ ≪ 1. This formula of the spin temperature
is well used to consider the 21 cm line. Each term in numerator denotes interaction with
the CMB photon, collision with other hydrogen atoms and UV scattering. In order to
determine the spin temperature, we need to know xα and xc. We see them in following
subsections.

4.2.1 Collisional coupling

First, we consider the collisional excitation by scattering between hydrogen atoms and other
particles. The scattering in the early Universe occurs in the dense gas. Main processes of
collision are

(1) H-H collisions

(2) H-e collisions

(3) H-p collisions

The coupling coefficient for species i (H-H, H-e, H-p) is given by

xi
c ≡

C i
10T∗

A10Tγ
=

niκi
10

A10

T∗

Tγ
, (4.21)
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where κi
10[with units of cm3s−1] is a rate coefficient (as function of temperature) which

describes how often collisions occur. These values are calculated by [147, 43, 44, 45]. We
show κi for each collision in Fig.4.3. From Fig.4.3, we can see that the rate coefficients
for H-e and H-p collisions change gradually as temperature increases. On the other hand,
that for H-H collisions changes drastically at around T ∼ 10K. This is because a hydrogen
atom is unable to move violently due to its heavy mass at low temperature. Thus, the
cross section is small at less than ∼ 10K. During the Cosmic Dawn, neutral hydrogen
atom is dominant component. Therefore, the scattering among hydrogen atoms becomes
dominant. Once the EoR begins, the number of electrons increases and this leads the
scattering between hydrogen atoms and electrons.

With the rate coefficients, the total collisional coefficient can be given by

xc = xHH
c + xeH

c + xpH
c =

T∗

A10Tγ

[
κHH
10 (TK)nH + κeH

10 (TK)ne + κpH
10 (TK)np

]
, (4.22)

where nH, ne, np are the number density of hydrogen atoms, electrons and protons respec-
tively.

Figure 4.3: Rate coefficients as a function of temperature for each collision, H-H colli-
sions(solid line), H-e collisions(dashed line), H-p collisions(dotted line) [147, 43, 44, 45].

4.2.2 Wouthuysen-Field effect

Once first stars form, the resonant scattering of Lyα photons emitted by them provides a
second channel for coupling. This process is known as the Wouthuysen Field effect [139].
We illustrate this effect in Fig.4.4. We show the hyperfine structure of hydrogen in Fig.4.4.
A hydrogen atom in the singlet state 0S1/2 is excited to 2P hyperfine state by absorption
of Lyα photons (∆ F=0,1 transition is allowed but F=0→ 0 is inaccessible by the selection
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rule. Here F is total angular momentum). The selection rule allows 2P hyperfine levels
to slip to 1S1/2 by re-emission of Lyα photon. Thus, this hydrogen atom can change its
hyperfine energy state through the absorption and re-emission of Lyα photons.

Figure 4.4: Hyperfine structure of the hydrogen atom. We show the transition between S
states and P states related to Wouthuysen-Field (WF) effect. Solid lines show the process
allowed by the selection rule and spin flip can occur in this process. While dashed lines are
allowed, these processes do not contribute to spin flip.

We start to consider physics of the WF effect. We can write the coupling coefficient of
the WF effect as

xα =
4Pα

27A10

T∗

Tγ
, (4.23)

where, Pα is the scattering rate of Lyα photons and there is a relation between the scattering
coefficient of UV photons and that of Lyα photons shown in eq.(4.19) such as

P10 =
4Pα

27
. (4.24)

This relation comes from atomic physics of the hyperfine lines[85].
The rate at which Lyα photons scatter from a hydrogen atom is given by

Pα = 4πχα

∫
dνJν(ν)φα(ν) (4.25)

where, χα ≡ (πe2/mec)fα, fα = 0.4162 is the oscillation strength of Lyα transition and
φα(ν) is the line profile for Lyα absorption. Combined with these two physical values, we
can define the local absorption cross section σν = χαφα(ν), and Jν(ν) is the angle averaged
specific intensity of the background radiation field.

Making use of this expression, we can express the coupling coefficient as
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xα =
16π2T∗e2fα
27A10Tγmec

SαJα, (4.26)

where Jα is the specific flux evaluated at Lyα frequency. We introduce a correction factor
Sα ≡

∫
dxφα(x)Jν(x)/J∞, which takes the variation at line center account into, with J∞

being flux away from the line center. We often rewrite eq.(4.26) such as xα = SαJα/JC
α

where JC
α = 1.165× 10−10[(1 + z)/20][cm2s−1Hz−1sr−1]. The fitting formula for Sα is given

by [59]. We give details description of Jα in section 4.6.3.
The above physics couples the spin temperature via the color temperature defined at

eq.(4.14), which is a measure of the shape of the radiation field as function of frequency in
neighborhood of the Lyα line defined by

h

kBTC
= −d log nν

dν
(4.27)

Here, nν = c2Jν/2ν2. Obviously, the color temperature is function of frequency.

Note that some arguments show TC ∼ TK. Because the optical depth to Lyα scattering
is very large in the most case of our interests, the large amount of Lyα photons is brought
to the radiation field by the Lyα scattering. These photons lead the gas into the local
equilibrium near the line center.

4.3 Optical depth

In previous section, we discussed the spin temperature which is one of the key values to
determine the brightness temperature. Here, we discuss the optical depth which is another
key value. Let us consider the amount of the energy emitted in volume dV , solid angle
dΩ, frequency dν, time dt. The total amount of the energy is given by jνdV dΩdνdt.
Alternatively, this also can be expressed by (hν/4π)φ(ν)n1A10dV dΩdνdt since each atom
can contribute to an energy hν distributed over 4π solid angle for each radiation. Here,
φ(ν) is the line profile which describes deviation of infinitely sharpness between two energy
level and this satisfies

∫∞
0 φ(ν)dν = 1.

With these two expressions of total amount energy, we can obtain

jν =
hν

4π
n1A10φ(ν) (4.28)

Similarly, we can obtain the absorption coefficient.

αν =
hν

4π
n0B01φ(ν) (4.29)

Note that we do not include the stimulated emission in eq.(4.28). We have to take it into
account. It is convenient to treat stimulated emission as a negative absorption. Thus, the
absorption coefficient is modified by including the effect of stimulated emission as follows;

αν =
hν

4π
φ(ν)(n0B01 − n1B10) (4.30)
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Consequently, we can rewrite the radiative transfer equation eq.(4.1) with eq.(4.28) and
eq.(4.30);

dIν =
hν

4π
A10n1φ(ν)ds−

Iν
4π

(n0B01 − n1B10)hνφ(ν)ds (4.31)

The first term expresses the spontaneous emission from the triplet to the singlet. The
second term expresses the excitation from the singlet to the triplet by absorbing CMB
photons and stimulated emission as negative absorption.

The absorption coefficient eq.(4.30) can be rewritten by using eq.(4.7), eq.(4.10) and
eq.(4.11);

αν =
n0

4π

[
B01 − 3 exp

(
− T∗

TS

)]
hν · φ(ν)

=
3n0B10

4π

[
1− exp

(
− T∗

TS

)]
hν · φ(ν)

=
3c2A10

8πν2
21

[
1− exp

(
− T∗

TS

)]
n0 · φ(ν) (4.32)

The optical depth is defined by dτν ≡ ανds,

τν =
3c2A10

8πν2
21

∫
ds

[
1− exp

(
− T∗

kBTS

)]
n0 · φ(ν) (4.33)

Remember that the ratio between the singlet and triplet states is 1:3, n0 becomes nHI/4,
where nHI is the number density of neutral hydrogen atoms. With these conditions, we can
obtain optical depth as follows;

τν =
3c2A10

32πν2
21

∫
ds

[
1− exp

(
− T∗

TS

)]
nHI · φ(ν) (4.34)

∼ 3c2A10

32πν2
21

(
hν21
kBTS

)
NHIφ(ν) (4.35)

Here, we used the T∗ ≪ TS. NHI is the column density of neutral hydrogen atoms,
NHI = nHIs = xHInHs. xHI is the fraction of neutral hydrogen atoms. In general, the line
profile φ(ν) includes the Doppler broadening, natural broadening and thermal broadening.
We have to include the Hubble flow as an important effect on line profile of the IGM in the
expanding Universe. The velocity broadening of a region s, ∆V , becomes ∆V ∼ sH(z) so
that φ(ν) ∼ c/[sH(z)ν21].

A more exact calculation yields an expression for the 21 cm optical depth of the IGM
[106],

τν =
3hc3A10

32πν2
21TS

xHInHI

(1 + z)(dv∥/dr∥)
(4.36)

∼ 0.0092(1 + δb)(1 + z)3/2
xHI

TS

[
H(z)/(1 + z)

dv∥/dr∥

]
(4.37)

Here, dv∥/dr∥ is the gradient of the proper velocity along line of sight including both
Hubble flow and peculiar velocity of the IGM.
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4.4 Brightness temperature

In this section, we derive the brightness temperature which is contrast between high-z
clouds and the CMB. We regard the CMB temperature as radio background. In this case,
TR in eq.(4.6) becomes CMB temperature Tγ. Then, the brightness temperature for the
21 cm line is given by

δT
′

b(ν) = Tb − Tγ(z) (4.38)

= TS(1− exp(−τν)) + Tγ exp(−τν)− Tγ(z) (4.39)

= (TS − Tγ(z))[1− exp(−τν)] (4.40)

Here, δT
′
b(ν) is measured in the rest frame of the gas cloud. Considering expansion of

the Universe, the brightness temperature is given by

δTb =
δT

′
b

1 + z

=
(TS − Tγ(z))

1 + z
[1− exp(−τν)]

∼ (TS − Tγ(z))

1 + z
τν

∼ 27xHI(1 + δb)

(
1− Tγ(z)

TS

)[
H(z)/(1 + z)

dv∥/dr∥

](
1 + z

10

0.15

Ωmh2

)1/2(Ωbh2

0.023

)
mK(4.41)

In the second line, we used that the optical depth to the hyperfine transition is suffi-
ciently small and substituted eq.(4.37) into eq.(4.41) in third line.

Note that δTb saturates if TS ≫ Tγ and does not depend on the CMB temperature.
Meanwhile, δTb becomes negative if TS < Tγ. In the case of δTb > 0, we observe the bright-
ness temperature as a emission line for the CMB temperature. Conversely, we observe it
as an absorption line for the CMB temperature if δTb < 0. The brightness temperature
depends on the fraction of neutral hydrogen, matter over-density, gradient of the proper
velocity along line of sight and the spin temperature. The spin temperature is key quan-
tity in the brightness temperature because it controls whether the brightness temperature
becomes positive or negative. Although we saw the coupling coefficient of the spin tem-
perature in section 4.2, we did not focus on the evolution of the spin temperature and
of the neutral fraction. Thus, we investigate the evolution of the spin temperature and
components which consist of the spin temperature, the kinetic temperature and the color
temperature, to study the thermal history of the IGM. We also follow the global evolution
of the ionization fraction in following sections.

4.5 Thermal and ionization history

As shown in previous section, the brightness temperature consists of the spin temperature,
neutral hydrogen fraction and other cosmological values. Both spin temperature and neu-
tral hydrogen fraction includes astrophysical information. We can extract these information
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via the brightness temperature. In order to obtain the information via the brightness tem-
perature, we need to know the behavior of the brightness temperature. Since the spin
temperature and neutral hydrogen fraction play an important role on the brightness tem-
perature, we need to know the behavior of them. The spin temperature consists of the
kinetic temperature, the color temperature(TC ∼ TK) and the CMB temperature. Thus,
we have to follow the evolution of the kinetic temperature and the CMB temperature.
In this section, we introduce basic equations which govern both thermal and ionization
histories.

First, we introduce a basic equation to govern the evolution of ionizing fraction xe(=
1 − xHI). The evolution of ionized fraction is determined by the balance between the
ionization and the recombination as follows:

dxe(x, z
′
)

dz′
=

dt

dz′
[
Λion − αACx2

enbfH
]
, (4.42)

Λion is an ionization rate per baryon, αA ∼ 4.2× 10−13 (TK/104K)−0.7[cm3s−1] is a case-A
recombination coefficient[95]. Here, the case-A recombination is that recombinations to
the grand state occur directly. C ≡ ⟨n2⟩/⟨n⟩2 is a clumping factor. fH is the number of
hydrogen atoms.

