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Abstract

Zeros of the Riemann zeta function and its derivatives have been studied by
many mathematicians. Among, zero-free regions, the number of zeros, and the
distribution of the real part of non-real zeros of the derivatives of the Riemann
zeta function have been investigated by R. Spira, B. C. Berndt, N. Levinson, H. L.
Montgomery, and H. Akatsuka. Berndt, Levinson, and Montgomery investigated
the general case, while Akatsuka gave sharper estimates for the first derivative of
the Riemann zeta function under the truth of the Riemann hypothesis. Analo-
gous results were also obtained by C. Y. Yildirim for other Dirichlet L-functions
associated with primitive Dirichlet characters. Yildirim studied zero-free regions
and the number of zeros of the derivatives of Dirichlet L-functions associated with
primitive Dirichlet characters of modulo ¢ > 1. In this dissertation, we briefly in-
troduce these results and present the author’s results on the zeros of higher order
derivatives of the Riemann zeta function and of the first derivative of the Dirichlet
L-functions associated with primitive Dirichlet characters.

We also present the author’s collaborative result on an ergodic value distribu-
tion of a large class of zeta functions and L-functions. The value distributions of
the Riemann zeta function, Dirichlet L-functions, and Hurwitz zeta functions were
studied by M. Lifshitz, M. Weber, and T. Srichan by using the Cauchy random
walk. Their results showed that the values of these functions are small on average,
especially on the critical line. J. Steuding investigated an ergodic value distribution
of the Riemann zeta function on vertical lines under the Boolean transformation.
We are interested in extending this result of Steuding to a larger class of functions
under more general transformations.
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Preface

This thesis is about the distribution of zeros of Dirichlet L-functions and their
derivatives associated with primitive Dirichlet characters.

Dirichlet L-functions are L-functions which are generalizations of the Riemann
zeta function defined by B. Riemann as a complex meromorphic function. The
Riemann zeta function ((s) was first known through Basel’s problem solved by L.
Euler in 1735. It is a function of s defined by the series

1 1 1 1 1
25 3% 45 5 6%

which converges when s > 1. Only the values of ((s) at positive integer points had
been considered until Riemann [Rie59] defined it for complex variable s satisfying
Re(s) > 1in 1859. Riemann used analytic methods to continue this function to the
whole complex plane C except for a simple pole at s = 1. Riemann noticed that
the distribution of some zeros of ((s) is closely related to the distribution of prime
numbers and he proposed that all of these related zeros must lie on a straight line.
This conjecture is well-known as the Riemann hypothesis (see Chapter 2 Section
2.2).

Dirichlet L-functions L(s, x) are generalization of ((s) by using Dirichlet char-
acters x for some modulo ¢q. They were first introduced by P. G. L. Dirichlet
[Dir37] in 1837 for positive integer s in order to prove the infinitude of primes on
arithmetic progressions which is later known as Dirichlet’s theorem on primes in
arithmetic progressions. For each character x, L(s, x) is analytically continued to
C in a similar manner as ((s), except that it becomes an entire function on C when
X is non-principal (see Chapter 1 Section 1.3).

As in the case of ((s), for primitive characters x, the distribution of some zeros
of L(s,x) is shown to be closely related to the distribution of prime numbers in
arithmetic progressions. We note that there exists only one Dirichlet L-function
modulo 1, the Riemann zeta function ((s). The Riemann hypothesis is expected
to also hold for these L-functions, the conjecture, combined with the Riemann hy-
pothesis itself, is commonly called the generalized Riemann hypothesis (see Chap-
ter 2 Section 2.3).

It is known that the distribution of zeros of Dirichlet L-functions is related to
the distribution of zeros of their derivatives. A. Speiser [Spe35] in 1935 showed
that the Riemann hypothesis is equivalent to the assertion that the first deriva-
tive of ((s) has no non-real zeros in Re(s) < 1/2, a striking result that invited
analytic number theorists’ attention to the study of the distribution of zeros of
the derivatives of ((s). A stronger result was obtained by N. Levinson and H. L.



Montgomery in [LM74, Theorem 1]. The author and her collaborator H. Akat-
suka [AS-p] showed this type of equivalence for L(s, x) associated with primitive
characters x modulo ¢ > 1 (Chapter 4 Section 4.2).

Zero-free regions of (*)(s), the k-th derivative of ((s) for any positive integer k,
were first studied by R. Spira [Spi65, Spi70, Spi73]. B. C. Berndt [Ber70] in 1970
investigated the number of zeros, and in 1974, Levinson and Montgomery [L.M74]
studied the real part distribution of zeros of (*)(s). In 1996, C. Y. Yildirim
investigated the zeros of L(k)(s, X) associated with primitive characters y modulo
g > 11in [Y1196b] and the zeros of the ("(s) and ¢"(s) in [Y1196a, Y1100].

In 2012, Akatsuka [Akal2], assuming the Riemann hypothesis, improved some
of the above mentioned results for ('(s). The author showed that analogous results
hold for any ¢¥)(s) in [Surl5] (Chapter 3 Section 3.2) and for L'(s, x) associated
with primitive characters y modulo ¢ > 1 in [Sur-p2] (Chapter 4 Section 4.3). The
author and Akatsuka [AS-p| improved the zero-free region obtained by Yildirim
[Y1196b, Theorem 3] and showed unconditional results for the number of zeros and
the distribution of the real part of zeros of L'(s, x) (Chapter 4 Section 4.2).

The study of zeros of zeta functions and L-functions is not limited to the
zeros themselves. It is also important to consider the value distribution of these
functions, especially near the regions which are expected to have lots of zeros. The
author is interested in studying the value distribution of zeta functions and L-
functions along with their derivatives under some specific ergodic transformations.
In 2009, M. Lifshitz and M. Weber [LW09] investigated the value distribution of
¢(s) by using the Cauchy random walk. Recently, T. Srichan [Sril5] investigated
analogous results for L(s, x) and Hurwitz zeta functions. They showed that these
functions have small value in average on the critical line Re(s) = 1/2.

J. Steuding [Stel2] in 2012 studied the ergodic value distribution of ((s) on
vertical lines under the Boolean transformation. The author and her collaborator
J. Lee in [LS-p] considered the value distribution of a larger class of meromorphic
functions which includes but is not limited to the Selberg class (of zeta functions
and L-functions) and their derivatives, on vertical lines under more general Boolean
transformations (Chapter 5).

In Chapter 1 we first introduce some preliminary concepts on the study of zeta
functions and L-functions, especially Dirichlet L-functions. We will mainly focus
on their analytic properties. In Chapter 2 we introduce some results on their zeros.
In Chapters 3 and 4, we introduce some results on the zeros of their derivatives,
including the author’s results, as mentioned in previous paragraphs. Finally in
Chapter 5, we introduce the author’s further research topic on an ergodic value
distribution of zeta functions and L-functions.



Chapter 1

Preliminaries

In this chapter, we introduce some basic notions in the study of zeta functions
and L-functions. Zeta functions and L-functions are often considered as complex
meromorphic functions defined by some specific convergent series on some half-
plane. These convergent series are called Dirichlet series. We first define and
introduce a few basic properties of Dirichlet series. The rest of the chapter will
be dedicated to introduce the two most basic functions defined by using Dirichlet
series, the Riemann zeta function and Dirichlet L-functions.

1.1 Dirichlet series

In this dissertation, we define a Dirichlet series as a series of the form
— (1.1)

where the coefficients a,, are any given numbers and s is a complex variable. We
usually consider a Dirichlet series as a function of s in the region where the series
is convergent. In other words, suppose that the series (1.1) converges (but not
necessarily absolutely) for s satisfying Re(s) > o, and diverges if Re(s) < o, for
some 0. € R, then we consider (1.1) as a function of s in {s € C | Re(s) > o.}.
Referring to [Tit39, Sections 9.11 and 9.12], the series (1.1) is an analytic function
of s when Re(s) > o.. The line {s € C | Re(s) = 0.} is called the abscissa of
convergence, and the half-plane {s € C | Re(s) > o.} called the half-plane of
convergence of the Dirichlet series (1.1). In the rest of this thesis, we often use the
notation for a line and a half-plane as Re(s) = ¢ and Re(s) > ¢ respectively, for
some ¢ € R.

Suppose that there exists a real number o, € R such that the Dirichlet series
(1.1) is absolutely convergent in the half-plane Re(s) > o,. Then the function



(1.1) is bounded in that half-plane of absolute convergence {s € C | Re(s) > o,}
(cf. [Tit39, Section 9.3]). That is to say that we can find an absolute constant
M > 0 such that, for any o/, > o,,

holds for all s satisfying Re(s) > o7,.

Since a Dirichlet series can be regarded as an analytic function of some complex
variable s, we are interested in analytically continuing it to a larger plane, such as
the complex plane C. On the line Re(s) = o, the series may not be convergent and
thus may have singularities there. Therefore in most cases, we analytically continue
a Dirichlet series into a meromorphic function on C. We shall see concrete examples
of these functions in later chapters, the Riemann zeta function and Dirichlet L-
functions. We note that in Chapter 5, we may encounter more functions of this
kind, namely zeta functions and L-functions, but we omit their details in this
thesis.

It is interesting in the study of Dirichlet series, to see that many meromorphic
functions f(s) defined by some certain Dirichlet series in some half-plane ¢ > o,
satisfy the inequality of the form

flo+it) < [t|"”)

for some function v(o) in another half-plane ¢ > ¢ which may be outside of the
half-plane of convergence of the defining Dirichlet series. Here the sign < is a
symbol equivalent to the Landau O-symbol, that is:

flo+it) =0 (jt|).

In the rest of this thesis, we use both symbols accordingly. When studying the
function v(o), the following lemma of L. E. Phragmén and E. L. Lindel6f is useful:

Lemma 1.1 (Phragmén-Lindelof theorem; cf. [Tit39, Section 5.6]). If ¢(s) is
regular and O(e™), for every positive €, in the strip o1 < o < 09, and
¢(o1 +it) = O(|t|™),  ¢los +it) = O(Jt[*),
then
(o +it) = O(|t|")

uniformly for o1 < o < 09, k(o) being the linear function of o which takes the
values ki, ko for o = 01,09, respectively.

We end our discussion on general Dirichlet series here. In the following sections,
we introduce the Riemann zeta function and Dirichlet L-functions.



1.2 The Riemann zeta function

Definition 1 (Riemann zeta function). The Riemann zeta function ((s) is a mero-
morphic function of s defined by the Dirichlet series

— (1.2)

for any s € C satisfying Re(s) > 1.

We can easily check that the series (1.2) defining ((s) is absolutely and com-
pactly uniformly convergent in that region and thus defines an analytic function
in Re(s) > 1.

Lemma 1.2 (Euler product; cf. [Tit86, Equation (1.1.2)]). For s € C satisfying
Re(s) > 1, we have
1
pS

p:primes

Proof of Lemma 1.2. This Euler product expansion of ((s) is easily shown by using
the uniqueness of prime factorization of natural numbers. n

Applying Lemma 1.2 we easily obtain:
Corollary 1.3. ((s) has no zeros in {s € C | Re(s) > 1}.

We first show that ((s) can be analytically continued to a larger half-plane by
using the following expression:

Lemma 1.4. For Re(s) > 1,

((s) = ! —I—1+s/loowda:. (1.3)

s—1 2 st
Here [z] denotes the greatest integer t satisfying t < x.
For this purpose we invoke the following lemma:

Lemma 1.5 (Euler’s summation formula; cf. [BD04, Lemma 3.12]). Let f(z) be
a continuous function on |a,b] with a piecewise continuous derivative and let ¢ be
a constant. Then

> o= [ et~ 10 - 910

a<n<b

+/@—m—@f@@

Proof of Lemma 1.5. See [BD04, Proof of Lemma 3.12 (p. 48)]. O



Proof of Lemma 1.4. We first recall the Dirichlet series expression (1.2) of ((s).
We apply Lemma 1.5 with a = limy ¢, any b > 1, and ¢ = 1/2. Letting b — oo,
we immediately obtain (1.3). O

We can check that the integral in (1.3) defines an analytic function on Re(s) >
0. We note that the right hand side of (1.3) is analytic for Re(s) > 0 except for
one simple pole at s = 1. Hence Lemma 1.4 gives an analytic continuation of {(s)
to {s € C\{1} | Re(s) > 0}.

Now since ((s) is analytic on {s € C\{1} | Re(s) > 0}, we can analytically
continue ((s) to C\{1} by using the following lemma:

Lemma 1.6 (Asymmetric functional equation; cf. [BD04, Theorem 8.1]). ((s) is
an analytic function on C\{1} and it satisfies there the functional equation

C(s) = 27T sin (%S)M — §)C(1—s). (1.4)
Here I'(s) is the Euler gamma function (cf. [Dav00, Chapter 10]).
Proof of Lemma 1.6. See [BD04, Proof of Theorem 8.1 (pp. 183-185)]. O

From the asymmetric functional equation for ((s), we can easily deduce the
symmetric form of the functional equation for ((s):

Corollary 1.7 (Symmetric functional equation; cf. [BD04, Theorem 8.2)).

7f<1-8>/2r(1 S 3)4(1 —5) = W_5/2F<§)C(s) (1.5)

for any s € C.

Remarks. If we define the function £(s) on C as

€(5) 1= (s — 0 (5) (o),

then £(s) is an entire function and satisfies the functional equation £(s) = £(1—s).
Furthermore, £(s) is real valued on the real axis and on the line Re(s) = 1/2.

The function &(s) is often called the completed Riemann zeta function. We
also note that non-real zeros of £(s) are completely determined by non-real zeros
of ((s). In other words, when Im(s) # 0 the following relation holds:

Es)=0 = ((s)=0.

Now we have obtained an analytic continuation of ((s) to C\{1} and we have
also seen that the simple pole s = 1 is the only singularity of {(s). Thus from now
on we speak of the Riemann zeta function ((s) as a meromorphic function on C
with a simple pole at s = 1 and no other singularities, defined by the Dirichlet
series (1.2) on Re(s) > 1.



1.3 Dirichlet L-functions

Dirichlet L-functions are a family of functions defined in a manner similar to
the Riemann zeta function by using Dirichlet characters. In this section, we briefly
introduce some properties of Dirichlet L-functions as introduced in the previous
section for the Riemann zeta function.

Before we define Dirichlet L-functions, we first define Dirichlet characters.

Definition 2 (Dirichlet character). Let ¢ be a positive integer. A Dirichlet char-
acter y modulo ¢ is a complex valued function defined on the set of all rational
integers 7Z satisfying:

1. x(mn) = x(m)x(n) for all m,n € Z,

2. x(n+q) = x(n) for all n € Z,

3. x(n) =0 for any n € Z satistying (n,q) > 1,
4. x(ng) # 0 for some positive integer ng.

Here (n, q) denotes the greatest common divisor of n and ¢. A character y is said
to be non-principal if there exists a positive integer ny s.t. x(ni) # 1, otherwise
we say that it is principal.

We can now define Dirichlet L-functions.

Definition 3 (Dirichlet L-functions). The Dirichlet L-function L(s, x) associated
with a Dirichlet character x is a meromorphic function of s defined by the Dirichlet

series -
x(n) (1.6)
n=1 n
for any s € C satisfying Re(s) > 1. If x is non-principal, then the defining series
(1.6) converges in Re(s) > 0.

Remarks. There exists only one Dirichlet character modulo 1 and the associated
Dirichlet L-function is the Riemann zeta function. Thus we can say that Dirichlet
L-functions are a family of functions generalized from the Riemann zeta function
by using Dirichlet characters. Note that the Riemann zeta function is a principal
Dirichlet L-function.

We can easily check that the series (1.6) defining L(s,x) is absolutely and
compactly uniformly convergent in Re(s) > 1 and thus defines an analytic function
there. If x is non-principal, the series (1.6) defining L(s,x) is not absolutely
convergent in Re(s) > 0, but is compactly uniformly convergent there, and thus
defines an analytic function there.

Dirichlet L-functions also have Euler product expansions.



Lemma 1.8 (Cf. [MV06, Equation (4.21)]). For s € C satisfying Re(s) > 1, we

have ]
L(57X) = H 1 x(@)

p:primes ps
From Lemma 1.8 we easily obtain:
Corollary 1.9. L(s, x) has no zeros in {s € C | Re(s) > 1}.

We remark that all Dirichlet L-functions defined in Definition 3 can be analyt-
ically continued to C, except possibly for a simple pole at s = 1. From now on,
we speak of Dirichlet L-functions L(s,x) as these meromorphic functions on C.
When Y is principal, L(s, x) is a meromorphic function on C with a simple pole at
s = 1 as its only singularity. When y is non-principal, L(s, x) is an entire function
on C.

Besides the Riemann zeta function (Dirichlet L-function of modulo 1), we are
especially interested in Dirichlet L-functions associated with primitive Dirichlet
characters. The reason can be seen from Lemma 1.11 below.

Definition 4 (primitive Dirichlet character). A non-principal Dirichlet character
x modulo ¢ is said to be primitive if for any proper divisor d of ¢ (that is, d is a
positive integer satisfying d|q and d < ¢), there exists some integer n =1 mod d
such that (n,q) =1 and x(n) # 1.

Each Dirichlet character which is not primitive can be expressed by a unique
primitive character:

Lemma 1.10 (Cf. [MV06, Equation (9.1) and Theorem 9.2]). Let x be a Dirichlet
character modulo q. Then there exists a unique primitive Dirichlet character x*
modulo d for some d|q such that

y(n) = {X*(n) if (n,q) =1,

0 otherwise.

Consequently, every Dirichlet L-function associated with an imprimitive Dirich-
let character x can be expressed by a unique Dirichlet L-function associated with
a primitive character as in the following lemma.

Lemma 1.11 (Cf. [MV06, Equation (10.20)]). Let x be a Dirichlet character
modulo q. Then there exists a primitive Dirichlet character x* modulo d for some

d|q such that
s =16sx) I (1-2)

ps
lg,

p:primes



This lemma implies that it is sufficient for us to study Dirichlet L-functions
associated with primitive characters.

As in Lemma 1.6, Dirichlet L-functions associated with primitive Dirichlet
characters can also be analytically continued to C by using functional equations:

Lemma 1.12 (Cf. [MVO06, Corollary 10.8]). Let x be a primitive Dirichlet charac-
ter. L(s,x) is an entire function on C and it satisfies there the functional equation

(s + k)

L(s, x) = e(x)2°7"'¢"/* " sin ( 5

Jra-sra-sn. 00
where €(x) is a factor that depends only on x, satisfying |e(x)| =1,

0  when x(—1) = 1;
1 when x(—1) = —1,
and I'(s) is the Euler gamma function as in Lemma 1.6.
As in the case of ((s), we can define the function £(s, x) on C as

&(s,x) = (Z) R F(S _g K) L(s, x)-

q

By using Lemma 1.12, we can easily show that £(s, x) is an entire function satis-
fying the functional equation £(s, x) = €(x)&(1 — s,%). This gives the symmetric
form of the functional equation for L(s, x) associated with a primitive Dirichlet
character y.

Remark. In our definition of primitive characters (Definition 4), a primitive char-
acter is always non-principal. However, some texts treat the Dirichlet character
modulo 1 as a primitive character. In later chapters, to avoid confusion, we mention
“primitive Dirichlet character modulo ¢ > 1”7 instead of only “primitive Dirichlet
character”.

10



Chapter 2

Zeros of the Riemann zeta
function and Dirichlet L-functions

In this chapter we introduce some results on the distribution of zeros of the
Riemann zeta function and Dirichlet L-functions. We will see in later chapters that
many analogous results are obtained for their derivatives. Before we begin with
the discussion on zeros, we introduce some useful tools in studying the distribution
of zeros.

2.1 Some tools

In this section we introduce some tools we use for counting the number of zeros
of meromorphic functions with proofs omitted.

The first lemma is due to J. Jensen. We state here the lemma in the form
convenient for our purpose.

Lemma 2.1 (Jensen’s theorem; cf. [Tit39, Section 3.61)). Let f(z) be analytic for
|z| < R and suppose that f(0) # 0. Let n(x) denote the number of zeros of f(z)
in the disc |z| < z, then if r < R,

U N 0|49
/0 dx—27r/0 log | f(re®)|df — log | f(0)].

T

It is frequently convenient to count the number of zeros in a rectangle. The
following lemma is due to J. E. Littlewood.

Lemma 2.2 (Littlewood’s lemma; cf. [Tit39, Section 3.8]). Let C' denote the
rectangle bounded by the lines © = x1, x = x5, Yy = Y1, and y = Yo, where x1 < To,
y1 < yo. Let f(z) be analytic and not zero on C, and meromorphic inside it. We
define the logarithm log f(z) by continuous variation along the line y = yo from

11



log f(z2 +iyo) for y1 < yo < ya, provided that [x + iy, 2 + iyo] does not contain
any zero or pole of f(z). Otherwise, we put log f(z) = log f(z — i0).

Let v(z') denote the number of zeros of f(z) subtracted from the number of
poles in the part of the rectangle with x > x’ (counted with multiplicity). Then

T2
/ log f(z)dz = —27Ti/ v(z)de = —2mi Z (B — 1),
¢ . B+iv,
F(B+iv)=0,
1 <f<z2, Y1 <Y<Y2

where the sum is counted with multiplicity.

2.2 Zeros of the Riemann zeta function and the
Riemann hypothesis

From Lemma 1.6, we find that ((s) = 0 for any negative even integer s
(s = —2,—4,—6,---) and we call these zeros the trivial zeros of ((s). Recall
that Corollary 1.3 states that ((s) # 0 when Re(s) > 1. In view of the functional
equation (1.4) (or (1.5)) for {(s), we find that {(s) is also nonzero when Re(s) < 0
and Im(s) # 0. Furthermore, referring to [BD04, Theorem 7.6], ((s) # 0 when
Re(s) = 1 (note that s = 1 is a pole). Thus, again by the functional equation
(1.4) (or (1.5)) for ((s), ¢(s) # 0 for Re(s) = 0. Therefore all other zeros, if
exist (in fact, they exist (cf. [Hav03, Section 16.6])), they must all lie in the strip
0 < Re(s) < 1. It is further shown that

Theorem 2.3 (Cf. [BD04, Theorem 8.5]). ((s) has infinitely many zeros in the
strip 0 < Re(s) < 1.

We call this strip the critical strip and we call the zeros in this strip the non-
trivial zeros of ((s). We also note that all nontrivial zeros of ((s) are non-real,
while all trivial zeros of ((s) are real as stated earlier. That is to say that “non-
trivial zeros of ((s)” and “non-real zeros of ((s)” are equivalent terms. However,
the exact location of these zeros remains an unsolved problem.

It is conjectured that all nontrivial zeros of ((s) lie on the line Re(s) = 1/2,
called the critical line. This conjecture was proposed by B. Riemann in 1859 and
is known as the Riemann hypothesis (cf. [BD04, p. 191], [Dav00, p. 60|, or [MV06,
p. 328]). This conjecture still remains unsolved and has been one of the strongest
motivations in the study of the Riemann zeta function, especially for its close
relation with the distribution of prime numbers. We shall not discuss this further,
but we remark that the Riemann hypothesis gives the best possible estimate for
the number of primes as shown by N. F. H. von Koch in 1901, more precisely:

12



Theorem 2.4 (Cf. [Koc01, pp. 181-182] or [MV06, Theorem 13.1 and the first
line in Section 13.3]). Let w(x) denote the number of prime numbers at most x,

and let
Todt

Li = —
i() 5 logt
Assume that the Riemann hypothesis is true. Then for x > 2,
m(z) = Li(z) + O (z'/*log ).

It is known that the best possible error term in the above equation can be
formulated as:

9] (1’1/2_6)

for any € > 0 (cf. [MV06, Theorem 15.2 and Corollary 15.4]). Therefore, the above
theorem also implies that the Riemann hypothesis gives the best possible version
of the prime number theorem.

As we have seen earlier, {s € C | Re(s) < 0,s # —2,—4,—6,-8,---} U {s €
C | Re(s) > 1} is a trivial zero-free region for ((s). Below we introduce a more
precise zero-free region for ((s).

Theorem 2.5 (Cf. [BD04, Theorem 8.8], [Dav00, Chapter 13], or [MV06, Theorem
6.6]). There ezists a constant K > 0 such that ((s) # 0 in the region

{ +iteClo>1 K }
S=0 ] o —_— = -
log (|t| + 2)

We are interested in studying the distribution of the real part and the number
of non-real zeros of the derivatives of the Riemann zeta function. Here we briefly
introduce the corresponding results on the Riemann zeta function itself.

