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Abstract

Zeros of the Riemann zeta function and its derivatives have been studied by
many mathematicians. Among, zero-free regions, the number of zeros, and the
distribution of the real part of non-real zeros of the derivatives of the Riemann
zeta function have been investigated by R. Spira, B. C. Berndt, N. Levinson, H. L.
Montgomery, and H. Akatsuka. Berndt, Levinson, and Montgomery investigated
the general case, while Akatsuka gave sharper estimates for the first derivative of
the Riemann zeta function under the truth of the Riemann hypothesis. Analo-
gous results were also obtained by C. Y. Yıldırım for other Dirichlet L-functions
associated with primitive Dirichlet characters. Yıldırım studied zero-free regions
and the number of zeros of the derivatives of Dirichlet L-functions associated with
primitive Dirichlet characters of modulo q > 1. In this dissertation, we briefly in-
troduce these results and present the author’s results on the zeros of higher order
derivatives of the Riemann zeta function and of the first derivative of the Dirichlet
L-functions associated with primitive Dirichlet characters.

We also present the author’s collaborative result on an ergodic value distribu-
tion of a large class of zeta functions and L-functions. The value distributions of
the Riemann zeta function, Dirichlet L-functions, and Hurwitz zeta functions were
studied by M. Lifshitz, M. Weber, and T. Srichan by using the Cauchy random
walk. Their results showed that the values of these functions are small on average,
especially on the critical line. J. Steuding investigated an ergodic value distribution
of the Riemann zeta function on vertical lines under the Boolean transformation.
We are interested in extending this result of Steuding to a larger class of functions
under more general transformations.
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Preface

This thesis is about the distribution of zeros of Dirichlet L-functions and their
derivatives associated with primitive Dirichlet characters.

Dirichlet L-functions are L-functions which are generalizations of the Riemann
zeta function defined by B. Riemann as a complex meromorphic function. The
Riemann zeta function ζ(s) was first known through Basel’s problem solved by L.
Euler in 1735. It is a function of s defined by the series

1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
+ · · ·

which converges when s > 1. Only the values of ζ(s) at positive integer points had
been considered until Riemann [Rie59] defined it for complex variable s satisfying
Re(s) > 1 in 1859. Riemann used analytic methods to continue this function to the
whole complex plane C except for a simple pole at s = 1. Riemann noticed that
the distribution of some zeros of ζ(s) is closely related to the distribution of prime
numbers and he proposed that all of these related zeros must lie on a straight line.
This conjecture is well-known as the Riemann hypothesis (see Chapter 2 Section
2.2).

Dirichlet L-functions L(s, χ) are generalization of ζ(s) by using Dirichlet char-
acters χ for some modulo q. They were first introduced by P. G. L. Dirichlet
[Dir37] in 1837 for positive integer s in order to prove the infinitude of primes on
arithmetic progressions which is later known as Dirichlet’s theorem on primes in
arithmetic progressions. For each character χ, L(s, χ) is analytically continued to
C in a similar manner as ζ(s), except that it becomes an entire function on C when
χ is non-principal (see Chapter 1 Section 1.3).

As in the case of ζ(s), for primitive characters χ, the distribution of some zeros
of L(s, χ) is shown to be closely related to the distribution of prime numbers in
arithmetic progressions. We note that there exists only one Dirichlet L-function
modulo 1, the Riemann zeta function ζ(s). The Riemann hypothesis is expected
to also hold for these L-functions, the conjecture, combined with the Riemann hy-
pothesis itself, is commonly called the generalized Riemann hypothesis (see Chap-
ter 2 Section 2.3).

It is known that the distribution of zeros of Dirichlet L-functions is related to
the distribution of zeros of their derivatives. A. Speiser [Spe35] in 1935 showed
that the Riemann hypothesis is equivalent to the assertion that the first deriva-
tive of ζ(s) has no non-real zeros in Re(s) < 1/2, a striking result that invited
analytic number theorists’ attention to the study of the distribution of zeros of
the derivatives of ζ(s). A stronger result was obtained by N. Levinson and H. L.
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Montgomery in [LM74, Theorem 1]. The author and her collaborator H. Akat-
suka [AS-p] showed this type of equivalence for L(s, χ) associated with primitive
characters χ modulo q > 1 (Chapter 4 Section 4.2).

Zero-free regions of ζ(k)(s), the k-th derivative of ζ(s) for any positive integer k,
were first studied by R. Spira [Spi65, Spi70, Spi73]. B. C. Berndt [Ber70] in 1970
investigated the number of zeros, and in 1974, Levinson and Montgomery [LM74]
studied the real part distribution of zeros of ζ(k)(s). In 1996, C. Y. Yıldırım
investigated the zeros of L(k)(s, χ) associated with primitive characters χ modulo
q > 1 in [Yıl96b] and the zeros of the ζ ′′(s) and ζ ′′′(s) in [Yıl96a, Yıl00].

In 2012, Akatsuka [Aka12], assuming the Riemann hypothesis, improved some
of the above mentioned results for ζ ′(s). The author showed that analogous results
hold for any ζ(k)(s) in [Sur15] (Chapter 3 Section 3.2) and for L′(s, χ) associated
with primitive characters χ modulo q > 1 in [Sur-p2] (Chapter 4 Section 4.3). The
author and Akatsuka [AS-p] improved the zero-free region obtained by Yıldırım
[Yıl96b, Theorem 3] and showed unconditional results for the number of zeros and
the distribution of the real part of zeros of L′(s, χ) (Chapter 4 Section 4.2).

The study of zeros of zeta functions and L-functions is not limited to the
zeros themselves. It is also important to consider the value distribution of these
functions, especially near the regions which are expected to have lots of zeros. The
author is interested in studying the value distribution of zeta functions and L-
functions along with their derivatives under some specific ergodic transformations.
In 2009, M. Lifshitz and M. Weber [LW09] investigated the value distribution of
ζ(s) by using the Cauchy random walk. Recently, T. Srichan [Sri15] investigated
analogous results for L(s, χ) and Hurwitz zeta functions. They showed that these
functions have small value in average on the critical line Re(s) = 1/2.

J. Steuding [Ste12] in 2012 studied the ergodic value distribution of ζ(s) on
vertical lines under the Boolean transformation. The author and her collaborator
J. Lee in [LS-p] considered the value distribution of a larger class of meromorphic
functions which includes but is not limited to the Selberg class (of zeta functions
and L-functions) and their derivatives, on vertical lines under more general Boolean
transformations (Chapter 5).

In Chapter 1 we first introduce some preliminary concepts on the study of zeta
functions and L-functions, especially Dirichlet L-functions. We will mainly focus
on their analytic properties. In Chapter 2 we introduce some results on their zeros.
In Chapters 3 and 4, we introduce some results on the zeros of their derivatives,
including the author’s results, as mentioned in previous paragraphs. Finally in
Chapter 5, we introduce the author’s further research topic on an ergodic value
distribution of zeta functions and L-functions.
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Chapter 1

Preliminaries

In this chapter, we introduce some basic notions in the study of zeta functions
and L-functions. Zeta functions and L-functions are often considered as complex
meromorphic functions defined by some specific convergent series on some half-
plane. These convergent series are called Dirichlet series. We first define and
introduce a few basic properties of Dirichlet series. The rest of the chapter will
be dedicated to introduce the two most basic functions defined by using Dirichlet
series, the Riemann zeta function and Dirichlet L-functions.

1.1 Dirichlet series

In this dissertation, we define a Dirichlet series as a series of the form

∞∑
n=1

an
ns

(1.1)

where the coefficients an are any given numbers and s is a complex variable. We
usually consider a Dirichlet series as a function of s in the region where the series
is convergent. In other words, suppose that the series (1.1) converges (but not
necessarily absolutely) for s satisfying Re(s) > σc and diverges if Re(s) < σc for
some σc ∈ R, then we consider (1.1) as a function of s in {s ∈ C | Re(s) > σc}.
Referring to [Tit39, Sections 9.11 and 9.12], the series (1.1) is an analytic function
of s when Re(s) > σc. The line {s ∈ C | Re(s) = σc} is called the abscissa of
convergence, and the half-plane {s ∈ C | Re(s) > σc} called the half-plane of
convergence of the Dirichlet series (1.1). In the rest of this thesis, we often use the
notation for a line and a half-plane as Re(s) = c and Re(s) > c respectively, for
some c ∈ R.

Suppose that there exists a real number σa ∈ R such that the Dirichlet series
(1.1) is absolutely convergent in the half-plane Re(s) > σa. Then the function
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(1.1) is bounded in that half-plane of absolute convergence {s ∈ C | Re(s) > σa}
(cf. [Tit39, Section 9.3]). That is to say that we can find an absolute constant
M > 0 such that, for any σ′

a > σa,∣∣∣∣∣
∞∑
n=1

an
ns

∣∣∣∣∣ ≤ M

holds for all s satisfying Re(s) ≥ σ′
a.

Since a Dirichlet series can be regarded as an analytic function of some complex
variable s, we are interested in analytically continuing it to a larger plane, such as
the complex plane C. On the line Re(s) = σc, the series may not be convergent and
thus may have singularities there. Therefore in most cases, we analytically continue
a Dirichlet series into a meromorphic function on C. We shall see concrete examples
of these functions in later chapters, the Riemann zeta function and Dirichlet L-
functions. We note that in Chapter 5, we may encounter more functions of this
kind, namely zeta functions and L-functions, but we omit their details in this
thesis.

It is interesting in the study of Dirichlet series, to see that many meromorphic
functions f(s) defined by some certain Dirichlet series in some half-plane σ > σc,
satisfy the inequality of the form

f(σ + it) ≪ |t|ν(σ)

for some function ν(σ) in another half-plane σ > c which may be outside of the
half-plane of convergence of the defining Dirichlet series. Here the sign ≪ is a
symbol equivalent to the Landau O-symbol, that is:

f(σ + it) = O
(
|t|ν(σ)

)
.

In the rest of this thesis, we use both symbols accordingly. When studying the
function ν(σ), the following lemma of L. E. Phragmén and E. L. Lindelöf is useful:

Lemma 1.1 (Phragmén-Lindelöf theorem; cf. [Tit39, Section 5.6]). If ϕ(s) is
regular and O(eϵ|t|), for every positive ϵ, in the strip σ1 ≤ σ ≤ σ2, and

ϕ(σ1 + it) = O(|t|k1), ϕ(σ2 + it) = O(|t|k2),

then
ϕ(σ + it) = O(|t|k(σ))

uniformly for σ1 ≤ σ ≤ σ2, k(σ) being the linear function of σ which takes the
values k1, k2 for σ = σ1, σ2, respectively.

We end our discussion on general Dirichlet series here. In the following sections,
we introduce the Riemann zeta function and Dirichlet L-functions.
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1.2 The Riemann zeta function

Definition 1 (Riemann zeta function). The Riemann zeta function ζ(s) is a mero-
morphic function of s defined by the Dirichlet series

∞∑
n=1

1

ns
(1.2)

for any s ∈ C satisfying Re(s) > 1.

We can easily check that the series (1.2) defining ζ(s) is absolutely and com-
pactly uniformly convergent in that region and thus defines an analytic function
in Re(s) > 1.

Lemma 1.2 (Euler product; cf. [Tit86, Equation (1.1.2)]). For s ∈ C satisfying
Re(s) > 1, we have

ζ(s) =
∏

p:primes

1

1 − 1
ps

.

Proof of Lemma 1.2. This Euler product expansion of ζ(s) is easily shown by using
the uniqueness of prime factorization of natural numbers.

Applying Lemma 1.2 we easily obtain:

Corollary 1.3. ζ(s) has no zeros in {s ∈ C | Re(s) > 1}.

We first show that ζ(s) can be analytically continued to a larger half-plane by
using the following expression:

Lemma 1.4. For Re(s) > 1,

ζ(s) =
1

s− 1
+

1

2
+ s

∫ ∞

1

[x] − x + 1/2

xs+1
dx. (1.3)

Here [x] denotes the greatest integer t satisfying t ≤ x.

For this purpose we invoke the following lemma:

Lemma 1.5 (Euler’s summation formula; cf. [BD04, Lemma 3.12]). Let f(x) be
a continuous function on [a, b] with a piecewise continuous derivative and let c be
a constant. Then∑

a<n≤b

f(n) =

∫ b

a

f(t)dt− (t− [t] − c)f(t)

∣∣∣∣b
a

+

∫ b

a

(t− [t] − c)f ′(t)dt.

Proof of Lemma 1.5. See [BD04, Proof of Lemma 3.12 (p. 48)].
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Proof of Lemma 1.4. We first recall the Dirichlet series expression (1.2) of ζ(s).
We apply Lemma 1.5 with a = limt↑1 t, any b > 1, and c = 1/2. Letting b → ∞,
we immediately obtain (1.3).

We can check that the integral in (1.3) defines an analytic function on Re(s) >
0. We note that the right hand side of (1.3) is analytic for Re(s) > 0 except for
one simple pole at s = 1. Hence Lemma 1.4 gives an analytic continuation of ζ(s)
to {s ∈ C\{1} | Re(s) > 0}.

Now since ζ(s) is analytic on {s ∈ C\{1} | Re(s) > 0}, we can analytically
continue ζ(s) to C\{1} by using the following lemma:

Lemma 1.6 (Asymmetric functional equation; cf. [BD04, Theorem 8.1]). ζ(s) is
an analytic function on C\{1} and it satisfies there the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1 − s)ζ(1 − s). (1.4)

Here Γ(s) is the Euler gamma function (cf. [Dav00, Chapter 10]).

Proof of Lemma 1.6. See [BD04, Proof of Theorem 8.1 (pp. 183–185)].

From the asymmetric functional equation for ζ(s), we can easily deduce the
symmetric form of the functional equation for ζ(s):

Corollary 1.7 (Symmetric functional equation; cf. [BD04, Theorem 8.2]).

π−(1−s)/2Γ

(
1 − s

2

)
ζ(1 − s) = π−s/2Γ

(s
2

)
ζ(s) (1.5)

for any s ∈ C.

Remarks. If we define the function ξ(s) on C as

ξ(s) :=
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s),

then ξ(s) is an entire function and satisfies the functional equation ξ(s) = ξ(1−s).
Furthermore, ξ(s) is real valued on the real axis and on the line Re(s) = 1/2.

The function ξ(s) is often called the completed Riemann zeta function. We
also note that non-real zeros of ξ(s) are completely determined by non-real zeros
of ζ(s). In other words, when Im(s) ̸= 0 the following relation holds:

ξ(s) = 0 ⇐⇒ ζ(s) = 0.

Now we have obtained an analytic continuation of ζ(s) to C\{1} and we have
also seen that the simple pole s = 1 is the only singularity of ζ(s). Thus from now
on we speak of the Riemann zeta function ζ(s) as a meromorphic function on C
with a simple pole at s = 1 and no other singularities, defined by the Dirichlet
series (1.2) on Re(s) > 1.
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1.3 Dirichlet L-functions

Dirichlet L-functions are a family of functions defined in a manner similar to
the Riemann zeta function by using Dirichlet characters. In this section, we briefly
introduce some properties of Dirichlet L-functions as introduced in the previous
section for the Riemann zeta function.