Next, we write down a basic equation to describe the evolution of the kinetic temper-
ature TK. In order to calculate the evolution of the kinetic temperature, we must keep
track of the inhomogeneous heating history of the IGM gas. The evolution of the ki-
netic temperature can be determined by an application of the first law of thermodynamics
dE = −pdV + dQ as follows:

dTK(x, z
′
)

dz′ =
2

3kB(1 + xe)

dt

dz′

∑
ϵp +

2TK

3nb

dnb

dz′ −
TK

1 + xe

dxe

dz′ , (4.43)

where nb = n̄b,0(1+z
′
)3[1+δnl(x, z

′
)] is the total baryonic number density at (x, z

′
). ϵp(x, z

′
)

is the heating rate [erg·s−1] per baryon for certain process p. It is worth noting that we
have to distinguish between z which we focus on and some arbitrary higher redshift z

′
.

We show the evolution of the spin temperature and the kinetic temperature in Fig.4.5.
We also show redshift evolution of the brightness temperature in Fig.4.6. We summarize
physical pictures of the spin temperature and the brightness temperature as follows:

(i) Collisional coupling: TK = TS < Tγ

At high redshift, the IGM is dense, so the spin temperature couples the gas kinetic tem-
perature by collisions. The gas temperature originally couples the CMB. After decoupling
from the CMB, the gas cools adiabatically as (1+ z)−2, faster than the CMB temperature.

(ii)Collisional decoupling: TK < TS < Tγ

Even after the CMB temperature decouples from the kinetic temperature, the spin
temperature keeps coupling to the kinetic temperature. However, as the Universe evolves,
this coupling between the spin temperature and the kinetic temperature becomes weaker
due to diffusion of the IGM which is caused by decrease of the collision rate by the expanding
Universe. As the result, the spin temperature approaches the CMB temperature, and then
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Figure 4.5: Thermal history for each temperature including Compton heating, the X-ray
heating and the Lyα background. The CMB temperature (solid line), the spin temperature
(dotted line) and the kinetic temperature(dashed line).
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the spin temperature couples the CMB temperature.

(iii) WF coupling; TK < TS < Tγ

After first luminous objects form, the spin temperature of the gas couples the kinetic
temperature strongly via the WF effect at z ! 30. Since the Lyα coupling is more modest
than heating the gas, the kinetic temperature keeps to decrease at this epoch. The bright-
ness temperature becomes negative (δTb < 0) because the spin temperature is lower than
the CMB temperature. Therefore, we observe the brightness temperature as an absorption
line at this epoch.

(iv) X-ray heating; TK = TS < Tγ −→ TK = TS > Tγ

Since the spin temperature couples the kinetic temperature strongly via the WF effect,
the spin temperature evolves with the kinetic temperature. Once the spin temperature
reaches minimum value, it starts to increase because of the X-ray heating at z ∼ 20. As
the X-ray heating proceeds sufficiently, the spin temperature becomes higher than the CMB
temperature. Thus, the global brightness temperature changes its sign from δTb < 0 to
δTb > 0. We can observe the brightness temperature as emission lines.

(v) Reionization; TK = TS ≫ Tγ

After the X-ray heating proceeds sufficiently, the 21 cm signal is insensitive to the spin
temperature because the brightness temperature is saturated when TS ≫ Tγ is satisfied.
In this case, the brightness temperature is mainly controlled by neutral hydrogen fraction.
As HII regions grow, the 21 cm signal decreases because the neutral hydrogen fraction
becomes small and finally become zero shown in Fig.4.7. In Fig.4.7, we show the global
evolution of ionization fraction (and neutral hydrogen fraction). When neutral hydrogen
fraction becomes zero, the brightness temperature also becomes zero. Consequently, we
cannot observe the brightness temperature.

4.6 21cmFAST

In our calculation for the spin temperature, the brightness temperature and ionization
history, we use 21cmFAST which is a public code[88]. This code is based on a semi-
numerical model of heating and reionization, and makes maps of matter density, velocity,
the spin temperature, neutral fraction and the brightness temperature at the designated
redshifts. In order to calculate the brightness temperature, we have to calculate ionization
field xHII, the kinetic temperature TK and Lyα background Jα (see sec 4.2-4.4). In this
section, we introduce the method to calculate these values in the 21cmFAST.

4.6.1 Ionization field

Here, we introduce a prescription to calculate ionization field used in 21cmFAST. First, we
describe the evolved density field. We generate same density and velocity initial conditions
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Figure 4.6: Time evolution of the brightness temperature. When the WF effect becomes
effective, the brightness temperature makes a deep trough at z ∼ 20. Thus we observe
the brightness temperature as absorption lines against the CMB temperature. Once the
X-ray heating proceeds sufficiently, the spin temperature becomes higher than the CMB
temperature. Thus, we observe the brightness temperature as emission lines at z ! 13.
After this, the brightness temperature decreases due to the reionization and finally becomes
zero when all hydrogen atoms are ionized.
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Figure 4.7: Time evolution of mean neutral hydrogen fraction xHI (solid line) and ionization
fraction xi(= 1− xHI) (dashed line).
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with [127]. We then approximate gravitational collapse by moving each initial matter
particle according to the Zel’dovich approximation(see sec 2.3.3). This approximation
is computationally convenient because the displacement of particle is separable between
spatial and time components. Consequently, we need to calculate spatial component only
once for each simulation box. In 21cmFAST, we do not separate baryons and dark matter
particles. Note that 21cmFAST does not resolve source halos. However, the power spectrum
of density field obtained by 21cmFAST with the Zel’dovich approximation agrees with that
obtained by numerical simulations at k ! 5Mpc−1.

Next, we introduce a prescription for calculating ionization field. We use excursion-
set approach to identify HII regions as discussed in sec 3.3.3. Again we briefly describe
foundation of this approach here. The foundation of this approach requires that the number
of ionizing photons inside a region should be larger than that of neutral hydrogen atoms.
The radius R in the region starts from large one(Rmax) and progresses to smaller one.
Then, we flag fully ionized region if we meet the criteria fcoll(x, z, R) ≥ ζ−1, where ζ is the
ionizing efficiency parameter and fcoll is the collapse fraction smoothed on scale R based on
the extended Press-Schechter theory(see sec2.5). This criteria is equivalent to eq.(3.28). If
this criteria is not satisfied even if the radius reaches cell size Rcell, we allow the regions to
be partially ionized with ionization fraction ζfcoll(x, z, Rcell). Here, Rmax is a free parameter
we can choose.

4.6.2 Kinetic temperature

In 21cmFAST, we have to solve eqs.(4.42) and (4.43) to follow the evolution of the kinetic
temperature and local ionization fraction in the neutral IGM (i.e. outside of the ionized
region discussed in 4.6.1.)

To speed up calculation, we use a following assumption. In the context of the linear
perturbation theory, we can describe the density perturbation with the linear growth factor
D(z) such as δnl(x, z

′
) ≈ δnl(x, z)D(z′)/D(z). In general, we should follow the nonlinear

evolution of each density fluctuation. However, the regime at very high redshift when
the heating is important is expected to evolve with the linear or quasi-linear structure
formation. Therefore, we assume that the density fluctuations can be described by the
linear growth factor. Then eq.(4.43) and eq.(4.42) are re-written by

dxe(x, z
′
)

dz′
=

dt

dz′
Λion −

dt

dz′
αACx2

efHn̄b,0(1 + z′)3
[
1 + δnl(x, z

′
)
D(z′)

D(z)

]
, (4.44)

dTK(x, z
′
)

dz′
=

2

3kB(1 + xe)

dt

dz′

∑

p

ϵp +
2TK

1 + z′
+

2TK

3

dD(z′)/dz′

D(z)/δnl(x, z
′) +D(z′)

− TK

1 + xe

dxe

dz′
.

(4.45)

The first term of eq.(4.45) is the energy injection through the heating process p (which
includes X-ray photons and the heating via the Compton scattering of the CMB), the
second term is due to the Hubble expansion, the third term corresponds to the adiabatic
heating and cooling from the structure formation. The last term comes from ionization.

Next let us consider the each energy injection process.
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Compton heating

At very high redshift, the CMB photons couple residual free electrons via the Compton
scattering. As the result, Tγ ∼ TK is realized. However, the gas decouples from CMB
photons according to the expansion of the Universe. After the decoupling, the gas evolves
adiabatically such as TK(z′) = 2.73× (1 + zdec)[(1 + z′)/(1 + zdec)]2, where the decoupling
redshift is approximately given by zdec ≈ 137(Ωbh2/0.022)0.4−1. In this case, the Compton
heating contributes to eq.(4.45) in the form of

2

3kB(1 + xe)
ϵcomp =

xe

1 + fHe + xe

8σTuγ

3mec
(Tγ − TK) , (4.46)

Here, uγ is the energy density of the CMB, which is in proportion to T 4
γ , fHe is the number

fraction of helium and σT is the Thomson cross-section given by

tγ ≡ 3mec

8σTuγ
(4.47)

In the situation that there is no heating sources, the kinetic temperature evolves adia-
batically in proportion to (1 + z)2.

X-ray heating

The most effective heating process to inject energy into IGM is X-ray heating[130, 18, 104,
146]. We expect that the star burst galaxies, SN remnant, mini-quasar and X-ray binary
are candidates for the X-ray source. Since X-ray photon has the long mean free path, it is
able to heat the IGM far from sources. The comoving mean free path of X-ray photon λX

with energy E is given by [43]

E ∼ 2

(
1 + z

15

)1/2

x̄1/3
HI keV

λX ∼ 4.9x̄−1/3
HI

(
1 + z

15

)−2( E

300eV

)3

Mpc. (4.48)

Let us estimate the X-ray heating rate per particle by summing up contributions from
X-ray sources which are located in a spheric shell around (x, z

′
). First, we assume that the

number of sources emitting X-ray photons is in proportion to the collapsed fraction, fcoll.
Under this assumption, the total X-ray emission rate per redshift interval from luminous
sources located between z

′′
and z′′ + dz

′′
where (z

′′ ≥ z
′
) can be given by

dṄ

dz′′
= ζXf∗Ωbρcrit,0(1 + δR

′′

nl )
dV

dz′′
dfcoll
dt

, (4.49)

where ζX is the X-ray heating efficiency, which gives the number of photons per solar mass
in stars. Other remaining terms on RHS correspond to the star formation rate inside the
spherical shell. f∗ is the fraction of baryons converted to stars and dV

′
is the comoving

volume element at z
′′
. The collapsed fraction fcoll is given by [6, 8] as
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fcoll(x, z
′′, R′′, Smin) =

f̄ST
f̄PS,nl

erfc

[
δc − δR

′′
nl√

2[Smin − SR′′ ]

]
, (4.50)

where R
′′
is the comoving, null geodesic distance between z

′
and z

′′
, Smin and SR

′′
are the

mass variance which corresponds to smallest halo mass scale and scale R
′′
, respectively. δR

′′

nl

is over density smoothed on R
′′
. f̄ST and f̄PS,nl are the mean collapsed fraction obtained

by the Sheth-Tormen(ST) theory and the Press-Schecther(PS) theory respectively. Thus,
f̄ST

f̄PS,nl
is a normalization factor to match the collapse fraction obtained by the PS theory to

the ST theory, which is based on N-body simulation while the PS theory gives an analytic
formula.

Next, we consider the arrival rate of X-ray photon with an assumption that the X-ray
luminosity of sources is characterized with a power-law form, Le ∝ (ν/ν0)−α. hν0 is the
pivot energy giving lowest energy of X-ray photon escaping into the IGM. Then, we can
write the arrival rate of X-ray photon with frequency ν from sources located at between z

′′

and z
′′
+ dz

′′
(the number of photons in [s−1· Hz−1 at (x, z

′
)]) as

dφX(x, ν, z′, z′′)

dz′′
=

dṄX

dz′′
αν−1

0

(
ν

ν0

)−α−1 (1 + z′′

1 + z′

)−α−1

e−τX , (4.51)

The last term expresses the IGM attenuation and the optical depth for X-ray photons
τX is

τX(ν, z
′, z′′) =

∫ z′

z′′
dẑ

cdt

dẑ
x̂HIf(ẑ)n̄(ẑ)σ̃(z

′, ν̂) , (4.52)

where σ̃(z′, ν̂) is the photo-ionization cross section weighted over species, σ̃(z′, ν̂) ≡ fH(1−
x̄e)σH+fHe(1− x̄e)σHeI+fHex̄eσHeII. This cross section is evaluated at ν̂ = ν(1+ ẑ)/(1+z′)
and x̂HI is a volume filling factor of neutral region. In practice, the abundance of HeII is
neglected.