It is not difficult to see from the symmetric functional equation (1.5) that
nontrivial zeros of ((s) are symmetric with respect to the critical line Re(s) = 1/2.
We also remark that they are symmetric with respect to the real line Im(s) = 0,
thus, recalling that they are non-real, we find that it is sufficient to study the
nontrivial zeros of ((s) in the upper half-plane Im(s) > 0. Since they all lie in the
critical strip 0 < Re(s) < 1, we immediately obtain:

Theorem 2.6. For T’ > 0, we have

1
> (#-3)=0
p=B+i,

¢(p)=0,0<7<T

where the sum is counted with multiplicity.

13



We shall see in the next chapter that non-real zeros of the derivatives of ((s)
are not so beautifully distributed as in Theorem 2.6 around the critical line.

Finally, we close this section by introducing two known results on the number of
zeros of ((s). We let N(T') denote the number of zeros of ((s) with 0 < Im(s) < T,
counted with multiplicity. The first result is due to H. C. F. von Mangoldt, proven
in 1905.

Theorem 2.7 (Cf. [Dav00, pp. 59-60 and Chapter 15] or [MV06, Corollary 14.3]).
For'T' > 2, we have
T T

T
= —log — — — log T').
27 Og27r 27T—|—O(og )

N(T)

Assuming the truth of the Riemann hypothesis, we have a better estimate as
shown by Littlewood in 1924:

Theorem 2.8 (Cf. [Lit24, Theorem 11} or [MV06, Corollary 14.4]). Assume that
the Riemann hypothesis is true. Then for T > 2,

T T T logT
N(T) = —log — — — — .
(T) or % 2n 27r+0<1oglogT)

2.3 Zeros of Dirichlet L-functions and the gener-
alized Riemann hypothesis

In this section, we consider Dirichlet L-functions L(s, x) associated with prim-
itive Dirichlet characters y modulo ¢ > 1. Note that y is non-principal under this
condition (recall Definition 4 and the last remark in Chapter 1).

From Lemma 1.12, L(s,x) =0 for s = =k, -k —2, -k —4, —k — 6, - - -, where Kk
is determined for each x as in Lemma 1.12. These zeros are called the trivial zeros
of L(s,x). As in the case of ((s), we call all the other zeros the nontrivial zeros of
L(s,x). From Corollary 1.9 and the functional equation (1.7) for L(s, x), we find
that these nontrivial zeros of L(s, x) must all lie in the strip 0 < Re(s) < 1. It
is further known that L(s, x) # 0 on the lines Re(s) = 0,1 except at s = 0 itself
(recall that this is a trivial zero when x = 0). We can see this from a more precise
zero-free region for L(s, x) given in the following Theorem 2.9 and the functional
equation (1.7). Hence all nontrivial zeros of L(s,x) also lie in the critical strip
0 < Re(s) < 1.

Theorem 2.9 (Cf. [Dav00, Chapter 14] or [MV06, Theorem 11.3]). There ezists
a constant K > 0 such that L(s,x) # 0 in the region

. K
{s:a+zt€(€\a>1—10g(q<|t’+2)>}, (2.1)
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unless x is a real non-principal character (also commonly called quadratic, see
[MV06, the first paragraph in Section 9.3]), in which case L(s,x) has at most one
real zero By < 1 in the region (2.1).

An extension of the Riemann hypothesis, usually known as the generalized Rie-
mann hypothesis, states that both ((s) and L(s, x) satisfy the Riemann hypothesis,
that is, all nontrivial zeros lie on the critical line Re(s) = 1/2 (cf. [MVO06, p. 333]).
The truth of this hypothesis still remains unknown for both functions.

We are interested in studying the distribution of the real part and the number
of non-real zeros of the derivatives of not only the Riemann zeta function, but
also of Dirichlet L-functions associated with primitive characters. We close this
section and this chapter by introducing the corresponding results on the Dirichlet
L-functions themselves.

As in the case of ((s), the symmetric functional equation given by the function
(s, x) results in the nontrivial zeros of L(s,x) being symmetric with respect to
the critical line Re(s) = 1/2. However, we remark that they are not necessarily
symmetric with respect to the real line Im(s) = 0, thus we consider not only the
nontrivial zeros of L(s, x) in the upper half-plane, but also on the real line and in
the lower half-plane. Since they all lie in the critical strip, we immediately obtain:

Theorem 2.10. For T > 0, we have

1
> (r-3)-
p=p+iv,

L(p,x)=0,
B>0, |y|<T

where the sum is counted with multiplicity.

Finally, analogous to the results we introduced for {(s), we introduce two known
results on the number of zeros of L(s, x). We let N(T', x) denote the number of
zeros of L(s, x) with 0 < Re(s) < 1, |Im(s)| < T, counted with multiplicity.

Theorem 2.11 (Cf. [Dav00, Chapter 16] or [MV06, Corollary 14.7]). For T > 2,
we have T —
q
N(T,x) = —log 5— — — + O(log (¢T))-
T 2r 7

Assuming the truth of the generalized Riemann hypothesis, we have a better
estimate:

Theorem 2.12 (Cf. [MV06, Exercise 14.1.1]). Assume that the generalized Rie-
mann hypothesis is true. Then for T > 2,

T (I T
N(T,X):—logq———+0<

T 21 T

log (¢T') >
loglog (¢T') )
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Chapter 3

Zeros of the derivatives of the
Riemann zeta function

In this chapter we introduce some results on the distribution of the k-th deriva-
tive of the Riemann zeta function, denoted by ¢*)(s) for positive integer k, espe-
cially on the distribution of the real part and the number of non-real zeros. We
first introduce some known results in the first section. In Section 3.2, we intro-
duce some conditional results and prove those which were shown by the author in
[Surl5]. Throughout this chapter, only the results proven by the author are stated
as theorems.

3.1 Unconditional results

We begin with our strongest motivation in studying zeros of the derivatives
of the Riemann zeta function. A. Speiser [Spe35| in 1935 showed an equivalence
between the distribution of nontrivial zeros of the Riemann zeta function ((s) and
that of non-real zeros of its first derivative (’(s). More precisely, he proved that
the Riemann hypothesis is equivalent to the statement that (’(s) has no non-real
zeros in Re(s) < 1/2.

In 1970, B. C. Berndt [Ber70, Theorem| proved that

T T T
Nuo(T) = — log — — — + O(log T 3.1
k(T) 5o log - — o+ (log T (3.1)

where N, (T) denotes the number of zeros of (¥)(s) with 0 < Im(s) < T, counted
with multiplicity. Further in 1974, N. Levinson and H. L. Montgomery [LM74,
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Theorem 10] showed that

1 kT T 1 /1
B _Z) =2 loglog— + — [ =log2 — kloglog?2 | T
S (99-g) = Gy omony+ 5 (Glos2 — Floglos

PONCIONPMOR
(M (p)=0,0<y W <T

— kLi (Z) + O(logT)
2T

(3.2)
where the sum is counted with multiplicity and Li(z) is as defined in Theorem
2.4. In addition to the above result (3.2), Levinson and Montgomery [LM74] also
studied the location of the zeros of (*)(s). There are many other papers on the
zeros of (™ (s); for example, J. B. Conrey and A. Ghosh [CG90, Theorem 1] in
1989, studied the zeros of (*)(s) near the critical line.

3.2 Results obtained under the truth of the Rie-
mann hypothesis

In 2012, H. Akatsuka [Akal2, Theorems 1 and 3| improved each of the error term
of the results obtained by Berndt and by Levinson and Montgomery mentioned
above (see (3.1) and (3.2)) for the case k = 1 under the assumption of the truth
of the Riemann hypothesis. More precisely, he showed that

1\ T T o1 /1
'~ 2) = Zloglog— + — [ ~log2 —loglog2 | T
Z. (B 2) o Ogog27r+27r(2 o8 Ogog)
p'=B'+iy,
¢ ()=0,0<5 <T

L (%) +O((loglog T)?)

and

T T T log T’
N{T)=—log—— —+0 | ————5 3.3
o) or Bur  2n * ((log log T)1/2> (3:3)

if the Riemann hypothesis is true. In this section!, we generalize these two results
of Akatsuka for any positive integer k.

Remark. Recently, F. Ge [Ge-p, Theorem 1] showed that we can improve the error
term in (3.3) shown by Akatsuka [Akal2, Theorem 3] to

0 log T’ .
loglogT'

!The content of this section is essentially the same as the manuscript [Surl5] published in
Functiones et Approzimatio, Commentarii Mathematici 53, and is slightly modified in order to
fit in the content and structure of this thesis.
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This result is the current best estimate on the number of zeros of (’(s) under the
Riemann hypothesis.

Throughout this section, the letter k is used as a fixed positive integer, unless
otherwise specified. For simplicity, we denote by p = 8+ iy and p*) = g*) 4
i7*) the nontrivial zeros of ((s) and the non-real zeros of (*)(s), respectively.
In addition, N(T") and Ni(T') are as defined previously, that is they each count
the number of zeros of ((s) and (¥ (s), respectively, in 0 < Im(s) < T, with
multiplicity.

The following results generalize Theorem 1, Corollary 2, and Theorem 3 of
[Akal2], respectively. Note that each sum counts the non-real zeros of (%) (s) with
multiplicity and that the implicit constant in Og(-) depends only on k.

Theorem 3.1. Assume that the Riemann hypothesis is true. Then for any T > 2,
we have

1\ kT T 11
® 1) o g tog — + = (L10g2 — kloglog2) T
2 (5 2) o 885 T on (2 BT HORTOR

pR) =B (K) iy (k)
o<y <T

— kLi (%) + O ((loglog T)?).

Corollary 3.2 (Cf. [LM74, Theorem 3]). Assume that the Riemann hypothesis is
true. Then for 0 < U < T (where T is restricted to satisfy T > 27 ), we have

1 kU T 1 /1
k) _ 2 ) =22 loglog — + — [ =1log2 — kloglog 2
E ()(6 2> - og0g2ﬂ+2ﬂ(2 og kloglog U

T<~F<T+U

U? 9
@) (TlogT) + Oy ((loglog T)?) .

Here the implicit constant in the error term O (U*(T'logT)™') does not depend on
any parameter.

Theorem 3.3. Assume that the Riemann hypothesis is true. Then for T > 2, we

have
T T T logT’
N (T)= —log— — — 4+ 0, | —=—].
+7) o * k((loglogT)1/2>

We write Re(s) and Im(s) (for any s € C) as o and t, respectively. We ab-

breviate the Riemann hypothesis as RH, and finally, we define two functions F'(s)
and Gg(s) as follows:
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Definition 5.
28

(Tog 2)k,C(k)(S).

F(s):=27*"'sin (%)F(l —8), Gi(s) = (=1)*

By the above definition of F(s), we can check easily that the functional equation
for ((s) states

() = F(s)C(1 = s). (3.4)

Remark. The function F(s) appeared in [Akal2] and [LM74, Section 3| and the
function Gy(s) is the (¥)-version of the function G(s) in [Akal2], which is denoted
by Zi(s) in [LM74, Section 3]. Most of the symbols used in this section follow
those used in [Akal2].

Since the steps of our proofs basically follow those given in [Akal2] with a few
crucial modifications, instead of the outline of the proofs, below we present the
main needed modifications related to the proofs.

First of all, condition 2 of Lemma 2.1 of [Akal2] is related to the functional
equation for ¢’(s). In our case, we need to consider (*)(s) for any positive integer
k. Thus, we obtain a function which consists of terms that are not logarithmic
derivatives of some functions so we cannot easily follow the case of (’(s). In the
present section, we take care of these terms in a way that does not involve any
calculation on logarithmic derivatives.

Secondly, similar to condition 2, in condition 3 of Lemma 2.1 of [Akal2], the
factor to be estimated was (F’/F)(s) which is just the logarithmic derivative of
F(s), whereas in the present section, we need to take care of (F*)/F)(s) which is
not a logarithmic derivative of any function. Thus, as in condition 2, we estimate
this term for any k in a way which does not require any calculation on logarithmic
derivatives, and hence we need to take a suitable logarithmic branch of the function
log (F®)/F)(s).

The next is condition 4 of Lemma 2.1 of [Akal2]. For (’(s), the term we
need to estimate was (¢’'/¢)(s) which is just the logarithmic derivative of ((s). In
[Akal2], the inequality Re((¢’/¢)(s)) < 0 was obtained, however for (*)(s), the
sign of Re ((¢W/¢)(s)) does not seem to stay unchanged in any region defined by
x <o <1/2,t >y for some x < —1 and large y > 0. Nevertheless, since it is
sufficient to show that (¢®/¢)(s) is holomorphic and non-zero, and has bounded
argument in some region of the above kind, we shall modify the condition in such
a way.

Furthermore, with the modifications of these conditions of the first lemma,
the choice of logarithmic branch of the function log (((F®/F)(s))™ (¢ /¢)(s)) in
the proof of Proposition 3.5 (which generalizes Proposition 2.2 in [Akal2]) must
be taken more carefully so that these conditions can be used in our calculations.
In order to evaluate the function log (((F®)/F)(s))~1(¢"® /¢)(s)), we first define
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the functions log (((F(k)/F)(s))*l(C(k)/C)(s)), log (F*) /F)(s), and log (C®/¢)(s)
independently. Then using the continuities of arg (((F (k) JF)(s))~ ’“) /C)(s )7
arg (F®) /F)(s), and arg ((**)/¢)(s), we observe the difference

1 C(k) (k) C(k)
arg (&T(S)T(SO - (— arg T(S) +arg T(S>>

F

in the region under evaluation (see the evaluation of I;5 in Proposition 3.5).

Finally, the region 1/2 < o < a considered in Lemma 2.3 of [Akal2] does not
work well for ((%*) /¢)(s). The reason is that the current best estimate of (¢*) /¢)(s)
depends on the usage of Cauchy’s integral formula, hence we need to keep a certain
distance between 1/2 and the infimum of ¢ in the region. Therefore, we put here
a small distance ¢y > 0 (see the statement of our Lemma 3.6).

3.2.1 Proof of Theorem 3.1 and Corollary 3.2

In this subsection we give the proofs of Theorem 1 and Corollary 2. For that
purpose, we need a few lemmas and a proposition which are analogues of those in
[Akal2]. The following lemma is a generalization of Lemma 2.1 of [Akal2] for the
case of (¥ (s).

Lemma 3.4. Assume RH. Then there exist a, > 10, 0, < —1, and ty > max{a3, —o}}
such that the following conditions are satisfied:

1 9 /2
1 |Gi(s) = 1| < 3 <§> , forany o > ay;

k
2 g 1)/t L <9 < dt>9;
: Z ) (=1) 0 (1—3s)| <27, foro<oandt>2;

F(k— J)( ) (

> 1 holds in the region o, < 0 < 1/2,t >t — 1. Furthermore, we

(k)
can take the logarithmic branch of log T(S) in that region such that it is

holomorphic there and

holds, where
5,7 if ks odd,
(an ) = 4 07 Tk
(=1,1) if k is even;
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4

(k)
CT(S) # 0 holds in the region o, < 0 < 1/2,t >ty — 1. Furthermore, we
(k)

can take the logarithmic branch of log T(s) in that region such that it is

holomorphic there and

km ¢k 3km
7 < arg T(S) < T

holds;

5. Clo+ity) #0, (W (o +ity,) #0, forall o € R.
Proof. 1. See [LM74, (3.2) (p. 54)].

2.

We start by estimating (F®) /F*=9)(s) (j = 1,2,--- ,k) in the region ¢ <
1, t > 2. We set

F(s) = (% - s) (log (1—s)—log (27) +

v

2>+s+0(1),

where f(s) is an analytic function and
fls)=—log(1—5)+0(1), [f9s)=0(1) (j=2).
As in [LM74, pp. 54-55], we can write
F(s) = exp(f(s)).

Using methods similar to [Gon84, Lemma 6 (p. 133)] and [LM74, pp. 54-55],
we can show that

. , 1
FO(s)=F(s)(f' () 14+ 0 o—s 3.5
o) = F ) (140 (1)) (3.5)
holds for any positive integer j. In consequence, for j = 1,2,--- , k, we have

(k)
’ F =) (s)

=i (10 (o))

> (log |1 — s])? — ‘O ((log |1 - 5|)j_1)| .

Certainly, this also holds in the region ¢ < —1,t > 2, so for any positive
integer k, we can take o, < —1 sufficiently small (i.e. sufficiently large in
the negative direction) so that for any s with o < oy, and ¢ > 2, we have

(k) ' '
‘%(s) (log |1 —s|)? > %(log(l — o)) (3.6)




Next we estimate (¢¥)/¢)(1 —s) (j = 1,2,--- k). In the region o <
—1,t > 2, we have

(log 2)/
2173

}Q(j)(l —s)| < ‘ < %(logQ)jQU +/2°° (logaf)de

xlfa

— (logn)’
+ Z nlfs
n=3

o1 & (log2)” Z(lel)x
=2 <§(log2)] + Z W

and
=1 1 2
IC(1—s)|>1— an_s —1_Zﬁ:2_€
n=2 n=2
Thus,
A ; i—1_ g
¢ 20 (1 & (log2) T 2y
> (1-s)| < = (log 2)? —— - U= 3.7
9| e (G0 37

Now combining (3.6) and (3.7), for 0 < oy, and t > 2, we have

Ek: (?)(—UHF(%UCS (1—s)

=1 FG—\S
k .
1 )
> (g e
=1 N/ e (s)
% = [k | log2)” '
<90 S — ,
=7 _;;;angu_a)) ( og2) *Z

Since for any positive integer k,

k log 2)I~ l .

_ 2k k T
1 ——— | =(log2)’ =0
g 9 _ %2 Z ( ) (log (1 — ) ( 0g2)’ + Z l+1 ) ’

Jj=1

we can take oy < oy, (< —1) so that

k J logQJl ]'
22()102; (1—0)) ( 10g2]+2 ”1 =1

2 -
6 j=1 =

holds for any o < ¢,. This implies that

Lyg? i1 c
Z(j)(_l) T T)E

j=1 (k=3)
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holds for o < oy, t > 2.

Now with the above oy, we are going to find t;, > max {a?, —oy} for which
conditions 3 to 5 hold.

. We start by examining condition 3. We first consider the region o, < o <
1/2,t > 99. It follows from (3.5) that in this region,

F®)(s) = F(s)(—log (1 —s)+O(1))* (1 +0 (@)) (3.8)

holds. This gives us,

F (k)
‘?(5)

> |(log (1 = )| = [Og, ((logt)*™")| > (logt)" — |0y, ((logt)* )]

for op, < o < 1/2and t > 99. Thus, for any integer £ > 1, we can take
tr, > 100 such that
F®)
_(5

F
forop, <o <1/2and t >ty — 1.
We note from (3.8) that (F*)/F)(s) = (=1)*(logt)*+0O ((logt)*~') when
o, <o <1/2and t > 99. Consequently, for odd integer k > 1, we can find
sufficiently large ¢), > 100 such that

) >1 (3.9)

holds for 0}, < 0 < 1/2 and t > t;, — 1. Similarly, when £k is even, we can
also find sufficiently large ¢j;, > 100 such that

T F®) s
R

holds for o), <o <1/2 and ¢t >t} — 1. Since all zeros and poles of F(s) lie
on R, (F® /F)(s) has no poles for ¢t > 0. This along with (3.9) implies that
log (F*) /F)(s) is holomorphic in the region with this branch. Thus setting

(5,7) if k£ is odd,
(—1,1) if k is even;

(Oélmﬁk) = {
and
o {t;cz if k is odd,
.

ty if k is even;
2
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we find that log @(s) is holomorphic and that

F (k)
% < arg — (s) < ng

holds in the region o, < o < 1/2, ¢ > t;, — 1.

By the above calculations, we see that max {tx,, tx,, a2, —0%} is a candi-
date for ¢;. Thus we have proven that ¢;, > max {a}, —o},} for which condition
3 holds exists. Since we want t; to also satisfy conditions 4 and 5, we need
to examine those conditions to completely prove the existence of .

. Referring to [LM74, Corollary of Theorem 7 (p. 51)], we know that RH
implies that for any positive integer 7, ¢ (j)(s) has at most a finite number
of non-real zeros in ¢ < 1/2. Hence we can number all the non-real zeros
of ¢CO(s) in g < 1/2 as pi, p7 pi7 - p8) (07 = BY) + i) for some
integer m; > 2 (note that if (V) (p¥)) = 0, then ¢V (W) =0,so0m; > 2)in

the order such that 7l(j ) < 71(1)1 for all 1 <1 < m; — 1. Therefore, (V)(s) # 0

when 0 < 1/2 and ¢t > %(ﬂb]) + 1. We set ty, = max (7,(,{]) +2), then for all
7 =1,2,---  k, we have
¢D(s) #0 (3.10)
in the region o < 1/2, t > t;, — 1.
Next we show that we can take the logarithmic branch of log (¢®)/¢)(s)

in the region o, < o < 1/2,t > t;, — 1 for some t;, > 100, so that it is
holomorphic there and

k (k) 3k
5 <ar %“) <5
holds there by first claiming that we can find some t;, > t, for which
¢
Re (g(j—l) (3)> <0 (op<o<1/2,t>1t —1) (3.11)

holds for all j = 1,2,--- k. We first note that for any 57 = 1,2,--- |k,
(¢ /¢U=D)(s) is holomorphic and has no zeros in the region defined by
o<1/2and t >t — 1.

To show this, we refer to [LM74, pp. 64-65] and we can show that for
aan = 1727"' 7k7
¢ 2
Re <m(8)> S —§log |S| + ng(l)
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holds when o, < o < 1/2, and t > t, — 1. Thus, we can take t;, > ti, such
that (3.11) holds for all j =1,2,--- |k .

The above immediately implies that for each j = 1,2,--- | k, there exists
an integer [; such that
T C(j) 3
5T 21w < arg m(s) <5t 2w (3.12)
holds for o, < o < 1/2, t > t;, — 1. We then choose the logarithmic branch
of each log (¢)/¢U=V)(s) such that each [; in (3.12) is zero and take the
logarithmic branch of log (¢*) /¢)(s) so that

(k) k 4)
ot < =(5) = Y arg iy (9
j=1

holds in the region o, < o < 1/2,t > t;, — 1. Note that from (3.10) and
the analyticity of (*)(s) in ¢ < 1/2 (also note that we are assuming RH
thus ((s) # 0 when o < 1/2 and t > t;, — 1), log (¢ /¢)(s) is holomorphic
in this region with this branch. We then obtain a holomorphic function
log (¢™) /¢)(s) with inequalities

km ¢k 3km
5 <arg T(S) <5

in the region o, <o < 1/2,t > tg, — 1.

Combining the proof of condition 3 and the above calculations, we find
that max{tg,, ty,, tr,, a3, —0 } is a candidate for ¢;. Therefore we have proven
that t;, > max {a?, —0oy} for which conditions 3 and 4 hold exists.

5. Now we set tg, := max {tg,, try, tr,, a2, —Ox}.

e Since we are assuming RH, ((o 4 it) # 0 for any ¢ > 0 if 0 # 1/2.

e According to [Spi65, Table 1 (p. 678)], ('(o + it) # 0 for any ¢t € R if
o>3and ("(oc +it) # 0 for any t € R if 0 > 5. According to [Spi65,
Theorem 1], for k > 3, (W (o +it) # 0 for any t € R if 0 > Tk/4 + 2.
Indeed, we can check that for £k = 1, 7/4 +2 > 3 and for k = 2,
7/2 4+ 2 > 5, thus for any positive integer k,

(Po+it)y#0 (0> £k+2,teR).

e Since ty, > t4,, from (3.10), we have () (o + it) # 0 for ¢ < 1/2 and
>t
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Hence, for any positive integer k, we only need to find ty € [ty + 1, ¢, + 2]
for which

1 1 7
C<§+itk) # 0 and (W (o +ity,) #0 forégagzk—i—Z
hold. Note that this is possible by the identity theorem for complex ana-
lytic functions. Thus, we have shown that ¢, defined above satisfies ¢, >
max {a3, —oy} and also conditions 3 to 5.

O

Remark. For k = 1 and k = 2, more precise results are known. Refer to [Akal2]

and [Sur-pl], respectively. These results are obtained based on the works of Speiser
[Spe35], R. Spira [Spi73], and C. Y. Yildirim [Y1196a] (also [Y1100]) on the zeros of

¢'(s) and ¢"(s).