Before we define Dirichlet L-functions, we first define Dirichlet characters.

Definition 2 (Dirichlet character). Let q be a positive integer. A Dirichlet char-
acter χ modulo q is a complex valued function defined on the set of all rational
integers Z satisfying:

1. χ(mn) = χ(m)χ(n) for all m,n ∈ Z,

2. χ(n + q) = χ(n) for all n ∈ Z,

3. χ(n) = 0 for any n ∈ Z satisfying (n, q) > 1,

4. χ(n0) ̸= 0 for some positive integer n0.

Here (n, q) denotes the greatest common divisor of n and q. A character χ is said
to be non-principal if there exists a positive integer n1 s.t. χ(n1) ̸= 1, otherwise
we say that it is principal.

We can now define Dirichlet L-functions.

Definition 3 (Dirichlet L-functions). The Dirichlet L-function L(s, χ) associated
with a Dirichlet character χ is a meromorphic function of s defined by the Dirichlet
series

∞∑
n=1

χ(n)

ns
(1.6)

for any s ∈ C satisfying Re(s) > 1. If χ is non-principal, then the defining series
(1.6) converges in Re(s) > 0.

Remarks. There exists only one Dirichlet character modulo 1 and the associated
Dirichlet L-function is the Riemann zeta function. Thus we can say that Dirichlet
L-functions are a family of functions generalized from the Riemann zeta function
by using Dirichlet characters. Note that the Riemann zeta function is a principal
Dirichlet L-function.

We can easily check that the series (1.6) defining L(s, χ) is absolutely and
compactly uniformly convergent in Re(s) > 1 and thus defines an analytic function
there. If χ is non-principal, the series (1.6) defining L(s, χ) is not absolutely
convergent in Re(s) > 0, but is compactly uniformly convergent there, and thus
defines an analytic function there.

Dirichlet L-functions also have Euler product expansions.
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Lemma 1.8 (Cf. [MV06, Equation (4.21)]). For s ∈ C satisfying Re(s) > 1, we
have

L(s, χ) =
∏

p:primes

1

1 − χ(p)
ps

.

From Lemma 1.8 we easily obtain:

Corollary 1.9. L(s, χ) has no zeros in {s ∈ C | Re(s) > 1}.

We remark that all Dirichlet L-functions defined in Definition 3 can be analyt-
ically continued to C, except possibly for a simple pole at s = 1. From now on,
we speak of Dirichlet L-functions L(s, χ) as these meromorphic functions on C.
When χ is principal, L(s, χ) is a meromorphic function on C with a simple pole at
s = 1 as its only singularity. When χ is non-principal, L(s, χ) is an entire function
on C.

Besides the Riemann zeta function (Dirichlet L-function of modulo 1), we are
especially interested in Dirichlet L-functions associated with primitive Dirichlet
characters. The reason can be seen from Lemma 1.11 below.

Definition 4 (primitive Dirichlet character). A non-principal Dirichlet character
χ modulo q is said to be primitive if for any proper divisor d of q (that is, d is a
positive integer satisfying d|q and d < q), there exists some integer n ≡ 1 mod d
such that (n, q) = 1 and χ(n) ̸= 1.

Each Dirichlet character which is not primitive can be expressed by a unique
primitive character:

Lemma 1.10 (Cf. [MV06, Equation (9.1) and Theorem 9.2]). Let χ be a Dirichlet
character modulo q. Then there exists a unique primitive Dirichlet character χ∗

modulo d for some d|q such that

χ(n) =

{
χ∗(n) if (n, q) = 1,

0 otherwise.

Consequently, every Dirichlet L-function associated with an imprimitive Dirich-
let character χ can be expressed by a unique Dirichlet L-function associated with
a primitive character as in the following lemma.

Lemma 1.11 (Cf. [MV06, Equation (10.20)]). Let χ be a Dirichlet character
modulo q. Then there exists a primitive Dirichlet character χ∗ modulo d for some
d|q such that

L(s, χ) = L(s, χ∗)
∏
p|q,

p:primes

(
1 − χ∗(p)

ps

)
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This lemma implies that it is sufficient for us to study Dirichlet L-functions
associated with primitive characters.

As in Lemma 1.6, Dirichlet L-functions associated with primitive Dirichlet
characters can also be analytically continued to C by using functional equations:

Lemma 1.12 (Cf. [MV06, Corollary 10.8]). Let χ be a primitive Dirichlet charac-
ter. L(s, χ) is an entire function on C and it satisfies there the functional equation

L(s, χ) = ϵ(χ)2sπs−1q1/2−s sin

(
π(s + κ)

2

)
Γ(1 − s)L(1 − s, χ), (1.7)

where ϵ(χ) is a factor that depends only on χ, satisfying |ϵ(χ)| = 1,

κ :=

{
0 when χ(−1) = 1;

1 when χ(−1) = −1,

and Γ(s) is the Euler gamma function as in Lemma 1.6.

As in the case of ζ(s), we can define the function ξ(s, χ) on C as

ξ(s, χ) :=

(
π

q

)−(s+κ)/2

Γ

(
s + κ

2

)
L(s, χ).

By using Lemma 1.12, we can easily show that ξ(s, χ) is an entire function satis-
fying the functional equation ξ(s, χ) = ϵ(χ)ξ(1 − s, χ). This gives the symmetric
form of the functional equation for L(s, χ) associated with a primitive Dirichlet
character χ.

Remark. In our definition of primitive characters (Definition 4), a primitive char-
acter is always non-principal. However, some texts treat the Dirichlet character
modulo 1 as a primitive character. In later chapters, to avoid confusion, we mention
“primitive Dirichlet character modulo q > 1” instead of only “primitive Dirichlet
character”.
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Chapter 2

Zeros of the Riemann zeta
function and Dirichlet L-functions

In this chapter we introduce some results on the distribution of zeros of the
Riemann zeta function and Dirichlet L-functions. We will see in later chapters that
many analogous results are obtained for their derivatives. Before we begin with
the discussion on zeros, we introduce some useful tools in studying the distribution
of zeros.

2.1 Some tools

In this section we introduce some tools we use for counting the number of zeros
of meromorphic functions with proofs omitted.

The first lemma is due to J. Jensen. We state here the lemma in the form
convenient for our purpose.

Lemma 2.1 (Jensen’s theorem; cf. [Tit39, Section 3.61]). Let f(z) be analytic for
|z| < R and suppose that f(0) ̸= 0. Let n(x) denote the number of zeros of f(z)
in the disc |z| ≤ x, then if r < R,∫ r

0

n(x)

x
dx =

1

2π

∫ 2π

0

log |f(reiθ)|dθ − log |f(0)|.

It is frequently convenient to count the number of zeros in a rectangle. The
following lemma is due to J. E. Littlewood.

Lemma 2.2 (Littlewood’s lemma; cf. [Tit39, Section 3.8]). Let C denote the
rectangle bounded by the lines x = x1, x = x2, y = y1, and y = y2, where x1 < x2,
y1 < y2. Let f(z) be analytic and not zero on C, and meromorphic inside it. We
define the logarithm log f(z) by continuous variation along the line y = y0 from

11



log f(x2 + iy0) for y1 ≤ y0 ≤ y2, provided that [x + iy0, x2 + iy0] does not contain
any zero or pole of f(z). Otherwise, we put log f(z) = log f(z − i0).

Let ν(x′) denote the number of zeros of f(z) subtracted from the number of
poles in the part of the rectangle with x > x′ (counted with multiplicity). Then∫

C

log f(z)dz = −2πi

∫ x2

x1

ν(x)dx = −2πi
∑
β+iγ,

f(β+iγ)=0,
x1<β<x2, y1<γ<y2

(β − x1),

where the sum is counted with multiplicity.

2.2 Zeros of the Riemann zeta function and the

Riemann hypothesis

From Lemma 1.6, we find that ζ(s) = 0 for any negative even integer s
(s = −2,−4,−6, · · · ) and we call these zeros the trivial zeros of ζ(s). Recall
that Corollary 1.3 states that ζ(s) ̸= 0 when Re(s) > 1. In view of the functional
equation (1.4) (or (1.5)) for ζ(s), we find that ζ(s) is also nonzero when Re(s) < 0
and Im(s) ̸= 0. Furthermore, referring to [BD04, Theorem 7.6], ζ(s) ̸= 0 when
Re(s) = 1 (note that s = 1 is a pole). Thus, again by the functional equation
(1.4) (or (1.5)) for ζ(s), ζ(s) ̸= 0 for Re(s) = 0. Therefore all other zeros, if
exist (in fact, they exist (cf. [Hav03, Section 16.6])), they must all lie in the strip
0 < Re(s) < 1. It is further shown that

Theorem 2.3 (Cf. [BD04, Theorem 8.5]). ζ(s) has infinitely many zeros in the
strip 0 < Re(s) < 1.

We call this strip the critical strip and we call the zeros in this strip the non-
trivial zeros of ζ(s). We also note that all nontrivial zeros of ζ(s) are non-real,
while all trivial zeros of ζ(s) are real as stated earlier. That is to say that “non-
trivial zeros of ζ(s)” and “non-real zeros of ζ(s)” are equivalent terms. However,
the exact location of these zeros remains an unsolved problem.

It is conjectured that all nontrivial zeros of ζ(s) lie on the line Re(s) = 1/2,
called the critical line. This conjecture was proposed by B. Riemann in 1859 and
is known as the Riemann hypothesis (cf. [BD04, p. 191], [Dav00, p. 60], or [MV06,
p. 328]). This conjecture still remains unsolved and has been one of the strongest
motivations in the study of the Riemann zeta function, especially for its close
relation with the distribution of prime numbers. We shall not discuss this further,
but we remark that the Riemann hypothesis gives the best possible estimate for
the number of primes as shown by N. F. H. von Koch in 1901, more precisely:
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Theorem 2.4 (Cf. [Koc01, pp. 181–182] or [MV06, Theorem 13.1 and the first
line in Section 13.3]). Let π(x) denote the number of prime numbers at most x,
and let

Li(x) :=

∫ x

2

dt

log t
.

Assume that the Riemann hypothesis is true. Then for x ≥ 2,

π(x) = Li(x) + O
(
x1/2 log x

)
.

It is known that the best possible error term in the above equation can be
formulated as:

O
(
x1/2−ϵ

)
for any ϵ > 0 (cf. [MV06, Theorem 15.2 and Corollary 15.4]). Therefore, the above
theorem also implies that the Riemann hypothesis gives the best possible version
of the prime number theorem.

As we have seen earlier, {s ∈ C | Re(s) ≤ 0, s ̸= −2,−4,−6,−8, · · · } ∪ {s ∈
C | Re(s) ≥ 1} is a trivial zero-free region for ζ(s). Below we introduce a more
precise zero-free region for ζ(s).

Theorem 2.5 (Cf. [BD04, Theorem 8.8], [Dav00, Chapter 13], or [MV06, Theorem
6.6]). There exists a constant K > 0 such that ζ(s) ̸= 0 in the region{

s = σ + it ∈ C | σ > 1 − K

log (|t| + 2)

}
.

We are interested in studying the distribution of the real part and the number
of non-real zeros of the derivatives of the Riemann zeta function. Here we briefly
introduce the corresponding results on the Riemann zeta function itself.

It is not difficult to see from the symmetric functional equation (1.5) that
nontrivial zeros of ζ(s) are symmetric with respect to the critical line Re(s) = 1/2.
We also remark that they are symmetric with respect to the real line Im(s) = 0,
thus, recalling that they are non-real, we find that it is sufficient to study the
nontrivial zeros of ζ(s) in the upper half-plane Im(s) > 0. Since they all lie in the
critical strip 0 < Re(s) < 1, we immediately obtain:

Theorem 2.6. For T > 0, we have∑
ρ=β+iγ,

ζ(ρ)=0, 0<γ≤T

(
β − 1

2

)
= 0

where the sum is counted with multiplicity.
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We shall see in the next chapter that non-real zeros of the derivatives of ζ(s)
are not so beautifully distributed as in Theorem 2.6 around the critical line.

Finally, we close this section by introducing two known results on the number of
zeros of ζ(s). We let N(T ) denote the number of zeros of ζ(s) with 0 < Im(s) ≤ T ,
counted with multiplicity. The first result is due to H. C. F. von Mangoldt, proven
in 1905.

Theorem 2.7 (Cf. [Dav00, pp. 59–60 and Chapter 15] or [MV06, Corollary 14.3]).
For T ≥ 2, we have

N(T ) =
T

2π
log

T

2π
− T

2π
+ O(log T ).

Assuming the truth of the Riemann hypothesis, we have a better estimate as
shown by Littlewood in 1924:

Theorem 2.8 (Cf. [Lit24, Theorem 11] or [MV06, Corollary 14.4]). Assume that
the Riemann hypothesis is true. Then for T ≥ 2,

N(T ) =
T

2π
log

T

2π
− T

2π
+ O

(
log T

log log T

)
.

2.3 Zeros of Dirichlet L-functions and the gener-

alized Riemann hypothesis

In this section, we consider Dirichlet L-functions L(s, χ) associated with prim-
itive Dirichlet characters χ modulo q > 1. Note that χ is non-principal under this
condition (recall Definition 4 and the last remark in Chapter 1).

From Lemma 1.12, L(s, χ) = 0 for s = −κ,−κ−2,−κ−4,−κ−6, · · · , where κ
is determined for each χ as in Lemma 1.12. These zeros are called the trivial zeros
of L(s, χ). As in the case of ζ(s), we call all the other zeros the nontrivial zeros of
L(s, χ). From Corollary 1.9 and the functional equation (1.7) for L(s, χ), we find
that these nontrivial zeros of L(s, χ) must all lie in the strip 0 ≤ Re(s) ≤ 1. It
is further known that L(s, χ) ̸= 0 on the lines Re(s) = 0, 1 except at s = 0 itself
(recall that this is a trivial zero when κ = 0). We can see this from a more precise
zero-free region for L(s, χ) given in the following Theorem 2.9 and the functional
equation (1.7). Hence all nontrivial zeros of L(s, χ) also lie in the critical strip
0 < Re(s) < 1.

Theorem 2.9 (Cf. [Dav00, Chapter 14] or [MV06, Theorem 11.3]). There exists
a constant K > 0 such that L(s, χ) ̸= 0 in the region{

s = σ + it ∈ C | σ > 1 − K

log (q(|t| + 2))

}
, (2.1)
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unless χ is a real non-principal character (also commonly called quadratic, see
[MV06, the first paragraph in Section 9.3]), in which case L(s, χ) has at most one
real zero β0 < 1 in the region (2.1).