By using eq.(4.51) and eq.(4.52), we can finally obtain the X-ray heating rate per baryon
ϵX by integrating over frequency and redshift as follows;

ϵX(x, z
′
) =

∫ ∞

ν0

dν
∑

i

(hν − Eth
i )fheatfixiσi

∫ ∞

z′
dz′′

dφX/dz′′

4πr2p
, (4.53)

where, rp is null geodesic separation between z
′
and z

′′
and the frequency integral considers

the sum over species i=HI,HeI and HeII. fi is the number fraction of species i. The factor
fheat is defined as the fraction of the electron energy, hν−Eth

i , which is deposited as heating.
The energy Eth is deposited into the ionization and excitation.

Roughly, we can estimate the energy injection via X-ray heating as follows:

2

3

ϵX
kB(1 + xe)H(z)

∼ 103fX

(
f∗
0.1

fX,h

0.2

dfcoll/dz

0.01

1 + z

10

)
[K] (4.54)
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By analogy with eq.(4.53), we can also estimate the ionization rate per particle as

Λion(x, z) =

∫ ∞

ν0

dν
∑

i

fixiσiFi

∫ ∞

z′
dz′′

dφX/dz′′

4πr2p
, (4.55)

Fi =
(
hν − Eth

i

)(fion,HI

Eth
HI

+
fion,HeI

Eth
HeI

+
fion,HeII

Eth
HeII

)
+ 1,

where fion,j, is the fraction of the electron energy used as secondary ionizations of species
j.

Here we refer to Lyα heating. Although Lyα photons have enough energy to change
spin flip state, the energy which injects into the IGM as heat through the scattering is
sufficiently small compared with X-ray photons. Therefore, the heating by Lyα photons
are negligible. The heating rate by Lyα photons are roughly estimated by

2

3

ϵα
kB(1 + xe)H(z)

∼ 0.80

TK

xα

Sα

(
10

1 + z

)
. (4.56)

Comparing eq.(4.56) with eq.(4.54), you can find that the X-ray heating rate is third
or fourth order of magnitude larger than the Lyα heating rate.

4.6.3 Lyman-α background

Next, we consider the Lyα background which has two contributors. The first one is X-ray
excitation of HI expressed by Jα,X . In this process, Lyα photons are produced via a cascade
with the rate at which photons redshifting out of the Lyα resonance[19]. This can be easily
related to the X-ray heating rate as similar as eq.(4.53),

Jα,X(x, z) =
cnb

4πH(z)να

∫ ∞

z′
dz′′

dφX/dz′′

4πr2p∫ ∞

Max[ν0,ντ=1]

dν
∑

i

(hν − Eth
i )

fLyα
hνα

fixiσi , (4.57)

Here, fLyα is the fraction of the electron energy deposited into Lyα photons.
The another contributor of Lyα photons is direct star emission Jα,∗. In this case, Ly-n

series photons from star cascade passing through the Lyα photons with a recycle fraction
frecycle[105]. Typically the maximum of n is nmax ∼ 23. The Lyα background from direct
stellar emission can be estimated analogously to the X-ray luminosity such as

Jα,∗(x, z) =
nmax∑

n=2

Jα(n,x, z)

=
nmax∑

n=2

frecycle(n)

∫ zmax(n)

z

dz′
1

4π

dφe
∗(ν

′
n,x)/dz

′

4πr2p
(4.58)
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Here,

dφe
∗(ν

′
n,x)

dz′
= ε(ν ′

n)f∗n̄b,0(1 + δ̄R
′′

nl )
dV

dz′
dfcoll
dt

, (4.59)

which expresses the arrival rate of stellar emission and ϵ(ν) is the number of photons
produced by stars [in Hz−1 per stellar baryon]. We use PopII and PopIII spectral models
for ϵ(ν) [7].

The total Lyα background is simply expressed as the sum of above components;

Jα,tot(x, z) = Jα,X(x, z) + Jα,∗(x, z) (4.60)

This total Lyα background affects the spin temperature through the contribution to
the WF effect via the coupling coefficient eq.(4.26).



Chapter 5

21 cm power spectrum & one-point
statistics

As we referred previously, the redshifted 21 cm line signal from neutral hydrogens is a
promising tool to probe the Cosmic Dawn and the EoR. In particular, we often use the
21 cm power spectrum to extract information on the IGM through the Cosmic Dawn to the
EoR. In this chapter, we introduce the 21 cm power spectrum and its time evolution. In
addition, we give a physical interpretation of the time evolution of the power spectrum of
the 21 cm brightness temperature fluctuations, which can be decomposed into dark matter
density, the spin temperature and neutral fraction of hydrogen fluctuations. Further, we
introduce the one-point statistics of the fluctuations, such as variance and skewness, as
complement to the 21 cm power spectrum and study their properties. This chapter is
based on [118].

5.1 Introduction

In this chapter, we analyze the 21 cm fluctuations based on the 21 cm power spectrum
and one-point statistics. We investigate what we can learn from the signal by using a
public code called 21 cmFAST [87, 88]. This code is based on a semi-analytic model of
star/galaxy formation and reionization described by previous chapters. First, in order
to find how physical processes are related to the observed 21 cm signal, we decompose
the 21 cm power spectrum into three components composed by fluctuations of the matter
density field, those of the neutral fraction and those of the spin temperature, and discuss
the redshift evolution of the power spectrum.

Next, we further focus on the distributions, variance and skewness of the brightness tem-
perature and three decomposed components, in order to understand the physical meaning
of the behavior of the 21 cm power spectrum more deeply. Although there are several
studies which discuss the one-point statistics of the brightness temperature [55, 134], most
of such works have focused on the signal from the EoR, that is, z ! 10, to investigate
its dependence on the reionization process, and for the signal from z " 15 the one-point
statistics are not sufficiently discussed.

This chapter is organized as follows. In section 2, first we show the 21 cm power spec-
trum and the decomposition of it into each component and discuss the redshift dependence
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of the power spectrum. In section 3, we investigate distribution and one-point statistics
such as variance and skewness of the spin temperature which is a dominant component
of the 21 cm power spectrum at higher redshift (z " 15), and also we investigate its de-
pendence on the X-ray heating efficiency. In section 4, based on the discussion about the
one-point statistics of the spin temperature given in section 3, we investigate the one-point
statistics of the observed brightness temperature. In section 5, we give a summary and
conclusion.

Unless stated otherwise, we quote all quantities in comoving units. We employ the best
fit values of the standard the cosmological parameters obtained in [70].

5.2 21 cm power spectrum

In this section, we introduce the 21 cm power spectrum and its decomposition into spectra
of the matter density field, the neutral fraction and the spin temperature. In particular,
we focus on the redshift evolution of the power spectra.

First, we define the 21 cm power spectrum, that is, the power spectrum of the brightness
temperature fluctuations;

⟨δ21(k)δ21(k
′
)⟩ = (2π)3δ(k+ k

′
)P21(k), (5.1)

where δ21(k) ≡ δTb(k) − ⟨δTb⟩ and ⟨δTb⟩ is the mean brightness temperature obtained
by the brightness temperature map. As we saw in Eq. (4.40), the fluctuations in the
brightness temperature are contributed not only from the matte density field, but also
from the fluctuations of the spin temperature and neutral fraction, aside from the gradient
of peculiar velocity which we neglect here. We can rewrite Eq. (4.40) as,

δTb(x) = δT b(1 + δxH(x))(1 + δm(x))(1 + δη(x)), (5.2)

where δH and δη are defined by xH = xH(1 + δH) and η = η(1 + δη) with η = 1 − Tγ/TS.
xH, η are volume average of xH, η and δTb is the average brightness temperature evaluated
as,

δTb = 27xHη

(
1 + z

10

)1/2 ( 0.15

Ωmh2

)1/2 (Ωbh2

0.023

)
, (5.3)

Here we characterize the contribution of the spin temperature Ts by a new variable
η = 1 − Tγ/TS [118]. By using this parameter, we can take into account a nonlinear
relation between the spin and brightness temperatures linearly. The volume average of η
is represented by η. Note that when δTS ≪ 1, we have,

δη ≃
Tγ/T̄S

1− Tγ/T̄S
δTS . (5.4)

and the power spectra of δm, δH and δη as,

⟨δm(k)δm(k
′
)⟩ = (2π)3δ(k+ k

′
)Pm(k), (5.5)

⟨δH(k)δH(k
′
)⟩ = (2π)3δ(k+ k

′
)PxH(k), (5.6)

⟨δη(k)δη(k
′
)⟩ = (2π)3δ(k+ k

′
)Pη(k), (5.7)
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Table 5.1: Resolution at 80 MHz (z ∼ 17) (Dewdney et al 2013).
telescope maximum baseline spacial resolution angle resolution

LOFAR ∼ 1500 m ∼ 13 Mpc ∼ 4 arcmin
MWA ∼ 750 m ∼ 27 Mpc ∼ 9 arcmin
SKA1 ∼ 2000 m ∼ 10 Mpc ∼ 3 arcmin
SKA2 ∼ 5000 m ∼ 4 Mpc ∼1 arcmin

The cross correlations such as PxHη are defined in a similar way. Then, from Eq.(4.40),
we see that the power spectrum of the brightness temperature can be decomposed into a
sum of the auto-correlations and cross-correlations:

P21 = (δTb)
2[Pm + PxH + Pη + PxHη + PxHm + Pmη], (5.8)

where,

δTb = 27xH η[(1 + z)/10]1/2(0.15/Ωmh
2)1/2(Ωbh

2/0.023).

We neglected higher-order terms and we have checked that the higher-order contributions
are at most 30% of the total power spectrum at higher redshifts we are interested in here,
and do not affect the qualitative feature of the redshift evolution. Therefore, the contri-
bution can be safely neglected for the purpose of this article. However, for more precise
quantitative discussion, such higher-order contributions have to be evaluated precisely. We
plan to investigate the higher-order contribution and nonlinearity in the future.

To compute the power spectra, we use a 21 cmFAST [87, 88]. We performed sim-
ulations in a (200Mpc)3 comoving box with 3003 grids, which corresponds to 0.66 Mpc
resolution or ∼ 3 arcmin at 80 MHz (z=17) (we show some telescope specifications in ta-
ble.5.1), from z = 200 to z = 8 adopting the following parameter set, (ζ, ζX , Tvir, Rmfp) =
(31.5, 1056/M⊙, 104 K, 30 Mpc). Here, ζ is the ionizing efficiency, ζX is the number of X-ray
photons emitted by source per solar mass, Tvir is the minimum virial temperature of halos
which produce ionizing photons, and Rmfp is the mean free path of ionizing photons through
the IGM. In our calculation, we also ignore, for simplicity, the gradient of peculiar velocity
whose contribution to the brightness temperature is relatively small (a few %) [47].

In Fig. 5.1, we plot the total and decomposed power spectra, ∆21 = k3P21/2π2, ∆i =
k3(δTb)2Pi/2π2 with i = xH,m and η, as functions of redshift for k = 0.03, 0.13, 1.0 Mpc−1.
We can see several characteristic peaks in the total power spectrum: three peaks for k =
0.03, 0.13 Mpc−1 and two peaks for k = 1.0Mpc−1. These were already found in the previous
works and it was suggested that they are, from high-z one to low-z one, induced by the
WF effect, the X-ray heating and reionization, respectively [104]. Below we give a more
detailed interpretation considering contributions from the fluctuations in neutral fraction,
matter density and the spin temperature.

First, the fluctuation in neutral fraction appears when reionization begins but power
spectrum, (δTb)2PxH , is subdominant at high redshifts (z " 15). It becomes dominant as
reionization proceeds and forms the low-z peak at z ≈ 10. A dip at z ≈ 14 corresponds to
the redshift when the average spin temperature becomes equal to the CMB temperature
so that the average brightness temperature, δTb, vanishes. This dip is also seen in the
contribution of matter fluctuations, which is important at smaller scales.
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Figure 5.1: Total and decomposed 21 cm power spectra as functions of the redshift for
k = 0.03 Mpc−1 (left top), 0.13 Mpc−1 (right top) and 1.0 Mpc−1 (left bottom).

On the other hand, the power spectrum contributed from the spin-temperature fluctu-
ations is negligible at low redshifts (z ! 10). This is because at these redshifts the spin
temperature is much higher than the CMB temperature and the factor η = 1 − Tγ/TS is
almost unity independent of the value of TS. The spin-temperature fluctuations are impor-
tant at higher redshifts (z " 13) especially at larger scales and this contribution forms the
two peaks at z ≈ 16 and 24. However, there are slight deviations in the peak positions be-
tween the brightness temperature and the spin temperature due to the presence of matter
fluctuations.