Proposition 3.5. Assume RH. Take ay and tp which satisfy all conditions of
Lemma 8.4. Then for T > t; which satisfies (¥ (o +4T) # 0 and ((o +iT) # 0
for any o € R, we have

1 kT T 1 /1
k) _Z) = 2" loglog — + — [ =log2 — kloglog?2 | T
S (=) = G toston - 5 (Glos2 — Floglos

p9) —BK) ()
T
B Y

()

0<y®<T

1 [
+ — (—arg (o +iT) + arg Gx(o + iT)) do
21 J1/2

where the logarithmic branches are taken so that log((s) and log G (s) tend to
0 as 0 — oo and are holomorphic in C\{z + X | {(2) = 0 or oo, A\ < 0} and
C\{z+ A | ™ (2) =0 or co, A < 0}, respectively.

Proof. The steps of the proof generally follow the proof of Proposition 2.2 of
[Akal2]. We first take ag, ok, and t; as in Lemma 3.4 and fix them. Then,
we take T' > t;, such that (V) (o +iT) # 0 and ((o +iT) # 0 (Yo € R). We
also let 0 € (0,1/2] and put b:=1/2 — 5. We consider the rectangle with vertices
b+ itg, ax + itg, ax + T, and b+ i7", and then we apply Littlewood’s lemma (see
Lemma 2.2 or [Tit39, Section 3.8]) to G(s) there. By taking the imaginary part,
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we obtain

T T
Y (ﬁ(k)—b):/ log|Gk(b+z’t)|dt—/ log |G (g + it)|dt
p(R) = (k) i (k) b th
tr<yF<T

ag A
- / arg Gi(o + ity)do + / arg Gi(o +iT)do
b b

ag
=hL+L+I;+ / arg Gy(o + iT)do
b

(3.13)
where the sum is counted with multiplicity. By the same reasoning as in [Akal2,
p. 2246], we have

12 = Oak(l)v [3 = Oak,tk(l)'

Now we only need to estimate /;. From the functional equation (3.4) for {(s),
we can deduce that

®) () — plk) I RV VIRV BN
(¥(s) = F¥(s)c(1 ><1 Z<])< TR >>
= sﬂs —s k 1—1 Q -5
— Pl () ( Z() SRRl >>'
Hence,
Ilz/t log|Gk(b—|—it)\dt:/t l0g oo 2 Syl + it

T 2b T *)
= log ———dt + / log [CY™/ (b + it)|dt
/tk oL €O+ it)

(k)

T T F
= (blogZ—kloglogQ)(T—tk)—l—/ 10g|F(b—|—it)|dt—|—/ log T(b+it)‘dt
175 tg

T
+/ log [C(1 — b — it)|dt

173

T k
k . 1 C(J
+/ log |1 — (,)(—1)J—1+ (1 —b—it)|dt
t jzl j I (b+it) €
=: ((blog2 — kloglog 2)T + Oy, (1)) + Lo + L1z + s + ©1s. (3.14)

As shown in [Akal2, pp. 2247-2249],

1 T
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ag
[14 — —/ a,I‘gC(O' + ZT)dO' + Oak,tk(l)‘
1

b
Below we estimate I3 and [;5.
We begin with the estimation of I13. We consider for 0 < o < 1/2 and ¢ > 100.
We first show that

ﬂW@:F@xNQwO+O(ig$)+o(mﬁ%$)> (3.15)

holds in the region o < 1, ¢ > 100. It is obvious that the above error estimate is
more precise than that in (3.5). The proof is similar to the proof of condition 2 of
Lemma 3.4. We begin by taking the logarithmic branch of log (sin (7s/2)) as

Tins

s TS ) e
| ( i —) =—— —log2+ — — 1
og sin 5 og2+ 5 ng_l - (3.16)

in the region 0 < 0 < 1, t > 2 and analytically continue it to the region o < 1, ¢ >
2. Next, we apply Stirling’s formula to I'(1 — s) in the region —7/2 < arg (1 — s) <
7/2. Substituting these into F'(s), we obtain

F(s) = exp (%—1+ <l_s> log (12—:)@' +s+0(et)+o(i>)

2 5]

for o < 1 and ¢ > 100, where the term O(e™") comes from the term » > ™!
in (3.16) and the term O(1/|s|) originates from the Stirling’s formula.
We now write

f(s) = (% - S) log a 2—;)@' +s5+0()+0 <i>

5]

and differentiate it with respect to s to obtain

(1—s)i 1

f'(s) = —log 5+ 203 +0(e™)+0 (LS%)

and
ﬂMg:owﬂ+o<—L>

for j > 2. (3.15) immediately follows. As a consequence to (3.15),

F®) t4 (1 —1b)i 1 1\\"
i i) = [ —1 il
p o) < T or +2(1—b—it)+0(t2)>

(00 (aere) )
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- (cl e+ B0 (1))

" (1 o (t(bét)?” |
)

t
= b+ it) = kloglog — + klog (—1
log F(b+zt) k:ogog27r+kog( )

This gives us

+ klog (1 L 2_((21(1__(;)172)551752;t?2)2g;t2)i +0 (tz llogt))

1

° ()

= kloglog % + klog (—1) — th 2_((21(1__5)[)2)551152;?);;752) '

1

° (e

Consequently we have
Re <1og ?(b+ Zt)) = k:loglog% +0 (t(lolgt)2> :

Hence,

*) T Jals
123

T F
113 = lOg
ty

T t T at
:k‘/ log lo —dt+0</ —)
t 8108 o e t(logt)?

T T
= leoglog% — 27k Li (%) + Oy, (1).

Finally, we estimate ;5. Again from the functional equation (3.4) for ((s), we
have

k , ()
(9(s) = FO()C(1 - 5) (1 -y (’;) <—1>HF<%()%<1 - s>)

j=1 Fo=p \5
_FY oS (Y L9
_ F<>c<><1 Z(]>< TR >>
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which gives us

E2(s) ¢ A5 (s) €

(k) k ‘ (7)
)1 C—(s) =1- Z (j.)(—l)“;c—u —5). (3.17)

It follows from condition 2 of Lemma 3.4 that the right hand side of (3.17) is
holomorphic and has no zeros in the region defined by o < o, and t > 2. Moreover
from conditions 3 and 4 of Lemma 3.4, the left hand side of (3.17) is holomorphic
and has no zeros in the region defined by o, < o < 1/2 and t > t; — 1. Thus, we

can determine
k .
k . 1 ¢
log (1 - (.>(—1)J (- S))

= M m(s) S

so that it tends to 0 as ¢ — —oo which follows from condition 2 of Lemma 3.4,
and is holomorphic in the region o < 1/2, ¢ > t;, — 1.

Now we consider the trapezoid C' with vertices b + ity, b+ 1", =T + T, and
—ty + ity (as in [Akal2, p. 2247]). Then by Cauchy’s integral theorem,

k- .
Lk A 1 ¢
log {1-)" ( ) (-1 (1 - s)>d5 = 0. (3.18)
/C ( j=1 J Fl(wk_:)(5> ¢
By using condition 2 of Lemma 3.4, we can also show that (cf. [Akal2, p. 2248))
—T+iT —tp+it o +it
(N
ox+iT —T+4T —tp+ity
k .
k . 1 C(])
log | 1 — ( ) (1) (1 — s)> ds = O(1).
< Z J Fa(s) €
Next we estimate the integral from oy, + ity to b + ity trivially and we obtain
btity, k k ' 1 ()
/ lOg 1—2 < ) (—1)‘771F(TC—(1—S> dSIOtk<1)
op+ity j=1 J m(é‘) C

Substituting the above two equations into (3.18) and taking the imaginary part,

we obtain
T k i
k , 1 ¢ .
115:/ log |1 — (,)(—1)3_1+—(1—b—zt)
te = N %(b—i_ it) ¢

b
:/ arg | 1 —
Ok

dt

~ [k 1)t L C(j)1 T |do + Oy, (1
j_l(j)(_> WT( — o —iT) |do+ Oy, (1)
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b (k)
(3.17) / 1 ¢ .
= arg o+1T) |do+ Oy, (1).

Now we determine the logarithmic branch of log (F'®) /F')(s) and log (¢®) /¢)(s)
in the region o, < o < 1/2,t > t;, — 1 as in conditions 3 and 4, respectively, of
Lemma 3.4. Note that

1 (¢W F (k)
— ()
F

<

F

¢k
log (s)| = —log + log T(s)

holds in the region o, < o < 1/2,t > t;, — 1. Furthermore, since

1 ¢ B Y VI .
log <%7(3)> = log <1 Z(])( ™ ——— 5 ¢ (1 S))v

j=1 F(k—3)

log (F®) /F)(s), and log (¢*) /¢)(s) are holomorphic in this region, we know that

arg (((F(k)/F)(s))*l((’(k)/g)(s)), arg (F(k)/F)(s), and arg (Q(k)/C)(s) are continu-
ous there. Since the region o, < 0 < 1/2, ¢t > t;, — 1 is connected, there exists a
constant n € Z such that

arg (%%(s)) = —arg ?(8) + arg %(s) + 2nm

holds in o, <o < 1/2,t >t — 1.
From this choice of logarithmic branch, we have

1 ¢k

E2 (o +iT) ¢

(o—l—iT)) < Mﬂ—iﬂnw (3.19)

k—
(3—6ﬂk)w+2nﬁ < arg (

for o), < o < 1/2. Here, ay. and [ are the constants given in Lemma 3.4, that is,

J 7 ifkis odd,
(o, Br) = {<_1’ 1) if k is even.

Since n does not depend on s, n = O(1). Therefore

L i) o
M\ T, gy ¢ 0 ) | = Ol

From this, we can easily show that

[15 = Ok‘(]—)7
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for o} and t; are fixed constants that depend only on k.
Inserting the estimates of I19, 13, I14, and 15 into (3.14), we obtain

1 T T
I, = (blog2 — kloglog2)T + (— — b) (Tlog— — T) + kT loglog —
2 2 27

T “’“
— 2km Li (2—) - / arg ((o +1T)do + Ok(1),
T 1

—b

since a; and t; are fixed constants that depend only on k.
To finalize the proof of Proposition 3.5, we insert the estimates of I, I5, and
I3 into (3.13) to obtain

T T
o Z (5(k) —b) = kT loglog oy + (blog2 — kloglog2)T — 2k Li (2—)

™
p(0) =B (k) iy ()

0<'y(k)§T
1 T Uk .
+{(=—-0||Tlog— —T —/ arg (o 4+ iT)do
2 27T 1—b

ag
+ / arg G(o +iT)do + Og(1).
b

Taking the limit 6 — 0, we have b — 1/2, thus

1\ kT T 1 /1
B _ 1) =100 1 (21002 — Eloglos2 ) T
> )(5 2> o Og0g27+2w(2 8 08708

PO =30 i)
T
B N

o<y <T
1 [

+ — (—arg((o +iT) + arg Gx(o +iT))do
2 1/2

+ Ok(1).
O

Remark. The proof of Proposition 3.5 (and thus of Proposition 2.2 of [Akal2])
actually, more or less, follows the proof of Theorem 10 given in [LM74, Section
3]. One obvious difference is that we did not estimate the fourth integral in (3.13)
while Levinson and Montgomery estimated the corresponding integral (the fourth
integral in (3.1) of [LM74, Section 3]) as O(logT). As in Akatsuka’s [Akal2] did,
it turns out that this term contributes to the integral appearing in Proposition 3.5
which will be estimated in the following few lemmas. This integral will contribute
to the error term in Theorem 3.1 and in the proofs of the following lemmas, we
shall use the assumption of RH to reduce the upper bound of this integral.
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Remark. In contrast to the proof of Theorem 10 of [LM74], in this section (and in
[Akal2] as well), we describe some important estimates, such as those on Gg(s),
(F® /F)(s), and (¢®/¢)(s), which are related to the existence of fixed constants
ay, o, and t; in Lemma 3.4 for the sake of clarity. Furthermore, we also explicitly
state Proposition 3.5 since it clearly points out the main terms of Theorem 3.1
and thus this gives the readers clear information of the term that in the current
research contributes to the error term which is to be possibly improved in future
research.

To complete the proof of Theorem 3.1, we need to estimate
ag
/ (—arg (o +iT) + arg G (o + iT))do
1/2

in Proposition 3.5. For that purpose, similar to the method used in [Akal2], below
we give two bounds for —arg ((o +iT) + arg G(o + iT). We write

—arg (o +iT) + arg Gr(o +iT) = arg %(a +14T)

where the argument on the right hand side is taken so that log (Gy/{)(s) tends to
0 as 0 — oo and is holomorphic in C\{z + A | (¢ /¢)(2) = 0 or 0o, A < 0}.

Lemma 3.6. Assume RH and let'T > t;,. Then for any ey > 0 satisfying eg < ﬁ
(since T' >t > 100, €y < 1/8), we have for 1/2+ ¢y < 0 < ag,

Gk . log loegT
g (0 +iT) = Ouyi, (m -

Proof. To begin with, we note that (Gx/()(s) is uniformly convergent to 1 as
o — oo for t € R, so we can take a number ¢;, € R satisfying a + 1 < ¢ < t5/2
and 1/2 < Re((Gx/¢)(s)) < 3/2 when o > ¢;. In fact, we can check that taking
¢t = 10 4+ k? is sufficient.

The proof also proceeds similarly to the proof of Lemma 2.3 of [Akal2]. We
let 0 € (1/2 + €y, a] and let qg,/c = qa,/c(0,T) denote the number of times
Re((Gr/¢)(u +14T)) vanishes in u € [0, ¢x]. Then,

G
argfk(a+iT)‘ < (gg,/c + 1) .

Now we estimate qg, /c. For that purpose, we set

Hy(z) = Hy (2) = L (%( +4T) + %(2 — zT)) (z € C)
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and ng, (r) == #{z € C | Hy(2) = 0,|z — x| < r}. Then, we have ¢g,/c <
np, (cx — o) for 1/2+ €y < 0 < ay. For each 0 € (1/2 + €, ai), we take € = €, 1
satisfying 0 < € < 0 — 1/2 — ¢, then H(z) is holomorphic in the region {z € C |
|z — x| < ¢ —o+e€}. Asin [Akal2, p. 2250], by using Jensen’s theorem (see
Lemma 2.1 or [Tit39, Section 3.61]), we can show that

1 [* g (r)
nm, (g — o) < 0—16/0 ’“Tdr

1 1 (7 , 1
= log |H — 0)|d§ — —log |H,
Crcon ), og |Hi(cr + (cx — o + €)e”)] Cre og | Hy(ck)]|
for some constant C; > 0, which by our choice of ¢, gives us
11 [ 0 1
ng,(cr —0) < =—— log |Hy(cr + (¢, — 0 +€)e”)|df + =O,, 1, (1).  (3.20)
Cie2m /o €

Finally we estimate

1 [ ,
—/ log |Hy(c + (¢, — o 4 €)e')|db.
2w Jq

From [Tit86, Theorems 9.2 and 9.6(A)] (similar to what stated in [Akal2, p. 2250]),

g_/(azl:z't) =0 (;0g7;>

¢ -3
holds for 1/2 < 0 < 2¢;, and T/2 < t < 2T. Thus, for 1/2 + ¢y < 0 < 2¢; and
T/2 <t <2T, we have
! logT
Coxity=o (8 (3.21)
¢ €0

With this estimate, we show that
¢™ (log T)"
EIN
0

holds for 1/2 + ¢y < 0 < 2¢; and T/2 < |t| < 2T. We use induction on k in the
equation. For k =1, (¢'/¢)(c +it) = O (&' logT) follows from (3.21). Suppose
that (C™/¢)(s) = O (;™(log T)") holds in the region 1/2+ €y < o < 25, T/2 <
|t| < 2T for a positive integer n, then
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Meanwhile,

¢ ’_C(nﬂ) _@ g
(—<s>) O

holds in the region.
Therefore, by (3.22) and by the induction hypothesis,

_0 ((logT)”“>

n+1
€o

holds for 1/2 < 0 < 2¢j, and T/2 < |t| < 2T. Hence, by induction, we find that

holds in the region defined by 1/2 + ¢y < 0 < 2¢; and T/2 < |t| < 2T. This
immediately gives us
, log T)*
| H(cr, + (cr — 0+ €)e”)| apty %7
0
and so 1 o
, ogT
|Hy(ckx + (cxp — 0 + €)€Z6)| < Cylak, tr) i’“
0

for some constant C5 > 0 which depends only on a; and t;. Thus,

2m 0 log T
5o log [Hy(ck + (cr — 0 + €)e”)|df < log Cy(ax, tr) + klog
2m Jo €0
logT'
Loy ty, l0g 5.
€0

Applying this to (3.20), we obtain

1 log T
ny,(c, — o) = EOak’t’“ (1og & )

€0

which implies

G 1 logT
arg Tk(a +iT) = EOakvtk (10g og ) :

€o
Taking e = (60 — 1/2 — ¢)/2 (< 0 — 1/2 — €y), we obtain

Gk - log loegT
arg ?(O' + ZT) = Oakﬂfk (m .
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Lemma 3.7. Assume RH and let A > 2 be fized. Then there exists a constant
Co > 0 such that

k : (log T)*'—)
‘C( )(J"‘Zt)‘ < exp <C(] (W + (logT)l/lo

holds for T >t, T/2 <t < 2T, 1/2 — (loglogT)™* <o < A.

Proof. Referring to [Tit86, (14.14.2), (14.14.5), and the first equation on p. 384]
(cf. [Akal2, pp. 2251-2252]), we know that

2(1—0)

holds for 1/2 — 2(loglogT)™ < o0 < A+ 1, T/3 <t < 3T for some constant
Cg > 0.

Applying Cauchy’s integral formula, we see that

k! ((2) 1
®)(s) = — ———d for 0 =
¢ (s) 27 ) o= s z or 0<e<g

holds in the region defined by 1/2 — (loglogT)™! < 0 < A and T/2 < t < 2T.
Applying (3.23) and by taking ¢ = (2(loglogT)**)~! (< 1/2), we obtain Lemma
3.7.

O

Lemma 3.8. Assume RH and let T > ty. Then for any 1/2 < o < 3/4, we have

. (10g T)2(l—or)
G T)=0, | —————
arg Gr(o +T) k ((log log T')1/2
Proof. The proof proceeds in the same way as the proof of Lemma 2.4 of [Akal2].
Refer to [Akal2, pp. 2252-2253| for the detailed proof and use Lemma 3.7 above
in place of Lemma 2.6 of [Akal2].
O

Remark. The restrictions of the lower bound of T we gave in Lemmas 3.6, 3.7, and
3.8 are not essential, but they are sufficient for our purpose. We may let T" be
any positive number in Lemmas 3.6, 3.7, and 3.8, however in that case, we need
to modify some calculations in the proofs. Thus we used these restrictions for our
convenience.
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Proof of Theorem 3.1. First of all, we consider for T" > ¢, which satisfies
(W (g +4T) # 0 and ((o +4T) # 0 for any 0 € R. By Lemma 3.6, we have

logT

“k G o lo logT . 1
/ arg —k(a +iT)do <, 1, / &da Kq, log 08 log —
1/2+42€0 ¢ 1/242¢0 7 — 1/2 — €0 €0 €0
Next, by Lemma 3.8,
, (log T')?(1=) 1 3
arg Gk(O’ —f-ZT) = Oak <W for 5 <o< Z

and from (2.23) of [Akal2, p. 2251] (cf. [Tit86, (14.14.3) and (14.14.5)]), RH

implies that
(10g T)Z(l—a) )

T —
arg ((o +1T) O( oglog T

holds uniformly for 1/2 < ¢ < 3/4. Thus,
/1/12/2+260 arg %(a +iT)do <, ﬁeo.
Now we take ¢g = (4logT)™! (< (2logT)~!'), then we have
/jk arg %(a +iT)do <, 1, (loglog T)%.
1/2

Applying this to Proposition 3.5 and noting that a; and ¢, are fixed constants that
depend only on k, we have

1 T T 1 /1
Z (5(1@)__) :k_loglog_+—<—log2—kloglog2)T
2 2m \ 2

()= Bk 4 i () 2 27
pEY=BE) 4iy®),
0<~®)<T (3.24)

— kLi (%) + O ((loglog T)?).

Secondly, for 2m < T < t, we are adding some finite number of terms which
depend on t;, and thus depend only on & so this can be included in the error term.

Thirdly, for T > t;, such that ((¥)(¢ +4T) = 0 or {(o+iT) = 0 for some o € R,
we start by taking a small 0 < € < (loglogT)~! such that (¥ (o +i(T £¢)) # 0
and ((o 4+ (T £ €)) # 0 for any o € R. We first note that the inequalities

s (De x (D x (o)

k) =B(k) iy (k) pR) =B(k) iy (k) ) =K gy (k)
tp—1<yF <T—¢ tp—1<y®<T t—1<y(F) <T+e
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and that

S (oo x (w-)e x (o)

PR3k Ly () p )= 3k) L) p(R)—BR) Ly ()

tr—1<y®) <Te tr—1<y®<T—¢ T—e<yF) <T+e
hold. According to (3.24),
1 k(T £ ¢) T+te
k) 2 ) = 22 = Jogl
2 & 2> or 2% Ton
p(R) =B (k) 4y (k)
0<y () <T+e

1 /1
— | zlog2 — kloglog?2 | (T £
+2W(2og kogog)( €)

kL (Tj e) + Op((loglog T)?).

T
Since . X
> (w-3)- X (sm-3)+ow,
p(0) =3 (k) 4 iy (K) ( 2 p(0) =3 (k) 4 jry () 2
o<y <T tp—1<y®<T
we find that

1 kT T 1 1
B _ _) = —loglog — + — (— log2 — kloglog2) T
P(Mﬂ(;-‘ri’y(k), ( 2 27T 27T 27‘(‘ 2
o<y®<T

— kL (%) + Ox((loglog T)?)

also holds for this case.
O

Proof of Corollary 3.2. This is an immediate consequence of Theorem 3.1. For
the proof, refer to [LM74, p. 58 (the ending part of Section 3)].
O

3.2.2 Proof of Theorem 3.3

In this subsection we give the proof of Theorem 3.3. We first show the following
proposition.

Proposition 3.9. Assume RH. Then for T > 2 which satisfies (o +iT") # 0 and
(¥ (g +iT) # 0 for all o € R, we have

T T T 1 1 . 1 1 .
<§ + 1T> + 7 arg ¢ (5 + 2T> + O(1)
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where the arguments are taken as in Proposition 3.5.

Proof. The steps of the proof also follow those of the proof of Proposition 3.1
of [Akal2]. We take ay, ok, ty, T, 0, and b as in the beginning of the proof of
Proposition 3.5. We let &/ :=1/2 — §/2. Replacing b by ¢’ in (3.13), we have

T T
o Y (ﬁ(k)—b’):/ log|Gk(b/+it)\dt—/ log |G (ay, + it)|dt
pF) =) 4 iy (k) b b

o<y <T
A

ag
— / arg Gy (o + ity)do + / arg Gi(o +iT)do.
b/ b/
Subtracting this from (3.13), we have

T

TO(NK(T) — Ny(ty)) = / log |Ga(b + it)|dt — / log |Ga(¥ -+ it)|dt

lk 123

¥ b
- / arg Gy (o + ity,)do + / arg Gg(o +1iT)do
b b

b/
=i+ o+ J3+ / arg Gy(o +iT)do.
b
(3.25)

Referring to the estimate of I3 in the proof of Proposition 3.5 (cf. [Akal2, p.
2246]), we can easily show that

Jg = Otk (5)

Now we estimate J; + Jo. From (3.14), we have

T T
Ji+ Jo :/ log|Gk(b+it)|dt—/ log |GV + it)|dt

tg 173

= ((b—"0b")1og2)(T — t1) + /t (log |F(b+ it)| — log |F'(V + it)])dt
(k)

(k) F
— (' + z't)D dt

T (b+it)

J, (eef
+ log
ti

fa — log
T
+/ (log [C(1 —b—it)] —log |C(1 — b —at)|)dt

F

! S (M L
+/tk (log ! ]Z_;(j)( & O (b1 it) ¢ (1=b=t)
k . 1 ¢ .
—log |1 — —1)t > (1 -V —it)| |dt
e ; (j)< ) LS +it) € ( Z )>
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)
= ((—5 10g 2) T+ Otk<5)) + J12 + J13 + J14 + J15.

Referring to [Akal2, pp. 2255-2256], we have

J

T
Jio = B (Tlog% - T) + Oy, (9),

1-b
J14 :/ arg (o +iT)do + Oy, (9).
1-v/

We only need to estimate Ji3 and Ji5. We begin with the estimation of Jy3. We
determine the logarithmic branch of log (F®®)/F)(s) for 0 < o < 1/2 and t > t;, — 1
as in condition 3 of Lemma 3.4. We then have arg (F®)/F)(s) € (ax7/6, Bx7/6),
where the pair (ay, fx) is defined as in Lemma 3.4.