An extension of the Riemann hypothesis, usually known as the generalized Rie-
mann hypothesis, states that both ζ(s) and L(s, χ) satisfy the Riemann hypothesis,
that is, all nontrivial zeros lie on the critical line Re(s) = 1/2 (cf. [MV06, p. 333]).
The truth of this hypothesis still remains unknown for both functions.

We are interested in studying the distribution of the real part and the number
of non-real zeros of the derivatives of not only the Riemann zeta function, but
also of Dirichlet L-functions associated with primitive characters. We close this
section and this chapter by introducing the corresponding results on the Dirichlet
L-functions themselves.

As in the case of ζ(s), the symmetric functional equation given by the function
ξ(s, χ) results in the nontrivial zeros of L(s, χ) being symmetric with respect to
the critical line Re(s) = 1/2. However, we remark that they are not necessarily
symmetric with respect to the real line Im(s) = 0, thus we consider not only the
nontrivial zeros of L(s, χ) in the upper half-plane, but also on the real line and in
the lower half-plane. Since they all lie in the critical strip, we immediately obtain:

Theorem 2.10. For T > 0, we have∑
ρ=β+iγ,
L(ρ,χ)=0,
β>0, |γ|≤T

(
β − 1

2

)
= 0

where the sum is counted with multiplicity.

Finally, analogous to the results we introduced for ζ(s), we introduce two known
results on the number of zeros of L(s, χ). We let N(T, χ) denote the number of
zeros of L(s, χ) with 0 < Re(s) < 1, | Im(s)| ≤ T , counted with multiplicity.

Theorem 2.11 (Cf. [Dav00, Chapter 16] or [MV06, Corollary 14.7]). For T ≥ 2,
we have

N(T, χ) =
T

π
log

qT

2π
− T

π
+ O(log (qT )).

Assuming the truth of the generalized Riemann hypothesis, we have a better
estimate:

Theorem 2.12 (Cf. [MV06, Exercise 14.1.1]). Assume that the generalized Rie-
mann hypothesis is true. Then for T ≥ 2,

N(T, χ) =
T

π
log

qT

2π
− T

π
+ O

(
log (qT )

log log (qT )

)
.
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Chapter 3

Zeros of the derivatives of the
Riemann zeta function

In this chapter we introduce some results on the distribution of the k-th deriva-
tive of the Riemann zeta function, denoted by ζ(k)(s) for positive integer k, espe-
cially on the distribution of the real part and the number of non-real zeros. We
first introduce some known results in the first section. In Section 3.2, we intro-
duce some conditional results and prove those which were shown by the author in
[Sur15]. Throughout this chapter, only the results proven by the author are stated
as theorems.

3.1 Unconditional results

We begin with our strongest motivation in studying zeros of the derivatives
of the Riemann zeta function. A. Speiser [Spe35] in 1935 showed an equivalence
between the distribution of nontrivial zeros of the Riemann zeta function ζ(s) and
that of non-real zeros of its first derivative ζ ′(s). More precisely, he proved that
the Riemann hypothesis is equivalent to the statement that ζ ′(s) has no non-real
zeros in Re(s) < 1/2.

In 1970, B. C. Berndt [Ber70, Theorem] proved that

Nk(T ) =
T

2π
log

T

4π
− T

2π
+ O(log T ) (3.1)

where Nk(T ) denotes the number of zeros of ζ(k)(s) with 0 < Im(s) ≤ T , counted
with multiplicity. Further in 1974, N. Levinson and H. L. Montgomery [LM74,
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Theorem 10] showed that∑
ρ(k)=β(k)+iγ(k),

ζ(k)(ρ(k))=0, 0<γ(k)≤T

(
β(k) − 1

2

)
=

kT

2π
log log

T

2π
+

1

2π

(
1

2
log 2 − k log log 2

)
T

− k Li

(
T

2π

)
+ O(log T )

(3.2)
where the sum is counted with multiplicity and Li(x) is as defined in Theorem
2.4. In addition to the above result (3.2), Levinson and Montgomery [LM74] also
studied the location of the zeros of ζ(k)(s). There are many other papers on the
zeros of ζ(k)(s); for example, J. B. Conrey and A. Ghosh [CG90, Theorem 1] in
1989, studied the zeros of ζ(k)(s) near the critical line.

3.2 Results obtained under the truth of the Rie-

mann hypothesis

In 2012, H. Akatsuka [Aka12, Theorems 1 and 3] improved each of the error term
of the results obtained by Berndt and by Levinson and Montgomery mentioned
above (see (3.1) and (3.2)) for the case k = 1 under the assumption of the truth
of the Riemann hypothesis. More precisely, he showed that∑

ρ′=β′+iγ′,
ζ′(ρ′)=0, 0<γ′≤T

(
β′ − 1

2

)
=

T

2π
log log

T

2π
+

1

2π

(
1

2
log 2 − log log 2

)
T

− Li

(
T

2π

)
+ O((log log T )2)

and

N1(T ) =
T

2π
log

T

4π
− T

2π
+ O

(
log T

(log log T )1/2

)
(3.3)

if the Riemann hypothesis is true. In this section1, we generalize these two results
of Akatsuka for any positive integer k.

Remark. Recently, F. Ge [Ge-p, Theorem 1] showed that we can improve the error
term in (3.3) shown by Akatsuka [Aka12, Theorem 3] to

O

(
log T

log log T

)
.

1The content of this section is essentially the same as the manuscript [Sur15] published in
Functiones et Approximatio, Commentarii Mathematici 53, and is slightly modified in order to
fit in the content and structure of this thesis.
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This result is the current best estimate on the number of zeros of ζ ′(s) under the
Riemann hypothesis.

Throughout this section, the letter k is used as a fixed positive integer, unless
otherwise specified. For simplicity, we denote by ρ = β + iγ and ρ(k) = β(k) +
iγ(k) the nontrivial zeros of ζ(s) and the non-real zeros of ζ(k)(s), respectively.
In addition, N(T ) and Nk(T ) are as defined previously, that is they each count
the number of zeros of ζ(s) and ζ(k)(s), respectively, in 0 < Im(s) ≤ T , with
multiplicity.

The following results generalize Theorem 1, Corollary 2, and Theorem 3 of
[Aka12], respectively. Note that each sum counts the non-real zeros of ζ(k)(s) with
multiplicity and that the implicit constant in Ok(·) depends only on k.

Theorem 3.1. Assume that the Riemann hypothesis is true. Then for any T > 2π,
we have ∑

ρ(k)=β(k)+iγ(k),
0<γ(k)≤T

(
β(k) − 1

2

)
=

kT

2π
log log

T

2π
+

1

2π

(
1

2
log 2 − k log log 2

)
T

− k Li

(
T

2π

)
+ Ok((log log T )2).

Corollary 3.2 (Cf. [LM74, Theorem 3]). Assume that the Riemann hypothesis is
true. Then for 0 < U < T (where T is restricted to satisfy T > 2π), we have

∑
ρ(k)=β(k)+iγ(k),
T<γ(k)≤T+U

(
β(k) − 1

2

)
=

kU

2π
log log

T

2π
+

1

2π

(
1

2
log 2 − k log log 2

)
U

+ O

(
U2

T log T

)
+ Ok

(
(log log T )2

)
.

Here the implicit constant in the error term O (U2(T log T )−1) does not depend on
any parameter.

Theorem 3.3. Assume that the Riemann hypothesis is true. Then for T ≥ 2, we
have

Nk(T ) =
T

2π
log

T

4π
− T

2π
+ Ok

(
log T

(log log T )1/2

)
.

We write Re(s) and Im(s) (for any s ∈ C) as σ and t, respectively. We ab-
breviate the Riemann hypothesis as RH, and finally, we define two functions F (s)
and Gk(s) as follows:
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Definition 5.

F (s) := 2sπs−1 sin
(πs

2

)
Γ(1 − s), Gk(s) := (−1)k

2s

(log 2)k
ζ(k)(s).

By the above definition of F (s), we can check easily that the functional equation
for ζ(s) states

ζ(s) = F (s)ζ(1 − s). (3.4)

Remark. The function F (s) appeared in [Aka12] and [LM74, Section 3] and the
function Gk(s) is the ζ(k)-version of the function G(s) in [Aka12], which is denoted
by Zk(s) in [LM74, Section 3]. Most of the symbols used in this section follow
those used in [Aka12].

Since the steps of our proofs basically follow those given in [Aka12] with a few
crucial modifications, instead of the outline of the proofs, below we present the
main needed modifications related to the proofs.

First of all, condition 2 of Lemma 2.1 of [Aka12] is related to the functional
equation for ζ ′(s). In our case, we need to consider ζ(k)(s) for any positive integer
k. Thus, we obtain a function which consists of terms that are not logarithmic
derivatives of some functions so we cannot easily follow the case of ζ ′(s). In the
present section, we take care of these terms in a way that does not involve any
calculation on logarithmic derivatives.

Secondly, similar to condition 2, in condition 3 of Lemma 2.1 of [Aka12], the
factor to be estimated was (F ′/F )(s) which is just the logarithmic derivative of
F (s), whereas in the present section, we need to take care of (F (k)/F )(s) which is
not a logarithmic derivative of any function. Thus, as in condition 2, we estimate
this term for any k in a way which does not require any calculation on logarithmic
derivatives, and hence we need to take a suitable logarithmic branch of the function
log (F (k)/F )(s).

The next is condition 4 of Lemma 2.1 of [Aka12]. For ζ ′(s), the term we
need to estimate was (ζ ′/ζ)(s) which is just the logarithmic derivative of ζ(s). In
[Aka12], the inequality Re((ζ ′/ζ)(s)) < 0 was obtained, however for ζ(k)(s), the
sign of Re

(
(ζ(k)/ζ)(s)

)
does not seem to stay unchanged in any region defined by

x ≤ σ < 1/2, t ≥ y for some x ≤ −1 and large y > 0. Nevertheless, since it is
sufficient to show that (ζ(k)/ζ)(s) is holomorphic and non-zero, and has bounded
argument in some region of the above kind, we shall modify the condition in such
a way.

Furthermore, with the modifications of these conditions of the first lemma,
the choice of logarithmic branch of the function log

(
((F (k)/F )(s))−1(ζ(k)/ζ)(s)

)
in

the proof of Proposition 3.5 (which generalizes Proposition 2.2 in [Aka12]) must
be taken more carefully so that these conditions can be used in our calculations.
In order to evaluate the function log

(
((F (k)/F )(s))−1(ζ(k)/ζ)(s)

)
, we first define
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the functions log
(
((F (k)/F )(s))−1(ζ(k)/ζ)(s)

)
, log (F (k)/F )(s), and log (ζ(k)/ζ)(s)

independently. Then using the continuities of arg
(
((F (k)/F )(s))−1(ζ(k)/ζ)(s)

)
,

arg (F (k)/F )(s), and arg (ζ(k)/ζ)(s), we observe the difference

arg

(
1

F (k)

F
(s)

ζ(k)

ζ
(s)

)
−
(
− arg

F (k)

F
(s) + arg

ζ(k)

ζ
(s)

)
in the region under evaluation (see the evaluation of I15 in Proposition 3.5).

Finally, the region 1/2 < σ ≤ a considered in Lemma 2.3 of [Aka12] does not
work well for (ζ(k)/ζ)(s). The reason is that the current best estimate of (ζ(k)/ζ)(s)
depends on the usage of Cauchy’s integral formula, hence we need to keep a certain
distance between 1/2 and the infimum of σ in the region. Therefore, we put here
a small distance ϵ0 > 0 (see the statement of our Lemma 3.6).

3.2.1 Proof of Theorem 3.1 and Corollary 3.2

In this subsection we give the proofs of Theorem 1 and Corollary 2. For that
purpose, we need a few lemmas and a proposition which are analogues of those in
[Aka12]. The following lemma is a generalization of Lemma 2.1 of [Aka12] for the
case of ζ(k)(s).

Lemma 3.4. Assume RH. Then there exist ak ≥ 10, σk ≤ −1, and tk ≥ max {a2k,−σk}
such that the following conditions are satisfied:

1. |Gk(s) − 1| ≤ 1

2

(
2

3

)σ/2

, for any σ ≥ ak;

2.

∣∣∣∣∣
k∑

j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

∣∣∣∣∣ ≤ 2σ, for σ ≤ σk and t ≥ 2;

3.

∣∣∣∣F (k)

F
(s)

∣∣∣∣ ≥ 1 holds in the region σk ≤ σ ≤ 1/2, t ≥ tk − 1. Furthermore, we

can take the logarithmic branch of log
F (k)

F
(s) in that region such that it is

holomorphic there and

αkπ

6
< arg

F (k)

F
(s) <

βkπ

6

holds, where

(αk, βk) =

{
(5, 7) if k is odd,

(−1, 1) if k is even;
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4.
ζ(k)

ζ
(s) ̸= 0 holds in the region σk ≤ σ < 1/2, t ≥ tk − 1. Furthermore, we

can take the logarithmic branch of log
ζ(k)

ζ
(s) in that region such that it is

holomorphic there and

kπ

2
< arg

ζ(k)

ζ
(s) <

3kπ

2

holds;

5. ζ(σ + itk) ̸= 0, ζ(k)(σ + itk) ̸= 0, for all σ ∈ R.

Proof. 1. See [LM74, (3.2) (p. 54)].

2. We start by estimating (F (k)/F (k−j))(s) (j = 1, 2, · · · , k) in the region σ <
1, t ≥ 2. We set

f(s) :=

(
1

2
− s

)(
log (1 − s) − log (2π) +

πi

2

)
+ s + O(1),

where f(s) is an analytic function and

f ′(s) = − log (1 − s) + O(1), f (j)(s) = O(1) (j ≥ 2).

As in [LM74, pp. 54–55], we can write

F (s) = exp(f(s)).

Using methods similar to [Gon84, Lemma 6 (p. 133)] and [LM74, pp. 54–55],
we can show that

F (j)(s) = F (s)(f ′(s))j
(

1 + O

(
1

| log s|2

))
(3.5)

holds for any positive integer j. In consequence, for j = 1, 2, · · · , k, we have∣∣∣∣ F (k)

F (k−j)
(s)

∣∣∣∣ =

∣∣∣∣(f ′(s))j
(

1 + O

(
1

| log s|2

))∣∣∣∣
≥ (log |1 − s|)j −

∣∣O ((log |1 − s|)j−1
)∣∣ .

Certainly, this also holds in the region σ ≤ −1, t ≥ 2, so for any positive
integer k, we can take σk1 ≤ −1 sufficiently small (i.e. sufficiently large in
the negative direction) so that for any s with σ ≤ σk1 and t ≥ 2, we have∣∣∣∣ F (k)

F (k−j)
(s)

∣∣∣∣ ≥ 1

2k
(log |1 − s|)j ≥ 1

2k
(log (1 − σ))j. (3.6)
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Next we estimate (ζ(j)/ζ)(1 − s) (j = 1, 2, · · · , k). In the region σ ≤
−1, t ≥ 2, we have

∣∣ζ(j)(1 − s)
∣∣ ≤ ∣∣∣∣(log 2)j

21−s

∣∣∣∣+

∣∣∣∣∣
∞∑
n=3

(log n)j

n1−s

∣∣∣∣∣ ≤ 1

2
(log 2)j2σ +

∫ ∞

2

(log x)j

x1−σ
dx

= 2σ

(
1

2
(log 2)j +

j∑
l=0

(log 2)j−l j!
(j−l)!