Thus, the low-z peak and the other two peaks are contributed from the neutral fraction
and the spin temperature fluctuations, respectively, while the high-z peak at small scales
cannot be seen due to the contribution from matter fluctuations. In other words, the
evolution of the spin temperature, which reflects the formation rate and properties of the
first-generation stars, can be directly probed by measuring the power spectrum of the
brightness temperature at z " 15. In the next section, we focus on the understanding of
spin-temperature fluctuations at this epoch considering one-point statistics.

5.3 One-point statistics of the spin temperature

In this section, we study the probability distribution function (PDF) of the spin tem-
perature and one-point statistics such as variance and skewness. In practice, we focus
on η = 1 − Tγ/TS, rather than TS itself, because it is linearly related to the brightness
temperature. However, because η is a monotonic function of TS, physical interpretation
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is relatively straightforward. Recently, one-point statistics of the brightness temperature
during reionization was investigated assuming TS ≫ Tγ [8, 55, 134]. This condition is not
valid in our context.

Obtained maps of η from 21 cmFAST for the redshifts z = 28, 25, 22, and 19 are shown
in Fig. 5.2. From these maps, we evaluate the PDF and also the variance and skewness of
η. The variance and skewness of a variable X are defined as,

σ2 =
1

N

N∑

i=1

[
X −X

]2
(5.9)

γ =
1

Nσ3

N∑

i=1

[
X −X

]3
, (5.10)

where N is the number of pixels of the maps. Note that the skewness is negative (positive)
when the tail of the distribution relatively extends toward low (high) values of X.

Figure 5.2: The map of 1− Tγ/TS at z = 28 (left top), 25 (right top), 22 (left bottom), 19
(right bottom). We can see that the spatial averaged value of η decreases from z = 28 to
19. A spatial distribution of η can be also seen in each panel.

We plot the PDF of η for z = 19 − 27 in Fig.5.3. First of all, the average value of η
decreases as redshift decreases because the spin temperature strongly couples the kinetic
temperature, which decreases as (1 + z)2 due to the adiabatic cooling of gas, via the WF
effect at this epoch. Next, we see the shape of the PDF is also changing and, in particular,
the direction of the longer tail changes at z ≈ 23 (cyan dot-dashed line). This is also
confirmed in the top of Fig. 5.4, where we plot the time evolution of the variance and
skewness of the PDF. Actually, the sign of the skewness changes at the same redshift from
negative to positive. Here it is important to note that the variance has a local minimum at
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Figure 5.3: PDF of 1−Tγ/TS for z = 19− 27 obtained by the map of the spin temperature
shown in Fig. 5.2.

almost the same timing. Because the variance is the integration of the power spectrum with
respect to the wavenumber, this local minimum corresponds to the dip in the contribution
of η in Fig. 5.1.

The above behavior can be understood by considering the X-ray heating of the gas. As
we can see in Fig. 5.2, at higher redshifts (z " 25) the spin temperature in the neighborhood
of stars approaches to the kinetic temperature due to the WF effect and becomes lower
than the average, and consequently its PDF has a tail toward lower temperature. Then, as
the X-ray heating becomes effective, the spin temperature increases in the neighborhood of
stars and the tail goes toward higher-value side. At the transition time, the tail becomes
shortest and consequently the variance has a local minimum there.

The bottom of Fig. 5.4, the cross correlation between the matter and the spin temper-
ature fluctuations, strongly supports the above interpretation. Here we evaluate the cross
correlation from the cross power spectrum as

Lmη :=

∫
d3k

(2π)3
Pmη(k). (5.11)

At higher redshifts (z " 23), the correlation is negative, that is, high-density regions have
lower spin temperature. This would be due to the WF effect. On the other hand, at lower
redshifts (z ! 23), as is expected from the interpretation that the X-ray heating is effective
here, the correlation is positive. It is seen that the cross correlation changes the sign at the
same redshift as the skewness.

Finally, we vary the number of X-ray photons emitted per solar mass, ζX [89], and see
the one-point statistics again. We take ζX = 1055 M−1

⊙ , 1056 M−1
⊙ (fiducial value), and

1057 M−1
⊙ , fixing the other parameters. The left top of Fig. 5.5 is the thermal history and
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Figure 5.4: [top] Variance(red solid line) and skewness(blue line) of 1−Tγ/TS as functions of
redshift. For the skewness, the dashed part corresponds to the negative skewness (γ < 0).
[bottom] Cross correlation between δm and η as a function of redshift. Green dashed line
corresponds to Lmη = 0.
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we see that the spin temperature rises earlier for larger ζX . The other panels of Fig. 5.5
show the evolution of the variance and skewness of the PDF of η, and the cross correlation
between matter and η fluctuations. As ζX increases, the critical redshift where the variance
has a local minimum and the sign of the skewness and cross correlation changes increases.
This is the expected behavior from our interpretation given in the previous section because
the X-ray heating will become effective earlier for larger ζX . The power spectra of the
brightness temperature contributed from the fluctuations in η are plotted in Fig. 5.6 and,
as expected again, the dip appears earlier for larger ζX .
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Figure 5.5: [left top] The evolution of the spin temperature for ζX = 1057 M−1
⊙ (red),

1056 M−1
⊙ (green) and 1055 M−1

⊙ (blue). We also plot kinetic temperature in the absence of
the X-ray heating (pink) and in the presence of the X-ray heating with ζX = 1056 M−1

⊙ (light
blue) and the CMB temperature (black). [right top and left bottom] Evolution of variance
and skewness of the probability distribution function of 1−Tγ/TS for ζX = 1057 M−1

⊙ (red),
1056 M−1

⊙ (green) and 1055 M−1
⊙ (blue). [right bottom] Cross correlation between δm and

δη for ζX = 1057 M−1
⊙ (red), 1056 M−1

⊙ (green) and 1055 M−1
⊙ (blue).

In summary, the dip in the evolution of power spectrum contributed from the spin
temperature fluctuations can be understood as the state that the X-ray heating is effective.
The transition occurs at z ≈ 23 for a fiducial set of model parameters and this depends
on the effectiveness of the X-ray heating. Conversely, our interpretation implies that, if
we detect a dip in the redshift dependence of the power spectrum at the relatively higher
redshift, we could know the redshift when X-ray begins to become effective. Further, when
we detect a peak, it would be possible to know whether the X-ray heating is effective at
the redshift from the skewness. However, although the spin-temperature fluctuations are
dominant at large scales, the contribution from matter fluctuations is not negligible and
change the critical redshift as we see in the next section.
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Figure 5.6: Power spectra of the brightness temperature contributed from the fluctuations
in 1−Tγ/TS for ζX = 1057 M−1

⊙ (red), 1056 M−1
⊙ (green) and 1055 M−1

⊙ (blue) at three wave
numbers as functions of redshift.

Here, it is important to note the difference between the redshift of the local minimum
of the average spin temperature and the above critical redshift. The difference is due to the
fact that the average spin temperature is a global property of the intergalactic gas while
the skewness is largely affected by the behavior of a small fraction of gas near stars. Thus,
the latter is more sensitive to the onset of the X-ray heating. If so, it is expected that the
difference in the two redshifts depends on the spectrum of X-ray [36]. For example, if the
X-ray spectrum is hard, the difference will become smaller because higher-energy X-rays
have larger mean free path so that they tend to heat larger region around the source.

5.4 One-point statistics of the brightness temperature

In this section, we focus on the one point statistics of the brightness temperature. The
variance and skewness of the brightness temperature are described by

σδTb
= (δTb)

2[σδm + σδη + σδxH

+ ⟨δmδη⟩+ ⟨δmδxH⟩+ ⟨δηδxH⟩+O(δ3)]. (5.12)
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γδTb
= (δTb)

3[γδm + γδη + γδxH + ⟨δmδηδxH⟩
+ 3(⟨δ2mδη⟩+ ⟨δ2mδxH⟩+ ⟨δ2ηδxH⟩
+ ⟨δmδ2η⟩+ ⟨δmδ2xH⟩+ ⟨δηδ2xH⟩) +O(δ4)]. (5.13)

Here, we notice that δTb is slightly different from the average ⟨δT ⟩ obtained by the
brightness temperature map due to the contribution of higher-order terms. Although we
focus on relatively high redshift, we find that δxH is important when we consider the skew-
ness.

In Figs.5.7 and 5.8, we plot the variance and skewness of the brightness temperature with
their components. Comparing the variance with skewness, we find that neutral-fraction
fluctuation δxH is not negligible in skewness at z ≤ 20, although it does not contribute
to the total variance so much. As you can see Fig. 5.8, the change of sign in skewness
for the brightness temperature is deviated from the one of η due to the contribution of
matter fluctuations, which have always negative skewness. Nonetheless, the skewness is
still a good indicator to study the epoch when the X-ray heating becomes effective. We
note here that the nonlinear terms in skewness is the same order as the linear terms but
qualitative behavior does not change whether we include nonlinear terms or not.

5.5 Discussion

In this chapter, we gave a physical interpretation of the evolution of the power spectrum
of the 21 cm brightness temperature during the Cosmic Dawn and the EoR using a public
code, 21 cmFAST. With a fixed wave number, the power spectrum has three peaks as a
function of redshift. First, we decomposed the power spectrum into those contributed from
the fluctuations in dark matter density, the spin temperature and neutral fraction and found
that the peak with the lowest redshift is mostly contributed from the neutral fraction, while
the other two peaks are contributed from the dark matter density and the spin temperature
fluctuations. Further, it was found that a dip between two peaks with higher redshifts is
induced by the neutral fraction. Then, to understand the physical meaning of the dip, we
investigated the one-point function of the spin temperature distribution. We found that
the redshift of the dip is critical in a sense that the skewness of the one-point function
and the correlation coefficient between the spin temperature and dark matter distribution
change their signs and that the variance also has a dip. From this fact, it was implied that
the dip in the power spectrum of the brightness temperature contributed from the spin
temperature is a signature of the onset of the X-ray heating of the gas. This interpretation
was justified by seeing the behavior when varying the model parameter corresponding to
the X-ray heating.

Due to the contribution of dark matter density, the redshift of the dip in the power
spectrum contributed from the spin temperature is slightly different from that in the full
power spectrum. However, the dip will still be a good indicator of the onset of the X-
ray heating. Further, based on the cosmological perturbation theory, we can theoretically
estimate the skewness of the brightness temperature contributed from the dark matter
fluctuations in the standard cosmological model. Therefore, in principle, we can extract
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Figure 5.7: The variance of the brightness temperature(black), of δm(red), of δη(green), of
δxH(blue). All quantities are multiplied (δTb)2.
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the dark matter contribution and directly measure the skewness of the contribution from
the spin temperature. Moreover, the scale dependence of the bispectrum, which has a
close relation to the skewness, of the brightness temperature would help us to extract the
information about the spin temperature from the observed brightness temperature. The
bispectrum is also deeply related to the nonlinear terms [73] in the power spectrum which
we neglected in this chapter. Because the fluctuations in the spin temperature are of order
∼ O(0.1) and are deviated from Gaussian distribution, the nonlinear terms are potentially
important. In particular, we found that the linear and nonlinear terms are comparable
when we evaluate the skewness. Further, the bispectrum and higher-order statistics would
be very useful to extract physical information from 21 cm signal [97, 23, 25], as mentioned
above. These topics will be presented next.

The detectability of variance and skewness was discussed in [55, 66, 134]. Following
[134], the signal-to-noise ratio, S/N, of skewness can be roughly estimated by

S/N ∼

√
γ2σ3

σ6
noise/Npix

, (5.14)

where we have neglected the contribution from kurtosis. Here, Npix is the number of pixels
and we set Npix = 3003 and σnoise is the instrumental noise on the brightness temperature
given by

σnoise = 0.37mK

(
106m

Atot

)(
5
′

∆θ

)2 (
1 + z

10

)4.6

×

√(
1 MHz

∆ν

1000 hours

tint

)
, (5.15)

where Atot is the total effective area of array, θ is angular resolution, ∆ν is frequency
resolution and tint is observing time. Considering SKA1 (Atot = 4 × 105[m2]) and SKA2
(Atot = 3×106[m2]) with 1000 hours of observation time and ∆ν ∼ 0.1MHz, we obtain S/N
= 6 and 18 at z = 15, and S/N = 2 and 8 at z = 20, for SKA1 and SKA2, respectively.