As in [Akal2, p. 2255], we apply Cauchy’s integral theorem to log (F*) /F)(s)
on the rectangle with vertices b + ity, ' + ity, b’ + ¢T, and b + 7T and take the
imaginary part, then we obtain

1% F(k) v (k)
Jis = / arg —— (o + ity,)do — / arg ——(0 +iT)do = Ox(9).
b F b F

Finally, we estimate J;5. We determine the logarithmic branch of

S AT S
10g<1_2(j)<—1> RN S)>

J=1

in the same manner as that in the estimation of I;5 in the proof of Proposition 3.5,
then it is holomorphic in the region 0 < o < 1/2, ¢t > t;, — 1. Applying Cauchy’s
integral theorem to it on the path taken for estimating Ji3, we have

k

o k i 1 ¢ _
Jis = /b arg (1 — Z (]) (—1) 1%(0 n itk)T(l — 00— Ztk)>

j=1

_ /bb/ rg (1 - Zk: (’;) (4)3’*%%(1 o iT)) do.

j=1 F(k—j)

Again using (3.17),

= ar —_— Y — (0 + it o
v B\ (o +ity) € ¢

F

’ L i)
_/b arg RO, ) ¢ (o +1iT) |do.

F
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Applying (3.19), we obtain
J15 = Ok(0).

Hence, since t; is a fixed constant that depends only on £k,

T 1-b
J1+J2:g <Tlog——T> —i—/ arg ((o + iT)do 4 Ok(0).
1

47T —y

Inserting the estimates of J; + J5 and J; into (3.25), we have

o 47 7r5
+ Ok(1).

1-b b
Ni(T) = 2 —lo gZ - Z L (/ arg§(0+z'T)da+/ argGk(cr+iT)da>
b

(3.26)
Taking the limit 6 — 0 and applying the mean value theorem,

Y , 1 1
lim — arg ((o +iT)do = Py arg ¢ —i— iT

0—0 7T(S 1—b

by noting that b =1/2 —§ and ¥’ = 1/2 — §/2. Similarly,

I _ 1 1
(lsglg)%/ arg Gy(o +iT)do = %argGk (5 —I—ZT).

Substituting these into (3.26), we have

T T T 1 1 1 1
Ni(T) = QngE—%—l—Q—argGk( +2T)+2—argg( —HT)—l—Ok(l).

If 2 < T < tg, then Ni(T) < Ni(tr) = O (1) = Ok(1). Hence the above
equation holds for any 7" > 2 which satisfies the conditions of Proposition 3.9. [

Proof of Theorem 3.3. Firstly we consider for T' > 2 which satisfies () (o +
iT) # 0 and (0 +4T) # 0 for any o € R. By Lemma 3.8,

1 log T
“+iT)=0, [—2"
w50 (5:47) = 0n (g)

and again from equation (2.23) of [Akal2, p. 2251], we have

1 log T’

Substituting these into Proposition 3.9, we obtain

T T T log T
Ni(T) = — log — — — —— | . 2
o(T) = o Bdr  om O ((log log T)1/2> (3:27)
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Next, if (o +iT) = 0 or (¥ (o +4T) = 0 for some 0 € R when T > 2, then
we again take a small 0 < ¢ < (logT)~! such that (" (o + (T £ ¢€)) # 0 and
Clo+i(T +€)) # 0 for any o € R as in the proof of Theorem 3.1. Then noting
that

Nk(T — 6) < Nk(T) < Nk(T — 6) + (Nk(T + 6) - Nk<T — 6)) s

similarly we can show that (3.27) also holds in this case.

Therefore
T T T log T
Ne(T) = — log — — — ___o&s
«(T) or % dr 27T+Ok((loglogT)1/2>

holds for any T" > 2.
O

Remark. 1t is well-known that in the case of the Riemann zeta function ((s), the
number N(T') of zeros of ((s) is estimated as

N(T) :—log———ﬂ—l—S(T)—l—O(l),

where

with a standard branch (cf. [Tit86, Section 9.3]). Thus, the function S(T") deter-
mines the error term in the estimate of N(7'). Under RH, we have

S(T) = 0 (101;%) (3.28)

(cf. [Tit86, (14.13.1) of Theorem 14.13]). In comparison to the above estimate,
the term that determines the error term of Ny (7T') is

1 1 1 1
2 e ok (2 ! ) 2m argC(Q ! )

by Proposition 3.9 and under RH, they are currently estimated as follows:

1 . B log T 1 B log T
e () -0 (). o) -0 (507)
(3.29)

This estimate of arg G (1/2 +4T") determines the error term of Ni(T') and it re-
sults in Vi (T') having error term slightly greater in magnitude than that of N (7).
However, this is the best known estimate on Ni(7') under RH at present.
Furthermore, the size of the implied O-constant in (3.28) has been studied in
many papers, such as [CCM13| and [FGHO7]. In contrast to this, we currently
have no information about the implied O-constant in the first equation of (3.29).
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Chapter 4

Zeros of the derivatives of
Dirichlet L-functions

In this chapter we introduce results analogous to those introduced in Chapter 3,
extended to the k-th derivative of Dirichlet L-functions associated with primitive
Dirichlet characters y modulo ¢ > 1, denoted by L®*) (s, x) for positive integer k.
We recall that there exists only one Dirichlet character modulo 1 and the associated
Dirichlet L-function is the Riemann zeta function, whose results are given in the
previous chapter.

Throughout this chapter, we denote by L*) (s, x) the k-th derivative of Dirichlet
L-function associated with a primitive Dirichlet character y modulo ¢ > 1. We
also denote by m the smallest integer n > 2 such that x(n) # 0. We easily see
that m = min{n € Zss | (n,q) = 1} holds. This together with the prime number
theorem yields m < loggq. We recall from Lemma 1.12 that x € {0,1} is a factor
associated to y determined as y(—1) = (—1)%, that is, k = 0 is equal to saying
that x is an even character and k = 1 describes x being an odd character. Finally,
it is to be noted that only the results proven by the author and her collaborator
H. Akatsuka are stated as theorems in this chapter.

We first introduce a few results shown by C. Y. Yildirim [Y1196b] in Section 4.1.
In Section 4.2, we prove some improved unconditional results shown by Akatsuka
and the author in [AS-p]. We also prove results, analogous to Speiser’s theorem
[Spe35], for Dirichlet L-functions; that is we show an equivalence between the
generalized Riemann hypothesis and the distribution of zeros of L'(s, x). In Section
4.3, we prove some conditional results as shown by the author in [Sur-p2].

4.1 Unconditional results

We have seen in the previous chapter that many results on the zeros of the
derivatives of the Riemann zeta function ((*)(s) are known. Unfortunately, not
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many results are known for L%¥)(s,y). Yildirmm [Y1196b] in 1996, studied many
properties of zeros of L") (s, x). Among them, he [Y1196b, Theorem 2] showed that

L®) (s, %) # 0 for
4k2
Re(s) > 1+ = [ 144/1+ .
2 mlogm

Furthermore he [Y1196b, Theorem 3] proved that for any given € > 0, there exists
a constant K = K} ., that depends only on k, €, and  such that L(’“)(s, X) # 0 in
the region |s| > ¢/, Re(s) < —¢, | Im(s)] > e.

Remark. Since k € {0,1}, it is easy to see that we can take the constant K
described in [Y1196b, Theorem 3] such that it is independent of x.

With the above zero-free regions, Yildirim in [Y1196b] classified the zeros of
L®)(s,x) as:

1. trivial zeros in Re(s) < —¢%, |Im(s)| < ¢;

2. vagrant zeros in |s| < ¢, Re(s) < —¢;

3. nontrivial zeros in Re(s) > —e

(see [Y1196b, the first paragraph in Section 7]).

Based on this classification, in the same paper he [Y1196b, Theorem 4] proved an
estimate of the number of vagrant and nontrivial zeros of L*) (s, x) in | Im(s)| < T,
denoted by Ni(T, x) as follows:

T ¢ T .
Ni(T,x) = - log v + O(q" logT). (4.1)

We shall see in the next section that we can improve these results when k =
1. We can also further improve the error term in (4.1) under the truth of the
generalized Riemann hypothesis (see Section 4.3).

In [Y1196b], Yildirim proved two other results by assuming the generalized
Riemann hypothesis. He [Y1196b, Theorem 1] proved that if it is supposed that
the generalized Riemann hypothesis is true,

1. if k =0 and ¢ > 216, then L'(s, x) has exactly one zero in 0 < Re(s) < 1/2

o 1 log1
+0 (Og—(z)gq> :
log q log” q

2. if k =1 and ¢ > 23, then L'(s, x) has no zeros in 0 < Re(s) < 1/2.

Finally in [Y1196b, Theorem 5], it is proven that there exist only at most finitely
many zeros of L (s, x) in the strip —e < Re(s) < 1/2 under the truth of the
generalized Riemann hypothesis.
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4.2 Improved unconditional results for £ = 1 and
equivalence results

The first aim of this section is to remove the possibility of vagrant zeros of
L'(s,x). In order to state our result precisely, we put

©(x) = sup{Re(p) | p € C, L(p, x) = 0}.
It is easy to check that the following properties hold:
e 1/2<0O(y) <1
e O(X) = O(x)-

e For each primitive Dirichlet character x, the Riemann hypothesis for L(s, x)
is equivalent to O(x) = 1/2.

One of our main results can be stated as follows:

Theorem 4.1. L'(s,x) has no zeros on s € Dy(x) UDs(x), where

Dl<x>={a+it\ag1—@<x>, 1] > }\{pew<p,x>:0},

log q

12
Dy(x) =0 +it|o < —¢, |t| > .
log |o]

Remark. Apparently the constants 6 and 12 in D;(x) and Ds(x) can be replaced
by smaller constants.

Theorem 4.2. For each positive integer j the following assertions hold:

o [/(s,x) has a unique zero in the strip s € {oc+it | =2j — K —1 < 0 <
—2j—k+1, te R}

o L'(s,x) has no zeros on Re(s) = —2j — k + 1.

Let x be a non-principal primitive Dirichlet character. For j € Z>; we denote
the zero of L'(s,x) in {o +it | —2j —k —1 <0 < —2j — k + 1} by a;(x). Then
we have

Theorem 4.3. Retain the notation. Then we have

o0 =200 (i),

where the implied constant is absolute.
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Theorem 4.4. 1. Ifk =0 and ¢ > 7, then L'(s,x) has no zeros on {o + it |
—-1<0<0, teR}.

2. If k =1 and q > 23, then L'(s,x) has a unique zero on {o +it | =2 < o <
0, t € R}.

We remark that from Theorems 4.1-4.4, each zero of L'(s,x) in Re(s) < 0
corresponds to a trivial zero of L(s, x), except for only finitely many zeros. Thus
it is natural to consider these zeros as trivial zeros of L'(s,x). This implies that
we have excluded, for k = 1, the possibility of vagrant zeros stated by Yildirim
in [Y1196b]. In [Y1l96b] the possibility of these vagrant zeros prevents us from
investigating nontrivial zeros of L'(s,x). Hence Theorems 4.1-4.4 allow us to
study nontrivial zeros of L'(s, x), i.e. zeros of L'(s,x) in Re(s) > 0. This is the
second aim of this section. We explain our main results on nontrivial zeros of
L'(s,x) below. For T' > 0 we denote by Ny(7', x) the number of zeros of L'(s, x)
on{o+it|o>0,-T <t <T}, counted with multiplicity. With this notation we
have

Theorem 4.5. Retain the notation above. Then for T > 2 we have
Ni(T,x) = —log 5 — — = + O(m'/log(¢T)),
T

where the implied constant is absolute.

We remark that this notation Ny(7T',x) differs from that defined by Yildirim
in [Y1196b] for £ = 1 since he counted not only nontrivial zeros, but also vagrant
zeros of L'(s, x).

Next we show an asymptotic formula on the sum of the horizontal distance
between nontrivial zeros of L'(s, x) and the critical line Re(s) = 1/2.

Theorem 4.6. Retain the notation. Then for T > 2 it holds that
1 T T T/[1
E B — = :—loglogq——l—— —logm — loglogm
) 2 s 2w \2

qT

2, (4L 1/2
qu(zﬂ)—i—O(m log(¢T)),

where p' = '+ 17y runs over all zeros of L'(s,x) satisfying ' >0 and =T <" <
T, counted with multiplicity and

T du
Li(x) =
i(z) /2 log u

as defined in Theorem 2.4. Here the implied constant is absolute.
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As mentioned in the previous chapter, A. Speiser [Spe35] in 1935 proved that
the Riemann hypothesis is equivalent to the assertion that (’(s) has no non-real
zeros in Re(s) < 1/2. The final aim of this section is to extend this result to L(s, x).
To show our theorems, we first extend a quantitative version of Speiser’s theorem
shown by N. Levinson and H. L. Montgomery in [LM74, Theorem 1]. To state
this result, we denote by N~ (T, x) (resp. Ny (T, x)) the number of zeros of L(s, x)
(resp. L'(s,x)) on{o+it|0 <o <1/2/|t| < T}, counted with multiplicity. Then
we have

Theorem 4.7. For T > 2 we have
N™(T,x) = N (T, x) + O(m"*log(¢T)), (4.2)
where the implied constant is absolute.

Remark. In [GS15, Theorem 1.2] R. Garunkstis and R. Siménas have obtained
(4.2) for fized x. The new element of this section is to give uniform estimates with
respect to .

Theorem 4.8. Let k =0 and g > 216. Then the following conditions (i) and (ii)
are equivalent:

(1) L(s,x) # 0 in 0 < Re(s) < 1/2.
(i) L'(s,x) has a unique zero in 0 < Re(s) < 1/2.

Theorem 4.9. Let k = 1 and ¢ > 23. Then the following conditions (i) and (ii)
are equivalent:

(1) L(s,x) # 0 in 0 < Re(s) < 1/2.
(i1) L'(s,x) has no zeros in 0 < Re(s) < 1/2.

Remark. The implications (i)==(ii) in Theorems 4.8 and 4.9 have been obtained
by Yildirim [Y1196b, Theorem 1] (recall also from Section 4.1). Our contribution
in this section is to establish the implications (ii)==(i).

Theorems 8 and 9 only give us results analogous to Speiser’s theorem [Spe35] for
q large to some extent. However, it is highly possible to formulate similar assertions
for ¢ < 216 (if x is even, or ¢ < 23 if x is odd) by investigating the change in
arg (L'/L)(s, x) on Re(s) = 0 and Re(s) = 1/2 through numerical calculations.

Throughout this section we denote nontrivial zeros of L(s,x) (i.e., zeros in
{oc+it]|0<o<1}) by p=pF+iyand zeros of L'(s, x) by p' = '+ 7. We put
O(x) := sup, Re(p) and cp is the Euler-Mascheroni constant.
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4.2.1 Proof of Theorem 4.1

In this subsection we prove Theorem 4.1. It suffices to show the following:
Proposition 4.10. Re((L'/L)(s,x)) < 0 holds on s € Dy(x) U Da(x).

In order to show Proposition 4.10, we recall the Hadamard product expression
of L(s,x). The logarithmic derivative of the Hadamard product expression for
L(s, x) is given by (see [MV06, Corollary 10.18])

r I (s+x\ 1 ¢ 11
—(s,x :Bx———( )——log——i- < —i——), 4.3
L0 =800 -5 (57) - gt + T )y

s—p

where B(y) is a constant depending only on y, which satisfies

Re(B() = - SRe (1)

We use the Hadamard product (4.3) in the following form.

Lemma 4.11. Suppose that s = o + it satisfies 0 < 1 — O(x) and L(s,x) # 0.

Then we have
L 1 g 1 I (s+k
—— < ——log = — = — . 4.4
Re (Fs0) <5108 - 1re (1 (237)) (14)

Proof. Taking the real part on (4.3),

Re(%(s,x)>——%1og%—%Re<%<S;”))+ 3 0B (4.5)

— pl2°
p=P+ivy s =7l

By the definition of ©(y) and the functional equation, § > 1 — O(x) holds for any
p. Thus we find 0 — f < 0if 0 <1—0(x). This says that the sum over nontrivial
zeros is nonpositive, which is nothing but the result. O

To estimate the digamma function (I"/I')(z) on (4.4), we use the following
inequality:

Lemma 4.12. For z =z +iy with x € R and y € R\ {0} we have

Re (1%(2)) > log |2 — ﬁ (4.6)
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Proof. We start with the logarithmic derivative of the Hadamard product expres-
sion for I'(z) (see [MV06, Equation (C.10) in p. 522]):

Coee S )

n=0

Suppose z = x + iy € C\ (—00,0]. Applying the Euler-Maclaurin summation
formula (that is, [MV06, Theorem B.5 when K = 1]), we have

I ik Log(N -~ _L ! i Uik S
e Zn+z— og(N+2) | =— 0g2+§—/0 ut o (4.8)

n=0

where Log z is the principal logarithmic branch of z. We note that (4.8) with z = 1

implies
1 oy —[u) — 1
=—-— ————=du. 4.
T3 /0 w+1? ™ (4.9)
Inserting (4.8), (4.8) with z = 1, and (4.9) into (4.7), we have
I 1 ©u— [u] — 2
—(2)=1L - — ————2u. 4.1
T (2) 082~ o +/0 (u+ 2)? u (4.10)

Taking the real part, we obtain

I 1 1 ©u—[u] -2
Re | —= =1 — —Re | - R ————2du ). 4.11
(i) e () ()
We consider the case x > 0. Then we have
()t =t
z 2] 7 y|
0 — _1 00 )
Re(/u [u] Qdu) Sl/ du Sl/ du _ T
o (ut2)? 2Jo futzP72)y wrt+y? A4yl
Inserting these into (4.11), we obtain

v 1 7\ 1
) >logle - (=4 5) =
Re(io)) 2 meled = (54 7) 3

This yields the result in the case x > 0.
We consider the case x < 0. In this case Re(1/z) is negative. We also note
that a standard estimate gives

©u—[u] -1 L[> du T
R S s P | -
‘(/ (u+ 2)? “)‘—2/_oou2+y2 2ly]

Applying these to (4.11), we obtain the result in the case z < 0. O
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Proof of Proposition 4.10. Suppose that s = o + it satisfies 0 < 1 — ©(x) and
L(s,x) # 0. Inserting (4.6) into (4.4),

L 1 q(s + k) T
Re | = < —Clog|LETEN LT
¢ (L(S’X)) =72 oy ol1]
Thus we obtain the following inequalities:
L 1, qlt|] =«
Re | — < —=log—+ — 4.12
e(Flon) < —zlos D0+ o1 (4.12)
L 1. qlo+kl
Re [ — < —=1 —. 4.13
e(Fon0) < —grop 1054 E (4.13

If |t] > 6/log g, then (4.12) is bounded above by
m

1 1 1
< —= (1 — Z) logq+§10glogq+§log 3

2 6

Since z“ > aelogx for x > 1 and a > 0, this is

1 T 1 1 s
< ——1 (1——)——+—1 — < —0.106.
2og 6 5 20g3< 0.106

This confirms that Re((L'/L)(s, x)) is negative on s € D;(x). It is easy to check
from (4.13) that Re((L'/L)(s, x)) is negative on s € Dy(x), whose detail is omitted.
[l

Proof of Theorem 4.1. Theorem 4.1 is an immediate consequence of Proposition

4.10. [l

4.2.2 Proof of Theorem 4.2

In this subsection we prove Theorem 4.2. First of all we show

Proposition 4.13. Keep the notation in Theorem 4.2. Then for each j € Z>1,
Re((L'/L)(s,x)) < 0 holds on Re(s) = —2j — k + 1.

Proof. We start with the logarithmic derivative of the functional equation for
L(s,x), which can be written as (see [MV06, p. 352])

L L _ qg I ™ m(s+ K

We take j € Z>1, t € R and put s = —2j — k+ 1+ it on (4.14). Then we take the
real part. Since the last term on (4.14) is purely imaginary on Re(s) = —2j —k+1,
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we have

L/
Re (f(—2j — K+ 141t X))

I . r (4.15)
— —Re( =2 +r—it,%)) —log L —Re [ —=(2j+r—it)).
Re(L<j+f<é zt,x)) 0g - Re(r(j—l—/@ zt))

Firstly we treat the first term on the right. Taking the logarithmic derivative of
the Euler product for L(s,X), in Re(s) > 1 we have

L’ )1
N=- > ;f _;gp (4.16)

p:primes

Thus we put s = 25 + k — it and estimate it trivially, so that

L. . o logp
q

Next we deal with the last term on (4.15). It follows from (4.7) that for z = = + iy
withz >0,y e R

I’ r’ g
R > 0. 4.18
e(F<>> —Y — (n+2) n+x) + 2}~ (4.18)

Thus, putting * = 25 + x and y = —t, we see that

, 2j4r—1

I r 1
Re (F@j +rK— zt)> > F(2j + k)= —cp + 2 o (4.19)
Applying (4.17) and (4.19) to (4.15), we obtain
L/
Re(F(-2j—n+14+i0) < Algrif) + Blami) (420)
where
2j+k—1 1 q
Alg, k3 j) = cp — ; ——log__,
log p
B(Q7I€ ‘]> ZPQJ-FH_ 1

We consider the case k = 1. Since ¢ > 3 and j > 1, we have

3 3
Alg.1: 1) < ep — 2 —log — < —0.1
(¢,1;4) < ce 5 —log 5 < —0.183,
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< 0.165.

log p
pP—1

B(g,1;5) <)

This implies the desired result when x = 1.
We treat the case Kk = 0. We note that x = 0 implies ¢ > 5 and that there are
no primitive Dirichlet characters modulo 6. When ¢ > 8 and j > 1, we have

8
A(q,0;7) <cg—1—log o < —0.664,
T

1
B(g.0:) <Y pfgpl < 0.570.
p

When ¢ =7 and j > 1, we have
. 7
A(7,0;j) <cg—1—log 5= < —0.530,
s

B(7,0;5) <>

p#£T

log p
pP—1

< 0.530.

Thus when ¢ > 7 and x = 0, we obtain the desired result.

It remains to show the assertion in the case ¢ = 5 and k = 0. Then y is deter-
mined uniquely and given in terms of the Kronecker symbol by x(n) = xs(n) :=
(%) For j > 2 we have

11 5
A(5.0:7) < — — —log— < —1.027
( ; ?.7) >~ Cg 6 0og o < )

1
B(5,0:5) <Y pfgipl < 0.062.
p#5

Thus we obtain the desired result in the case j > 2. We consider the case j = 1.
Since x5 is real, Re((L'/L)(—1+1it, x5)) = Re((L'/L)(—1—1it, x5)) holds for t € R.
Thus it suffices to show that Re((L'/L)(—1+it, x5)) is negative for ¢ > 0. For this
purpose we use (4.15) with y = x5 and j = 1:

L , r , 5 I )
Re (f(_l + it, X5)) = —Re (E(Q —it, X5)) —log 97 Re (F(Q — zt)) .
(4.21)
First of all we treat the case ¢t > 3/2. By the same manner as (4.17) we have

r 1
Re (—(2 — it X5)> ’ <> 2L < 0.502. (4.22)
L P#S p L
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It is easy to see that the right-hand side of (4.18) is monotonically decreasing on
y < —3/2, so that

Re (%(2—%)) > 1—cE+Z; (n+2>{(ni2)2+9/4} >0.7523  (4.23)

holds on t > 3/2. Here in the first inequality we used (I"/I')(2) = 1 —cp. Inserting
(4.22), (4.23), and —log(5/2m) < 0.2285 into (4.21), we see that Re((L'/L)(—1 +
it, x5)) is negative for t > 3/2.

Finally we treat the case 0 < t < 3/2. We deal with the first term on the
right-hand side of (4.21). Using (4.16), we compute Re((L’/L)(s, x)) numerically
at some points on Re(s) = 2 as follows:

I/ I/ .
Z(2,vs) > 0.2869,  Re (f (2 - % X5>) > 0.2527,

L

L. L 5.
Re ( 7(2~1.xs) ) > 0.1686, Re (7 (2-7ixs) ) >01188,  (4.24)

L
L 11 L 3.
Re (f (z _ g@,m)) - 0.0936.  Re (f (2 - §z,x5)) > 0.0688.