(−σ)l+1

)
and

|ζ(1 − s)| ≥ 1 −

∣∣∣∣∣
∞∑
n=2

1

n1−s

∣∣∣∣∣ ≥ 1 −
∞∑
n=2

1

n2
= 2 − π2

6
.

Thus, ∣∣∣∣ζ(j)ζ (1 − s)

∣∣∣∣ ≤ 2σ

2 − π2

6

(
1

2
(log 2)j +

j∑
l=0

(log 2)j−l j!
(j−l)!

(−σ)l+1

)
. (3.7)

Now combining (3.6) and (3.7), for σ ≤ σk1 and t ≥ 2, we have∣∣∣∣∣
k∑

j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

∣∣∣∣∣
≤

k∑
j=1

(
k

j

)
1∣∣∣ F (k)

F (k−j) (s)
∣∣∣
∣∣∣∣ζ(j)ζ (1 − s)

∣∣∣∣
≤ 2σ 2k

2 − π2

6

k∑
j=1

(
k

j

)
1

(log (1 − σ))j

(
1

2
(log 2)j +

j∑
l=0

(log 2)j−l j!
(j−l)!

(−σ)l+1

)
.

Since for any positive integer k,

lim
σ→−∞

2k

2 − π2

6

k∑
j=1

(
k

j

)
1

(log (1 − σ))j

(
1

2
(log 2)j +

j∑
l=0

(log 2)j−l j!
(j−l)!

(−σ)l+1

)
= 0,

we can take σk ≤ σk1 (≤ −1) so that

2k

2 − π2

6

k∑
j=1

(
k

j

)
1

(log (1 − σ))j

(
1

2
(log 2)j +

j∑
l=0

(log 2)j−l j!
(j−l)!

(−σ)l+1

)
≤ 1

holds for any σ ≤ σk. This implies that∣∣∣∣∣
k∑

j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

∣∣∣∣∣ ≤ 2σ
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holds for σ ≤ σk, t ≥ 2.

Now with the above σk, we are going to find tk ≥ max {a2k,−σk} for which
conditions 3 to 5 hold.

3. We start by examining condition 3. We first consider the region σk ≤ σ ≤
1/2, t ≥ 99. It follows from (3.5) that in this region,

F (k)(s) = F (s)(− log (1 − s) + O(1))k
(

1 + O

(
1

| log s|2

))
(3.8)

holds. This gives us,∣∣∣∣F (k)

F
(s)

∣∣∣∣ ≥ |(log (1 − s))k| −
∣∣Oσk

(
(log t)k−1

)∣∣ ≥ (log t)k −
∣∣Oσk

(
(log t)k−1

)∣∣
for σk ≤ σ ≤ 1/2 and t ≥ 99. Thus, for any integer k ≥ 1, we can take
tk1 ≥ 100 such that ∣∣∣∣F (k)

F
(s)

∣∣∣∣ ≥ 1 (3.9)

for σk ≤ σ ≤ 1/2 and t ≥ tk1 − 1.

We note from (3.8) that (F (k)/F )(s) = (−1)k(log t)k+O
(
(log t)k−1

)
when

σk ≤ σ ≤ 1/2 and t ≥ 99. Consequently, for odd integer k ≥ 1, we can find
sufficiently large t′k2 ≥ 100 such that

5π

6
< arg

F (k)

F
(s) <

7π

6

holds for σk ≤ σ ≤ 1/2 and t ≥ t′k2 − 1. Similarly, when k is even, we can
also find sufficiently large t′′k2 ≥ 100 such that

−π

6
< arg

F (k)

F
(s) <

π

6

holds for σk ≤ σ ≤ 1/2 and t ≥ t′′k2 − 1. Since all zeros and poles of F (s) lie

on R, (F (k)/F )(s) has no poles for t > 0. This along with (3.9) implies that
log (F (k)/F )(s) is holomorphic in the region with this branch. Thus setting

(αk, βk) :=

{
(5, 7) if k is odd,

(−1, 1) if k is even;

and

tk2 :=

{
t′k2 if k is odd,

t′′k2 if k is even;
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we find that log F (k)

F
(s) is holomorphic and that

αkπ

6
< arg

F (k)

F
(s) <

βkπ

6

holds in the region σk ≤ σ ≤ 1/2, t ≥ tk2 − 1.

By the above calculations, we see that max {tk1 , tk2 , a2k,−σk} is a candi-
date for tk. Thus we have proven that tk ≥ max {a2k,−σk} for which condition
3 holds exists. Since we want tk to also satisfy conditions 4 and 5, we need
to examine those conditions to completely prove the existence of tk.

4. Referring to [LM74, Corollary of Theorem 7 (p. 51)], we know that RH
implies that for any positive integer j, ζ(j)(s) has at most a finite number
of non-real zeros in σ < 1/2. Hence we can number all the non-real zeros

of ζ(j)(s) in σ < 1/2 as ρ
(j)
1 , ρ

(j)
2 , ρ

(j)
3 , · · · , ρ(j)mj (ρ

(j)
l = β

(j)
l + iγ

(j)
l ) for some

integer mj ≥ 2 (note that if ζ(j)
(
ρ(j)
)

= 0, then ζ(j)
(
ρ(j)
)

= 0, so mj ≥ 2) in

the order such that γ
(j)
l ≤ γ

(j)
l+1 for all 1 ≤ l ≤ mj − 1. Therefore, ζ(j)(s) ̸= 0

when σ < 1/2 and t ≥ γ
(j)
mj + 1. We set tk3 := max

1≤j≤k
(γ(j)

mj
+ 2), then for all

j = 1, 2, · · · , k, we have
ζ(j)(s) ̸= 0 (3.10)

in the region σ < 1/2, t ≥ tk3 − 1.

Next we show that we can take the logarithmic branch of log (ζ(k)/ζ)(s)
in the region σk ≤ σ < 1/2, t ≥ tk4 − 1 for some tk4 ≥ 100, so that it is
holomorphic there and

kπ

2
< arg

ζ(k)

ζ
(s) <

3kπ

2

holds there by first claiming that we can find some tk4 ≥ tk3 for which

Re

(
ζ(j)

ζ(j−1)
(s)

)
< 0 (σk ≤ σ < 1/2, t ≥ tk4 − 1) (3.11)

holds for all j = 1, 2, · · · , k. We first note that for any j = 1, 2, · · · , k,
(ζ(j)/ζ(j−1))(s) is holomorphic and has no zeros in the region defined by
σ < 1/2 and t ≥ tk3 − 1.

To show this, we refer to [LM74, pp. 64–65] and we can show that for
any j = 1, 2, · · · , k,

Re

(
ζ(j)

ζ(j−1)
(s)

)
≤ −2

9
log |s| + Oσk

(1)
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holds when σk ≤ σ < 1/2, and t ≥ tk3 − 1. Thus, we can take tk4 ≥ tk3 such
that (3.11) holds for all j = 1, 2, · · · , k .

The above immediately implies that for each j = 1, 2, · · · , k, there exists
an integer lj such that

π

2
+ 2ljπ < arg

ζ(j)

ζ(j−1)
(s) <

3π

2
+ 2ljπ (3.12)

holds for σk ≤ σ < 1/2, t ≥ tk4 − 1. We then choose the logarithmic branch
of each log (ζ(j)/ζ(j−1))(s) such that each lj in (3.12) is zero and take the
logarithmic branch of log (ζ(k)/ζ)(s) so that

arg
ζ(k)

ζ
(s) =

k∑
j=1

arg
ζ(j)

ζ(j−1)
(s)

holds in the region σk ≤ σ < 1/2, t ≥ tk4 − 1. Note that from (3.10) and
the analyticity of ζ(k)(s) in σ < 1/2 (also note that we are assuming RH
thus ζ(s) ̸= 0 when σ < 1/2 and t ≥ tk4 − 1), log (ζ(k)/ζ)(s) is holomorphic
in this region with this branch. We then obtain a holomorphic function
log (ζ(k)/ζ)(s) with inequalities

kπ

2
< arg

ζ(k)

ζ
(s) <

3kπ

2

in the region σk ≤ σ < 1/2, t ≥ tk4 − 1.

Combining the proof of condition 3 and the above calculations, we find
that max{tk1 , tk2 , tk4 , a2k,−σk} is a candidate for tk. Therefore we have proven
that tk ≥ max {a2k,−σk} for which conditions 3 and 4 hold exists.

5. Now we set tk5 := max {tk1 , tk2 , tk4 , a2k,−σk}.

• Since we are assuming RH, ζ(σ + it) ̸= 0 for any t > 0 if σ ̸= 1/2.

• According to [Spi65, Table 1 (p. 678)], ζ ′(σ + it) ̸= 0 for any t ∈ R if
σ ≥ 3 and ζ ′′(σ + it) ̸= 0 for any t ∈ R if σ ≥ 5. According to [Spi65,
Theorem 1], for k ≥ 3, ζ(k)(σ + it) ̸= 0 for any t ∈ R if σ ≥ 7k/4 + 2.
Indeed, we can check that for k = 1, 7/4 + 2 > 3 and for k = 2,
7/2 + 2 > 5, thus for any positive integer k,

ζ(k)(σ + it) ̸= 0 (σ ≥ 7

4
k + 2, t ∈ R).

• Since tk5 ≥ tk3 , from (3.10), we have ζ(k)(σ + it) ̸= 0 for σ < 1/2 and
t ≥ tk5 .

25



Hence, for any positive integer k, we only need to find tk ∈ [tk5 + 1, tk5 + 2]
for which

ζ

(
1

2
+ itk

)
̸= 0 and ζ(k)(σ + itk) ̸= 0 for

1

2
≤ σ ≤ 7

4
k + 2

hold. Note that this is possible by the identity theorem for complex ana-
lytic functions. Thus, we have shown that tk defined above satisfies tk ≥
max {a2k,−σk} and also conditions 3 to 5.

Remark. For k = 1 and k = 2, more precise results are known. Refer to [Aka12]
and [Sur-p1], respectively. These results are obtained based on the works of Speiser
[Spe35], R. Spira [Spi73], and C. Y. Yıldırım [Yıl96a] (also [Yıl00]) on the zeros of
ζ ′(s) and ζ ′′(s).

Proposition 3.5. Assume RH. Take ak and tk which satisfy all conditions of
Lemma 3.4. Then for T ≥ tk which satisfies ζ(k)(σ + iT ) ̸= 0 and ζ(σ + iT ) ̸= 0
for any σ ∈ R, we have

∑
ρ(k)=β(k)+iγ(k),

0<γ(k)≤T

(
β(k) − 1

2

)
=

kT

2π
log log

T

2π
+

1

2π

(
1

2
log 2 − k log log 2

)
T

− k Li

(
T

2π

)
+

1

2π

∫ ak

1/2

(− arg ζ(σ + iT ) + argGk(σ + iT )) dσ

+ Ok(1),

where the logarithmic branches are taken so that log ζ(s) and logGk(s) tend to
0 as σ → ∞ and are holomorphic in C\{z + λ | ζ(z) = 0 or ∞, λ ≤ 0} and
C\{z + λ | ζ(k)(z) = 0 or ∞, λ ≤ 0}, respectively.

Proof. The steps of the proof generally follow the proof of Proposition 2.2 of
[Aka12]. We first take ak, σk, and tk as in Lemma 3.4 and fix them. Then,
we take T ≥ tk such that ζ(k)(σ + iT ) ̸= 0 and ζ(σ + iT ) ̸= 0 (∀σ ∈ R). We
also let δ ∈ (0, 1/2] and put b := 1/2 − δ. We consider the rectangle with vertices
b + itk, ak + itk, ak + iT , and b + iT , and then we apply Littlewood’s lemma (see
Lemma 2.2 or [Tit39, Section 3.8]) to Gk(s) there. By taking the imaginary part,
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we obtain

2π
∑

ρ(k)=β(k)+iγ(k),
tk<γ(k)≤T

(β(k) − b) =

∫ T

tk

log |Gk(b + it)|dt−
∫ T

tk

log |Gk(ak + it)|dt

−
∫ ak

b

argGk(σ + itk)dσ +

∫ ak

b

argGk(σ + iT )dσ

=: I1 + I2 + I3 +

∫ ak

b

argGk(σ + iT )dσ

(3.13)
where the sum is counted with multiplicity. By the same reasoning as in [Aka12,
p. 2246], we have

I2 = Oak(1), I3 = Oak,tk(1).

Now we only need to estimate I1. From the functional equation (3.4) for ζ(s),
we can deduce that

ζ(k)(s) = F (k)(s)ζ(1 − s)

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

)

= F (s)
F (k)

F
(s)ζ(1 − s)

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

)
.

Hence,

I1 =

∫ T

tk

log |Gk(b + it)|dt =

∫ T

tk

log
2b

(log 2)k
|ζ(k)(b + it)|dt

=

∫ T

tk

log
2b

(log 2)k
dt +

∫ T

tk

log |ζ(k)(b + it)|dt

= (b log 2 − k log log 2)(T − tk) +

∫ T

tk

log |F (b + it)|dt +

∫ T

tk

log

∣∣∣∣F (k)

F
(b + it)

∣∣∣∣dt
+

∫ T

tk

log |ζ(1 − b− it)|dt

+

∫ T

tk

log

∣∣∣∣∣1 −
k∑

j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (b + it)

ζ(j)

ζ
(1 − b− it)

∣∣∣∣∣dt
=: ((b log 2 − k log log 2)T + Otk(1)) + I12 + I13 + I14 + I15. (3.14)

As shown in [Aka12, pp. 2247–2249],

I12 =

(
1

2
− b

)(
T log

T

2π
− T

)
+ Otk(1),
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I14 = −
∫ ak

1−b

arg ζ(σ + iT )dσ + Oak,tk(1).

Below we estimate I13 and I15.
We begin with the estimation of I13. We consider for 0 < σ < 1/2 and t ≥ 100.