Finally, we would like to note that the variance and skewness are actually dependent
on the angular resolution and survey area. This can be understood by the fact that they
are expressed by the integration of power spectrum and bispectrum with respect to the
wavenumber. In our calculation, we have fixed the box size and the number of grids in
simulations to be (200 Mpc)3 and 3003, respectively. This is corresponding to 0.66 Mpc
resolution or ∼ 3 arcmin at 80 MHz (z = 17). In Fig. 5.9, we show the evolution of
skewness of the brightness temperature with varying the spacial resolution 0.66, 1.3 and
2.0 Mpc. These correspond to 3 arcmin, 6 arcmin, 9 arcmin. and fixing the box size. The
lowest resolution roughly corresponds to that of SKA2. It is seen that the peak at z ∼ 18
is diminished for higher resolution, while the one at z ∼ 30 is not affected. On the other
hand, the change of sign is shifted slightly to higher redshift for higher resolution. More
detailed study on the dependence of skewness on the resolution needs the understanding
of the bispectrum of the brightness temperature fluctuations and this will be presented
elsewhere.
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Figure 5.9: The evolution of the brightness temperature skewness varying the number of
grids: 3003 (fiducial, red), 1503 (blue) and 1003 (green). The latter two cases are calculated
by smoothing the fiducial model.



Chapter 6

21 cm bispectrum

In previous chapter, we studied the variance and skewness of the 21 cm fluctuations to
give a clear interpretation of the 21 cm power spectrum and find that skewness is a good
indicator of the epoch when the X-ray heating becomes effective. Thus, the non-gaussian
feature of the spatial distribution of the 21 cm signal is expected to be useful to investigate
the astrophysical effects in the CD and the EoR because skewness can estimate the non-
gaussian feature in a distribution. In this chapter, in order to investigate such a non-
Gaussian feature in more detail, we focus on the bispectrum of the 21 cm signal. It is
expected that the 21 cm brightness temperature bispectrum is produced by non-gaussianity
due to the various astrophysical effects such as the Wouthysen-Field (WF) effect, the X-ray
heating and reionization. We study the various properties of the 21 cm bispectrum such
as scale dependence, shape dependence and the redshift evolution. And also we study the
contribution from each component of the 21 cm bispectrum. We find that the contribution
from each component has characteristic scale-dependent feature. In particular, we find that
the bulk of the 21 cm bispectrum at z =20 comes from the matter fluctuations, while in
other epochs it is mainly determined by the spin and/or neutral fraction fluctuations and it
is expected that we could obtain more detailed information on the IGM in the CD and the
EoR by using the 21 cm bispectrum in the future experiments, combined with the power
spectrum and skewness. This chapter is based on [119]

6.1 Introduction

In previous chapter, we gave an interpretation to the time evolution of the 21 cm power
spectrum and we find that the size of skewness is sensitive to the epoch when the X-ray
heating becomes effective. Other work also reports the impact of the spin temperature
fluctuations on the skewness [135] and there is a work which focuses on the redshift dis-
tortion as the indicator of the epoch where the X-ray heating is effective[37]. Herein we
extend these previous works by considering the bispectrum to investigate the dependence
of the skewness on scales because skewness is an integral of the bispectrum with respect to
the wave number (see Appendix A). In a different work [144], we have already estimated
errors from the thermal noise of detectors in estimating the bispectrum and we found that
the 21 cm bispectrum would be detectable at large scales at k ≤ 0.1Mpc−1 even by the
current detectors on, such as, the MWA and PAPER. Further, the 21 cm bispectrum would
be detectable even at small scales with SKA [144], and therefore the study of the bispec-
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trum is timely and well motivated. Some previous works studied the 21 cm bispectrum
[23, 97, 25, 94, 24]. These works, however, mainly focus on the bispectrum as a measure-
ment of primordial non-gaussianity in matter fluctuations. In our study, we instead focus
on non-Gaussianity in 21 cm fluctuations induced by astrophysical effects, whose size is ex-
pected to be larger than that in matter fluctuations. (For other probes of non-Gaussianity
such as Minkowski functionals, see [49, 78, 60].)

6.2 Formulation and set up

6.2.1 Formulation for the 21 cm bispectrum

We have introduced the 21 cm power in eq.(6.1) as follows:

⟨δ21(k)δ21(k
′
)⟩ = (2π)3δ(k+ k

′
)P21(k), (6.1)

where,

δ21(x) ≡ δTb(x)− ⟨δTb⟩. (6.2)

If the statistics of the brightness temperature fluctuations is pure Gaussian, the statistical
information on the brightness temperature should be completely characterized by the power
spectrum, and in the above expression for the brightness temperature given by Eq. (4.40),
if both of the spin temperature and the neutral fraction are completely homogeneous,
the statistics of the brightness temperature fluctuations completely follows that of the
density fluctuations δm. However, in the era of CD and EoR, it is expected that the spin
temperature and the neutral fraction should be spatially inhomogeneous and the statistics of
the spatial fluctuations of those quantities would be highly non-Gaussian due to the various
astrophysical effects. Accordingly, the statistics of the brightness temperature fluctuations
would deviate from the pure Gaussian and it should be important to investigate the non-
Gaussian feature of the brightness temperature fluctuations. Although such a non-Gaussian
feature can be investigated through the skewness of the one-point distribution functions as
done in [118], the scale-dependent feature has been integrated out in the skewness. On the
other hand, the higher order correlation functions in Fourier space such as a bispectrum
and a trispectrum characterize the non-Gaussian features and also have the scale-dependent
information. Here, in order to see the non-Gaussian feature of the brightness temperature
fluctuations δ21, we focus on the bispectrum of δ21 which is given by

⟨δ21(k1)δ21(k2)δ21(k3)⟩ = (2π)3δ(k1 + k2 + k3)B(k1,k2,k3). (6.3)

In order to characterize the shape of the bispectrum in k-space, we use an isosceles ansatz
which is defined as k1 = k2 = k = αk3 (α ≥ 1/2). For examples, in case with α ≫ 1 the
shape of the bispectrum is often called as squeezed type or local type, in case with α = 1 it is
called as equilateral type, and in case with α = 1/2 it is called as folded type. Note that we
relax the configuration condition because we calculate the bispectrum from the grid point.
We regard the length within the range of 10% of side of the triangle we desire as the that
of triangle.
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6.2.2 Calculation of the 21 cm bispectrum

In this chapter, we calculate the bispectrum of the brightness temperature fluctuations (the
21 cm bispectrum) by making use of 21 cmFAST [87, 88].

We perform simulations in a (200Mpc)3 comoving box with 3003 grids, which corre-
sponds to 0.66 cMpc resolution or ∼ 12.7(14.1) arcsec at 80 (127) MHz (z = 17 (10)) and
1.07(1.19)deg2 field of view at 80 (127) MHz (z = 17 (10)), from z = 200 to z = 8 adopting
the following parameter set, (ζ, ζX , Tvir, Rmfp) = (31.5, 1056/M⊙, 104 K, 30 Mpc). Here, ζ
is the ionizing efficiency, ζX is the number of X-ray photons emitted by source per solar
mass, Tvir is the minimum virial temperature of halos which produce ionizing photons,
and Rmfp is the mean free path of ionizing photons through the IGM. In our calculation,
we also ignore, for simplicity, the gradient of peculiar velocity whose contribution to the
brightness temperature is relatively small (a few %) [47]. We perform 10 realizations of
simulations with different initial condition of density fluctuations and obtain the brightness
temperature maps. Then we evaluate the average bispectrum as

abs[B(k)] =
1

N

N∑

i=1

abs[B(k)]i

=
1

N

N∑

i

(Re[B(k)]2 + Im[B(k)]2)1/2i=1. (6.4)

Here, N is the number of realizations and k is the absolute value of k.

6.3 Result

In this section, we summarize our result for the 21 cm bispectrum.

6.3.1 Scale-dependence of the 21 cm bispectrum

First, in order to see the scale-dependence of the 21 cm bispectrum, we focus on the
equilateral shape, that is, α = 1 case for the isosceles ansatz discussed in the previous
section. We plot the equilateral type bispectrum as a function of wave number k with 1-σ
sample variance for several redshifts (z = 10, 15, 20 and 27) in Fig.6.1. Here, we use the
normalized bispectrum which is given by k6abs[B(k)]. z = 10 is a typical redshift during
the EoR, and z = 15 and 20 are expected to be a transition time from CD to the EoR,
while z = 27 is a typical time during CD. As you can see, the variance is relatively small
and the cosmic variance is not so serious for the field size and wavenumbers we chose. From
this figure, we can find that, except for the case with z = 20, the normalized bispectrum
is almost scale-invariant for the equilateral shape. On the other hand, for z = 20, the
normalized bispectrum has a scale-dependence as ∝ k2. Such difference is expected to
depend on what component gives a dominant contribution to the 21 cm bispectrum and
we will discuss this issue later.

Next, we show a comparison of bispectra of equilateral (α = 1), folded (α = 1/2) and
squeezed (α = 10) types in Fig. 6.2. Here, the bispectra are plotted as functions of k3
for several redshifts. From this figure, we can see that the scales and shapes which mostly
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Figure 6.1: Equilateral type bispectra as functions of wave number at z = 27 (red), 20
(cyan), 15 (green), 10 (purple). The shaded region associated with each line represents 1-σ
sample variance estimated from 10 realizations.
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Figure 6.2: Scale dependence of bispectra for (k1 : k2 : k3) = (1 : 1 : 1), (1 : 1 : 2)and
(10 : 10 : 1), as functions of k3.

contribute to the skewness since skewness is the integral of bispectra (see Appendix A). In
particular, smaller scales contributes to the skewness at z = 20 although the bispectrum is
nearly scale invariant at other redshifts.

6.3.2 Redshift evolution of the 21 cm bispectrum

Next, we consider the redshift evolution of the 21 cm bispectrum. In Fig. 6.3, we show the
bispectra as functions of redshift for several α: the equilateral shape (α = 1), the folded
shape (α = 1/2) and the squeezed shape (α = 10) with k = 1.0 Mpc−1. For the equilateral
and folded cases, we can see two peaks located at around z = 20 and 12. These peaks
can also be seen in the power spectrum of the brightness temperature fluctuations, P21(k),
with k ≃ 1.0 Mpc−1 (see Fig.5.1). On the other hand, in case with the squeezed shape,
three peaks appear at around z = 23, 17, and 12. This feature is similar to that of the
power spectrum with k ≃ 0.1 Mpc−1 [118]. For the squeezed type, we take the parameter
α to be 10 and this means k3 = 0.1 Mpc−1. Hence, the squeezed-type 21 cm bispectrum
is expected to be described in terms of not only the power spectrum with larger two wave
number (k1 and k2 in our case) but also that with smaller one wave number (k3 in our case)
and also it would have the information about the correlation between the long and short
wavelength modes in Fourier space or local nonlinearity in real space.

We will also investigate what physics cause such a correlation between the long and
short wavelength modes in the 21 cm bispectrum in later subsection.
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Figure 6.3: Comparison of bispectra of typical triangle configurations. We fix k =
1.0 Mpc−1 and take α = 1 (equilateral: red solid line), α = 1/2 (folded: green dashed
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6.3.3 Decomposition of the 21 cm bispectrum

By using Eq. (5.2), we can also decompose the 21cm bispectrum into auto- and cross-
correlation of δm, δxH and δη:

BδTb
= (δT b)

3[Bδmδmδm +BδxHδxHδxH
+Bδηδηδη

+(cross correlation terms)

+(higher order terms)]. (6.5)

In the above equation, the cross correlation terms and the higher order terms come from
the fact that the brightness temperature is expressed as Eq. (5.2) and they should appear
even if the statistics of δm, δxH and δη are completely Gaussian. In this sense, the first three
terms in the above expression, which are the auto-bispectra of δm, δxH and δη, should be
corresponding to the intrinsic non-Gaussian features of these components and we focus on
these auto-bispectra below.

In Fig. 6.4, we plot the brightness temperature bispectrum and the above auto-bispectra
terms for equilateral type as functions of redshift (upper panels). From this figure, we can
see that the total bispectra are mostly contributed from the auto-bispectra of the matter
density field, the fluctuations of the spin temperature and the neutral fraction, which
are expressed as the first three terms in Eq. (6.5), for all redshifts. For comparison, the
evolution of power spectra is also shown (lower panels) and we find that the behavior of each
component is very similar between bispectrum and power spectrum. Such a correspondence
is highly non trivial, since the bispectrum and power spectrum reflect different aspects of
the statistical properties of the fluctuations as we have mentioned.

Let us try to interpret the behavior of bispectra, comparing that of power spectra which
was detailed in previous chapter. First, fluctuations in neutral hydrogen fraction appear
when reionization begins and become dominant as reionization proceeds (z ! 12). The dip
at z ∼ 14 corresponds to the redshift when the average spin temperature becomes equal
to the CMB temperature and the average brightness temperature δTb vanishes. This dip
appears in the contribution of matter fluctuations for the same reason. Thus, this dip is
independent of the properties of fluctuations and this is why both the power spectra and
bispectra from δxH and δm have a dip at the same redshift.