We note that for t € R and t5 € {0,1/2,1,5/4,11/8,3/2}
L L t L !
Re | —(2 —it,x5) | = Re | —(2 — ito, x5) —|—Im/ — ) (2—1v, x5)dv. (4.25)
L L W \L

Numerical computation gives that for v € R
1A% p_*(log p)*
— ) (2—1 < E —— < 0.7721. 4.26
(L> ( v, X5)| < g (1—p2)2 ( )

We see from (4.24), (4.25) and (4.26) that Re((L'/L)(2 — it, x5)) > 0 for 0 <t <
3/2. This together with (4.18) and (4.21) yields

27
for 0 <t < 3/2. This completes the proof. O]

L )
Re (f(_l +it,X5)) < —log— —14+cg < —-0.1943 <0

Proof of Theorem 4.2. Let j € Z>;. Proposition 4.13 implies that L'(s, x) does
not vanish on Re(s) = —2j — k — 1. We show that L’(s, x) has a unique zero in
the strip —2j — k — 1 < Re(s) < —2j — k + 1. We take the path determined by
the rectangle with vertices at —27 — x &1 4-10007. Then by Propositions 4.10 and
4.13 we find that Re((L'/L)(s, x)) is negative on the path. Thus the argument
principle gives that the number of zeros of L'(s, x) inside the path equals that of
L(s,x). Since L(s, x) has a unique zero s = —2j — « inside the path, L'(s, x) has
also a unique zero inside the path. This together with Theorem 4.1 gives the first
claim of Theorem 4.2, which completes the proof. O]
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4.2.3 Proof of Theorem 4.3

In this subsection we prove Theorem 4.3.

Proof of Theorem 4.3. We take ¢ € (0,1/2). Let C = C;. be the path determined
by the circle centered at —2j — k with radius €. Then it is easy to see from (4.14)
and Stirling’s formula that

Re (LZI(S,X>) — _log(jq) + Re (%) L o)

holds on s = —2j — k +n € C, where the implied constant is absolute. Suppose
that jq is sufficiently large and we choose ¢ = 2/log(jq). Then we find that
Re((L'/L)(s, x)) is negative on s € C. Thus the argument principle says that

there is a unique zero of L/(s, x) inside C thanks to the trivial zero s = —2j — &
of L(s,x). Since the zero of L'(s,x) inside C coincides with «a;(), we obtain
laj(x) + 275 + k| < 2/log(jq). This completes the proof. O

4.2.4 Proof of Theorem 4.4

In this subsection we show Theorem 4.4. Roughly speaking, our strategy of the
proof is to show Re((L'/L)(s,x)) < 0 on Re(s) = 0 by (4.4). For this purpose we
show the following inequality:

Lemma 4.14. (I"/I')(x) is monotonically increasing on x > 0. Furthermore, for

z € [1— 1555, 1] we have /

r
—0.58 < F(I) < —cg.

Proof. In view of (4.7) it is trivial that (I"/I')(x) is monotonically increasing on
x> 0. This implies that (I"/T')(z) < (I'/T)(1) = —cg on @ € [1 — 155, 1], which
is nothing but the second inequality. On the other hand, we have (I'/T")(z) >
(T"/T)(1 — 1555) on @ € [1 — 1555, 1]. Computing (4.7) numerically at s = 1 — 55,

we have (I'/T)(1 — g55) > —0.5789. This gives the first inequality. O

Proof of Theorem /.4. First of all we consider the case xy(—1) = 1. We take any
d € (0,1/2000). We take the contour C determined by the rectangle with vertices
at —1 410004, £1000; with a small left-semicircular indentation e (¢ : 37 /2 —
7/2). We shall prove that Re((L'/L)(s,x)) < 0 holds on s € C. We have already
shown in Propositions 4.10 and 4.13 that Re((L'/L)(s,x)) < 0 on {o £ 1000: |
-1 <o <0}U{—1+it||t]| <1000}. We consider the case that s = o + it is on
the right side of C. We begin with the inequality (4.4). Since o < 0, we have

w(F ) - (F o) )= (FG-))
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(4.18) and Lemma 4.14 yield

I" /s I o
—(2))>=(1-%) > 058
Re(r (2))—F( 2)— 058
We apply this to (4.4). If ¢ > 7, we have
L 1 7
— <0.29 — -log— < —0.11 .
Re(L(s,X)>_O 9 5 log — < 0.110<0

As the above discussion, we see Re((L'/L)(s,x)) is negative on s € C. Since
(L'/L)(s,x) has no poles inside C, the argument principle says L’(s,y) has no
zeros inside C. Since 6 € (0,1/2000) is arbitrary, this implies the result when
x(—1) =1

Next we treat the case xy(—1) = —1. We take the contour C determined by the
rectangle with vertices at —2 £ 10007, +=1000:. Then we have already shown that
Re((L'/L)(s,y)) < 0 holds on s € C\ [~10004, 1000i]. Let ¢ € [~1000, 1000]. Then
in the same manner as the case xy(—1) = 1, (4.4) gives

L 11" /1 1 q
“ <= (=) =zl 4.2
Re(L(Zt,x))_ 2F<2> 5108 — (4.27)
Since (IV/T')(1/2) = —2log2 — cg, (4.27) is negative provided g > 4me’® =
22.38.... Thus Re((L'/L)(s,x)) < 0 holds on s € C if ¢ > 23. Applying the

argument principle and taking the trivial zero s = —1 of L(s, x) into account, we
see that L'(s, x) has a unique zero inside C. This completes the proof. ]

4.2.5 Proof of Theorems 4.5 and 4.6

In this subsection we show Theorems 4.5 and 4.6.
For short we write the functional equation for L(s, x) as L(s, x) = F(s, x)L(1—
$,X), where

F(s,x) = e(x)2°7* gz * sin (@) T'(1-—s).

Here () is a constant depending on y, which satisfies |¢(x)| = 1. We also define
G(s,x) by

mS

Gls,x) = ~ x(m)logm

L'(s,x).
First of all we show

Lemma 4.15. For s = o + it with o > 2 and t € R we have

g

IG(s,y) —1] <2 (1 + 8%”) exp (—%) .
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Proof. By the Dirichlet series expression for L(s, x) we find

o0

m® x(n)logn
G(s,x) =14 ———— E el =
(5,) x(m)logm B PR
Thus we have
me = logn
G -1 < E . 4.28

We divide the sum inton = m + 1 and n > m + 2. The sum over n > m + 2 is
estimated as follows:

= 1 > ]
Z ogn < / og U

n=m-+2

(m+1D'"log(m+1) (m+1)'7°

o—1 (0 —1)2
< 2(m + 1) log(m + 1)
- o—1 '

Inserting this into (4.28), we have

logm m+1 o—1

h (4.29)
8m m
<2 (1 n —> <—) .
o m+ 1
Since log(1 4+ z) > /2 on x € [0, 1], we find
m )’ log ( 1+ L <e ( o )
——— | =exp| -0 — xp (——).
m+1 P & m = P 2m
Applying this to (4.29), we obtain the result. ]
By Lemma 4.15 we have
G(s,x) — 1] < 4 ( “) (4.30)
s,X) — exp | —=— .
» X > P om

for 0 > 10m. In particular G(s, x) has no zeros on o > 8m.
Let b, € {1+ k,3+k}, T >2and U > 10m. We apply the Littlewood lemma
(see Lemma 2.2 or [Tit39, Section 3.8]) to G(s, x) on the rectangle with vertices

o6



at —b, =7 and U % ¢T'. Taking the imaginary part, we have

oY (b

p'=B8"+iy
B'>—bk,—T<~'<T
T T
:/’mgcem+uwmﬁ—/‘mgmU+uwwu (4.31)

- -

U U

+ / arg G(o + 4T, x)do — / arg G(o — iT, x)do.
—b. —bs

Here we determine the branch of log G(s, x) such that it tends to 0 as 0 — oo and it
is holomorphic in C\{p'+X | L'(p, x) = 0, A < 0}. When there are zeros of L'(s, x)
on Im(s) = £7, we determine arg G(o £iT") = lim. g arg G(o £ (T +¢)). Thanks
to (4.30), the second integral on (4.31) tends to 0 as U — oo. We also note that
Theorems 4.1, 4.2, and 4.4 give #{p' = p'+iy" | L'(p',x) =0, —b, < ' <0} <« 1,
where the implied constant is absolute. Combining these, we obtain

2 Y (B Ab)=L+1 — I, +0(1), (4.32)

o' =p'+iv
B'>0,-T<y'<T

where I, = I,(be, x,T) and I = I (b, x, T) are given by

T
A—/l%mem+m@w,

-7
IF = / arg G(o £ 1T, x)do.
by
We deal with ;. By the definition we have

T
I, = —2T'(b, log m + loglog m) + / log |L'(—b, + it, x)|dt. (4.33)

-T

We divide the interval ¢ € [T, T] into |¢t| < 20,20 <t < T, and =T <t < —20.
Firstly we consider the case [t| < 20. We have

log |L'(—b, + it, x)| = log | L(—b, + it, x)| + log

L

By the functional equation, the first term on the right is (1/2 + b,)loggq + O(1)
uniformly on [t| < 20. We see from the functional equation together with the
discussion in Section 4.2.2 that the second term on the right is O(loglogq) on
|t] < 20. In consequence we obtain

20
/1%w@m+wmw<mw. (4.34)
—20
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Next we deal with the integral over 20 < ¢ < T. By the functional equation we
have

T
/ log | L'(—by + it, x)|dt
20

T T /
:/ 1og|F(—b,,i—|—it,X)|dt+/ log —(—b,.;—i—z't,x)‘dt

20 20 F

. (4.35)
+ / log [L(1 + b, —it, x)|dt

20

T 1 L/

log |1 — Z (14 b, —it.y)| dt.

+/20 I ) [ NN B AR ’O‘

By Stirling’s formula we have

1 t 1
log |F(—=b, +it, x)| = (5 + b,,i) logzq—ﬂ + O <¥> ,

so that
4 _ 1 qT
/ log |F'(—byx +it, x)|dt = 3 + b, ) | T'log o T )+ O(log(qT)). (4.36)
20 T

In a similar manner, Stirling’s formula for (I/I")(z) gives
/

F qt 1
_ —b,{ 't7 :—1 —_— O — .
7 (Zbx+it,x) 0g o+ (t)

Thus we have

T |\F
/ log
20

2 (b + it dt:/ log log Lt + (/ —) 4.37
F * 20 &8 o 20 tlog(qt) (

Integrating by parts, we see that the first integral on the right turns to

T
t T 2 T
/ log log P gt = T log log =Ty (q_> + O(loglog q).
2 2m 2 q 2m
We easily see that the last term on (4.37) is O(loglog(¢7T')). Combining these, we
obtain

! T 2 T
—(—by +it, X)' dt = T'log log L (g ) +0O(loglog(qT)). (4.38)

rF
log —— —
/20 F 2r ¢ s

We see from the Dirichlet series expression for log L(s, ) that

T
/ log |L(1 + b, —it,X)| < 1. (4.39)
20

We treat the last term on (4.35). Firstly we show the following:
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Lemma 4.16. For s = o + it with 0 < —1 and t > 20 we have
1 L

- s v)| <9
e £ e <
Proof. We have

F’ B qg 7 (s + k) I

Below let s = 0 + it with 0 < —1 and ¢t > 1. It is easy to see that

T ot (s + k) +7T_i
2 2 2

We estimate the last term. We start with (4.10). Integration by parts gives

/°°u—[u]—% 1 ¥ By(u—[u])
o

u+ 2)? T T2 o (u+2)3

< (4.41)

emt —1°

for 2 = x + 4y with > 1 and y € R, where By(X) = X? — X + % is the second
Bernoulli polynomial. Estimating it trivially, we find

/oou_[u]—gd o1 +1/oo du
u — —_—
0 (u+ z)? 12122 6 Jy |u+z)?

SRRy
TI2[22 0 6 )y (u+ |2[?)32
B 1

A

This gives

I 1 1
—(1 —s) — Log(1 — < )
g sl —Los(l=s) < sp—o+ I

Inserting (4.41) and (4.42) into (4.40), we obtain

(4.42)

- L T < — .
FEX) tloe—0 —+ 1< o+t

‘F’ q(l1—s) mi T 1 1

This implies
F’ F’ gt T 1 1
- > |Re [ — Slog T _ - _ -
F(S’X>‘_‘ e(F(S’X))‘—ngw et —1 2t A

Next we deal with (L'/L)(1 — s,X). Using the Dirichlet series expression, we have

L logn _ log2 *logu
L (1 S’X)‘ - Z nl-o — 21-0 /2 ul=o du

n=2

29



< (1 +;log2> 2.

Taking ¢ > 3 into account, we see that

qt s 1 1 3
log— — ————— ——>1+ =log2
0 et 1 wu i 2%
holds if ¢ > 20. This completes the proof. O]
By Lemma 4.16 we can determine the branch of
1 L
log (1———(1—5,%) (4.43
FFE0 LY )

such that it is holomorphic in a region including {o + it | ¢ < —1,¢ > 20} and
it tends to 0 as 0 — —oo. We apply Cauchy’s theorem to (4.43) on the triangle
joining —b,, 4+ 207, —b,, + T, and —T +iT. Lemma 4.16 says that (4.43) is O(27)

on the triangle. This gives
T
log |1 — - —(1+0b, —it, )| dt < 1. 4.44

L e~ e V) .

Inserting (4.36), (4.38), (4.39), and (4.44) into (4.35), we obtain

1 L

T
/ log | L'(=by + i, x)|dt
2

0
1 qT ql' 2w _. (4T
==+, Tlog— — T Tloglog — — — Li | — O(1 T)).
(2+ )( 08 o )+ oglog 5 - =~ 1(27)—1- (log(qT))
(4.45)

Since |L'(3,%)| = |L/(s, x)|, we obtain the same formula as (4.45) for the integral
over [T, —20]. Applying these and (4.34) to (4.33), we reach
1 qT
I =2 §+b,i Tlog2——T — 2T'(b, logm + loglogm)
7r

47 (qT

- (4.46)
+ 2T log log g— Y Li —) + O(log(qT)).
™

2

Next we deal with I5*. For this purpose we give the following bounds for
arg G(o £ 1T, x):

Proposition 4.17. For T > 2 we have

exp(—o/(2m)) if 10m < o,
arg G(o £iT, x) < { m/o if 3< o0 <10m, (4.47)
m'/?1og(qT) if =5 <o <3,

where the implied constant is absolute.
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In order to show this, we collect consequences of well-known facts. First of all
we recall estimates for G(s, x).

Lemma 4.18. For s = o + it with —10 <o <3 and t € R we have
G(s,x) < (q7),
where T := |t| + 2 and the implied constant is absolute.

Proof. Cauchy’s integral formula gives

1 L(w, x)
L = — — = dw. 4.4

(57 X) 271 /|w—s|:1 (w - 8)2 v ( 8)
According to [MV06, Corollary 10.10 and Lemma 10.15], L(s, x) < (¢7)* holds

for —11 < 0 < 4 and ¢t € R. Inserting this into (4.48) and using m < logq, we
reach the result. O

Next we recall the following formula:

Lemma 4.19. Fora > 0 and b > 0 we have

2

1 1 a+va2—b2 ; b
il 10g|a+bcos@|d6?:{Og a>?o,

2

27 Jo log(b/2) if a <b.

Proof. We calculate the left-hand side as

1 2m
—/ log |a + bcos 6|do
2w Jo

1 271'1 +b€i9 + e—i@
= — ogla+b———
or Jy 8 2

1 b + ! /%l
=log | = — 0
&\2) Taor ), B
We put oy = —% + /(%)? — 1, which are solutions of X?* + %aX +1=0. By
Jensen’s theorem (see Lemma 2.1 or [Tit39, Section 3.61]), (4.49) turns to

do (4.49)

. 20 .
20 4 %e’e + 1’ do.

b
= log (5) +log* Ja |+ log* |a_|,

where log" x = max{logz,0}. We easily check that |a,| < 1 and |a_| > 1 when
a > b and that |ay| =1 when a < b. This completes the proof. O

Now we are ready to prove Proposition 4.17. In the proof below ¢y, cs, ... are
positive constants independent of any parameters.
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Proof of Proposition 4.17. We see from G(3,%) = G(s, x) that arg G(o —iT, x) =
—arg G(o +1iT,%). Thus it suffices to show (4.47) for arg G(o + 4T, x) only. Thus
we concentrate on arg G(o+1i7), x) below. We also note that (4.47) is an immediate
consequence of Lemma 4.15 or (4.30) when o > 10m.
Let 0 € [—10,10m]. We put h := #{z € [0,10m| | Re(G(¢ +iT,x)) = 0}.
Then we see that arg G(o + T, x) < (h+ 3/2)x. In order to estimate h, we put
G(z+1iT,x)+ G(z —iT,X)

H(z,x) = 5 :

For r > 0 we denote by n(r) the number of zeros of H(z,x) on |z — 11m| < r,
counted with multiplicity. Since H(z, x) = Re(G(z+1T\, x)) for z € R, we see that
h < n(R), where

R:=11m —o.

We see from the above discussion that
arg G(o +1iT, x) < n(R). (4.50)

Below we estimate n(R). We take Ry > 0. Then by Jensen’s theorem we have

R+Ro n(r) 1 2 '
/ dr = by log |H(11m + (R + Ry)e™, x)|df — log |H(11m, x)|.
0 r T Jo

Since n(r) is nonnegative and monotonically increasing, the left-hand side is bounded

below as R+Ro TL(T') R+Ro n(r) RO
/ —Zdr > / ——=dr > n(R)log <1 + E) )
0

T R T

Combining this with log |H(11m, x)| = O(1), which follows from (4.30), we have

1 1 2m ]
R<—— (= log |[H(11m + (R+ Ry)e", x)|df +¢; ). (451
") < ot (o [ Rl (R4 R) i+ ) (05

First of all we consider the case 3 < o < 10m. In this case we restrict Ry by
0< Ry <o—2. (4.52)

Then we note 11m — (R + Ry) > 2. We see from Lemma 4.15 that

1 27 )
%/ log |H (11m + (R + Ry)e™, x)|do
0

< 1 2“1 m
— 0
— 27 Jo & 1im + (R+ Ry)cost

do + Co.
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By Lemma 4.19, this is

11m
< logm — log 5 + o < c3.

We also note that the restriction (4.52) implies 0 < Ry/R < ¢4, so that log(1 +
Ro/R) > Ry/R. Combining these, we obtain

R

Taking Ry = 0 — 2, we obtain n(R) < m/o. This together with (4.50) completes
the proof when 3 < o < 10m.

Finally we deal with the case —5 < ¢ < 3. In this case we choose Ry = 5. In
order to estimate the integral on (4.51), we divide [0, 27| = Z; U Z,, where

Z, :={0 €10,2n] | 11lm + (R + 5) cos 0 > 2},
Ty :={0 € [0,2n] | 11lm + (R + 5) cos 6 < 2}.

We take 6, € (0,7/2) such that

g _ m—2
costy = ———
Then we have Z; = [0,7 — 6] U [1 + 6p,27] and Zo = (7 — Oy, 7 + 6p). Since
cosfp =1+ O(1/m) and cosfly = 1 — 2sin?(fy/2), we see that

0o = O(m~Y/?). (4.53)

We deal with the integral over Z;. By Lemma 4.15 we have

1 4
Py log |H(11m + (R+5)e, x)|d6
h . (4.54)
< logm—z— log |11m + (R + 5) cos 0|df + c5.
T J1,

We see from Lemma 4.19 together with R + 5 > 11m that

1
Py log [11m + (R + 5) cos 6|d#

T™J
R+5
2

1 7T+90
= log —/ log [11m + (R + 5) cos 0|d6
27T m—00

> logm — b log(30m).
T
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Inserting this into (4.54) and using (4.53), we obtain

1 .
— [ log|H(11m + (R +5)e™, x)|df < cg.
2 o)

Next we treat the integral over Z,. By Lemma 4.18
H(11m + (R +5)e”, x) < (¢T")*

holds on 0 € Z,, where T" := max{T, m}. This together with (4.53) yields

1 .
Py log |H(11m 4 (R + 5)e®, x)|df < c;m™*1og(¢T").
T J1,

Inserting this and log(1 +5/R) > 1/R > 1/m into (4.51), we obtain
n(R) < m(m~Y?log(qT") + 1) < m*?log(¢T") < m'/*log(qT). (4.55)

Here in the second inequality we used m < logq. In the last inequality we also
used log(q7T") < log(qlogq) < logq < log(¢qT) when T' < m. Applying (4.55) to
(4.50), we reach the result when —5 <o < 3.

The proof of Proposition 4.17 is completed. O

Proof of Theorem 4.5. Subtracting (4.31) with b, = 14k from that with b, = 3+x,
we have

47TN1(T7 X) - (Il(?) + IﬁX:T) - Il(l + R7X7T))
+ (LB +rxT) = I (1 +k,x,T))

By (4.46) we have

T
L3+ r,xT) = {1+ kX, T) = 4Tlog o~ — 4T + O(log(qT)).
T
On the other hand Proposition 4.17 gives
—1-k
I3+ rx,T) = Iy(1+k,x,T) =/ arg G (o 4T, x)do
—3—K

< m'?log(qT).

Combining these, we obtain the result. O]
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Proof of Theorem 4.6. We start with (4.32). We estimate I = I (b, x,T). By
Proposition 4.17 we have

IE < mlogm +m'?log(qT) < m'*log(qT). (4.56)

Here in the last inequality we used m < logg. We also note that

or Y (B +0be)

o' =B+iy
B'>0,—T<y'<T

1 1
— E ' /
=27 ‘ (ﬁ —5) + 27 (b,@—i‘é) Nl(T,X)
Plzﬁ/‘H'Y/
B'>0,—T<y'<T

Applying Theorem 4.5, (4.56), and (4.46), we complete the proof. ]

4.2.6 Proof of Theorems 4.7, 4.8, and 4.9

In this subsection we show Theorems 4.7-4.9. First of all we investigate the
sign of (L'/L)(s, x) on Re(s) = 1/2. For convenience we put

T =T =R\ {t€R|L(1/2+it,x) = 0}.

Lemma 4.20. Let x be a non-principal primitive Dirichlet character. Then for

teT o /1

holds if one of the following conditions holds:
1. k=0 and q > 216.
2. k=0 and |t| > 2.
3. k=1 and qg > 10.

4. k=1 and |t| > 3.

Proof. We begin with (4.5). Since L(s,x) = F(s,x)L(1 — s,X) and L(3,Y) =
L(s,x), each zero of L(s,x) in Re(s) > 1/2 can be written by 1 — p uniquely,
where p = [+ iy is a zero of L(s,x) in 0 < § < 1/2. Furthermore, routine
calculation gives

o—pf o—(1-75)
5= s —(-p)

(0 =32 =(B—3)*+({t—)?
|s = pl?ls = 1 +p[?

= (20 —1)
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Applying these to (4.5), for s = o + it with L(s, x) # 0 we find

Re (%(s,x)) - —%log% - %Re (FF (S JQF ”)) + <a - %) J(s,x), (4.58)

where

BRI GV ViR ek

s = pPls — L+ 7P

Thus, for t € T we have

L /1 . I /1 &k it
Re(F (5 i) =gt -gre(p (5+5+5)). 4

We note that the right-hand side is an even function with respect to t. Therefore
we concentrate on t > 0 below. Let ty € [0,00). Since the right-hand side of
(4.59) is monotonically decreasing on ¢ > 0 thanks to (4.18), it holds that for
t € T N [ty,00) we have

/1 1 ' (1 K it
il < —Zlogd _Z S o)) 4,
Re(L (2+zt,x)> 2og Re(F <4+2—|— 2)) (4.60)

We take to = 0. Then we see that (4.57) holds for ¢t € T provided

g > Texp (—% G n g)) . (4.61)

By [GR00, 8.366.4 and 8.366.5] the right-hand side of (4.61) equals

9215.3... ifk=0,
= 81 exp <CE + (—1)“%) - {9 ] e

Thus (4.57) holds if the condition (1) or (3) is satisfied.
We go back to (4.60) and consider the case k = 0. In this case ¢ > 5 holds. We
have

5
log — > 0.46.
T

On the other hand by numerical computation together with (4.18) and [GROO,
8.366.4] we find

re (= (1)) = _cE——_310g2+Z SN R
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> —0.04.

Here in the last inequality we discard the sum over n > 5 and carry out a numerical
calculation. Combining these and (4.60), we see that (4.57) holds if the condition
(2) is satisfied.