We first show that

F (k)(s) = F (s)(f ′(s))k
(

1 + O

(
e−t

| log s|2

)
+ O

(
1

|s|| log s|2

))
(3.15)

holds in the region σ < 1, t ≥ 100. It is obvious that the above error estimate is
more precise than that in (3.5). The proof is similar to the proof of condition 2 of
Lemma 3.4. We begin by taking the logarithmic branch of log (sin (πs/2)) as

log
(

sin
πs

2

)
= −πis

2
− log 2 +

πi

2
−

∞∑
n=1

eπins

n
(3.16)

in the region 0 < σ < 1, t ≥ 2 and analytically continue it to the region σ < 1, t ≥
2. Next, we apply Stirling’s formula to Γ(1−s) in the region −π/2 < arg (1 − s) <
π/2. Substituting these into F (s), we obtain

F (s) = exp

(
πi

4
− 1 +

(
1

2
− s

)
log

(1 − s)i

2π
+ s + O(e−t) + O

(
1

|s|

))
for σ < 1 and t ≥ 100, where the term O(e−t) comes from the term

∑∞
n=1 e

πinsn−1

in (3.16) and the term O(1/|s|) originates from the Stirling’s formula.
We now write

f(s) :=

(
1

2
− s

)
log

(1 − s)i

2π
+ s + O(e−t) + O

(
1

|s|

)
and differentiate it with respect to s to obtain

f ′(s) = − log
(1 − s)i

2π
+

1

2(1 − s)
+ O(e−t) + O

(
1

|s|2

)
and

f (j)(s) = O(e−t) + O

(
1

|s|j−1

)
for j ≥ 2. (3.15) immediately follows. As a consequence to (3.15),

F (k)

F
(b + it) =

(
− log

t + (1 − b)i

2π
+

1

2(1 − b− it)
+ O

(
1

t2

))k

×
(

1 + O

(
1

t(log t)2

))
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=

(
− log

t

2π
+

t2 − 2(1 − b)((1 − b)2 + t2)

2((1 − b)2 + t2)t
i + O

(
1

t2

))k

×
(

1 + O

(
1

t(log t)2

))
.

This gives us

log
F (k)

F
(b + it) = k log log

t

2π
+ k log (−1)

+ k log

(
1 − t2 − 2(1 − b)((1 − b)2 + t2)

2((1 − b)2 + t2)t log t
2π

i + O

(
1

t2 log t

))
+ O

(
1

t(log t)2

)
= k log log

t

2π
+ k log (−1) − k

t2 − 2(1 − b)((1 − b)2 + t2)

2((1 − b)2 + t2)t log t
2π

i

+ O

(
1

t(log t)2

)
.

Consequently we have

Re

(
log

F (k)

F
(b + it)

)
= k log log

t

2π
+ O

(
1

t(log t)2

)
.

Hence,

I13 =

∫ T

tk

log

∣∣∣∣F (k)

F
(b + it)

∣∣∣∣dt =

∫ T

tk

Re

(
log

F (k)

F
(b + it)

)
dt

= k

∫ T

tk

log log
t

2π
dt + O

(∫ T

tk

dt

t(log t)2

)
= kT log log

T

2π
− 2πk Li

(
T

2π

)
+ Otk(1).

Finally, we estimate I15. Again from the functional equation (3.4) for ζ(s), we
have

ζ(k)(s) = F (k)(s)ζ(1 − s)

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

)

=
F (k)

F
(s)ζ(s)

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

)
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which gives us

1
F (k)

F
(s)

ζ(k)

ζ
(s) = 1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s). (3.17)

It follows from condition 2 of Lemma 3.4 that the right hand side of (3.17) is
holomorphic and has no zeros in the region defined by σ ≤ σk and t ≥ 2. Moreover
from conditions 3 and 4 of Lemma 3.4, the left hand side of (3.17) is holomorphic
and has no zeros in the region defined by σk ≤ σ < 1/2 and t ≥ tk − 1. Thus, we
can determine

log

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

)

so that it tends to 0 as σ → −∞ which follows from condition 2 of Lemma 3.4,
and is holomorphic in the region σ < 1/2, t > tk − 1.

Now we consider the trapezoid C with vertices b + itk, b + iT , −T + iT , and
−tk + itk (as in [Aka12, p. 2247]). Then by Cauchy’s integral theorem,∫

C

log

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

)
ds = 0. (3.18)

By using condition 2 of Lemma 3.4, we can also show that (cf. [Aka12, p. 2248])(∫ −T+iT

σk+iT

+

∫ −tk+itk

−T+iT

+

∫ σk+itk

−tk+itk

)
log

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

)
ds = O(1).

Next we estimate the integral from σk + itk to b + itk trivially and we obtain∫ b+itk

σk+itk

log

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

)
ds = Otk(1).

Substituting the above two equations into (3.18) and taking the imaginary part,
we obtain

I15 =

∫ T

tk

log

∣∣∣∣∣1 −
k∑

j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (b + it)

ζ(j)

ζ
(1 − b− it)

∣∣∣∣∣dt
=

∫ b

σk

arg

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (σ + iT )

ζ(j)

ζ
(1 − σ − iT )

)
dσ + Otk(1)
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(3.17)
=

∫ b

σk

arg

(
1

F (k)

F
(σ + iT )

ζ(k)

ζ
(σ + iT )

)
dσ + Otk(1).

Now we determine the logarithmic branch of log (F (k)/F )(s) and log (ζ(k)/ζ)(s)
in the region σk ≤ σ < 1/2, t ≥ tk − 1 as in conditions 3 and 4, respectively, of
Lemma 3.4. Note that

log

∣∣∣∣∣ 1
F (k)

F
(s)

ζ(k)

ζ
(s)

∣∣∣∣∣ = − log

∣∣∣∣F (k)

F
(s)

∣∣∣∣+ log

∣∣∣∣ζ(k)ζ (s)

∣∣∣∣
holds in the region σk ≤ σ < 1/2, t ≥ tk − 1. Furthermore, since

log

(
1

F (k)

F
(s)

ζ(k)

ζ
(s)

)
= log

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

)
,

log (F (k)/F )(s), and log (ζ(k)/ζ)(s) are holomorphic in this region, we know that
arg
(
((F (k)/F )(s))−1(ζ(k)/ζ)(s)

)
, arg (F (k)/F )(s), and arg (ζ(k)/ζ)(s) are continu-

ous there. Since the region σk ≤ σ < 1/2, t ≥ tk − 1 is connected, there exists a
constant n ∈ Z such that

arg

(
1

F (k)

F
(s)

ζ(k)

ζ
(s)

)
= − arg

F (k)

F
(s) + arg

ζ(k)

ζ
(s) + 2nπ

holds in σk ≤ σ < 1/2, t ≥ tk − 1.
From this choice of logarithmic branch, we have

(3k − βk)

6
π+2nπ < arg

(
1

F (k)

F
(σ + iT )

ζ(k)

ζ
(σ + iT )

)
<

(9k − αk)

6
π+2nπ (3.19)

for σk ≤ σ < 1/2. Here, αk and βk are the constants given in Lemma 3.4, that is,

(αk, βk) =

{
(5, 7) if k is odd,

(−1, 1) if k is even.

Since n does not depend on s, n = Ok(1). Therefore

arg

(
1

F (k)

F
(σ + iT )

ζ(k)

ζ
(σ + iT )

)
= Ok(1).

From this, we can easily show that

I15 = Ok(1),

31



for σk and tk are fixed constants that depend only on k.
Inserting the estimates of I12, I13, I14, and I15 into (3.14), we obtain

I1 = (b log 2 − k log log 2)T +

(
1

2
− b

)(
T log

T

2π
− T

)
+ kT log log

T

2π

− 2kπ Li

(
T

2π

)
−
∫ ak

1−b

arg ζ(σ + iT )dσ + Ok(1),

since ak and tk are fixed constants that depend only on k.
To finalize the proof of Proposition 3.5, we insert the estimates of I1, I2, and

I3 into (3.13) to obtain

2π
∑

ρ(k)=β(k)+iγ(k),
0<γ(k)≤T

(β(k) − b) = kT log log
T

2π
+ (b log 2 − k log log 2)T − 2kπ Li

(
T

2π

)

+

(
1

2
− b

)(
T log

T

2π
− T

)
−
∫ ak

1−b

arg ζ(σ + iT )dσ

+

∫ ak

b

argGk(σ + iT )dσ + Ok(1).

Taking the limit δ → 0, we have b → 1/2, thus∑
ρ(k)=β(k)+iγ(k),

0<γ(k)≤T

(
β(k) − 1

2

)
=

kT

2π
log log

T

2π
+

1

2π

(
1

2
log 2 − k log log 2

)
T

− k Li

(
T

2π

)
+

1

2π

∫ ak

1/2

(− arg ζ(σ + iT ) + argGk(σ + iT ))dσ

+ Ok(1).

Remark. The proof of Proposition 3.5 (and thus of Proposition 2.2 of [Aka12])
actually, more or less, follows the proof of Theorem 10 given in [LM74, Section
3]. One obvious difference is that we did not estimate the fourth integral in (3.13)
while Levinson and Montgomery estimated the corresponding integral (the fourth
integral in (3.1) of [LM74, Section 3]) as O(log T ). As in Akatsuka’s [Aka12] did,
it turns out that this term contributes to the integral appearing in Proposition 3.5
which will be estimated in the following few lemmas. This integral will contribute
to the error term in Theorem 3.1 and in the proofs of the following lemmas, we
shall use the assumption of RH to reduce the upper bound of this integral.
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Remark. In contrast to the proof of Theorem 10 of [LM74], in this section (and in
[Aka12] as well), we describe some important estimates, such as those on Gk(s),
(F (k)/F )(s), and (ζ(k)/ζ)(s), which are related to the existence of fixed constants
ak, σk, and tk in Lemma 3.4 for the sake of clarity. Furthermore, we also explicitly
state Proposition 3.5 since it clearly points out the main terms of Theorem 3.1
and thus this gives the readers clear information of the term that in the current
research contributes to the error term which is to be possibly improved in future
research.

To complete the proof of Theorem 3.1, we need to estimate∫ ak

1/2

(− arg ζ(σ + iT ) + argGk(σ + iT ))dσ

in Proposition 3.5. For that purpose, similar to the method used in [Aka12], below
we give two bounds for − arg ζ(σ + iT ) + argGk(σ + iT ). We write

− arg ζ(σ + iT ) + argGk(σ + iT ) = arg
Gk

ζ
(σ + iT )

where the argument on the right hand side is taken so that log (Gk/ζ)(s) tends to
0 as σ → ∞ and is holomorphic in C\{z + λ | (ζ(k)/ζ)(z) = 0 or ∞, λ ≤ 0}.

Lemma 3.6. Assume RH and let T ≥ tk. Then for any ϵ0 > 0 satisfying ϵ0 <
1

2 log T

(since T ≥ tk ≥ 100, ϵ0 < 1/8), we have for 1/2 + ϵ0 < σ ≤ ak,

arg
Gk

ζ
(σ + iT ) = Oak,tk

(
log log T

ϵ0

σ − 1/2 − ϵ0

)
.

Proof. To begin with, we note that (Gk/ζ)(s) is uniformly convergent to 1 as
σ → ∞ for t ∈ R, so we can take a number ck ∈ R satisfying ak + 1 ≤ ck ≤ tk/2
and 1/2 ≤ Re((Gk/ζ)(s)) ≤ 3/2 when σ ≥ ck. In fact, we can check that taking
ck = 10 + k2 is sufficient.

The proof also proceeds similarly to the proof of Lemma 2.3 of [Aka12]. We
let σ ∈ (1/2 + ϵ0, ak] and let qGk/ζ = qGk/ζ(σ, T ) denote the number of times
Re((Gk/ζ)(u + iT )) vanishes in u ∈ [σ, ck]. Then,∣∣∣∣arg

Gk

ζ
(σ + iT )

∣∣∣∣ ≤ (qGk/ζ + 1
)
π.

Now we estimate qGk/ζ . For that purpose, we set

Hk(z) = HkT (z) :=
1

2

(
Gk

ζ
(z + iT ) +

Gk

ζ
(z − iT )

)
(z ∈ C)
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and nHk
(r) := ♯{z ∈ C | Hk(z) = 0, |z − ck| ≤ r}. Then, we have qGk/ζ ≤

nHk
(ck − σ) for 1/2 + ϵ0 < σ ≤ ak. For each σ ∈ (1/2 + ϵ0, ak], we take ϵ = ϵσ,T

satisfying 0 < ϵ < σ − 1/2 − ϵ0, then Hk(z) is holomorphic in the region {z ∈ C |
|z − ck| ≤ ck − σ + ϵ}. As in [Aka12, p. 2250], by using Jensen’s theorem (see
Lemma 2.1 or [Tit39, Section 3.61]), we can show that

nHk
(ck − σ) ≤ 1

C1ϵ

∫ ck−σ+ϵ

0

nHk
(r)

r
dr

=
1

C1ϵ

1

2π

∫ 2π

0

log |Hk(ck + (ck − σ + ϵ)eiθ)|dθ − 1

C1ϵ
log |Hk(ck)|

for some constant C1 > 0, which by our choice of ck gives us

nHk
(ck − σ) ≤ 1

C1ϵ

1

2π

∫ 2π

0

log |Hk(ck + (ck − σ + ϵ)eiθ)|dθ +
1

ϵ
Oak,tk(1). (3.20)

Finally we estimate

1

2π

∫ 2π

0

log |Hk(ck + (ck − σ + ϵ)eiθ)|dθ.

From [Tit86, Theorems 9.2 and 9.6(A)] (similar to what stated in [Aka12, p. 2250]),

ζ ′

ζ
(σ ± it) = O

(
log T

σ − 1
2

)
holds for 1/2 < σ ≤ 2ck and T/2 ≤ t ≤ 2T . Thus, for 1/2 + ϵ0 < σ ≤ 2ck and
T/2 ≤ t ≤ 2T , we have

ζ ′

ζ
(σ ± it) = O

(
log T

ϵ0

)
. (3.21)

With this estimate, we show that

ζ(k)

ζ
(s) = O

(
(log T )k

ϵk0

)
holds for 1/2 + ϵ0 < σ < 2ck and T/2 ≤ |t| ≤ 2T . We use induction on k in the
equation. For k = 1, (ζ ′/ζ)(σ ± it) = O

(
ϵ−1
0 log T

)
follows from (3.21). Suppose

that (ζ(n)/ζ)(s) = O
(
ϵ−n
0 (log T )n

)
holds in the region 1/2 + ϵ0 < σ < 2ck, T/2 ≤

|t| ≤ 2T for a positive integer n, then

(
ζ(n)

ζ
(s)

)′

=
1

2πi

∫
|z−s|=ϵ0

ζ(n)

ζ
(z)

(z − s)2
dz = O

(
(log T )n

ϵn+1
0

)
. (3.22)
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Meanwhile, (
ζ(n)

ζ
(s)

)′

=
ζ(n+1)

ζ
(s) − ζ(n)

ζ
(s)

ζ ′

ζ
(s)

holds in the region.
Therefore, by (3.22) and by the induction hypothesis,

ζ(n+1)

ζ
(s) =

(
ζ(n)

ζ
(s)

)′

+
ζ(n)

ζ
(s)

ζ ′

ζ
(s) = O

(
(log T )n

ϵn+1
0

)
+ O

(
(log T )n+1

ϵn+1
0

)
= O

(
(log T )n+1

ϵn+1
0

)
holds for 1/2 < σ ≤ 2ck and T/2 ≤ |t| ≤ 2T . Hence, by induction, we find that

ζ(k)

ζ
(s) = O

(
(log T )k

ϵk0

)
holds in the region defined by 1/2 + ϵ0 < σ < 2ck and T/2 ≤ |t| ≤ 2T . This
immediately gives us

|Hk(ck + (ck − σ + ϵ)eiθ)| ≪ak,tk

(log T )k

ϵk0
,

and so

|Hk(ck + (ck − σ + ϵ)eiθ)| ≤ C2(ak, tk)
(log T )k

ϵk0
for some constant C2 > 0 which depends only on ak and tk. Thus,

1

2π

∫ 2π

0

log |Hk(ck + (ck − σ + ϵ)eiθ)|dθ ≤ logC2(ak, tk) + k log
log T

ϵ0

≪ak,tk log
log T

ϵ0
.