On the other hand, the spin temperature fluctuations are negligible at low redshifts
(z ! 10), because the spin temperature is much higher than the CMB temperature ev-
erywhere, that is, η = 1 − Tγ/TS is very close to unity and independent of TS. However
they substantially contribute at higher redshifts (z " 14) and have two peaks at z ∼ 15
and z ∼ 25 at large scales while the higher-redshift peak is much less noticeable at small
scales. The dip at z ∼ 23 is induced by the onset of the X-ray heating. At higher redshifts
(z " 23), the spin temperature in dense region is lower than the average due to the WF
effect, which couples the spin temperature to the kinetic temperature which is much lower
than the CMB temperature. As a consequence, the probability distribution function (pdf)
of the spin temperature is negatively skewed at this epoch. Contrastingly, at lower redshifts
(z ! 23), the X-ray heating becomes effective for our parameter set and the spin tempera-
ture in dense region rises rapidly so that the skewness of the pdf changes its sign. Thus, at
the onset of the X-ray heating (z ∼ 23), the pdf becomes close to Gaussian with relatively
small width, that is, the skewness vanishes and the variance has a local minimum. Thus, in
[118], it was suggested that the sign of skewness can be an indicator of the effectiveness of
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Figure 6.4: Components of the 21 cm bispectrum for equilateral type: the brightness
temperature (red), the contribution from eta (green), matter fluctuations (blue) and neutral
hydrogen fraction (magenta).

the X-ray heating. Remembering that the bispectrum is a measure of non-Gaussianity, it
is natural that the dips in bispectrum and power spectrum are coincident with each other.

Before the EoR, the bispectrum, as well as the power spectrum, is mostly dominated by
the spin temperature fluctuations at large scales and will be a good probe of astrophysical
effects such as the WF effect and the X-ray heating. On the other hand, at small scales, the
matter fluctuations are dominant and the bispectrum is of cosmological interest because
it is induced by gravitational nonlinearity and, possibly, primordial non-Gaussianity (see,
e.g., [115, 11, 68]).

Next, we focus on the shape dependence of the total bispectrum and its components.
Fixing k3 = 1.0 Mpc−1, we plot contours of the bispectra in (k1/k3)-(k2/k3) plain in top
of Fig. 6.5. Note that we do not use the normalized bispectrum, k2

1k
2
2k

2
3B(k1, k2, k3), but

the unnormalized bispectrum, B(k1, k2, k3), here. We can see in what configuration of
triangle the bispectra are strong. Here it should be noted that the triangle condition is not
satisfied in the blank region and that the contours are symmetric with respect to a line
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Figure 6.5: (Top) Contours of the total bispectrum and its components in k1/k3-k2/k3 plane
with k3 = 1.0 Mpc−1. (Bottom) Contours of the total bispectrum and its components in
k1/k3-k2/k3 plane with k3 = 0.4 Mpc−1.
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k1/k3 = k2/k3.
At z = 10.05 when the EoR has proceeded to some extent, the total bispectrum is

strong at folded and squeezed types. The contribution from neutral hydrogen fraction
fluctuations is dominant at these configurations, while matter fluctuation is dominant at
equilateral type. At z = 14.47, the dominant contribution comes from the spin temperature
fluctuations and it is largest at squeezed type. The situation is similar at z = 27.03.
At z = 20.23, both squeezed and folded type of the total bispectrum are strong. The
contributions from matter and the spin temperature fluctuations are comparable at these
configurations, while the former is dominant at equilateral type.

We also show the contour for k3 = 0.4 Mpc−1 in bottom of Fig.6.5. Compared with
the case of k3 = 1.0 Mpc−1, contributions from both matter and the spin temperature
fluctuations are significant at z = 20.23. On the other hand, we find that the contribution
from fluctuations of neutral hydrogen fraction at z = 10.05 is clear compared with the case
of k3 = 1.0 Mpc−1. This helps us to extract the information on neutral hydrogen and it
is better to see larger scales if we would like to know the information on neutral hydrogen
fluctuations.

6.4 Discussion

In this chapter, we investigated the 21 cm bispectrum as a method to measure non-
Gaussianity of the brightness temperature field.

First, we have shown the scale-dependence of the 21 cm bispectrum for the equilateral-
shape at some redshifts. We found that the normalized 21 cm bispectrum seems not to have
any characteristic scale in 0.1 ! k/Mpc−1 ! 1.0 for each redshift. For z = 10, 15, 27, the
normalized bispectrum is almost scale-invariant, while for z = 20 it has a scale-dependence
as k6B ∝ k2.

We have also shown the redshift evolution of the 21 cm bispectrum with fixed k for
three types of the shape in k-space. We found that the redshift evolution of the 21 cm
bispectrum for the equilateral and folded shapes basically traces that of the 21 cm power
spectrum, but in case with the squeezed shape, we could see a different behavior and it can
be understood by considering the coupling between the large- and small-scale modes.

Then, we studied the 21 cm bispectra by decomposing it into the contributions from
the matter density field, the fluctuations in the spin temperature and the neutral fraction.
From the redshift evolution, we found the dominant component at each redshift and scale.
We also show the shape dependence of each component and compared it with that of the
total 21 cm bispectrum. The shape dependence of each component looks similar to each
other, but a slight difference also exists. Hence, by future precise observation it is expected
that we would obtain the information about the non-Gaussian feature of these components
separately.

As far as the matter bispectrum is concerned, there have been a lot of works which
discuss the shape-dependence by using the second order perturbation theory and also
numerical N-body simulation. Although a lot of works focus on the matter bispectrum
at the lower redshift (z ≃ 1.0) or higher redshift (30 ! z ! 100 in the dark age)
(e.g., [115, 11, 68, 116, 24, 94]), we can find that the shape of the matter bispectrum
in our result is basically consistent with these previous works by extrapolation. By us-
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ing the second order perturbation theory, the matter bispectrum can be expressed as
Bm(k1, k2, k3) ∝ Pm(k1)Pm(k2) + 2 perms. with Pm(k) being the matter power spectrum.
For 0.1 Mpc−1 ! k, the matter power spectrum behaves as ∝ k−2∼3. Based on this fact
and the isosceles ansatz (k1 = k2 = k = αk3), we have Bm(k,α) ∝ (1 + 2α2∼3)k−4∼6, and
hence the unnormalized matter bispectrum becomes larger as α increases is the largest in
the squeezed shape [68].

Based on the above discussion about the matter bispectrum, let us revisit the behavior
of the 21 cm bispectrum as shown in Fig. 6.1. As we have mentioned, in contrast to other
redshifts, for z = 20 the normalized 21 cm bispectrum has a scale-dependence as k2 in the
equilateral shape. From Fig. 6.4, we find that at z = 20 the matter contribution relatively
dominates over the 21 cm bispectrum, and hence the behavior of the 21 cm bispectrum is
expected to trace that of the matter bispectrum at this redshift. Based on the expression
obtained by the second order perturbation theory, the scale-dependence of the normalized
matter bispectrum can be estimated as ∝ k6 × k−4∼6 = k0∼2. Hence, the behavior of the
matter bispectrum could explain that of the 21 cm bispectrum at z = 20.

Naively, the spatial distributions of the spin temperature and neutral fraction should
be considered as tracers of matter density field, that is, they could be treated equally with
those of the halos and galaxies. Based on this consideration, the simplest way to express
the spatial distributions of the spin temperature and neutral fraction is introducing a bias
parameter, such as δi ∝ biδm (i = η and xH). If such a bias parameter is scale-independent,
the behaviors of the bispectra of the spin temperature and neutral fraction are completely
the same as that of the matter density field. However, we can see slight differences between
these components in Fig. 6.5 and also 6.1. Hence, we expect that the bias parameter should
have non-trivial scale-dependence due to the nonlinear or non-local transfer from the matter
density field to the spin temperature and neutral fraction. We need to investigate this issue
more deeply in future work.

The detectability of bispectrum is of critical interest. In the [144], we estimated the
signal-to-noise ratio of bispectrum, developing a formalism to calculate the bispectrum
contributed from thermal noise. It was found that SKA1 has enough sensitivity for k <
0.3 Mpc−1 for isosceles triangles, while LOFAR will have sensitivity for the peaks of the
bispectrum as a function of redshift. Actually, galactic and extragalactic foreground will
be a serious obstacle just as in the case of power spectrum and should be studied in detail.

There are some other approaches to measure non-Gaussianities in the brightness tem-
perature field. For example, some studies focus on topological structure of the brightness
temperature field such as Minkowski functionals [49, 78, 60]. This method is complementary
to higher order statistics.





Chapter 7

Fisher analysis for the EoR
parameters

In this chapter, we perform the Fisher analysis for the 21 cm bispectrum to forecast the
EoR model parameters obtained by future observations. Further, we compare expected
error on the EoR model parameters obtained by the 21 cm bispectrum with that obtained
by the 21 cm power spectrum.

7.1 Introduction

Improvements of current instruments and foreground removal methods push observational
21 cm cosmology into new era. Ongoing projects such as MWA, LOFAR and PAPER
have potential to detect the 21 cm power spectrum at the EoR and a future instrument
SKA will be expected to detect the 21 cm power spectrum at higher redshift beyond the
EoR [90, 107, 91]. Further, Yoshiura et al [144] shows that the 21 cm bispectrum at the
EoR is also detectable by MWA and LOFAR at large scales k < 0.3 Mpc−1 and also
detectable at both larger and smaller scales by SKA. As observational techniques develop,
we expect to get much more information on the EoR from the 21 cm power spectrum and
the bispectrum. In particular, what we would like to know is the answer for the questions
that “what exactly can we learn information on the EoR model from observations?” and
“can we refer to the nature of the EoR from the cosmic 21 cm signal?” In order to give
answers for these questions, it is imperative to constrain the EoR model parameters from
the cosmic 21 cm signal. Some previous works constrain the EoR parameters by using the
Markov Chain Monte Carlo (MCMC) method or the Fisher forecast by applying them to
the 21 cm power spectrum and the global 21 cm signal[102, 52, 76, 92, 56].

In this chapter, we perform parameter forecast by the Fisher analysis for both 21 cm
power spectrum and 21 cm bispectrum with ongoing observation. We focus on MWA and
LOFAR as supposed instruments. Previous work shows that the 21 cm power spectrum as-
suming MWA and LOFAR observations can constrain the EoR parameters[102]. However,
no previous work constrain the EoR model parameters with the 21 cm bispectrum. The
21 cm bispectrum is thought to be more sensitive to change of the EoR parameters than
those of power spectrum because the 21 cm bispectrum consists of three brightness tem-
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perature values, whereas the 21 cm power spectrum consists of two brightness temperature
values.

7.2 Parameter dependence of the 21 cm bispectrum

In this section, we study the parameter dependence of the 21 cm bispectrum in order to
prepare Fisher forecast. We choose two key parameters as EoR model parameters. We
briefly summarize the key parameters we choose as follow.

1. ζ, ionizing efficiency; ζ is composed by a number of parameters related to ionizing
photons escaping from high redshift galaxies. fesc is the fraction of ionizing photons escap-
ing from galaxies into the IGM. f∗ is the fraction converted from baryons to stars. Nγ is the
number of ionizing photons per baryon in stars. nrec is the recombination rate per baryon.
With these parameters, ζ can be written by ζ = fescf∗Nγ/(1+nrec)[43]. In our calculation,
we adopt ζ = 15 as fiducial value to satisfy observed constraint on the ionization history.

2. Tvir,minimum virial temperature of halos producing ionizing photons; Tvir parameter-
izes the minimum mass of halos producing ionizing photons at the EoR. Typically, Tvir is
chosen to be 104K corresponding to the temperature that atomic cooling become effective.
Tvir includes physics of the high redshift galaxy formation. If there is no radiative feedback,
atomic cooling is thought to become effective at Tvir=104K. Hydrogen molecule cooling
becomes effective below this temperature. If stars or star forming galaxies begin to form
in a halo and radiative feedback by such objects exists, virial temperature is expected to
become higher since radiative feedback such as the photodissociation of H2 prevents the
gas from cooling (see sec3.2.2)[122]. On the other hand, positive feedback such as enhance-
ment of H2 molecules due to increase of electrons pushes decrease of virial temperature
because cooling becomes more effective. We parameterize Tvir as a responsible parameter
for uncertainties in radiative feedback effects referred above.