Finally we treat the case K = 1. We note that x = 1 implies ¢ > 3. In a similar
manner as the case k = 0 we find

3 I /3 3
log — > —0. d —|-+—= 37.
ng> 0.05 an Re(F (4+2>)>037
This together with (4.60) says that (4.57) holds under the condition (4). O

As was mentioned in the remark below Theorem 4.7, (4.2) has already been
established in [GS15] for ¢ < 216. Thus, when we show Theorems 4.7-4.9, we may
assume one of the following conditions:

e k=0 and g > 216,
e x=1and g > 23.

We temporarily fix x and 7' > 2. Let py = 1/2 + iy be a zero of L(s,x) with
—T < vy < T. Then thanks to (4.58) together with the above assumption on
q, there exists € > 0 such that Re((L'/L)(s, X)) is negative on the left semicircle
{s=0+it||s—po| =¢,0 <1/2}. Thus, considering the discussion in Section
4.2.4, Lemma 4.20 and the above discussion into account, we see that there exists
a rectangle R with vertices £¢7" and 1/2 £ ¢T" having small left semicircles at zeros
of L(s, x) on Re(s) = 0 and Re(s) = 1/2 such that Re((L'/L)(s, x)) is negative on
the vertical sides of R. We apply the argument principle to (L'/L)(s,x) on R. In
consequence we obtain

1 L

_ _ 1 ifk=0,
_ARarg_(SaX) = Nl (T7X) -N (T7X) - {

4.62
0 ifk=1. ( )

2 L

Here we used the fact that s = 0 is a trivial zero of L(s, x) if K = 0. Based on
(4.62), we show Theorems 4.7-4.9 below.

Proof of Theorem 4.7. Since Re((L'/L)(s,x)) < 0 on the vertical sides of R, the
continuous variation of arg(L'/L)(s, x) along each vertical side is O(1). Next we
investigate the horizontal sides. We have

L/ = s=iT s=1
arg f(sa X) = arg L/(3> X)‘s:1/2+iT — arg L(s, X)|5=1€2+¢T . (4.63)
s=1/2+4T
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The continuous variation of arg L'(s, x) from s = 1/2+44T to s = iT equals that of
arg G(s, x), where the branch of arg G(s, x) is determined in the same manner as in
Section 4.2.5. Combining Proposition 4.17, we see that the variation of arg L'(s, x)
on (4.63) is O(m'/?1og(qT)). On the other hand it is well-known that the last term
on (4.63) is O(log(¢T)): see [MV06, Lemma 12.8] for example. In summary we see
that (4.63) is O(m'/?1og(qT)). In the same manner the variation of arg(L'/L)(s, x)
from s = —iT to s = 1/2 —iT is O(m'/?log(qT)).
By the above discussion we conclude that the left-hand side of (4.62) is

O (ml/2 log(qT))
as desired. O

The following proposition is a key point to show Theorems 4.8 and 4.9:

Proposition 4.21. Let x be a fived primitive Dirichlet character satisfying k = 0
and ¢ > 216, or k = 1 and q > 23. Then at least one of the following assertions
holds:

1. There exists Ty = To(x) > 0 such that N~(T,x) > T/2 for any T > Ty.

2. There exists a sequence {T;}52, such that Ty — oo as j — oo and

1 if k=0,

Ny (T3, x) = N7 (T3, x) + {0 i1

holds for any j € Z>1.

Proof. First of all we suppose that there exists a sequence {7}}32, such that
Re((L'/L)(c £iT},x)) < 0 holds for any j and ¢ € [0,1/2]. Then for any j,
Re((L'/L)(s, x)) is negative on R with 7" = T;. This implies that the left-hand
side of (4.62) is 0 when 7" = T}. In this case the assertion (2) in Proposition 4.21
holds.

Next we suppose that {7;}32, with the above property does not exist. Then
for any sufficiently large ¢ there exists o € [0,1/2] such that Re((L'/L)(o + it, x))
or Re((L'/L)(o — it, x)) is nonnegative. By Stirling’s formula the first two terms
on the right-hand side of (4.58) are negative for s = o + it or s = ¢ — it. Thus
J(o +1it, x) or J(o —it, x) has to be negative. This implies that there exists a zero
p = [+ iy of L(s, x) with 5 < 1/2 satisfying

(ﬁ—%)2>(a—%)2+(t—7)2 or (ﬁ—%)2>(0—%)2+(t+7)2.

This yields [t —v] < 1/2 or |t+7| < 1/2. We take t as a sufficiently large integer n.
Then we see that there exists at least one zero p = 5+ iy of L(s, x) with 8 < 1/2
and n —1/2 <|y| < n+1/2. In summary we obtain N~ (T, x) > T+ O,/(1). This
implies the assertion (1) in Proposition 4.21. O
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Proof of Theorems 4.8 and 4.9. As was mentioned in the remark below Theorem
4.9, Yildirim [Y1196b] has already established the implications (i)==-(ii). We sup-
pose (ii). Then we see from the assumption (ii) and Theorem 4.7 that N (T, x) =
O, (log T'). This implies that the assertion (1) in Proposition 4.21 cannot be satis-
fied. Thus the assertion (2) in Proposition 4.21 holds. Using the assumption (ii)
again, we see N~ (T}, x) = 0 for any j, which is nothing but (i). O

4.3 Results obtained under the truth of the gen-
eralized Riemann hypothesis for £ =1

In this section, we extend the results of Akatsuka [Akal2, Theorems 1 and 3],
introduced in the previous chapter, to L'(s, x).

Throughout this section, we retain some notation defined in the previous section
with a slight modification for zeros of L'(s, x): Welet p = f+iy and p' = '+ v/
denote the zeros of L(s, x) and L'(s, x) in the right half-plane Re(s) > 0. We know
that L(s,x) has only trivial zeros in Re(s) < 0 (see Chapter 2 Section 2.3). We
remark that zeros of L'(s, x) satisfying Re(s) < 0 can also be regarded as “trivial”
zeros (see Theorems 4.1, 4.2, and 4.4 in the previous section or [AS-p, Theorems
1, 2, and 4]). We define Ny(7T,x) for T > 0 as the number of zeros of L'(s, x)
satisfying Re(s) > 0 and | Im(s)| < T, counted with multiplicity. Recall also that
Li(z) is as defined in Theorem 2.4.

Our main theorems in this section are as follows:

Theorem 4.22. Assume that the generalized Riemann hypothesis is true, then for
T > 2, we have

1 T T T /(1 2 T
Z B —= :—loglogq——i-— —logm — loglogm | — —Li 4=
2 T 2w\ 2 q 27

p'=B'+iy,
Iv'I<T

+0 (ml/Q(log log (¢T))% + mloglog (¢T) + m'/?log q) ,
where the sum 1s counted with multiplicity.

Theorem 4.23. Assume that the generalized Riemann hypothesis is true, then for
T > 2, we have

T
Nl(T,X):;log +m1/210gq>.

T (loglog (¢T))'/?

Remarks. We mentioned in the previous chapter that in a recent preprint, F. Ge
[Ge-p, Theorem 1] showed that we can improve the error term in the estimate on

2mm s

qi T 0 ( m*2log (qT)
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the number of zeros of ('(s) shown by Akatsuka [Akal2, Theorem 3] to

log T
of—=2"_).
loglog T
It is expected that we can extend Ge’s result to L'(s, x). The author is currently
working on this topic.

In this section, we first review some basic estimates related to log L(s, x) near
the critical line and zero-free regions of L’(s, x) in Subsection 4.3.1. In Subsection
4.3.2, we show important lemmas crucial for the proofs of our main theorems and
finally prove them in Subsection 4.3.3. For convenience, we use variables s and z
as complex numbers, with 0 = Re(s) and ¢t = Im(s). Finally, we abbreviate the
generalized Riemann hypothesis as GRH.

4.3.1 Preliminaries
4.3.1.1 Bounds related to log L(s, x) near the critical line

In this subsection we give some bounds related to log L(s, x) which can be found
in [MV06, Sections 12.1, 13.2, 14.1]. Only for this subsection, we put 7 := |t| + 4.

Lemma 4.24. Assume GRH, then

(log (g7))*"
(1 —o)loglog (q7)

log L(o +it, x) = O ( + logloglog (q7’)>

holds uniformly for 1/2 + (loglog (¢q7))™* < o < 3/2.

Proof. This is straightforward from the inequalities in exercise 6 of [MV06, Section
13.2] (see also page 3 of [MV06-cor] for the corrected exercise 6). O

Lemma 4.25. Assume GRH, then

: log (g7)
L t,x) =0 | —————
ekl i) (108; log (¢7)
holds uniformly for o > 1/2.
Proof. See [Seld6, Section 5] or exercise 11 of [MV06, Section 13.2]. O

With the above lemma and [MV06, Corollary 14.6], we obtain the following
estimate on the number of zeros of L(s,y) under GRH which is mentioned in
Theorem 2.12:
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Proposition 4.26. Assume GRH and let N(T, x) denote the number of zeros of
L(s, x) satisfying Re(s) > 0 and | Im(s)| < T, counted with multiplicity. Then for

T>2
T ¢qr T log (¢T")
N(T,x)=—log& _ 2 L o 2842 )
(T:x) T % x N <log log (¢T')
Proof. This is a straightforward consequence of [MV06, Corollary 14.6] and [Sel46,
Theorem 6] (see exercise 1 of [MV06, Section 14.1]). O
Lemma 4.27.
Corit = Y i+ Oflog (ar)
—(o+1 = _ og (q7
L X o+t —p &\
p=B+i,
ly—t|<1

holds uniformly for —1 < o < 2.
Proof. See [MV06, Lemma 12.6]. ]

4.3.1.2 Zero-free regions of L'(s, x)
We begin with a zero-free region of L'(s, x) to the right of the critical line.

Proposition 4.28. L'(s, x) has no zeros when

m 4
o>1+—(1+,4/1+ .
2 mlogm

Proof. See [Y1196b, Theorem 2| for k = 1. O

From the above proposition, it is not difficult to check that L'(s, x) # 0 when
o > 1+ 3m/2. Next we introduce a zero-free region of L'(s, x) to the left of the
critical line.

Proposition 4.29. L/(s, x) has no zeros when ¢ < 0 and |t| > 6. Furthermore,
assuming GRH,

1. if k=0 and q > 216, then L'(s,x) has a unique zero in 0 < Re(s) < 1/2;

2. if k=1 and q > 23, then L'(s, x) has no zeros in 0 < Re(s) < 1/2.
Here
0, y(-1)=1;
)0 x(=h) =1
1, x(—1)=—1.

Thus under GRH, for any fized € > 0, there are only possibly finitely many zeros
in the region defined by 0 < o < 1/2 and |t| < € for any L'(s, x).

Proof. See [AS-p, Theorems 1, 8, and 9] (or see Theorems 4.1, 4.8, and 4.9 in the
previous section) and note that ¢ > 3 in our case. O
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4.3.2 Key lemmas

For convenience, we define the function F'(s, x) and G(s, x) as in the previous
section:

F(s,x) = e(X)ZSWS_lq%_S sin (@) I'(l—s), (4.64)
G(s,x) := —X(m)TgmL’(s,X). (4.65)

Recall that €(x) is a factor that depends only on y, satisfying |e(x)| = 1 and
that from the functional equation for L(s, x), we have L(s, x) = F'(s, x)L(1—s,X).

4.3.2.1 Constants o, and ¢,

Lemma 4.30. For o > 2, we have

\G(a+z’t,x)—1|§2(1+8m) (1+%)

o
and
G 8 1\ 7
‘—(04—2’15,)()—1‘ §2(1—|——m) (1+—)
L o m

Proof. Let o > 2. Then from (4.65) and by using the Dirichlet series expression
of L'(s, x), we can calculate

s x) 1] = |- (—Z@) ~1

x(m)logm
B m® i (n)logn < me i logn
| x(m) logm <= = n’ ~logm L= n?
m? log(m+ 1) me /°° log:vd
x
~ logm (m-+1)° logm )41 x°

m? log(m + 1) (1+m+1 m+1 )

" logm (m+1)° J—1+(0—1)210g(m—|—1)

m?  2logm 4m m \° 8m
< 1+ <2(——) (1+=—/),
logm (m + 1) o—1 m+1 o
where we have used m+1<2m <m?ando—1> ¢ /2 in the last two inequalities.

By using the Dirichlet series expansion of (L'/L)(s, x), with calculation similar
to the above, we can show the second inequality in the lemma. O
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Applying Stirling’s formula of the following form

1 1 > 5
logl'(2) = (z - 5) logz — 2+ 3 log 27 + /o %d (4.66)

(—m4+0 <argz <7 —9, for any § > 0),

we can define the holomorphic function

1 2
log F'(s,x) :=loge(x) + <§ - S) log 2_ +5 log +logsin g(s +r) (4.67)

+logI'(1 — s)

for 0 < 1 and [t| > 1, where 0 < arge(x) < 27 and logsin (7(s + k)/2) is the
holomorphic function on o < 1, [t| > 1 satisfying

( oo ;
(1 — 5 — H)’/T . €7rz(3+n)n .
N Ll

T n=1
log sin 5(5 + k)=
(s+r—1)m. 2 e~ milstr)n
— i —log2 — —, t< -1
iz =y
\ n=

Under the above definitions, we can show the following lemma.

Lemma 4.31. For o <1 and =t > 1, we have

F e 1 1
- - _ _ o - —mlt|
F(s,x) log (q(1 s))+log27r2|:2+2(1_S)+O<|1_S|2>+O(e ),

where —m/2 < arg (1 — s) < m/2.

Proof. Applying Stirling’s formula (4.66) to logI'(2) for argz € (—n/2,7/2), we
have

W -+

1 1 -
logr(l—s) — <§—S> 10g(1—8)—(1—5)+§10g2ﬂ'—|—/0 [u+1_82du

in the region o < 1, [t| > 1. From (4.67), we can show that

(;_gz_H (R C——

+
X mwi(s+kK)n
u (&
+s+ / b —utsy, =

u+1—s = n

log F'(s,x) = loge(x)

g nol
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holds when o < 1 and ¢ > 1. Differentiating both sides of the above equation with
respect to s, we obtain

F i 1 1
_F = — — + m™T— =4+ — —m|t|
(S,X) 10g<Q(1 S>> 10g2 2 2(1—8) +O <|1 —s|2> +O(e )

for o0 <1 and ¢t > 1. We can show similarly for ¢ < 1 and ¢ < —1. O

Lemma 4.32. There exists a o1 < —1 such that

1 L
/—_<1 - 87%)
E(s,x) L

holds for any s with o < oy and |t| > 2.

<27

Proof. From Lemma 4.31, we know that

%(S,X) = —log(¢(1—s))+O(1)

holds when o < 1 and [t > 2. Hence

’%(S,X)' > log ((1 — o)) — [O(1)

holds in the region o < 1,|t| > 2. Thus, we can take o] < —1 sufficiently small
(i.e. sufficiently large in the negative direction) so that for any s with o < ¢} and
|t| > 2, we have

F’ 1

P x>] > Lo (g1~ o) (468)
for all s in the region o < of, |t| > 2.

Next we estimate (L'/L)(1—s,%). In theregiono < —1, [¢t| > 2, (L'/L)(1—s,X)

can be written as a Dirichlet series, thus we have

o0

L log 2 logn _ 27log?2 > log x
— sy < <
L(l s,x)' = Sis + E e =T 5 ~|—/2 xlfgdx

— (4.69)
1
— 99 (10g2_10g2+_2)§20 <1+§10g2)

2 o o

Now combining inequalities (4.68) and (4.69), we have

LN
(1= 5%
F(sx) L

2+ 3log2

= 2010g (q(1 —0))
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for 0 < o] and |t| > 2. Hence we can find some o7 < of (< —1) such that
(24 3log2)/log (¢(1 — o)) < 1 holds for any o < oy. This implies that

L Dy spl <o
= 7 LTS X
Z(s,x) L
holds in the region o < oy, |t| > 2. O

Lemma 4.33. Assume GRH and fiz a o1 that satisfies Lemma 4.32. Then there
exists a t; > —oq such that

1. for any s satisfying o1 < o0 < 1/2 and |t| > t; — 1,

)
f('&X)’ > 1

holds and we can take the logarithmic branch oflog (F'/F)(s, x) in that region
such that it is holomorphic there and 57/6 < arg (F'/F)(s,x) < 7w /6 holds;

2. for any s satisfying o1 < o < 1/2 and |t| > t; — 1,

!/

L

f(sa X) 7£ 0

holds and we can take the logarithmic branch oflog (L' /L)(s, x) in that region
such that it is holomorphic there and /2 < arg (L'/L)(s,x) < 37/2 holds.

Proof. We begin by examining condition (1). Again, from Lemma 4.31, we see

that o
—(5,x) = —log (a(1 = 5)) + O(1)

holds when o < 1 and [¢| > 2. Thus for 07 < 0 < 1/2 and [¢t| > 2, we have

00| 2 s al) = 1000)] = g e - [0

Hence, we can find some | > 100 such that

'%(s,x)‘ > 1 (4.70)

holds for all s with oy <o <1/2 and [t| > | — 1. We note that Lemma 4.31 also

implies that
F/
— (8,x) = —log (|t]) + O(1)
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holds when ; < ¢ < 1/2 and |t| > 2 — ;. Consequently, we can find some
t] > max {t|,3 — o1} such that

5T F’ i
5 < argf(s,x) <%
holds for 0y < ¢ < 1/2 and [t| > tf — 1. Since (F'/F)(s,x) is holomorphic,
inequality (4.70) tells us that log (F'/F)(s, x) is holomorphic in the region oy <
o <1/2,|t| > ] — 1 with this branch.

By the above calculations, we find that ¢] is a candidate for ¢;. Below we
examine condition (2) to completely prove the existence of t;.

Corollary 10.18 of [MV06] allows us to show that

L 1 g 1 I (s+k

holds for oy < 0 < 1/2, under GRH. For any small § > 0, let |[t| > oy tand.
Stirling’s formula (4.66) implies
1
ro(a)
5]

1 IV s+ kK 1
- - — ]
e (1 (57)) = g

Hence we can find some t; >t/ large enough so that

Re (%(s,x)) <0

holds for oy < o < 1/2 and |t| > ¢t; — 1 and hence (L'/L)(s, x) # 0. Moreover, we
can define a branch of log (L'/L)(s, x) so that it is holomorphic in 01 < o < 1/2,
|t| > t; — 1 and

S+ kK
2

7T<a L’( )<37T
g SMETHXI ST

holds there. Since this ¢; also satisfies condition (1), the proof is complete. n
Now we fix ¢; which satisfies Lemma 4.33 and take ¢, € [t; + 1, ¢, + 2] such that
L(o £ity, x) # 0, L'(0 £ ity, x) #0 (4.71)

for all o € R.

Remark. We note that ¢, depends on ¢ but it is bounded by a fixed constant that
does not depend on ¢: t, < t; < 1.
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4.3.2.2 Bounds related to log G(s, x)

In this subsection, we give bounds for arg (G/L)(s, x) and arg G(s, x). We take
the logarithmic branches so that log L(s, x) and log G(s, x) tend to 0 as 0 — o0
and are holomorphic in C\{z + A | L(z,x) = 0,A <0} and C\{z+ A | L'(z,x) =
0, A < 0}, respectively. We write

G
—arg L(o £ i7,x) + arg G(o £ iT, x) = arg Z<U +i7,x)

and take the argument on the right-hand side so that log (G/L)(s, x) tends to 0
as 0 — oo and is holomorphic in C\{z+ A | (L'/L)(z,x) = 0 or oo, A < 0}.

Lemma 4.34. Assume GRH and let 7 > t,. Then we have for 1/2 < o < 10m,

m 3< o< 10m,
Gl tirr) < ’
arg —(o £ i1, ¥
L m'/2loglog (q7) +m 12 <0<3
o <3

o—1/2
Proof. Let 7 > t, and 1/2 < 0 < 10m. Let

ug/L = ugyL(o,T;X) == # {u € [0,11m] | Re <%(u + i, X)) = 0} ,

then

G
arg Z(a +i, X)‘ < (ugyr +1) .

To estimate ug,r,, we set

1
H1(27X) =3

5 (g(z +ir,x) + %(z F iT,X))

L
and
n, (1, X) = #{z € C| Hi(z,x) = 0,|z = 11m| < r}.
Since H,(z, x) = Re((G/L)(x +i7, x)) for x € R, we have ug/;, < ng, (11m —o,x)
for 1/2 < o < 10m.

Now we estimate ng, (11m — o, x). We take € = ¢, > 0. It is easy to show
that

1 11m—o+e ny (’I“ X)
11m — < 2 dr.
na (= 7, x) < log (1+¢/(11m — o)) /0 r "

Applying Jensen’s theorem (cf. Lemma 2.1 or [Tit39, Section 3.61]), we have

1lm—o-+te 1 [ i
/ AR —/ log |H (11m + (11m — o + €)e”, x)|df
0 T 21 Jo
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— log [Hy(11m, x)|.

Applying the second inequality in Lemma 4.30, we can easily see that log |H;(11m, x)| =
O(1). Therefore

1
S log (1t ¢/(1lm — o))

1 [ .
X (—/ 10g|H1(11m+(11m—U+e)ew,x)|d6’+0)
0

2

arg %(a + i, X)|

for some absolute constant C' > 0.
Now we divide the rest of the proof in two cases:

(a) For 3 < o < 10m, we restrict € to satisfy 0 < ¢ < 0 — 2. Then 11m +
(11m — o 4+ €) cos @ > 2. Applying the second inequality in Lemma 4.30, we
can easily obtain

100m

| < .

11m+ (11m — o + €) cos 6

|Hy(11m + (11m — o + €)e”, )
Recall from Lemma 4.19 that for ¢ > r > 0,

+ V2 —r?

1 27
o /0 log |c + 7 cos 0|df = log ¢ 5 (4.72)

holds. By using (4.72), we can easily show that
1 2 )
by / log |H(11m + (11m — o + €)e, x)|df
T Jo

1 2
< log (100m) — 2—/ log (11m + (11m — o + €) cos 0)df
T Jo

1lm + /11m2 — (11m — 0 + €)?
2

= log (100m) — log
11m
< log (100m) — logT < 1

Note that €/(11m — o) < 10, thus log (1 +¢/(11m — o)) > €¢/(11m — o).

Hence
G ) 11lm — o m
arg —(o it x) K ——m < —.
L € €

By taking € = 0 — 2, we obtain
G
arg — (o it x) < m
L o

This is the first inequality in Lemma 4.34.
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(b) For 1/2 < ¢ < 3, we restrict € to satisfy 0 < € < 0 — 1/2 and we divide the
interval of integration into

o 7, :={0 €10,27] | 1lm + (11m — 0 + €) cos§ > 2} and
o 7, :={0€0,2n] | 1lm + (11lm — 0 + €) cos§ < 2}.