Applying this to (3.20), we obtain

nHk
(ck − σ) =

1

ϵ
Oak,tk

(
log

log T

ϵ0

)
which implies

arg
Gk

ζ
(σ + iT ) =

1

ϵ
Oak,tk

(
log

log T

ϵ0

)
.

Taking ϵ = (σ − 1/2 − ϵ0)/2 (< σ − 1/2 − ϵ0), we obtain

arg
Gk

ζ
(σ + iT ) = Oak,tk

(
log log T

ϵ0

σ − 1/2 − ϵ0

)
.
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Lemma 3.7. Assume RH and let A ≥ 2 be fixed. Then there exists a constant
C0 > 0 such that

∣∣ζ(k)(σ + it)
∣∣ ≤ exp

(
C0

(
(log T )2(1−σ)

log log T
+ (log T )1/10

))
holds for T ≥ tk, T/2 ≤ t ≤ 2T , 1/2 − (log log T )−1 ≤ σ ≤ A.

Proof. Referring to [Tit86, (14.14.2), (14.14.5), and the first equation on p. 384]
(cf. [Aka12, pp. 2251–2252]), we know that

|ζ(σ + it)| ≤ exp

(
C3

(
(log T )2(1−σ)

log log T

)
+ (log T )1/10

)
(3.23)

holds for 1/2 − 2(log log T )−1 ≤ σ ≤ A + 1, T/3 ≤ t ≤ 3T for some constant
C3 > 0.

Applying Cauchy’s integral formula, we see that

ζ(k)(s) =
k!

2πi

∫
|z−s|=ϵ

ζ(z)

(z − s)k+1
dz for 0 < ϵ <

1

2

holds in the region defined by 1/2 − (log log T )−1 ≤ σ ≤ A and T/2 ≤ t ≤ 2T .
Applying (3.23) and by taking ϵ = (2(log log T )1/k)−1 (< 1/2), we obtain Lemma
3.7.

Lemma 3.8. Assume RH and let T ≥ tk. Then for any 1/2 ≤ σ ≤ 3/4, we have

argGk(σ + iT ) = Oak

(
(log T )2(1−σ)

(log log T )1/2

)
.

Proof. The proof proceeds in the same way as the proof of Lemma 2.4 of [Aka12].
Refer to [Aka12, pp. 2252–2253] for the detailed proof and use Lemma 3.7 above
in place of Lemma 2.6 of [Aka12].

Remark. The restrictions of the lower bound of T we gave in Lemmas 3.6, 3.7, and
3.8 are not essential, but they are sufficient for our purpose. We may let T be
any positive number in Lemmas 3.6, 3.7, and 3.8, however in that case, we need
to modify some calculations in the proofs. Thus we used these restrictions for our
convenience.
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Proof of Theorem 3.1. First of all, we consider for T ≥ tk which satisfies
ζ(k)(σ + iT ) ̸= 0 and ζ(σ + iT ) ̸= 0 for any σ ∈ R. By Lemma 3.6, we have∫ ak

1/2+2ϵ0

arg
Gk

ζ
(σ + iT )dσ ≪ak,tk

∫ ak

1/2+2ϵ0

log log T
ϵ0

σ − 1/2 − ϵ0
dσ ≪ak log

log T

ϵ0
log

1

ϵ0
.

Next, by Lemma 3.8,

argGk(σ + iT ) = Oak

(
(log T )2(1−σ)

(log log T )1/2

)
for

1

2
≤ σ ≤ 3

4

and from (2.23) of [Aka12, p. 2251] (cf. [Tit86, (14.14.3) and (14.14.5)]), RH
implies that

arg ζ(σ + iT ) = O

(
(log T )2(1−σ)

log log T

)
holds uniformly for 1/2 ≤ σ ≤ 3/4. Thus,∫ 1/2+2ϵ0

1/2

arg
Gk

ζ
(σ + iT )dσ ≪ak

log T

(log log T )1/2
ϵ0.

Now we take ϵ0 = (4 log T )−1 (< (2 log T )−1), then we have∫ ak

1/2

arg
Gk

ζ
(σ + iT )dσ ≪ak,tk (log log T )2.

Applying this to Proposition 3.5 and noting that ak and tk are fixed constants that
depend only on k, we have∑

ρ(k)=β(k)+iγ(k),
0<γ(k)≤T

(
β(k) − 1

2

)
=

kT

2π
log log

T

2π
+

1

2π

(
1

2
log 2 − k log log 2

)
T

− k Li

(
T

2π

)
+ Ok((log log T )2).

(3.24)

Secondly, for 2π < T < tk, we are adding some finite number of terms which
depend on tk, and thus depend only on k so this can be included in the error term.

Thirdly, for T ≥ tk such that ζ(k)(σ+ iT ) = 0 or ζ(σ+ iT ) = 0 for some σ ∈ R,
we start by taking a small 0 < ϵ < (log log T )−1 such that ζ(k)(σ + i(T ± ϵ)) ̸= 0
and ζ(σ + i(T ± ϵ)) ̸= 0 for any σ ∈ R. We first note that the inequalities∑
ρ(k)=β(k)+iγ(k),
tk−1<γ(k)≤T−ϵ

(
β(k) − 1

2

)
≤

∑
ρ(k)=β(k)+iγ(k),
tk−1<γ(k)≤T

(
β(k) − 1

2

)
≤

∑
ρ(k)=β(k)+iγ(k),
tk−1<γ(k)≤T+ϵ

(
β(k) − 1

2

)
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and that∑
ρ(k)=β(k)+iγ(k),
tk−1<γ(k)≤T+ϵ

(
β(k) − 1

2

)
=

∑
ρ(k)=β(k)+iγ(k),
tk−1<γ(k)≤T−ϵ

(
β(k) − 1

2

)
+

∑
ρ(k)=β(k)+iγ(k),
T−ϵ<γ(k)≤T+ϵ

(
β(k) − 1

2

)

hold. According to (3.24),∑
ρ(k)=β(k)+iγ(k),
0<γ(k)≤T±ϵ

(
β(k) − 1

2

)
=

k(T ± ϵ)

2π
log log

T ± ϵ

2π

+
1

2π

(
1

2
log 2 − k log log 2

)
(T ± ϵ)

− k Li

(
T ± ϵ

2π

)
+ Ok((log log T )2).

Since ∑
ρ(k)=β(k)+iγ(k),

0<γ(k)≤T

(
β(k) − 1

2

)
=

∑
ρ(k)=β(k)+iγ(k),
tk−1<γ(k)≤T

(
β(k) − 1

2

)
+ Ok(1),

we find that∑
ρ(k)=β(k)+iγ(k),

0<γ(k)≤T

(
β(k) − 1

2

)
=

kT

2π
log log

T

2π
+

1

2π

(
1

2
log 2 − k log log 2

)
T

− k Li

(
T

2π

)
+ Ok((log log T )2)

also holds for this case.

Proof of Corollary 3.2. This is an immediate consequence of Theorem 3.1. For
the proof, refer to [LM74, p. 58 (the ending part of Section 3)].

3.2.2 Proof of Theorem 3.3

In this subsection we give the proof of Theorem 3.3. We first show the following
proposition.

Proposition 3.9. Assume RH. Then for T ≥ 2 which satisfies ζ(σ + iT ) ̸= 0 and
ζ(k)(σ + iT ) ̸= 0 for all σ ∈ R, we have

Nk(T ) =
T

2π
log

T

4π
− T

2π
+

1

2π
argGk

(
1

2
+ iT

)
+

1

2π
arg ζ

(
1

2
+ iT

)
+ Ok(1)
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where the arguments are taken as in Proposition 3.5.

Proof. The steps of the proof also follow those of the proof of Proposition 3.1
of [Aka12]. We take ak, σk, tk, T , δ, and b as in the beginning of the proof of
Proposition 3.5. We let b′ := 1/2 − δ/2. Replacing b by b′ in (3.13), we have

2π
∑

ρ(k)=β(k)+iγ(k),
0<γ(k)≤T

(β(k) − b′) =

∫ T

tk

log |Gk(b′ + it)|dt−
∫ T

tk

log |Gk(ak + it)|dt

−
∫ ak

b′
argGk(σ + itk)dσ +

∫ ak

b′
argGk(σ + iT )dσ.

Subtracting this from (3.13), we have

πδ(Nk(T ) −Nk(tk)) =

∫ T

tk

log |Gk(b + it)|dt−
∫ T

tk

log |Gk(b′ + it)|dt

−
∫ b′

b

argGk(σ + itk)dσ +

∫ b′

b

argGk(σ + iT )dσ

=: J1 + J2 + J3 +

∫ b′

b

argGk(σ + iT )dσ.

(3.25)
Referring to the estimate of I3 in the proof of Proposition 3.5 (cf. [Aka12, p.

2246]), we can easily show that

J3 = Otk(δ).

Now we estimate J1 + J2. From (3.14), we have

J1 + J2 =

∫ T

tk

log |Gk(b + it)|dt−
∫ T

tk

log |Gk(b′ + it)|dt

= ((b− b′) log 2)(T − tk) +

∫ T

tk

(log |F (b + it)| − log |F (b′ + it)|)dt

+

∫ T

tk

(
log

∣∣∣∣F (k)

F
(b + it)

∣∣∣∣− log

∣∣∣∣F (k)

F
(b′ + it)

∣∣∣∣) dt

+

∫ T

tk

(log |ζ(1 − b− it)| − log |ζ(1 − b′ − it)|)dt

+

∫ T

tk

(
log

∣∣∣∣∣1 −
k∑

j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (b + it)

ζ(j)

ζ
(1 − b− it)

∣∣∣∣∣
− log

∣∣∣∣∣1 −
k∑

j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (b′ + it)

ζ(j)

ζ
(1 − b′ − it)

∣∣∣∣∣
)
dt
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=:

((
−δ

2
log 2

)
T + Otk(δ)

)
+ J12 + J13 + J14 + J15.

Referring to [Aka12, pp. 2255–2256], we have

J12 =
δ

2

(
T log

T

2π
− T

)
+ Otk(δ),

J14 =

∫ 1−b

1−b′
arg ζ(σ + iT )dσ + Otk(δ).

We only need to estimate J13 and J15. We begin with the estimation of J13. We
determine the logarithmic branch of log (F (k)/F )(s) for 0 < σ < 1/2 and t > tk−1
as in condition 3 of Lemma 3.4. We then have arg (F (k)/F )(s) ∈ (αkπ/6, βkπ/6),
where the pair (αk, βk) is defined as in Lemma 3.4.

As in [Aka12, p. 2255], we apply Cauchy’s integral theorem to log (F (k)/F )(s)
on the rectangle with vertices b + itk, b′ + itk, b′ + iT , and b + iT and take the
imaginary part, then we obtain

J13 =

∫ b′

b

arg
F (k)

F
(σ + itk)dσ −

∫ b′

b

arg
F (k)

F
(σ + iT )dσ = Ok(δ).

Finally, we estimate J15. We determine the logarithmic branch of

log

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (s)

ζ(j)

ζ
(1 − s)

)

in the same manner as that in the estimation of I15 in the proof of Proposition 3.5,
then it is holomorphic in the region 0 < σ < 1/2, t > tk − 1. Applying Cauchy’s
integral theorem to it on the path taken for estimating J13, we have

J15 =

∫ b′

b

arg

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (σ + itk)

ζ(j)

ζ
(1 − σ − itk)

)

−
∫ b′

b

arg

(
1 −

k∑
j=1

(
k

j

)
(−1)j−1 1

F (k)

F (k−j) (σ + iT )

ζ(j)

ζ
(1 − σ − iT )

)
dσ.

Again using (3.17),

J15 =

∫ b′

b

arg

(
1

F (k)

F
(σ + itk)

ζ(k)

ζ
(σ + itk)

)
dσ

−
∫ b′

b

arg

(
1

F (k)

F
(σ + iT )

ζ(k)

ζ
(σ + iT )

)
dσ.
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Applying (3.19), we obtain
J15 = Ok(δ).

Hence, since tk is a fixed constant that depends only on k,

J1 + J2 =
δ

2

(
T log

T

4π
− T

)
+

∫ 1−b

1−b′
arg ζ(σ + iT )dσ + Ok(δ).

Inserting the estimates of J1 + J2 and J3 into (3.25), we have

Nk(T ) =
T

2π
log

T

4π
− T

2π
+

1

πδ

(∫ 1−b

1−b′
arg ζ(σ + iT )dσ +

∫ b′

b

argGk(σ + iT )dσ

)
+ Ok(1).

(3.26)
Taking the limit δ → 0 and applying the mean value theorem,

lim
δ→0

1

πδ

∫ 1−b

1−b′
arg ζ(σ + iT )dσ =

1

2π
arg ζ

(
1

2
+ iT

)
by noting that b = 1/2 − δ and b′ = 1/2 − δ/2. Similarly,

lim
δ→0

1

πδ

∫ b′

b

argGk(σ + iT )dσ =
1

2π
argGk

(
1

2
+ iT

)
.

Substituting these into (3.26), we have

Nk(T ) =
T

2π
log

T

4π
− T

2π
+

1

2π
argGk

(
1

2
+ iT

)
+

1

2π
arg ζ

(
1

2
+ iT

)
+ Ok(1).

If 2 ≤ T < tk, then Nk(T ) ≤ Nk(tk) = Otk(1) = Ok(1). Hence the above
equation holds for any T ≥ 2 which satisfies the conditions of Proposition 3.9.

Proof of Theorem 3.3. Firstly we consider for T ≥ 2 which satisfies ζ(k)(σ +
iT ) ̸= 0 and ζ(σ + iT ) ̸= 0 for any σ ∈ R. By Lemma 3.8,

argGk

(
1

2
+ iT

)
= Oak

(
log T

(log log T )1/2

)
and again from equation (2.23) of [Aka12, p. 2251], we have

arg ζ

(
1

2
+ iT

)
= O

(
log T

log log T

)
.