We show the parameter dependence of equilateral type of the 21 cm bispectrum as func-
tion of redshift in Fig.7.1. We adopt ζ = 15(fiducial), 20, 25 and Tvir = 104(fiducial), 3×
104, 5 × 104[K]. From Fig.7.1, we can see that the peak of the 21 cm bispectrum shifts to
larger redshift for larger ζ. This is because larger ζ means that more more photons can
contribute to ionization of neutral hydrogen gas. This leads to the progress of the EoR.
We also notice that the peak of the 21 cm bispectrum shifts to lower redshift for higher
Tvir. Since higher Tvir corresponds to large mass of halo, the formation of halos capable to
produce ionizing photons becomes difficult. As the result of this, the EoR is delayed and
the peak shifts to lower redshift.

7.3 Fisher information matrix

In order to forecast constraint on the EoR model parameters, we use the Fisher information
matrix Fij. Given observational data, the maximum likelihood analysis gives a set of
parameters which maximize the likelihood function L (the probability distribution function
for measured data set as function of model parameters). The Fisher formalism assumes that
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Figure 7.1: Equilateral type of the 21 cm bispectrum as function of redshift at k =
0.1Mpc−1 with varying ζ(left) and Tvir(right). We adopt ζ = 15(fiducial), 20, 25 and
Tvir = 104(fiducial), 3× 104, 5× 104[K].

the likelihood function L follows a multi-dimensional Gaussian form in given parameters.
By the Fisher analysis [22, 131], we can estimate the expected 1σ error for the model
parameters with supposed instruments.

The Fisher matrix is defined as

Fij ≡ −
〈
∂2 lnL
∂pi∂pj

〉 ∣∣∣∣
p⃗=p⃗fid

=
1

2

〈
∂2χ2

∂pi∂pj

〉 ∣∣∣∣
p⃗=p⃗fid

(7.1)

Where, p⃗ is the model parameter vector, p⃗ = (p1, p2, · · ·), and p⃗fid is a set of fiducial model
parameters, p⃗fid = (p1,fid, p2,fid, · · ·). If we have N independent values for a certain physical
value x(p⃗), the χ-squared value for x(p⃗) is given by

χ2(p⃗) =
N∑

l

[xl(p⃗)− xl(p⃗fid)]2

σ2
l

(7.2)

σl is the observational error for xl(p⃗). Noting that the Fisher matrix is evaluated at
p⃗ = p⃗fid, the Fisher matrix can be re-written by

Fij =
N∑

l

1

σ2
l

∂xi(p⃗)

∂pi

∂xi(p⃗)

∂pj

∣∣∣∣
p⃗=p⃗fid

(7.3)

In our case, we consider the Fisher matrix for the 21 cm power spectrum and the 21 cm
bispectrum. The Fisher matrices for the 21 cm power spectrum and the 21 cm bispectrum
are respectively given by
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Fij,PS =
N∑

l

1

σ2
PS,l

∂P (k; p⃗)

∂pi

∂P (k; p⃗)

∂pj

∣∣∣∣
p⃗=p⃗fid

(7.4)

Fij,BS =
N∑

l

1

σ2
BS,l

∂B(k; p⃗)

∂pi

∂B(k; p⃗)

∂pj

∣∣∣∣
p⃗=p⃗fid

(7.5)

Here l expresses the l th bin of wave number. As one can see, in order to determine the
Fisher matrices for both 21 cm power spectrum and 21 cm bispectrum, we need to estimate
the errors on both 21 cm power spectrum and 21 cm bispectrum. We discuss the errors
in next section. Given the Fisher matrix, we can estimate the expected 1-σ error of i-th
parameter as follows:

σpi =
√

F−1
ii, (7.6)

and the covariance between i-th and j-th parameters is given by

σij =
√

F−1
ij, (7.7)

We will show the confidence regions of the EoR model parameters calculated by formal-
ism above later. Note that the confidence regions obtained by the Fisher analysis include
physically meaningless regions such as Tvir < 0. This is because the Fisher analysis assumes
the shape of χ2 around fiducial values as quadratic form in term of the parameters [63]. In
this case, we put on physically meaningful boundary condition for the confidence regions.

7.4 Thermal noise estimation

We estimate the thermal noise on both 21 cm power spectrum and 21 cm bispectrum to
perform the Fisher forecast. First, we show the formalism to estimate the thermal noise
for the 21 cm power spectrum based on [81]. Note that we assume probability distribution
of the thermal noise for the brightness temperature obeys Gaussian shape.

Then, the thermal noise for the power spectrum is given by,

δPN(k) =

[
∑

θ

(
1

PN(k, θ)/
√
Na

)2
]−1/2

≈
[
k3

∫ arcsin[min( k∗k ,1)]

arccos[min( yk2π ,1)]

dθ sin θ
ϵ(n(k sin θ))2A3

eB
2t20

(2π)2x2yλ6T 4
sys

]−1/2

, (7.8)

where PN is the power spectrum of thermal noise, Na is the number of pixels, k∗ is
the longest wave vector in transverse component corresponding to the maximum base-
line length, λ is the observed wavelength, Tsys is the total system temperature, Ae is the
effective area of antenna, B is the bandwidth, t0 is total observing time and ϵ is constant
factor set by 0.5. x and y are determined by cosmology(see [81]). The lower limit of the
integral corresponds to the pixel size. In Fig.7.2, we show the scale dependence on both
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21 cm power spectrum and thermal noise for various telescopes. Parameters for specifica-
tions of telescopes are shown in table 7.1.

redshift 8 10 12 17 Nstation

frequency [MHz] 158 129 109 79
Tsys [K] 440 600 1000 1900

Ae [m2] (MWA) 14 18 18 18 500
Ae [m2] (LOFAR) 512 600 900 900 24
Ae [m2] (HERA) 68 106 154 154 547
Ae [m2] (SKA) 462 728 962 962 866

Table 7.1: Parameters for telescopes: Tsys is the system temperature, Ae is the effective
area of a station and Nstation is the number of stations. The expanded MWA will have 500
antennae within a radius of 750 m with r−2 distribution [13]. LOFAR has 24 antennae
within a radius of 2000 m with r−2 distribution [129]. HERA has 547 antennae within 200
m with constant distribution [102]. SKA will have 466 antennae within 600 m with r−2

distribution, 670 antennae within 1000 m, 866 antennae within 3000 m [26]. For simplicity,
we assume that the antennae density is constant between 600 m to 1000 m and 1000 m to
3000 m, respectively. Further, we assume t0 = 1000 hour for the total observing time and
6 MHz bandwidth.

Next, we estimate the thermal noise for the 21 cm bispectrum as similar as that for
the power spectrum discussed above. The important point to note is that the bispectrum
of thermal noise itself is actually zero because the thermal noise is assumed to be Gaus-
sian distribution. Nonetheless, the variance of the noise bispectrum is non-zero and this
contributes to the noise for the 21 cm bispectrum signal. The outline of derivation for the
thermal noise contributing to the 21 cm bispectrum is almost similar as that for the power
spectrum. The thermal noise due to the variance of the 21 cm bispectrum contributing to
the 21 cm bispectrum signal is derived by [144] as

δBN(k,K, β) =

[
∑

θ

∑

α

(
1√
Na

√
Cov(B1B2)(k,K, θ1,α)

)−2
]−1/2

=
(2π)

5
2

√
∆θ2kK3/2ϵ

(
x2yλ2

Ae

)(
T 2
sysλ

2

AeBt0

) 3
2

×
[∫

dθ1

∫
dα sin θ1 sin θ2 sin γ(θ1,α) n(k1)n(k2)n(k3)

]− 1
2

. (7.9)

For equilateral type of bispectrum, we set K = k and β = 2π/3.
In Fig.7.3, we show the scale dependence of the 21 cm bispectrum with thermal noise

estimated from the variance of the noise bispectrum for various telescopes.

From Figs.7.2 and 7.3, we can see that the noise increases at smaller scales in both
bispectrum and power spectrum. This is because the number of baselines at smaller scales
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Figure 7.2: Comparison of the 21 cm power spectrum signal(dot-dashed line) with the ther-
mal noise for various telescopes at z=7(left top), 8(right top), 9(left bottom). As supposed
instruments, we choose MWA(solid line), LOFAR(long-dashed line), HERA(dotted line)
and SKA(dashed line).
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corresponding to longer baseline is deficient. On the other hand, the sensitivity at large
scales is limited by the field of view.

For both bispectrum and power spectrum noises, we cannot calculate the sensitivity at
k ! 0.03Mpc−1 for LOFAR telescope. This is because the number of antenna stations is
small in the case of LOFAR telescope. Further, we notice that we also cannot calculate
the bispectrum sensitivity at k " 0.2Mpc−1 in the case of HERA telescope. The reason
is that the number density of antennae outside core region in the case of HERA is small.
Thus, triangles to be needed in order to calculate the bispectrum cannot be chosen by
deficiency of antennae at small scales Compared the sensitivity for the power spectrum
with that for the bispectrum, the signal to noise ratio in the case of the power spectrum
is slightly larger that in the case of bispectrum. If we focus just on the sensitivity, the
21 cm power spectrum is more detectable than the bispectrum. However, estimation of
the expected error does not depend on only sensitivity but also the rate of change for the
power spectrum or bispectrum.

7.5 Result

We show the result of the Fisher analysis applying to the power spectrum and the bispec-
trum. Here, we focus on equilateral type of the bispectrum. As we referred before, we
constrain the EoR model parameters assuming ongoing telescopes, MWA and LOFAR, to
study how the bispectrum improves constraint on the EoR parameters. Note that we use
both power spectrum and bispectrum for the Fisher analysis at k=0.03 -1.0 Mpc−1 divided
into 13 bins.

First, we show constraints on the EoR model parameters obtained by both power spec-
trum and bispectrum at z=7, 8, 9 in Fig.7.4. The 1-σ contours obtained by the power
spectrum assuming both MWA and LOFAR do not exclude ζ < 0 and Tvir < 0. These neg-
ative values are physically meaningless. Hence, we put on physically meaningful boundary
condition on the parameter space and exclude negative value regions. Similarly, we put on
same boundary condition for the contour obtained by the bispectrum assuming MWA.

As one can see, the constraint assuming LOFAR is tighter than that obtained by MWA
in both power spectrum and bispectrum. This comes from that the sensitivity and reso-
lution of LOFAR are better than those of MWA. The physical meaning of inclination of
ellipse is referred as follows. If ζ becomes larger, neutral hydrogen atom is ionized more
efficiently. Similarly, decreasing Tvir also drives progress of reionization. Both increasing
ζ and decreasing Tvir play same role on reionization. Thus, these is degeneracy between
these parameters. Although the degeneracies are not broken in the case of the power spec-
trum among z =7, 8, 9, the degeneracies among redshifts are broken in the case of the
bispectrum.

Next, we compare constraint obtained by the power spectrum with that obtained by the
bispectrum. We show the contours with 1-σ error in Fig.7.5 and show the values of 1-σ error
for each telescope in Table.7.2. We also show the contours obtained by combination of the
power spectrum with the bispectrum in Fig.7.5 and the values of 1-σ error in Table.7.3. We
find that the constraints by the bispectrum are tighter than that by the power spectrum.
We also find that LOFAR telescope puts on tighter constraints than MWA. We can see that
the inclinations of contours are different between the power spectrum and the bispectrum.
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This indicates that degeneracy is broken by combination of the power spectrum with the
bispectrum.

z 7 8 9
σζ,PS(MWA) 813 142 494
σζ,PS(LOFAR) 171 20.2 65.0
σTvir,PS(MWA) 1.61× 106 2.70×104 1.00 ×105

σTvir,PS(LOFAR) 3.39 ×105 3.91 ×104 1.31×105

σζ,BS(MWA) 6.63 1.28 5.81
σζ,BS(LOFAR) 0.819 0.0574 0.128
σTvir,BS(MWA) 8.22 ×103 2.37 ×103 8.22 ×103

σTvir,BS(LOFAR) 1.17 ×103 70.9 246

Table 7.2: 1-σ errors for ζ and Tvir estimated by the Fisher forecast applying to the power
spectrum and the bispectrum.

z 7 8 9
σζ,combine(MWA) 3.71 1.28 3.29
σTvir,combine(MWA) 6.17× 103 2.37×103 7.95 ×103

σζ,combine(LOFAR) 0.605 0.0574 0.128
σTvir,combine(LOFAR) 869 70.9 245

Table 7.3: Similar to Table.7.2, but these 1-σ errors are estimated by combination of the
power spectrum with the bispectrum.