Since 11m + (11m — o +¢€)cosf > 1/2 and 11m — o + € < 11m, on 7, as in
the calculation of case (a), we can show that

— log |Hy(11m + (11m — o + €)e™, x)|df
27 Joer
1 100m
< — log
21 Joez, ~ 1lm+ (11m — o + €) cos 6
1 [ 100m
<

1 do < 1.
®1Im + (11m — o +€) cos 0

do

_%0

Now we estimate the integral on Z,. Setting

11m —2

Op = ——
cosTo 1Ilm —0o+e€

for 6y € (0,7/2), we have Zy = (7 — by, m + 0y). Applying Lemma 4.27 and
Proposition 4.26, and noting that (L'/L)(z + iy, x) = O(1) when z > 2, we

have
T (@ +iy.x) =0 (IOg ;qull/n; 1)>>

for 1/2 < x < A, for any fixed A > 2. Thus,

/

m? log (¢(7 + 11m))

H,(11 11m — “xl<c
[Hi(11m + (11m — o +€)e”, x)| < Mogm 11m + (11m — o + €) cos — 1/2

for some absolute constant C'; > 0. Hence

log |H,(11m + (11m — o + €)e', x)|db

% 0y
T+60g 2
< 1 0 Cim log (¢(7 + 11m)) o
27 S o, logm 11m — 1/2 + (11m — o + €) cos 0
1 (% Cym? log (q(7 + 11m)) 90

= — 1
27 J g, °8 logm 11m —1/2 — (11m — o + €) cos
0o 1 Cym?log (q(1 + 11m))

=—1lo
s & logm
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6o 1
5 | Olog (11m —5- (11m — o +¢) cos@)dé’.
We note that cosfly = 1+ O(1/m). By using 1 — cosfly = 2sin® (6y/2), we

can show
1

mi/2

)
SlIl2 —_

5 <

b <

/ log (11m 5~ (11m — o +¢) cos@)dé’

_ /90 log L = 1/2 = (lm — 0 1) 0089d9+/90 log (11m — 1/2)dé
6 1m — 1/2 0

% 1lm—o0+e€ logm
= 1 l1— ————cosf )db
/_90 og( 11m —1/2 o8 ) +O( 1/2>

Recalling that 0 — e > 1/2 and 6, € (0,7/2), we have

to fo 11m —
/ log(l—cose)dﬁg/ log(l m O+€COS@>

—0o —0, 11m—1/2
Meanwhile,
0o 0o 0 0o
/ log (1 — cos0)df = / log (2 sin? —) df = 26, log 2 + 4/ log (sm ) de
—60g —6y 2 0
0o ‘9 2 o
= 26plog2 + 4/ log ———— sin (0/2) ———df + 4/ log d@
0 0/2 0
1
=0 (o) + 0 (83) + O (Bologby") = O ( Oglg‘)

Therefore when 1/2 < o < 3, we have
27

log |Hy(11m + (11m — o + €)e, x)|df

) .
27 \Joer, Joez,

loglog (¢(7 + 11m)) logm log log (q7)
ml/2 + ml/2 miz

2

<1+ <1+

Since 0 < ¢/(11m — o) < 1, we have log (1 +¢/(11m — o)) > €/m, thus

G . m log log (g7
argz(oiw,x) <= (1—1—% :

Taking € = (¢ — 1/2)/2, we obtain the second inequality in Lemma 4.34.
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O

Lemma 4.35. Assume GRH and let A > 2 be fized. Then there exists a constant
Co > 0 such that

(log g7)* )

Toglog (g7) + (log (QT))l/w))

holds for 1/2 — 1/loglog (q7) < 0 < A and T = |t| + 4.

|L' (o +it, x)| < exp <CO (

Proof. Applying Lemma 4.24 and Cauchy’s integral formula, Lemma 4.35 follows.
O

Lemma 4.36. Assume GRH. Then for any 1/2 < o < 3/4, we have

arg Glo £ i7,y) — O <m1/2<10g log (¢7)

o - 2(1—0)
" (m1/2 + (log (g7))1° + ((foggl(oqg ();7.))3/2> )

Proof. The proof is similar to that of Lemma 4.34 but we provide the details for
clarity. Let 1/2 < o < 3/4 and 7 > 1 be large. Put

ug = ug(o,7;x) = #{u € 0,1+ 3m/2] | Re(G(uxir,x)) =0},

then
larg G(o i, x)| < (ug + 1) 7.
To estimate ug, we set

G(ztir,x) + G(z Fit,X)
2

Xi(z,x) =

and
nx,(r,x) =#{z € C| Xi(z,x) =0,|z — (1 +3m/2)| < r}.

Then we have ug < nx,(1+3m/2 — o, x).
Now we estimate nx, (1+3m/2—o, x). For each o € [1/2,3/4], we take € = €,.,
satisfying 0 < ¢ < o — 1/2 + (loglog (q7))~*. Tt is easy to show that

1+ 3m /1+3m/2—0+e nx, (T‘, X)d
0

nx,(14+3m/2—o0,x) <
€ r

T.

Applying Jensen’s theorem, we have

/1+3m/2—a+e nx, (7“, X) p
0 r

r
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- % /027T log | X1(143m/2 + (1 +3m/2 — o + €)e, x)|df
— log | X1 (14 3m/2,x)|.
By using the first inequality in Lemma 4.30, we can easily show
log | X1(143m/2,x)| = O(1).
As in the proof of Lemma 4.34, we divide the interval of integration into
o J1:={0€[0,2n] | 1+3m/2+ (1+3m/2 — 0 +¢€)cosf > 2} and
o Jo:={0€[0,2r] | 1+3m/2+4 (1 4+3m/2 — 0 +¢€)cosf < 2}.

Then similarly, applying the first inequality in Lemma 4.30 and (4.72), we can
show that

— log | X1 (1 +3m/2+ (1+3m/2 — o +€)e?, x)|df = O(1).
27 0eJ1
Next we estimate the integral on [J5. Setting

1+3m/2—2

0y =
cosvo 14+3m/2—0+e¢

for 0y € (0,7/2), we have Jo = (7 — by, 7 + 6y) and 6, = O(m~'/?). Applying
Lemma 4.35, we have

1X1(1+3m/2+4 (1+3m/2 — o+ e)e, x)|

m2 (log (qT))—3m—2(1+3m/2—U+e) cos @
< / 1 1/10
> 1OngeXp (O(]( 10g10g(q7‘) +<Og(q7—)) ))

for some absolute constant C, > 0. Thus,

log | X1(143m/2 + (1 +3m/2 — o + €)e, x)|df

% 0eJ2
m? ' 1/10
< b | log log + C{(log (g7))
Cé (log <q7_))—3m /TH—GO (10g (q7)>—2(1+3m/2—0+5) COSGdQ
2mloglog (¢7) Jx—s,
m? ' 1/10
< 0 | log ogm Co(log (7))

C”(lOg (q’)) m /2
0 ] —2(143m/2—0+e€) cos Hde
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m2
b0 (108 2+ Ciog (47) "
Co(log (g7)) "
log log (q7)
where [, is the Bessel function. Since

Io(2(1 4 3m/2 — o + €) loglog (¢7)),

Iy(x) = \/%a +o(1)),

there exists a constant C] > 0 such that

(log (qT))2(1+3m/2—0+e)

In(2(1 +3m/2 — o + €) loglog (q7)) < C} (mlog log (7)) 12

Hence,
log | X1(143m/2 + (1 +3m/2 — o + €)e, x)|df

(log (¢7))*1 =+ )

2m 0T
1 1/10
< n ((10g (qm))/ ™ +

Concluding the above, we have

(loglog (¢7))3/2

arg G(o i, x) < nx, (1 +3m/2 — 0o, x)

< % (1 + # ((log (qm))* + %i)fg(ﬁjgét)_;’:))) '

Taking ¢ = (loglog (¢7))~! completes the proof.

4.3.3 Proof of theorems

4.3.3.1 Evaluation of the main terms

We first prove two propositions which state out the main terms of the equations
in our main theorems. We use the functions F'(s,x) and G(s,x) defined in the

previous section (see (4.64) and (4.65)).

The following proposition states out the main term of the equation in Theorem

4.22.

Proposition 4.37. Assume GRH. Take t, as in (4.71), and set a, == 4m. From
Proposition 4.28, we note that L'(s,x) # 0 when o > a,. Then for T > t, which

satisfies L(o £iT,x) # 0 and L'(c £4T,x) # 0 for any o € R, we have

1 T gr T (1 1.
'—— ) =—loglog— +— (=1 —logl —-L
Z (ﬁ 2) 5, 10glog o +27r (2 ogm — log ogm) . 1(

p'=p'+iy,
tq<ty'<T
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1 [

2 1/2

1 [%

27T 1/2

+ O(loglog q) + O(m),

(—arg L(o £ it,, x) + arg G(o L ity, x)) do

(—arg L(o £ 4T, x) + argG(o £ T, x))do

where the logarithmic branches are taken as in Subsection 4.3.2.2.

Proof. We first set a, := 4m and take ¢, as in (4.71). We again note that t, <
t1 < 1. We also take oy which satisfies Lemma 4.32 and fix it. Take T" > t, such
that L(oc 4T, x) # 0 and L'(c £iT,x) # 0 for all 0 € R. Let § € (0,1/2] and put
b:=1/2—9.

Applying Littlewood’s lemma (cf. Lemma 2.2 or [Tit39, Section 3.8]) to G(s, x)
on the rectangles with vertices b & it,, a, £ t,, a, £¢7", and b £ 7T, we obtain

2 > (B —b)

p'=B'"+iv,
tg<Ey'<T

T T
:/ 10g|G(b:|:2't,X)]dt—/ log |G (a, £ it, x)|dt
t t

q q

(4.73)

q:/ argG(aiitq,X)daj:/ arg G(o 4T, x)do

b b

= If+IFF / arg G(o % ity, x)do & / arg G(o £ T, x)do.
b b

Applying the first inequality in Lemma 4.30, we can show that I = I, = O(m).
Below we estimate I;".

T T mb
1= [ oalct s il = [ ow (2 0+ i)
t t

’ . ogm

T mb T
= / log dt + / log | L' (b + it, x)|dt
ty logm ty

T
= (blogm — loglogm)T+/ log [F(b +it, x)|dt
t

’ (4.74)
+/T1 d
W C|F
T
) logll— o (1 —b—it,¥
/tq & %(bﬂt,x)L( x)
= (blogm — 10g10gm)T+112 +]13 —I—]14 +Il5 +O(10gm)

l T
(b+ it,X)’dt + / log |[L(1 — b —it,x)|dt
t

q

1 r
dt + O(t,logm)
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Here we recall that ¢, = O(1) from our choice of ¢, in (4.71).
From (4.67) and Stirling’s formula (4.66), we have

T _ Trr1 qt 1
I = log |F'(b+ it, x)|dt = ——bllog=—+0 dt
t . \\2 o 2

q

1 qT qtq
=|=-- Tlog— —T —t,log — 1).
(2 b)( 08 tq og;2 —|—t)+0()

Lemma 4.31 gives us

/ /

F , F , qlt| 1
b+ — Re (log — (b + —loglog M Lo =
(b zt,X)‘ Re ( og —(b zt,X)> oglog ©— O ( ) ,

log
t2log (q]t])

thus we have

T
F
113 = / IOg
t

, T 1
~(b+it.y)|dt = log1 Zloetamn ) )&
q F( +Z,X)‘ /tq <Og Ogg JrO(t?log(qlﬂ)))

qT T

—Tloglog——t loglogq (1)
2m tq 1g

qT qT
:Tloglog2 —t loglog2———L1<2w) + O (t,)

ql 2 T
—Tloglog———ﬂL (q )+O(loglogq)

2 27

Next, we estimate [14. We note that L(3,%) = L(s, x), hence |L(1—b—it,Y)| =
|L(1 — b+ it, x)|. Take the logarithmic branch of log L(s, x) so that log L(s, x) =
>, x(n)A(n)(logn)~'n~% holds for Re(s) > 1 and that it is holomorphic in
C\{z+ X | L(z,x) = 0,\ < 0}. Then applying Cauchy’s integral theorem to
log L(s, x) on the rectangle with vertices 1 — b+ it,, a, + it,, ag + i1, 1 — b+ T
and taking the imaginary part, we can show that

T T
Ly = / log |L(1 — b — it,x)|dt = / log |L(1 — b+t x)|dt
t t

q q

:/ argL(a—f—itq,X)da—/ arg L(o +iT, x)do + O(1).
1

—b 1-b
Finally we estimate ;5. Since L(s,x) = F(s,x)L(1 — s,%X), we have
1 L 1 L
77 &)=l 7 (1-5X). (4.75)
L(s,x) L E(s,x) L

From Lemma 4.33, the function on the left-hand side of (4.75) is holomorphic and
has no zeros in 01 < 0 < 1/2,|t| > t; — 1. From Lemma 4.32, the function on the
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right-hand side of (4.75) is holomorphic and has no zeros in ¢ < oy, [t| > 2. Thus

we can determine
1 L/
log [1 - ———(1—-15,%X)
( E(s,x) L

so that it tends to 0 as ¢ — —oo which follows from Lemma 4.32, and that it is
holomorphic in o < 1/2,[t| > t, — 1(> t; — 1). Now we apply Cauchy’s integral
theorem to it on the trapezoid with vertices —t, +ity, b+1it,, b+4T, and =T 44T
Lemma 4.32 allows us to show

—T+4iT —tq+itq o1+itgq 1 I/
/ +/ +/ log (1 21— 5,5 |ds = 0(1).
o1+iT —T+iT —tqtitq 7(37 x) L

Thus taking the imaginary part, we obtain

T
/logl—
tq
b !
1 L
= arg |1 — ————(1—0 —11,%) |do
/m g( %(OH'T,X)L( X>>

b 1 L o
_/ arg 1_£’(—_(1_0_th’><) do +O(1)
o F

1 L

T dt
%(b +it,x) L

(1—b—1it,X)

) o+ity, x) L

1 L 1 L .
log (mf(&x)) = log <1 - mf(l - S7X)>

and determine the logarithmic branch of log (F'/F)(s,x) and log (L'/L)(s,x) in
the region 0y < o < 1/2,[t| > t, — 1 as in Lemma 4.33. Note that both of them
and the functions on both sides of (4.75) are all continuous with respect to s in
op <o <1/2,|t| > t, — 1. Furthermore, the two regions oy <o < 1/2,t > ¢, —1
and 01 <o <1/2,—t > t, — 1 are connected. Thus we have

Now we let

1 r F’ L
arg 1—mf(l—s,y) :—argf(s,x)—l—argf(s,x)+27mq

for some n, € Z that depends only at most on ¢. From our choice of logarithmic
branch, we have n, = 0. Thus,

27 1 U 27
-——< l————1=5%) | <—= 4.76
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for oy <o <1/2,|t| > t, — 1. Therefore we obtain

T
[15 = / log
t

q

1 L

1_1—
FO+it,x) L

(1—b—it,x)|dt = O(1).

Collecting the above calculations, we have

T 2 T
Ifr:Tloglogq——I—(blogm—loglogm)T——WLi 4=
2 q 27

1 qT qtq
——b Tlog— —T —t,log — +t¢
+(2 )( %8 or q°g2w+q)

+ / arg L(o + it,, x)do — / arg L(o + 4T, x)do 4+ O(loglog q).
1

—b 1-b

Similarly, we can show that

T T
If:Tloglogq——i-(blogm loglogm)T——Ll <q )
2m q 2

1 qT
+(§—b) (T10g2——T—t 10g atq +t>

- / arg L(o — ity, x)do + / arg L(o — T, x)do + O(loglog q).
1-b 1-b

Thus we have

qT 2m qT
27 Z (6'—b):Tloglog§+(blogm 1oglogm)T——L1< )

. q 2
p'=p"+iv,
ty<try/<T
1 qT
——=b) | Tlog— —-T —1t,1 t
#(3-0) (riogr -7 -nigt o)
+ / arg L(o £ it,, x)do F / arg L(o £1iT, x)do
1-b 1-b
T / arg G(o % ity, x)do + / arg G(o £1T, x)do
b b
+ O(loglog ¢) + O(m).
Taking 0 — 0, we obtain Proposition 4.37. O

The following proposition states out the main term of the equation in Theorem

4.23.
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Proposition 4.38. Assume GRH. Take t, as in (4.71). Then for T > 2 which
satisfies L(o £iT,x) # 0 and L'(c £4T,x) # 0 for all 0 € R, we have

— = = Alty, x) — Bltg, x) + AT, x) + B(T, x)
+ A(—tg,X) + B(—tg, x) — A(=T,x) — B(-T, x) + O(m'*log ),

where

1 1 1 1
AT, x) == %argG <§ + 1T, X), B(t,x) :== %argL <§ + 1T, X>,

and the logarithmic branches are taken as in Subsection 4.3.2.2.

Proof. Take a4, 01,t,,T,6,b as in the beginning of the proof of Proposition 4.37.
Let b' :=1/2 — §/2. Replacing b by V' in (4.73), we have

T T
or Y (ﬁ’—b’):/ 1og|G(b’iit,X)|dt—/ log |G(a, + it, x)|dt
p':ﬂ/+i'7', tq tq
ty<ty'<T

:F/ argG(aj:itq,X)daj:/ arg G(o £ 1T, x)do.
bl

bl

Subtracting these from (4.73), we obtain

T
oy 1:/ (log |G(b % it, x)| — log |G(V' £ it, x)|) dt
p'=p'+iy, fa
tq<ty'<T

b b
IF/ argG(aj:itq,X)dai/ arg G(o 4T, x)do
b b
b b
=: Jli¢/ argG(a:l:itq,X)dai/ arg G(o £ 1T, x)do.
b b
We estimate Ji°. From (4.74), we have

T
Jf“:/ (log |G (b + it, )| — log |G(V + it, y)|) dt
t

q

T
= (b— b')(T—tq)logm—l—/ (log |F'(b + it, x)| — log | F(b' + it, x)|)dt
tq

+/T1 r
. \BF

—(b+it,x)‘ — log

F/
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T
+/ (log |L(1 —b—it,x)| — log |L(1 =V —it,X)|) dt
t

q

T 1 L/
+ log|l — ————(1—-0b—it,Y
/tq ® %(bﬂt,x)L( X)
1
gl ey —it, )| | at
o8 %(b’+it,x)L( ' X)>

= (b — b/)(T — tq) logm + J12 + J13 + J14 + J15‘

Applying Cauchy’s theorem to log F'(s, x) on the rectangle C' with vertices b+ it,,
b +ity, V' + T, b+ 4T, and taking the imaginary part, we have

o v
Ji2 :/ arg (o +ity, x)do _/ arg (o +iT, x)do.
b b

From (4.67), we can show that

T ) t )
Jig = <Tlogg—W—T) 5~ <tqlog%—tq> 5—1—0(5)

Next, we take the logarithmic branch of log (F'/F)(s,x) as in condition (1) of
Lemma 4.33. Applying Cauchy’s integral theorem to log (F'/F')(s, x) on C taking
the imaginary part, we have

v F b F
Ji5 = / arg — (o + ity, x)do — / arg — (o + 1T, x)do = O(9)
b F b F

To estimate J14, we define a branch of log L(s, x) as in the estimation of I;4 in the
proof of Proposition 4.37 and apply Cauchy’s integral theorem on the rectangle
with vertices 1 —b' +it,, 1 —b+it,, 1 —b+4T, 1 — b +iT. Taking the imaginary
part we obtain

1-b 1-b
Jig = _/ arg L(o +ity, x)do +/ arg L(o + T, x)do.
1

—v 1-v

Finally, we define a branch of

log | 1 ! L/(l X)
————(1—3,%
Flsx) L

as in the estimation of I;5 in the proof of Proposition 4.37 and apply Cauchy’s
integral theorem to it on C. Taking the imaginary part, we have

b 1 L/
J15:/ arg | 1 = m7—————(1 — 0 —ity,X) |do
b Eo+ity,x) L a
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v’ 1 L
— arg |1l X —6—iT%) |d
/b g( ForimygLt 7T 0]
— 0(5)

by (4.76). Then we estimate J; similarly.
We then obtain

J T J t J
om Z 1:—(T—tq)§logm—|— (Tlogg—W—T) 3 (tqlogg—;—tq) 2

1-b

1-b
F / arg L(o £ it,, x)do + / arg L(o £4T, x)do
1-b 1-b

b b
$/ argG(aj:itq,X)dai/ arg G(o £ 4T, x)do + O(9).
b b

Taking the limit 6 — 0 and applying the mean value theorem, for 7 = +t, and
7 = 2T we have

1 [l
lim — / arg L(o +it, x)do = B(T, )

and

I
lim — / arg G(o +it, x)do = A(T, x)
b

6—0 0
by noting that b =1/2 — § and ¥’ = 1/2 — §/2. Hence,

2mm T T 2mm T
— Altg, x) — Bty x) + A(T, x) + B(T, x)
+ A(—tg, x) + B(~ty, x) — A(=T,x) — B(=T,x) + O(1).

T T T t t t
NI(T7X>_N1(tq7X):;10g q - — — <—qlogﬂ__q)

Referring to [AS-p, Theorem 5] (see Theorem 4.5), we see that

t qt t
Ni(tg, X) = ;q log ﬁ —~ Fq +0 (m'?log (qt,)) - (4.77)
Hence,
Ny(Toy) = Zlog L — L At ) = B(t x) + AT, x) + B(T, y)
1 » X Ongﬂ_ T quX an » X » X

If2 < T < t, then Ni(T,x) < Ni(tg, x) = O(m*?log q), which can be included
in the error term. Thus the proof is complete. O]
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4.3.3.2 Completion of the proofs

We begin with the proof of Theorem 4.22. Referring to [AS-p, Theorem 6] (see
Theorem 4.6), we have

1
Z (ﬁ' — 5) < m'?logyq. (4.78)
o' =p"+iv,
IV [<tq

This also implies that when 2 <T < ¢,

1
Z (ﬁ’ — 5) < m'/? log q.

p'=B'+iy,
IvI<T

Next, we estimate

1
/
> (r3):
o' =p"+iv/,
te<|Y'|<T

We divide the proof in two cases.

Case 1: For T' > t, which satisfies L(o £ T, x) # 0, L'(c £ T, x) # 0 for all
oecR.

In this case, we apply Proposition 4.37 and provoke Lemmas 4.25, 4.34, and
4.36 to obtain the error term.
We apply Lemmas 4.25, 4.36, and 4.34 to obtain

1/2+(log (¢7)) "
/ arg L(o tit, x)do < 1,
1/2

Qq G
/ arg E(O':f:iT, X)do < mlogm
3

for 7 > t,, and

1/2+(log (qtq)) ™" ml/2

arg G(o £ it,, x)do K ————,

/1/2 ( X) (loglog q)*/?
1/2+(log (¢T)) ! ml/2
arg G(o 1T, x)do < 5
/1/2 ( ) (loglog (¢T))*/?
3 G
/ arg Z(a +it,, x)do < m?(loglog q)? + mloglog g,
1/2+(log (qtq)) ™"
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3
G
/ arg — (o £ T, x)do < m'/*(loglog (¢T))* + mloglog (¢T).
1/ot(og @)t L

Inserting the above estimates into the formula given in Proposition 4.37 and
adding this to (4.78), we obtain the equation in Theorem 4.22 for Case 1.

Case 2: For T' > t, such that any of L(oc +iT,x) # 0, L(c — T, x) # 0,
L'(oc+iT,x) #0, or L'(0c —iT,x) # 0 is not satisfied for some o € R.

In this case, first we look for some small 0 < € < (loglog (¢7))~" such that
Licti(T+e€),x) #0,L'(c £i(T £¢€),x) # 0 holds for all ¢ € R and apply the
method of Case 1, so we obtain

, 1 (T t¢) q(T *¢)
Z (6 —§> :TloglogT

p'=p'+iv',
THe (1
+ —logm — loglogm
T 2

[/ |<T+e
2 (dT£e
q 2T

+0 (ml/Q(log log (¢T))% + mloglog (¢T) + m'/?log q) .

Noting that

1 1 1

/ / /
> (3)= 2 ()= T ()
p'=B'+ivy', p'=B"+iv, p'=B'+iv,
tq—1<|y|<T—e tg—1<|Y'|<T tq— 1<y |[<T+e

together with (4.78), we easily show that the equation in Theorem 4.22 also holds
for this case. O

To complete the proof of Theorem 4.23, as in the proof of Theorem 4.22, we
also consider two cases. In the first case, for 7" > 2 which satisfies L(o £ T, x) #
0,L'(c £4T,x) # 0 for all 0 € R, the error terms are estimated as follows: From
Lemma 4.36, we have

1 m*/?logq
— + it = _
s (5 007) =0 (o)

1 m'/?log (qT)
— +T = .
ag G <2 : ’X) © <<1og10g (qT»l/?)

and

From Lemma 4.25, we have

1 log ¢ I log (¢T)
L=+t — Llz+iT.y)|=0(—217._}).
e <2 ' q’x) © <log10g q) e (2 ' ’X> © (bglog (¢T)
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Therefore,

T o T ( m'/?log (¢T)
(

2
og log (qT))l/Q) + O(ml/ log q)

for this case.

In the second case, we consider for 7' > 2 such that any of L(o + T, x) # 0,
L(c —iT,x) #0, L'(c +iT,x) # 0, or L'(0c —iT, x) # 0 is not satisfied for some
o € R. Similar to the proof of Theorem 4.22, we look for some small 0 < € <
(log (¢T))~* such that L(o £4(T t¢€),x) # 0, L'(c £i(T £ ¢€), x) # 0 holds for all
o € R. Applying the method of the first case we obtain

T+te, q(T+e T=e m'/2log (qT)
T 2mm 7r

= 1
M(T'+ex) 8 <1oglog<qzv>1/2> (4.79)
+O(m*?logq).

Noting the inequalities
N(T —e,x) < Ni(T,x) < Ni(T = e,x) + (NMi(T + e,x) = Ni(T = €,x))
from (4.79) we can easily deduce

T gqIr T m'/?log (qT)
NU(T,x) = —1 l
0 = e (Gogiostar

mm ™

) + O(ml/2 log q)

for this case. [l
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Chapter 5

Further research: An ergodic
value distribution of zeta
functions and L-functions

In this chapter, we introduce the author’s collaborative work [LS-p] with J.
Lee on a certain mean-value of meromorphic functions by using specific ergodic
transformations, which we call affine Boolean transformations. Birkhoft’s ergodic
theorem is used to transform the mean-value into a computable integral which al-
lows us to completely determine the mean-value of this ergodic type. As examples,
we introduce some applications to zeta functions and L-functions. We also prove an
equivalence of the Lindelof hypothesis of the Riemann zeta function in terms of its
certain ergodic value distribution associated with affine Boolean transformations.