Substituting these into Proposition 3.9, we obtain

Nk(T ) =
T

2π
log

T

4π
− T

2π
+ Ok

(
log T

(log log T )1/2

)
. (3.27)
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Next, if ζ(σ + iT ) = 0 or ζ(k)(σ + iT ) = 0 for some σ ∈ R when T ≥ 2, then
we again take a small 0 < ϵ < (log T )−1 such that ζ(k)(σ + i(T ± ϵ)) ̸= 0 and
ζ(σ + i(T ± ϵ)) ̸= 0 for any σ ∈ R as in the proof of Theorem 3.1. Then noting
that

Nk(T − ϵ) ≤ Nk(T ) ≤ Nk(T − ϵ) + (Nk(T + ϵ) −Nk(T − ϵ)) ,

similarly we can show that (3.27) also holds in this case.
Therefore

Nk(T ) =
T

2π
log

T

4π
− T

2π
+ Ok

(
log T

(log log T )1/2

)
holds for any T ≥ 2.

Remark. It is well-known that in the case of the Riemann zeta function ζ(s), the
number N(T ) of zeros of ζ(s) is estimated as

N(T ) =
T

2π
log

T

2π
− T

2π
+ S(T ) + O

(
1

T

)
,

where

S(T ) =
1

π
arg ζ

(
1

2
+ iT

)
with a standard branch (cf. [Tit86, Section 9.3]). Thus, the function S(T ) deter-
mines the error term in the estimate of N(T ). Under RH, we have

S(T ) = O

(
log T

log log T

)
(3.28)

(cf. [Tit86, (14.13.1) of Theorem 14.13]). In comparison to the above estimate,
the term that determines the error term of Nk(T ) is

1

2π
argGk

(
1

2
+ iT

)
+

1

2π
arg ζ

(
1

2
+ iT

)
by Proposition 3.9 and under RH, they are currently estimated as follows:

argGk

(
1

2
+ iT

)
= Ok

(
log T

(log log T )1/2

)
, arg ζ

(
1

2
+ iT

)
= O

(
log T

log log T

)
.

(3.29)

This estimate of argGk(1/2 + iT ) determines the error term of Nk(T ) and it re-
sults in Nk(T ) having error term slightly greater in magnitude than that of N(T ).
However, this is the best known estimate on Nk(T ) under RH at present.

Furthermore, the size of the implied O-constant in (3.28) has been studied in
many papers, such as [CCM13] and [FGH07]. In contrast to this, we currently
have no information about the implied O-constant in the first equation of (3.29).
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Chapter 4

Zeros of the derivatives of
Dirichlet L-functions

In this chapter we introduce results analogous to those introduced in Chapter 3,
extended to the k-th derivative of Dirichlet L-functions associated with primitive
Dirichlet characters χ modulo q > 1, denoted by L(k)(s, χ) for positive integer k.
We recall that there exists only one Dirichlet character modulo 1 and the associated
Dirichlet L-function is the Riemann zeta function, whose results are given in the
previous chapter.

Throughout this chapter, we denote by L(k)(s, χ) the k-th derivative of Dirichlet
L-function associated with a primitive Dirichlet character χ modulo q > 1. We
also denote by m the smallest integer n ≥ 2 such that χ(n) ̸= 0. We easily see
that m = min{n ∈ Z≥2 | (n, q) = 1} holds. This together with the prime number
theorem yields m ≪ log q. We recall from Lemma 1.12 that κ ∈ {0, 1} is a factor
associated to χ determined as χ(−1) = (−1)κ, that is, κ = 0 is equal to saying
that χ is an even character and κ = 1 describes χ being an odd character. Finally,
it is to be noted that only the results proven by the author and her collaborator
H. Akatsuka are stated as theorems in this chapter.

We first introduce a few results shown by C. Y. Yıldırım [Yıl96b] in Section 4.1.
In Section 4.2, we prove some improved unconditional results shown by Akatsuka
and the author in [AS-p]. We also prove results, analogous to Speiser’s theorem
[Spe35], for Dirichlet L-functions; that is we show an equivalence between the
generalized Riemann hypothesis and the distribution of zeros of L′(s, χ). In Section
4.3, we prove some conditional results as shown by the author in [Sur-p2].

4.1 Unconditional results

We have seen in the previous chapter that many results on the zeros of the
derivatives of the Riemann zeta function ζ(k)(s) are known. Unfortunately, not

43



many results are known for L(k)(s, χ). Yıldırım [Yıl96b] in 1996, studied many
properties of zeros of L(k)(s, χ). Among them, he [Yıl96b, Theorem 2] showed that
L(k)(s, χ) ̸= 0 for

Re(s) > 1 +
m

2

(
1 +

√
1 +

4k2

m logm

)
.

Furthermore he [Yıl96b, Theorem 3] proved that for any given ϵ > 0, there exists
a constant K = Kk,ϵ,κ that depends only on k, ϵ, and κ such that L(k)(s, χ) ̸= 0 in
the region |s| > qK , Re(s) < −ϵ, | Im(s)| > ϵ.

Remark. Since κ ∈ {0, 1}, it is easy to see that we can take the constant K
described in [Yıl96b, Theorem 3] such that it is independent of κ.

With the above zero-free regions, Yıldırım in [Yıl96b] classified the zeros of
L(k)(s, χ) as:

1. trivial zeros in Re(s) ≤ −qK , | Im(s)| ≤ ϵ;

2. vagrant zeros in |s| ≤ qK , Re(s) < −ϵ;

3. nontrivial zeros in Re(s) ≥ −ϵ

(see [Yıl96b, the first paragraph in Section 7]).
Based on this classification, in the same paper he [Yıl96b, Theorem 4] proved an

estimate of the number of vagrant and nontrivial zeros of L(k)(s, χ) in | Im(s)| ≤ T ,
denoted by Nk(T, χ) as follows:

Nk(T, χ) =
T

π
log

qT

2mπ
− T

π
+ O(qK log T ). (4.1)

We shall see in the next section that we can improve these results when k =
1. We can also further improve the error term in (4.1) under the truth of the
generalized Riemann hypothesis (see Section 4.3).

In [Yıl96b], Yıldırım proved two other results by assuming the generalized
Riemann hypothesis. He [Yıl96b, Theorem 1] proved that if it is supposed that
the generalized Riemann hypothesis is true,

1. if κ = 0 and q ≥ 216, then L′(s, χ) has exactly one zero in 0 ≤ Re(s) < 1/2
at

1

log q
+ O

(
log log q

log2 q

)
;

2. if κ = 1 and q ≥ 23, then L′(s, χ) has no zeros in 0 ≤ Re(s) < 1/2.

Finally in [Yıl96b, Theorem 5], it is proven that there exist only at most finitely
many zeros of L(k)(s, χ) in the strip −ϵ ≤ Re(s) < 1/2 under the truth of the
generalized Riemann hypothesis.
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4.2 Improved unconditional results for k = 1 and

equivalence results

The first aim of this section is to remove the possibility of vagrant zeros of
L′(s, χ). In order to state our result precisely, we put

Θ(χ) := sup{Re(ρ) | ρ ∈ C, L(ρ, χ) = 0}.

It is easy to check that the following properties hold:

• 1/2 ≤ Θ(χ) ≤ 1.

• Θ(χ) = Θ(χ).

• For each primitive Dirichlet character χ, the Riemann hypothesis for L(s, χ)
is equivalent to Θ(χ) = 1/2.

One of our main results can be stated as follows:

Theorem 4.1. L′(s, χ) has no zeros on s ∈ D1(χ) ∪ D2(χ), where

D1(χ) =

{
σ + it | σ ≤ 1 − Θ(χ), |t| ≥ 6

log q

}
\ {ρ ∈ C | L(ρ, χ) = 0},

D2(χ) =

{
σ + it | σ ≤ −q2, |t| ≥ 12

log |σ|

}
.

Remark. Apparently the constants 6 and 12 in D1(χ) and D2(χ) can be replaced
by smaller constants.

Theorem 4.2. For each positive integer j the following assertions hold:

• L′(s, χ) has a unique zero in the strip s ∈ {σ + it | −2j − κ − 1 < σ <
−2j − κ + 1, t ∈ R}.

• L′(s, χ) has no zeros on Re(s) = −2j − κ + 1.

Let χ be a non-principal primitive Dirichlet character. For j ∈ Z≥1 we denote
the zero of L′(s, χ) in {σ + it | −2j − κ − 1 < σ < −2j − κ + 1} by αj(χ). Then
we have

Theorem 4.3. Retain the notation. Then we have

αj(χ) = −2j − κ + O

(
1

log(jq)

)
,

where the implied constant is absolute.
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Theorem 4.4. 1. If κ = 0 and q ≥ 7, then L′(s, χ) has no zeros on {σ + it |
−1 ≤ σ ≤ 0, t ∈ R}.

2. If κ = 1 and q ≥ 23, then L′(s, χ) has a unique zero on {σ + it | −2 ≤ σ ≤
0, t ∈ R}.

We remark that from Theorems 4.1–4.4, each zero of L′(s, χ) in Re(s) ≤ 0
corresponds to a trivial zero of L(s, χ), except for only finitely many zeros. Thus
it is natural to consider these zeros as trivial zeros of L′(s, χ). This implies that
we have excluded, for k = 1, the possibility of vagrant zeros stated by Yıldırım
in [Yıl96b]. In [Yıl96b] the possibility of these vagrant zeros prevents us from
investigating nontrivial zeros of L′(s, χ). Hence Theorems 4.1–4.4 allow us to
study nontrivial zeros of L′(s, χ), i.e. zeros of L′(s, χ) in Re(s) > 0. This is the
second aim of this section. We explain our main results on nontrivial zeros of
L′(s, χ) below. For T > 0 we denote by N1(T, χ) the number of zeros of L′(s, χ)
on {σ + it | σ > 0,−T ≤ t ≤ T}, counted with multiplicity. With this notation we
have

Theorem 4.5. Retain the notation above. Then for T ≥ 2 we have

N1(T, χ) =
T

π
log

qT

2πm
− T

π
+ O(m1/2 log(qT )),

where the implied constant is absolute.

We remark that this notation N1(T, χ) differs from that defined by Yıldırım
in [Yıl96b] for k = 1 since he counted not only nontrivial zeros, but also vagrant
zeros of L′(s, χ).

Next we show an asymptotic formula on the sum of the horizontal distance
between nontrivial zeros of L′(s, χ) and the critical line Re(s) = 1/2.

Theorem 4.6. Retain the notation. Then for T ≥ 2 it holds that∑
ρ′=β′+iγ′,

β′>0,−T≤γ′≤T

(
β′ − 1

2

)
=

T

π
log log

qT

2π
+

T

π

(
1

2
logm− log logm

)

− 2

q
Li

(
qT

2π

)
+ O(m1/2 log(qT )),

where ρ′ = β′ + iγ′ runs over all zeros of L′(s, χ) satisfying β′ > 0 and −T ≤ γ′ ≤
T , counted with multiplicity and

Li(x) =

∫ x

2

du

log u

as defined in Theorem 2.4. Here the implied constant is absolute.

46



As mentioned in the previous chapter, A. Speiser [Spe35] in 1935 proved that
the Riemann hypothesis is equivalent to the assertion that ζ ′(s) has no non-real
zeros in Re(s) < 1/2. The final aim of this section is to extend this result to L(s, χ).
To show our theorems, we first extend a quantitative version of Speiser’s theorem
shown by N. Levinson and H. L. Montgomery in [LM74, Theorem 1]. To state
this result, we denote by N−(T, χ) (resp. N−

1 (T, χ)) the number of zeros of L(s, χ)
(resp. L′(s, χ)) on {σ+ it | 0 < σ < 1/2, |t| ≤ T}, counted with multiplicity. Then
we have

Theorem 4.7. For T ≥ 2 we have

N−(T, χ) = N−
1 (T, χ) + O(m1/2 log(qT )), (4.2)

where the implied constant is absolute.

Remark. In [GS15, Theorem 1.2] R. Garunkštis and R. Šimėnas have obtained
(4.2) for fixed χ. The new element of this section is to give uniform estimates with
respect to χ.

Theorem 4.8. Let κ = 0 and q ≥ 216. Then the following conditions (i) and (ii)
are equivalent:

(i) L(s, χ) ̸= 0 in 0 < Re(s) < 1/2.

(ii) L′(s, χ) has a unique zero in 0 < Re(s) < 1/2.

Theorem 4.9. Let κ = 1 and q ≥ 23. Then the following conditions (i) and (ii)
are equivalent:

(i) L(s, χ) ̸= 0 in 0 < Re(s) < 1/2.

(ii) L′(s, χ) has no zeros in 0 < Re(s) < 1/2.

Remark. The implications (i)=⇒(ii) in Theorems 4.8 and 4.9 have been obtained
by Yıldırım [Yıl96b, Theorem 1] (recall also from Section 4.1). Our contribution
in this section is to establish the implications (ii)=⇒(i).

Theorems 8 and 9 only give us results analogous to Speiser’s theorem [Spe35] for
q large to some extent. However, it is highly possible to formulate similar assertions
for q < 216 (if χ is even, or q < 23 if χ is odd) by investigating the change in
arg (L′/L)(s, χ) on Re(s) = 0 and Re(s) = 1/2 through numerical calculations.

Throughout this section we denote nontrivial zeros of L(s, χ) (i.e., zeros in
{σ + it | 0 < σ < 1}) by ρ = β + iγ and zeros of L′(s, χ) by ρ′ = β′ + iγ′. We put
Θ(χ) := supρ Re(ρ) and cE is the Euler–Mascheroni constant.
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4.2.1 Proof of Theorem 4.1

In this subsection we prove Theorem 4.1. It suffices to show the following:

Proposition 4.10. Re((L′/L)(s, χ)) < 0 holds on s ∈ D1(χ) ∪ D2(χ).

In order to show Proposition 4.10, we recall the Hadamard product expression
of L(s, χ). The logarithmic derivative of the Hadamard product expression for
L(s, χ) is given by (see [MV06, Corollary 10.18])

L′

L
(s, χ) = B(χ) − 1

2

Γ′

Γ

(
s + κ

2

)
− 1

2
log

q

π
+
∑
ρ

(
1

s− ρ
+

1

ρ

)
, (4.3)

where B(χ) is a constant depending only on χ, which satisfies

Re(B(χ)) = −
∑
ρ

Re

(
1

ρ

)
.

We use the Hadamard product (4.3) in the following form.

Lemma 4.11. Suppose that s = σ + it satisfies σ ≤ 1 − Θ(χ) and L(s, χ) ̸= 0.
Then we have

Re

(
L′

L
(s, χ)

)
≤ −1

2
log

q

π
− 1

2
Re

(
Γ′

Γ

(
s + κ

2

))
. (4.4)

Proof. Taking the real part on (4.3),

Re

(
L′

L
(s, χ)

)
= −1

2
log

q

π
− 1

2
Re

(
Γ′

Γ

(
s + κ

2

))
+
∑

ρ=β+iγ

σ − β

|s− ρ|2
. (4.5)

By the definition of Θ(χ) and the functional equation, β ≥ 1−Θ(χ) holds for any
ρ. Thus we find σ− β ≤ 0 if σ ≤ 1−Θ(χ). This says that the sum over nontrivial
zeros is nonpositive, which is nothing but the result.