7.6 Discussion

In order to explore the EoR parameter region with MWA and LOFAR observations, we
estimate expected 1-σ errors and constrain parameter region by the Fisher analysis with
the 21 cm power spectrum and the bispectrum. First, we find that we can put tighter
constraint on the EoR parameters with LOFAR than with MWA. This comes from that
the thermal noise for LOFAR is lower than that for MWA and resolution of LOFAR is
better than MWA. This means that the sensitivity of LOFAR is better than that of MWA.
The difference of specification between MWA and LOFAR comes from effective area and
maximum baseline length. Although the number density of antennae in core region for
MWA is larger, larger effective area of LOFAR compensates deficiency of the less number
density of antennae( eqs.(7.8) and (7.9) show how the thermal noise depends on effective
area and on the number density of antennae).

Next, we find that the bispectrum can constrain the EoR parameters tighter than the
power spectrum although signal to noise ratio of the power spectrum is better than that of
the bispectrum. The reason why the bispectrum can give tight constraint is that derivative
of the bispectrum with respect to the EoR parameters is much larger than that in the
power spectrum. However, we know that the Fisher matrix can be determined by not only
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Figure 7.4: (Top) The 1-σ contours of the EoR model parameters obtained by the power
spectrum assuming MWA(left) and LOFAR(right). (Bottom) Same one obtained by the
bispectrum assuming MWA(left) and LOFAR(right). For both power spectrum and bispec-
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derivative of signal but also by the thermal noise. In order to study the balance between
the derivative of the signal and the thermal noise, we show a ratio of square of derivative
with respect to virial temperature and ionizing efficiency for the bispectrum and the power

spectrum, r =
(

∂B
∂pi

/ ∂P
∂pi

)2

, and a ratio of square of the thermal noise error for MWA and

LOFAR, (ϵP/ϵB)2, in Fig.7.6. Both of them are function of wave number. Top of this
figure implies that the derivative of the bispectrum with respect to both parameters is
larger than that of the power spectrum (r > 1) except for the derivative with respect to
virial temperature at z=7. Consequently, the derivative of the bispectrum contributes to
the Fisher matrix more than that of the power spectrum (large Fisher matrix can put on
tighter constraint). On the other hand, we can see how much the thermal error contributes
to the Fisher matrix in the bottom of Fig.7.6. Although the signal of the bispectrum is
larger than that of the power spectrum, the thermal noise of the bispectrum is also larger
than that of the power spectrum. Therefore, an advantage of the large value of derivative
of the bispectrum is offset by the thermal noise.

The difference among redshifts is remarkable for a ratio of the derivative. In particular,
a ratio of the derivative is large at z=8,9 although there are slight differences for a ratio
of the thermal noise among redshifts. From top and bottom of Fig.7.6, we notice that the
dominant contribution to the Fisher matrix comes from larger scales (k ! 0.1Mpc−1) since
the thermal noise becomes smaller at larger scales. We also find that the Fisher matrix for
the bispectrum becomes larger than that for the power spectrum by taking both derivative
and thermal noise into account.

Finally, we find that the combination of the power spectrum with the bispectrum breaks
degeneracy between Tvir and ζ in the case of MWA. While the constraint by combination
of the bispectrum with the power spectrum with LOFAR is slightly improved than that
obtained by the bispectrum only, the combination of the power spectrum with bispectrum
with MWA gives tighter constraint more than that obtained by the bispectrum only. This
can give tighter upper limit of ζ and Tvir than we perform the Fisher forecast by using the
bispectrum or the power spectrum independently.

It should be emphasized that we ignore the sample variance and effect of foreground
removal in our analysis for simplicity. In both case of the bispectrum and the power
spectrum, the sample variance is thought to be effective at larger scales and foreground
also affects larger scales[102]. Hence, we need to estimate these effects adequately to obtain
more realistic results. This is our future work.

Some recent works forecast not only expected error on the EoR model parameters but
also the parameters at the epoch of the X-ray heating[102, 52, 76, 92, 56, 33] based on
the Fisher analysis or the Markov Chain Monte Carlo (MCMC) method for the power
spectrum assuming PAPER. At SKA era, the constraint on the EoR model parameters will
be improved compared with that at present. Therefore, we need to investigate whether
the EoR model itself is valid as further step. The EoR model used in semi-numerical
method is simple as introduced in sec 3.3. Hence, we actually need to include radiative
feedback, recombination adequately in the EoR model. In order to do so, we have to
perform numerical simulations for the process of reionization and should compare those
results with observational data to get feedback from observations. We expect that semi-
numerical approach such as 21cmFAST connects simulation results to observational data
and that the parameter estimation also helps sophistication of the EoR model.
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Chapter 8

Conclusion

It has been expected that ongoing and upcoming radio interferometers would provide us
with history of the Universe through the Dark Ages to the EoR via the 21 cm line signal
from the IGM. For the coming eras in which we can observe the 21 cm line signal, we need
to develop a method to extract information on the EoR and to understand physics around
the EoR. Further, we have to investigate the detectability of the signal and estimate an
expected error for the EoR model parameters to determine the EoR model accurately.

Considering the requirement above, we first studied the statistical properties of the
cosmic 21 cm signal. In particular, we focused on the variance and skewness of the spin
temperature as an indicator of the evolution of the thermal history. This is because var-
ious astrophysical processes such as the WF effect and the X-ray heating affect the spin
temperature. In order to confirm that the spin temperature reflects effect of astrophysical
processes, we studied the probability distribution function (PDF) of the spin temperature.
We found that the skewness changes its sign when the X-ray heating becomes effective.
This can be understood as follows: The spin temperature in neighborhood of the X-ray
emitting sources approaches the kinetic temperature due to the WF effect. Hence, the PDF
of the spin temperature has lower tails which correspond to the sources. And then, as the
X-ray heating becomes effective, the spin temperature in neighborhood of sources starts
to increase and tail shifts to higher value side. At the transition epoch where the X-ray
heating becomes effective, the sign of the skewness changes from negative to positive. We
also showed that the skewness at z ∼ 20 would be detectable by next generation instrument
such as SKA. Thus, we expect that skewness is a good indicator to investigate the epoch
where the X-ray heating plays an important role.

Second, we investigated the 21 cm bispectrum, which is a higher order statistics to
examine the non-gaussianity in the brightness temperature field due to various astrophys-
ical processes. We actually calculated the scale and redshift dependence of the 21 cm
bispectrum. We also calculated the components which consist of the 21 cm bispectrum
(matter, the spin temperature and the neutral hydrogen fraction) and investigated the de-
pendence of configuration of the 21 cm bispectrum. We found that the 21 cm bispectrum
as function of redshift has a correlation between large and small modes in the squeezed-
type while the equilateral and folded types of configuration basically trace the evolution
of the 21 cm power spectrum. Further, we can know what component constituting of the
21cm bispectrum and configuration of the 21 cm bispectrum are remarkable at redshift we
are interested in. We found following conclusions: At the EoR, the dominant component
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and configuration of the 21 cm bispectrum come from the neutral hydrogen fraction with
squeezed and folded type configurations. In particular, the effect of neutral hydrogen at
large scales is prominent compared with that at small scales. From the Dark Ages to the
pre-EoR, the dominant contribution comes from the spin temperature and matter compo-
nents. At z ∼ 20 where the X-ray heating begins, contributions from matter and the spin
temperature are comparable.

Finally, we performed the Fisher analysis for the EoR model parameters, i.e, the virial
temperature and ionizing efficiency, with the 21 cm bispectrum and the power spectrum.
In this Thesis, we estimated expected the 1-σ error obtained by ongoing telescopes such as
MWA and LOFAR. We found that the bispectrum can constrain the EoR model parameters
more tightly than the power spectrum. In particular, this is remarkable in the case of
assuming LOFAR telescope compared with MWA. In LOFAR telescope, the expected error
is mainly determined by the bispectrum and the contribution from the power spectrum
is quite small. In contrast, we found that combination of the power spectrum with the
bispectrum assuming MWA telescope breaks degeneracy and puts on upper limit for both
parameters although constraints are looser than that obtained by LOFAR. Consequently,
we suggest that the 21 cm bispectrum is useful to constrain on the EoR model parameters
and this helps to determine the model of the EoR and to understand physics of the EoR.

Our results are based on semi-numerical approach by using 21cmFAST for the cal-
culation of the brightness temperature. Here, we briefly summarize the features of the
21cmFAST and discuss universality of what we found independent on the 21cmFAST. In
the 21cmFAST, the evolution of matter fluctuations is calculated by the Zel’dovich approx-
imation instead of performing a N-body simulation and identifying the spacial distribution
of halos. However, we check that the matter fluctuations at scales less than k ∼ 5Mpc−1

coincide with those obtained by N-body simulations. In our results, we focus on the scales
less than k = 1Mpc−1. Thus, the Zel’dovich approximation is expected to be valid in our
calculations. In order to judge whether a region is ionized or not, the 21cmFAST adopts
an analytic method based on the excursion set formalism. For the ionization condition,
this approach requires that the number of ionizing photons inside a region is larger than
that of hydrogen atoms. The ionized bubble size distribution and the power spectrum pro-
duced by the 21cmFAST are in good agreement with those produced by radiative transfer
simulations[88, 145]. Ionized bubbles are expected to be produced at overdense regions.
The analytic model for the ionization field is based on biased matter fluctuations, which are
calculated by the Zel’dovich approximation in our prescription. As we referred above, mat-
ter fluctuations calculated by the Zel’dovich approximation agree with those obtained by
N-body simulations. Therefore, our results would be reliable for the statistical properties
of ionized bubbles even if our calculation is based on semi-numerical approach. However,
the semi-numerical method does not include the physics exactly needed to identify posi-
tions and the structure of the ionizing fronts. Thus, our results cannot refer to detailed
physics of the EoR. Heating rate and Lyα background as well as ionization field also use an
analytic model for calculation. In this analytic model, both the heating rate and the emis-
sivity of Lyα photons are assumed to be proportional to the star formation rate density.
This treatment may not be strictly precise and there are uncertainties(e.g. the properties
of X-ray sources, distribution of heating sources, the epoch when heating of IGM occurs,
initial mass function of first stars etc). However, we have a consensus on a scenario of the
IGM thermal history as follows. After first stars form, WF effect becomes effective by Lyα
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photons emitted by first stars and then the IGM is heated by X-ray photons. We found
that skewness of the spin temperature changed its sign at the epoch when X-ray heating
becomes effective independent on properties of heating sources. If the IGM thermal history
is based on the scenario above, our discovery would be reliable because we confirm that
our interpretation is reasonable by checking variance of the spin temperature, cross corre-
lation between matter fluctuations and the spin temperature fluctuations, and probability
distribution function of the spin temperature. All of them indicate that the epochs when
heating becomes effective, obtained by them, are consistent with that obtained by skew-
ness. Thus, our physical interpretation of skewness is thought to be reasonable although
we have uncertainties of the epoch when WF effect and X-ray heating become effective
attributed from uncertainties of the properties of heating sources. In addition to skewness,
our interpretations related with the 21 cm bispectrum (such as redshift and configuration
dependences of the 21cm bispectrum) would be reliable if we consider the standard ther-
mal history scenario, although there are uncertainties of epochs when X-ray heating and
reionization become effective.

We hope that the study in the Thesis can push forward the analysis of 21 cm signal
brought by ongoing and upcoming observations and advance the understanding of physics
at the EoR and the Dark Ages.





Appendix A

Relation between skewness and
bispectrum

In this Appendix, we derive the relation between bispectrum and skewness. When we define
the fluctuation of the brightness temperature δTb as δ = (δTb − δTb)/δTb, the skewness of
the brightness temperature is defined by

γ =
1

N

N∑

i=1

(δTb,i − δTb) (A.1)

=
(δTb)3

N

∑
δ3

= (δTb)
3⟨δ3⟩.

Here N is the number of pixels. The definition of three-point correlation function for the
brightness temperature ξ is expressed by ξ(r1, r2) = ⟨δ(x)δ(x+r1)δ(x+r2)⟩. We can connect
this three-point correlation function with ensemble average of δ3 such as ⟨δ3⟩ = ξ(0, 0) .
We know the relation between correlation function and bispectrum fromWiener-Khintchine
relation described by

ξ(r1, r2) =

∫
d3k1
(2π)3

∫
d3k2
(2π)3

ei(k1·r1+k2·r2)B(k1,k2,−k1 − k2). (A.2)

Therefore, ξ(0, 0) can be expressed with bispectrum by

ξ(0, 0) =

∫
d3k1
(2π)3

∫
d3k2
(2π)3

B(k1,k2,−k1 − k2). (A.3)

By using equation(A.2) and (A.3), we can obtain following one;

γ = (δTb)
3

∫
d3k1
(2π)3

∫
d3k2
(2π)3

B(k1,k2,−k1 − k2), (A.4)

This is the relation that connects skewness with bispectrum.
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