5.1 Introduction

In [LWO09], M. Lifshitz and M. Weber investigated the value distribution of the
Riemann zeta function ((s) by using the Cauchy random walk. They proved that

almost surely
N
.1 . B (log N)®
]\}IE}%ONZC (§+an> = 1—0—0( N2

n=1

holds for any b > 2 where {5, }52, is the Cauchy random walk. This result implies
that most of the values of ((s) on the critical line are quite small. Analogous
to [LW09], T. Srichan investigated the value distributions of Dirichlet L-functions
and Hurwitz zeta functions by using the Cauchy random walk in [Sril5].

The first approach to investigate the ergodic value distribution of ((s) was
done by J. Steuding. In [Stel2], he studied the ergodic value distribution of ((s)
on vertical lines under the Boolean transformation.
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We are interested in studying the ergodic value distribution of a larger class of
meromorphic functions which includes but is not limited to the Selberg class (of
zeta functions and L-functions) and their derivatives, on vertical lines under more
general Boolean transformations, which we shall call affine Boolean transformation
T,5: R —= R given by

a(z+p a '
Top(z) i= E( o _az—6>’ v (5.1)
B, r=p

for an @« > 0 and a f € R. Below is our main theorem. For a given ¢ € R,
we shall denote by H,. and L. the half-plane {z € C | Re(z) > ¢} and the line
{z € C | Re(z) = c}.

Theorem 5.1. Let f be a meromorphic function on H, satisfying the following
conditions.

1. There exists an M > 0 and a ¢ > ¢ such that for any t € R, we have

\f({o+it]o >} <M.

2. There exists a non-increasing continuous function v : (c,00) — R such that
if o is sufficiently near ¢ then v(o) < 1+c—o, and that for any small € > 0,
flo+it) <. [t[1OF as [t] — oco.

3. f has at most one pole of order m in H. at s = sy = o9 + ity, that is, we can
write its Laurent expansion near s = Sy as

A—m a—(m-1) a_q - n
(s—s)m+(8—s)m_l+m+s—s +a0+za”(8_80) (52)
0 0 0 —

form >0, where we set m =0 if f has no pole in H..

Then for any s € H.\L,,, we have

lim — Z f(s+iTym) = _— M(h (5.3)

N-ooo N T Jp @+ (1 — )2

for almost all x € R.
We denote the right-hand side of the above formula by l, g(s). If f has no pole
i H,.,
lag(s) = f(s+a+iB) (5.4)
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for all s € H.. If f has a pole at s = sy = 0¢ + ity,

f(s+a+1iB)+ Bn(se), c¢<Re(s)<oag,s#sy—a—if;

lop(s) = Z (_az(;;)n’ c < Re(s) <og,s =s0—a—1if; (5.5)
n=0
(s 4+ a+if), Re(s) > oy;
where

m a_ m
Bm(SO):Zi"(ﬁJrioz—z (s —s0)) ZZ" —W—Z(S_SO))W

n=1 n=1
Moreover when m = 1, we can extend the result in (5.3) to the line Ly, by setting

a_1x
Oé2+(t0—t—ﬁ)2

las(00 +it) = (o0 +a+i(t+ B)) — (5.6)

for any t € R.

In the next section, we first give a few examples as applications of our main the-
orem, Theorem 5.1, to the Riemann zeta function, Dirichlet L-functions, Dedekind
zeta functions, Hurwitz zeta functions, and their derivatives. We will briefly review
some basics of ergodic theory and see an ergodic property of affine Boolean trans-
formations in Section 5.3. In Section 5.4, we will complete the proof of Theorem
5.1.

5.2 Some applications to zeta functions and L-
functions

In the following examples, we write f(©) to express f itself and we define

(1) ! 1
Ag(s) = — B
( ) Zk;-‘,—l ((5 +ia— Z(S _ 1))k+1 (B — 0 — Z(S - 1))k+1>

for any non-negative integer k.

Example 5.2 (The Riemann zeta function). For any k > 0 and s € H_;,5\L,
we have

N-— :

1 . a (W (s +ir)
lim — (k) " —— | 2" g
s Zf (silase) = 7 fa T = pr ™

for almost all x € R.
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Denoting the right-hand side of the above formula by lgf)ﬁ(s), we have

(W (s4+a+if) + Ap(s), —1/2<Re(s)<1,s#1—a—if;

1) (o) — K k! _ »
a,ﬁ(s) = (—1) ’yk—m, —1/2<Re(8) < 1,3—1—06—25,
(W (s+a+ip), Re(s) > 1
where

N k k+1
L log"n log"" N
%-—]&520(2 T )

n=1
If k =0, we can extend the result to the line Ly by setting
o

Remark that Steuding showed Example 5.2 when £k =0, a = 1, and § = 0 thus
Example 5.2 is a generalization of [Stel2, Theorem 1.1].

ls(L+it) = (O 1+ a +i(t+5)) -

Proof of Evample 5.2. We first note that for any & > 0, ((¥)(s) has an absolute
convergent Dirichlet series expression when Re(s) > 1. Thus condition (1) of
Theorem 5.1 is satisfied for any ¢ > 1. From the Laurent expansion of ((s) near
its pole s = 1 (see [Bri55, Theorem]), we can deduce the Laurent expansion of

¢®)(s) for any k > 0 near s = 1:

—1)FE! ”+1’yn n
¢Pe) = ﬁ ) + Z (s =D

Thus for k& > 0, ¢()(s) has a pole of order k + 1 at s = 1. Moreover, we can show
by using [Tit86, pp. 95-96]* that

(W (o 4 it) g, LT (5.7)
holds with

0 if o >1;
plo) < (l—o0)/2 f0<o <1,
1/2—0 it o <0;

for any £ > 0. Therefore we can apply Theorem 5.1 with ¢ = —1/2, s = 1, and
=k +1to (W(s). O

2Phragmén-Lindel6f theorem, as introduced in Lemma 1.1, is used here.
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We can also show that this ergodic mean-value is related to the Lindelof hy-
pothesis. We first show that the Lindelof hypothesis can be rewritten in terms of

¢®(s).
Theorem 5.3. Let k € N. The Lindelof hypothesis: For any € > 0,
L.
q (5 —i—zt) L Nt as|t| = o0
holds if only if, for any e > 0,
¢® ( —1—275) Lre [t© as|t] = o0
holds.
The above theorem implies that we can restate the Lindelof hypothesis as:
w (1 e
For any € > 0, ¢ 3 +it | g |t]° as |t| = oo

for any non-negative integer k.

Proof of Theorem 5.3. Suppose that the Lindel6f hypothesis is true. Thus by using
the functional equation for ((s),

C(o +it) <, [t|Ho)te/?

holds for any € > 0 with

0 if 0 >1/2;
plo) < .
1/2—0 ifo<1/2

Then by Cauchy’s integral theorem, for any k£ € N we have

( k! ¢(z)
¢ ( Ht) omi /7 =1/2 = i)

where v, :={2 € C| |z —1/2 —it| = r}. Taking r = ¢/2,

(5 +t)| o [ gy el e g

<, |t|u(1/2 /Dte/2 < |t|1/2—(1/2—e/2)+5/2 = |t
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Now suppose that for some k& € N,
w (L, ‘
(W {5+t ) <ue ]
holds for any € > 0. Then (¥ (o + it) <. [t|*@)*€ for 0 > 1/2. Note that

1 3+t
o (Gri) | <l e+ [ e s <
1

/2-+it

1
‘( (5 —|—it)‘ < |t

We can then reformulate the Lindelof hypothesis in terms of ergodic value
distribution of ¢*)(s) on vertical lines under affine Boolean transformations as
follows:

This implies

]

Theorem 5.4. Let k be a non-negative integer. The Lindelof hypothesis is true if
and only if, there exist a > 0, B € R such that for any |l € N,

N-1
1 — 21
Jim, 2 € (21T )| (5.8)

exists for almost all x € R.

Proof of Theorem 5.4. From Theorem 5.3, we can restate the Lindelof hypothesis
as

1
¢® (5 + z't) e |t]° as [t] = oo (5.9)

for any non-negative integer k. We then show that the hypothesis in the form (5.9)
is equivalent to the existence of the limit in (5.8).

Replacing the function ((s) by (%*)(s) in the proof of Theorem 4.1 in [Stel2],
we can easily show the necessary condition for the Lindeldf hypothesis (in the form

(5.9)).

To show the sufficient condition for the Lindelof hypothesis, we note that

(—1)R!

(W(s) = (=1)k1 /100 w(log z)t (—slogw + k) dx + s 1)

rstl
so that |¢**TV(1/2 +it)| < Cy|t| holds for any [¢t| > 1 for some Cy > 0 which may
depend only on k. Further, for 7 > 1,
1 1 1 1

N O e R o A R
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for some C, g > 0 that depends only on a and 3. Then again we can replace
the function ((s) by ¢ (s) in the proof of Theorem 4.1 in [Stel2] to obtain the
sufficient condition for the Lindel6f hypothesis (in the form (5.9)). This completes
our proof of Theorem 5.4. O

Example 5.5 (Dirichlet L-functions). Let L(s, x) be the Dirichlet L-function as-
sociated with Dirichlet character x.

(i) If x is non-principal, for any s € H_; 5, we have

N-1
L®) (s 47, %)
m (k) Z T POA)
]\}I_IE(IDONZL 3+ZT 693)() 7T/R iy P )2d7
n=0
=L¥ (s +a+iB,X)
for almost all x € R.

(ii) If x = xo is principal, for any s € H_;5\L1, we have

N-1 .
1 Z a [ L®(s+ir, x0)
A}IHH;O N n=0 - (8 +Has® XO) m /R a? + (1 — B)? i

for almost all x € R. Denoting the right-hand side of the above formula by

lgf)ﬁ(s, Xo), we have

(L0 (s + o+ i, x0) +7-1(x0) Ae(s).
—1/2 <Re(s) <1,s #1—a—if;
k-1 (xo)
o) = 0 e
—1/2 <Re(s) <1l,s=1—a—if;
L® (s + o +if, xo)4
Re(s) > 1;

\

where v_1(xo0), Vk(Xxo0)’s are constants that depend only on xo. They are
coefficients of the Laurent expansion of L) (s, xo) near s = 1. If k = 0, we
can also show the result on IL; by setting

) av-1(xo)

191 + it =101 (t —_— .

Proof of Example 5.5. As in the proof of Example 5.2, for any non-negative integer
k, L™ (s, x) has an absolute convergent Dirichlet series expression when Re(s) > 1.
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Referring to [Red82, Lemma 2], we know that L®*)(s, x) also satisfies an inequality
similar to (5.7).

If x is non-principal, L*)(s, x) is entire for all k& > 0. Thus L® (s, x) satisfies
(5.4) of Theorem 5.1 for all s € H_y 5.

Otherwise (that is, when x = xo), L%¥)(s, xo) (k > 1) has a pole of order k+1 at
s = 1. Hence we can also apply Theorem 5.1 with ¢ = —1/2, s = 1, and m = k+1
to L) (s, o) with the Laurent coefficients as discussed in [IK99, Theorem 2]. [

Example 5.6 (Dedekind zeta functions). Let (x(s) be the Dedekind zeta function
of a number field K over Q of degree dx. Then for anyk > 0 and s € Hyjo—1/q, \LL1,

we have "
1 J— _« C]Kk (s +i7)
Jim Z< (s+iTesr) =2 | e = pp ™™

for almost all x € R.
Denoting the right-hand side of the above formula by lKgf)B(s), we have

(G (s 0 +i8) + 721 (K) Ax(s),
1/2 —1/dg <Re(s) <1,s #1—a—1if;

kly-1(K)
kg (K) — —————
1y (s) = § )T e
1/2—1/dg <Re(s) <1l,s=1—a—if;
(s +a+iB),

Re(s) > 1;

\

where v_1(K), v(K)’s are constants that depend only on K. They are coefficients

of the Laurent expansion of Cﬂ(gk)(s) near s = 1. If k = 0, we can also show the
result on Ly by setting

ay-1(K)
a? + (t+ B)*

Proof of Example 5.6. We refer to [Ste03, Theorem 2| for the bound of the form

(5.7) and to [HIKWO04, pp. 496-497] for the Laurent coefficients of Cﬂ(gk)(s) near its
pole at s = 1. The rest of the proof proceeds as in the proof of Example 5.2 with
c=1/2—1/dg, sp =1, and m =k + 1. O

(1 +it) = (L +a+i(t+8)) —

Remark. We can also show results analogous to Theorems 5.3 and 5.4 for Dirich-
let L-functions associated with primitive Dirichlet characters and Dedekind zeta
functions, if we formulate the extended Lindeldf hypothesis as:

1
For any € > 0, f ( —l—zt) Lo [t as |t = o0
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for these functions (f is any of these zeta functions and L-functions). We do not
discuss this further but we remark that we can show these analogous results by
using methods similar to the methods used in proving Theorems 5.3 and 5.4.

Example 5.7 (Hurwitz zeta functions). For non-negative integer k, 0 < a < 1,
and any s satisfying Re(s) > —1/2 and Re(s) # 1, we have

N-1 .
o1 , a [ (W(s+ira)
— E (k) n —— [>T

1\;15;0 N & s +iTagr.0) T Jp @+ (T — ﬁ)QdT

for almost all x in R.
Denoting the right-hand side of the above formula by lgf)ﬁ(s, a), we have

(B (s +a+iB,a) + Ay(s),
—1/2 <Re(s) < l,s#1—a—if;
k!
| S
(s, = M g
—1/2 < Re(s) < l,s=1—a—1if;
(M (s +a+iB,a),
\ Re(s) > 1;
where
(=D Y log" (n+a) log"™ (N +a)
la) = T Z nta  k+1

s a coefficient of the Laurent expansion of Cﬂ(f)(s) near s = 1. If k = 0, we can
also show the result on Ly by setting

«

(1 +it,a) = (O +a+i(t+8),a) - A+ (t+B)>

Proof of Example 5.7. The proof also follows that of Example 5.2 where we put
¢c=—1/2, 59 =1, and m = k + 1. Here, we refer to [Red82, Lemma 2] for the
bound of the form (5.7) and to [Ber72, Theorem 1] for the Laurent coefficients of
¢®) (s, a) near its pole at s = 1. ]

5.3 Affine Boolean transformations

In this section, we will show the ergodicity of T, g defined in (5.1) with respect
to a proper measure. To state our main theorem, let us recall some basic notation.
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We denote by B and v the Borel o-algebra on R and the Lebesgue measure on B.
For a given a > 0, 8 € R, let us define the function p, g by

o) dr
o= | =

for any A € B. One can easily check that 1, 5 is a probability on B and

posld) =2 [ it < [ T =) (5.10)

T (tr—p)? ar am
for any A € B. In particular, this implies that u, g(A) =0 if v(A) = 0.

Theorem 5.8. For given o > 0,8 € R, T,, 3 : R = R is measure preserving with
respect to fia 5, that is, for any A € B, we have

pas(Ty5(A)) = Has(A).

Moreover, it is ergodic, that is, if Ta_é(A) = A, then either pqg(A) or pa s(X\A)
15 0.

Applying Birkhoff’s ergodic theorem, we have an ergodic mean-value of an
integrable function. Let us denote by T7 5 the n-th iteration of T, g, that is,

Tgﬁ = Ta’ﬁ o Ta,ﬂ O---0 aﬁj'

vV
n times

Corollary 5.9. If f : R = R is integrable with respect to jinp, then

N-1
] 1 . « f(r)dr
lim, > foTher =2 /R R AP i (5.11)

N—o0 a? + (T — 6)2

for almost all x € R.

See [EW11, Theorem 2.30] for the proof of Birkhoff’s ergodic theorem. Corol-
lary 5.9 follows immediately from Birkhoft’s ergodic theorem and Theorem 5.8.

Birkhoff’s ergodic theorem describes the relation between the space average of
a function and the time average along the orbit. In the next section, we will apply
Corollary 5.9 to transform a mean-value of ergodic type into a computable integral.

In the rest of this section, we complete the proof of Theorem 5.8. We first recall
the famous result given by R. Adler and B. Weiss.

Lemma 5.10. The Boolean transformation T o is measure preserving with respect
to v. Moreover, it is ergodic.
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See [AWT3, Theorem and Main Theorem)] for the proof of Lemma 5.10.

Proof of Theorem 5.8. We first check that T' := T}, is measure preserving and
ergodic with respect to g := p10. Let us denote by x4 the indicator function of
A C R. It follows from a simple calculation that

RN gL
_L [ oo
T Jrg 14+T(7)?

= u(A)

for any A € B. Thus T is measure preserving with respect to p. If T-1(A) = A,
it follows from Lemma 5.10 that either v(A) or v(X\A) is 0. Hence, by (5.10),
either p(A) or u(X\A) must be 0.

Next, let us consider the general case. Defining the affine transformation ¢, s :
R — R by ¢4 () :== ax + 3, we can easily check that

Top = ¢apoTod,

and
pap(A) = (5 5(A)).

Since T' is measure preserving with respect to u, we have

a3 (Ty 5(A)) = pu

Moreover, if TQ_E(A) = A, we have

T bap(A)) = 60 (T 5(A)) = b 5(A).
Since T' is ergodic with respect to p, either g, g(A) = p(qﬁ;k(A)) or . ps(X\A) =
H(X\6;5(4) is 0. a
5.4 Proof of the main theorem

Proof of Theorem 5.1. Tt follows from Corollary 5.9 that (5.3) holds. For the case
m = 1, we set the values of the integrand to be the principal value on the line L,
and since this is integrable, as we shall see below in Case 3 of the evaluation of
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la.p, we can now apply Corollary 5.9 for all s € H,. In the rest of this section, we
evaluate [, 3 to complete the proof of Theorem 5.1.

Suppose that f has no pole in H,.. The poles of the integrand in l, s in H, are
coming only from the zeros of a? + (7 — 8)2. For any s = o + it € H,, we consider
the counterclockwise oriented semicircle I'g for a sufficiently large R > |s|+a + 3]
as in Figure 5.1. Then applying Cauchy’s integral theorem, we have

Figure 5.1:
x .
R B+ iq| R
Bx— iq
I'r
o s(s) = « f(s+iT) ir

7 oo+ oy

_a f(s+iT) . - f(s+ir)
-5 (i [, st e T )

Note that we can find a ¢’ € (¢, o) sufficiently near c¢. Setting € = (0 — ¢)/2, we
have

f(s+1ir) B o f(s+iRe?)
/FR —042+(T—5)2dT_/7r az—l—(Rew—ﬂ)?ZRe do

1 5m/4 /4 2m '
<o = / +/ +/ |f(s 4+ iRe™)|do
R ™ 5m/4 /4
1

R — Rsinf +i(t + Rcosf
< R<9€[n,5w%%}[{7ﬂ/472ﬂ|f(0 sinf + i(t + Rcosf))|

|f(0—Rsin9+i(t+Rcos€))|>

max
0c[5m/4,77 /4]

IN

1 .
= ( max |t + Rcos@|/o—RsinOte 4 M>
R \oc[n,57/4)U[7n/4,27)

IN

E 0€[m,5m/4]U[7r/4,27]

- |t| 14+c—0o'+e€ M
Lp e R 2 +1 + —,
7 (R R

1 /
( max |t + Rcosf|' 7 +6~|—M)
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thus the integral on I'p vanishes as R tends to co. By simple calculations, we find
that

fls+ir) o ' floxim
Resr—p_ia m - Tilgnfm(T —f+ia)x m (5.12)
_ fsta+if) |
T 200

Hence we obtain (5.4) for all s € H...

Suppose that f has a pole at s = sg = g¢+1itg and gy > ¢. Now for s = o+t €
H,, the integrand has three simple poles: 7 = f+ia, T = f—ia, and T = i(s— o).
Here we divide the proof into three cases according to the condition whether the
pole 7 = i(s — sg) is below (¢ < o < 0y, see Figures 5.2 and 5.3), above (o > oy,
see Figure 5.4), or on the real line (o = 0y, see Figure 5.5) of the 7-plane.

Case 1: Im(i(s — sg)) < 0.

We first consider when i(s — sg) # f — i and set I'g as in Figure 5.2.

Figure 5.2: Figure 5.3:

Again by applying Cauchy’s integral theorem, we can show that

lapg(s) = o [ _Slstim) dr

T Jr &® + (7 — B)?
, f(s+ir)
= 21 <ReST:gm m + Res;—i(s—s0)

Substituting (5.12) into the above, we obtain

f(s+ir)
N

From the Laurent expansion (5.2) of f, we can calculate

f(s+ir) (

lap(s) = f(s+a+1i8) — 2ai Res;—i(s—sy)

[e.9]

Z : (T —i(s — s0)) B (T —i(s — s0)) )

B +ia—i(s — sg))" ! « (6 —ia—i(s — sp))" Tt

2 — 32 94
a2+ (1t —0) 200 \ ==

n=
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Thus
. f(s+1i7)
—2a1 R, T=1(5—s
a1l hes ( O)QZ n (7_ — 5)2

Thus combining the above calculations and setting

Bu(so) =, 5 Gria—ils—so) ; (B —ia—ils—so))"

n=1
we obtain

« f(s+17) .
laﬁ(S) = ; . de = f(S + o+ 16) + Bm(So).
This is the first equation of (5.5).
Now suppose that i(s — s9) = f — ia (see Figure 5.3). This case only appears
when oyp — a > ¢. By calculations similar to the above, we have

a fls +i7) SdT = —2ai Resr=g—ia J(s +i7)

lap(s) = . m —i(s—s0) m'

We consider the Laurent expansion of the integrand near 7 =  — ia = i(s — sp):

fletir) _ N apt" (T — ia)"”
e N Py

T—f+ia " 200 " 1 - TSt
1 1 1 > a .
- X X . § it (T —
—2a1 T — ﬁ + 1— T—B+ia anl (T 6 + ZOZ)

21 n=—m

1 1 (T BHia\" = ., o
s e e M G ) IO SRR R

Hence,
f(s+ir) I &K an
R T=F—tx - .
S @ (- 2ai & 2y
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and so we obtain the second equation of (5.5).

Case 2: Im(i(s — sp)) > 0.

In this case, the integrand of [, (s) has only one pole in the lower half-plane
(see Figure 5.4). Thus by a method similar to the case when f has no pole in H,,

Figure 5.4: Figure 5.5:
x | B+ iaX
_R B+ iq| %8—80}%
BX— 10|
I
we can show that
f(s+17) , f(s+ir) (512 f(s+a+iB)
ST g7 = —2miRes,—p_iq —- o0 L) _gp JETATNT
P+ (7= ) T mi Res,—g 21 (r— ) T X o
—Zts+a+ip)
Q@
Thus
a f(s+ir) ,
lo =— | —————dr = )
8(s) ) Ry peyy T=f(s+a+1ip)

This is the third equation of (5.5).

Case 3: Im(i(s — sg)) = 0 (only for the case m = 1).

Since Im(i(s — s9)) = 0 (so = 00 + ity), s satisfies Re(s) = og in this case. For
convenience, we write s = gg + it. In this case, we take the principal value of the
integrand as in [Stel2, p. 367] and so we obtain

flog+i(t+7)) ao+zt+7'))
e ([ )

floo+i(t+ 7))
N

(5.13)

— 2mi Res;—g_iq

where Cr and C, are the counterclockwise oriented semicircles of radius R (R >
1+ |s|+a+]|5]) and € centered at T = ¢ty —¢ located in the lower half of the 7-plane
(see Figure 5.5).
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As the other cases, the integral along Cg vanishes as R tends to co. On the
other hand, the integral along C. is evaluated as

floog +i(t+ T))dT _ /2” flog +i(ty + ee?))
o, a2+(1=8)2 " ). a2+ (tg—t+ee? —p)

5 iee’do

0

27 .
B a_q iee
N /7r (ieew - O<1)) a?+ (tg —t + ee® — B)Qde

lim floo+i(t + T))dr B a_qm
—0t Jo. a2+ (T—8)2 a2+ (tg—t—B)?
Again from (5.12),

hence

floo +ilt+7) _ floo+atilt+5)

R T=F—ia - .
SSr=p a? + (1 — )2 —2ai

These imply that (5.6) holds. O

Remark that the method used in Case 3 in the proof does not work if m > 1.
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