To estimate the digamma function (Γ′/Γ)(z) on (4.4), we use the following
inequality:

Lemma 4.12. For z = x + iy with x ∈ R and y ∈ R \ {0} we have

Re

(
Γ′

Γ
(z)

)
≥ log |z| − π

2|y|
. (4.6)

48



Proof. We start with the logarithmic derivative of the Hadamard product expres-
sion for Γ(z) (see [MV06, Equation (C.10) in p. 522]):

Γ′

Γ
(z) = −cE −

∞∑
n=0

(
1

n + z
− 1

n + 1

)
. (4.7)

Suppose z = x + iy ∈ C \ (−∞, 0]. Applying the Euler–Maclaurin summation
formula (that is, [MV06, Theorem B.5 when K = 1]), we have

lim
N→∞

(
N∑

n=0

1

n + z
− Log(N + z)

)
= −Log z +

1

2z
−
∫ ∞

0

u− [u] − 1
2

(u + z)2
du, (4.8)

where Log z is the principal logarithmic branch of z. We note that (4.8) with z = 1
implies

cE =
1

2
−
∫ ∞

0

u− [u] − 1
2

(u + 1)2
du. (4.9)

Inserting (4.8), (4.8) with z = 1, and (4.9) into (4.7), we have

Γ′

Γ
(z) = Log z − 1

2z
+

∫ ∞

0

u− [u] − 1
2

(u + z)2
du. (4.10)

Taking the real part, we obtain

Re

(
Γ′

Γ
(z)

)
= log |z| − 1

2
Re

(
1

z

)
+ Re

(∫ ∞

0

u− [u] − 1
2

(u + z)2
du

)
. (4.11)

We consider the case x ≥ 0. Then we have∣∣∣∣Re

(
1

z

)∣∣∣∣ ≤ 1

|z|
≤ 1

|y|
,∣∣∣∣Re

(∫ ∞

0

u− [u] − 1
2

(u + z)2
du

)∣∣∣∣ ≤ 1

2

∫ ∞

0

du

|u + z|2
≤ 1

2

∫ ∞

0

du

u2 + y2
=

π

4|y|
.

Inserting these into (4.11), we obtain

Re

(
Γ′

Γ
(z)

)
≥ log |z| −

(
1

2
+

π

4

)
1

|y|
.

This yields the result in the case x ≥ 0.
We consider the case x < 0. In this case Re(1/z) is negative. We also note

that a standard estimate gives∣∣∣∣Re

(∫ ∞

0

u− [u] − 1
2

(u + z)2
du

)∣∣∣∣ ≤ 1

2

∫ ∞

−∞

du

u2 + y2
=

π

2|y|
.

Applying these to (4.11), we obtain the result in the case x < 0.
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Proof of Proposition 4.10. Suppose that s = σ + it satisfies σ ≤ 1 − Θ(χ) and
L(s, χ) ̸= 0. Inserting (4.6) into (4.4),

Re

(
L′

L
(s, χ)

)
≤ −1

2
log

∣∣∣∣q(s + κ)

2π

∣∣∣∣+
π

2|t|
.

Thus we obtain the following inequalities:

Re

(
L′

L
(s, χ)

)
≤ −1

2
log

q|t|
2π

+
π

2|t|
, (4.12)

Re

(
L′

L
(s, χ)

)
≤ −1

2
log

q|σ + κ|
2π

+
π

2|t|
. (4.13)

If |t| ≥ 6/ log q, then (4.12) is bounded above by

≤ −1

2

(
1 − π

6

)
log q +

1

2
log log q +

1

2
log

π

3
.

Since xα ≥ αe log x for x ≥ 1 and α > 0, this is

≤ −1

2
log
(

1 − π

6

)
− 1

2
+

1

2
log

π

3
< −0.106.

This confirms that Re((L′/L)(s, χ)) is negative on s ∈ D1(χ). It is easy to check
from (4.13) that Re((L′/L)(s, χ)) is negative on s ∈ D2(χ), whose detail is omitted.

Proof of Theorem 4.1. Theorem 4.1 is an immediate consequence of Proposition
4.10.

4.2.2 Proof of Theorem 4.2

In this subsection we prove Theorem 4.2. First of all we show

Proposition 4.13. Keep the notation in Theorem 4.2. Then for each j ∈ Z≥1,
Re((L′/L)(s, χ)) < 0 holds on Re(s) = −2j − κ + 1.

Proof. We start with the logarithmic derivative of the functional equation for
L(s, χ), which can be written as (see [MV06, p. 352])

L′

L
(s, χ) = −L′

L
(1 − s, χ) − log

q

2π
− Γ′

Γ
(1 − s) +

π

2
cot

(
π(s + κ)

2

)
. (4.14)

We take j ∈ Z≥1, t ∈ R and put s = −2j − κ+ 1 + it on (4.14). Then we take the
real part. Since the last term on (4.14) is purely imaginary on Re(s) = −2j−κ+1,
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we have

Re

(
L′

L
(−2j − κ + 1 + it, χ)

)
= −Re

(
L′

L
(2j + κ− it, χ)

)
− log

q

2π
− Re

(
Γ′

Γ
(2j + κ− it)

)
.

(4.15)

Firstly we treat the first term on the right. Taking the logarithmic derivative of
the Euler product for L(s, χ), in Re(s) > 1 we have

L′

L
(s, χ) = −

∑
p:primes

χ(p) log p

ps − χ(p)
. (4.16)

Thus we put s = 2j + κ− it and estimate it trivially, so that∣∣∣∣Re

(
L′

L
(2j + κ− it, χ)

)∣∣∣∣ ≤∑
p∤q

log p

p2j+κ − 1
. (4.17)

Next we deal with the last term on (4.15). It follows from (4.7) that for z = x+ iy
with x > 0, y ∈ R

Re

(
Γ′

Γ
(z)

)
− Γ′

Γ
(x) = y2

∞∑
n=0

1

(n + x){(n + x)2 + y2}
≥ 0. (4.18)

Thus, putting x = 2j + κ and y = −t, we see that

Re

(
Γ′

Γ
(2j + κ− it)

)
≥ Γ′

Γ
(2j + κ) = −cE +

2j+κ−1∑
a=1

1

a
. (4.19)

Applying (4.17) and (4.19) to (4.15), we obtain

Re

(
L′

L
(−2j − κ + 1 + it)

)
≤ A(q, κ; j) + B(q, κ; j), (4.20)

where

A(q, κ; j) := cE −
2j+κ−1∑
a=1

1

a
− log

q

2π
,

B(q, κ; j) :=
∑
p∤q

log p

p2j+κ − 1
.

We consider the case κ = 1. Since q ≥ 3 and j ≥ 1, we have

A(q, 1; j) ≤ cE − 3

2
− log

3

2π
< −0.183,
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B(q, 1; j) ≤
∑
p

log p

p3 − 1
< 0.165.

This implies the desired result when κ = 1.

We treat the case κ = 0. We note that κ = 0 implies q ≥ 5 and that there are
no primitive Dirichlet characters modulo 6. When q ≥ 8 and j ≥ 1, we have

A(q, 0; j) ≤ cE − 1 − log
8

2π
< −0.664,

B(q, 0; j) ≤
∑
p

log p

p2 − 1
< 0.570.

When q = 7 and j ≥ 1, we have

A(7, 0; j) ≤ cE − 1 − log
7

2π
< −0.530,

B(7, 0; j) ≤
∑
p̸=7

log p

p2 − 1
< 0.530.

Thus when q ≥ 7 and κ = 0, we obtain the desired result.

It remains to show the assertion in the case q = 5 and κ = 0. Then χ is deter-
mined uniquely and given in terms of the Kronecker symbol by χ(n) = χ5(n) :=(
5
n

)
. For j ≥ 2 we have

A(5, 0; j) ≤ cE − 11

6
− log

5

2π
< −1.027,

B(5, 0; j) ≤
∑
p ̸=5

log p

p4 − 1
< 0.062.

Thus we obtain the desired result in the case j ≥ 2. We consider the case j = 1.
Since χ5 is real, Re((L′/L)(−1 + it, χ5)) = Re((L′/L)(−1− it, χ5)) holds for t ∈ R.
Thus it suffices to show that Re((L′/L)(−1 + it, χ5)) is negative for t ≥ 0. For this
purpose we use (4.15) with χ = χ5 and j = 1:

Re

(
L′

L
(−1 + it, χ5)

)
= −Re

(
L′

L
(2 − it, χ5)

)
− log

5

2π
− Re

(
Γ′

Γ
(2 − it)

)
.

(4.21)

First of all we treat the case t ≥ 3/2. By the same manner as (4.17) we have∣∣∣∣Re

(
L′

L
(2 − it, χ5)

)∣∣∣∣ ≤∑
p̸=5

log p

p2 − 1
< 0.5029. (4.22)
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It is easy to see that the right-hand side of (4.18) is monotonically decreasing on
y ≤ −3/2, so that

Re

(
Γ′

Γ
(2 − it)

)
≥ 1 − cE +

9

4

∞∑
n=0

1

(n + 2){(n + 2)2 + 9/4}
> 0.7523 (4.23)

holds on t ≥ 3/2. Here in the first inequality we used (Γ′/Γ)(2) = 1−cE. Inserting
(4.22), (4.23), and − log(5/2π) < 0.2285 into (4.21), we see that Re((L′/L)(−1 +
it, χ5)) is negative for t ≥ 3/2.

Finally we treat the case 0 ≤ t < 3/2. We deal with the first term on the
right-hand side of (4.21). Using (4.16), we compute Re((L′/L)(s, χ)) numerically
at some points on Re(s) = 2 as follows:

L′

L
(2, χ5) > 0.2869, Re

(
L′

L

(
2 − i

2
, χ5

))
> 0.2527,

Re

(
L′

L
(2 − i, χ5)

)
> 0.1686, Re

(
L′

L

(
2 − 5

4
i, χ5

))
> 0.1188,

Re

(
L′

L

(
2 − 11

8
i, χ5

))
> 0.0936, Re

(
L′

L

(
2 − 3

2
i, χ5

))
> 0.0688.

(4.24)

We note that for t ∈ R and t0 ∈ {0, 1/2, 1, 5/4, 11/8, 3/2}

Re

(
L′

L
(2 − it, χ5)

)
= Re

(
L′

L
(2 − it0, χ5)

)
+ Im

∫ t

t0

(
L′

L

)′

(2− iv, χ5)dv. (4.25)

Numerical computation gives that for v ∈ R∣∣∣∣(L′

L

)′

(2 − iv, χ5)

∣∣∣∣ ≤∑
p̸=5

p−2(log p)2

(1 − p−2)2
< 0.7721. (4.26)

We see from (4.24), (4.25) and (4.26) that Re((L′/L)(2 − it, χ5)) > 0 for 0 ≤ t <
3/2. This together with (4.18) and (4.21) yields

Re

(
L′

L
(−1 + it, χ5)

)
< − log

5

2π
− 1 + cE < −0.1943 < 0

for 0 ≤ t < 3/2. This completes the proof.

Proof of Theorem 4.2. Let j ∈ Z≥1. Proposition 4.13 implies that L′(s, χ) does
not vanish on Re(s) = −2j − κ − 1. We show that L′(s, χ) has a unique zero in
the strip −2j − κ − 1 < Re(s) < −2j − κ + 1. We take the path determined by
the rectangle with vertices at −2j−κ± 1± 1000i. Then by Propositions 4.10 and
4.13 we find that Re((L′/L)(s, χ)) is negative on the path. Thus the argument
principle gives that the number of zeros of L′(s, χ) inside the path equals that of
L(s, χ). Since L(s, χ) has a unique zero s = −2j − κ inside the path, L′(s, χ) has
also a unique zero inside the path. This together with Theorem 4.1 gives the first
claim of Theorem 4.2, which completes the proof.
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4.2.3 Proof of Theorem 4.3

In this subsection we prove Theorem 4.3.

Proof of Theorem 4.3. We take ε ∈ (0, 1/2). Let C = Cj,ε be the path determined
by the circle centered at −2j − κ with radius ε. Then it is easy to see from (4.14)
and Stirling’s formula that

Re

(
L′

L
(s, χ)

)
= − log(jq) + Re

(
1

η

)
+ O(1)

holds on s = −2j − κ + η ∈ C, where the implied constant is absolute. Suppose
that jq is sufficiently large and we choose ε = 2/ log(jq). Then we find that
Re((L′/L)(s, χ)) is negative on s ∈ C. Thus the argument principle says that
there is a unique zero of L′(s, χ) inside C thanks to the trivial zero s = −2j − κ
of L(s, χ). Since the zero of L′(s, χ) inside C coincides with αj(χ), we obtain
|αj(χ) + 2j + κ| < 2/ log(jq). This completes the proof.

4.2.4 Proof of Theorem 4.4

In this subsection we show Theorem 4.4. Roughly speaking, our strategy of the
proof is to show Re((L′/L)(s, χ)) < 0 on Re(s) = 0 by (4.4). For this purpose we
show the following inequality:

Lemma 4.14. (Γ′/Γ)(x) is monotonically increasing on x > 0. Furthermore, for
x ∈ [1 − 1

1000
, 1] we have

−0.58 <
Γ′

Γ
(x) ≤ −cE.

Proof. In view of (4.7) it is trivial that (Γ′/Γ)(x) is monotonically increasing on
x > 0. This implies that (Γ′/Γ)(x) ≤ (Γ′/Γ)(1) = −cE on x ∈ [1 − 1

1000
, 1], which

is nothing but the second inequality. On the other hand, we have (Γ′/Γ)(x) ≥
(Γ′/Γ)(1 − 1

1000
) on x ∈ [1 − 1

1000
, 1]. Computing (4.7) numerically at s = 1 − 1

1000
,

we have (Γ′/Γ)(1 − 1
1000

) > −0.5789. This gives the first inequality.

Proof of Theorem 4.4. First of all we consider the case χ(−1) = 1. We take any
δ ∈ (0, 1/2000). We take the contour C determined by the rectangle with vertices
at −1 ± 1000i, ±1000i with a small left-semicircular indentation δeiϕ (ϕ : 3π/2 →
π/2). We shall prove that Re((L′/L)(s, χ)) < 0 holds on s ∈ C. We have already
shown in Propositions 4.10 and 4.13 that Re((L′/L)(s, χ)) < 0 on {σ ± 1000i |
−1 ≤ σ ≤ 0} ∪ {−1 + it | |t| ≤ 1000}. We consider the case that s = σ + it is on
the right side of C. We begin with the inequality (4.4). Since σ ≤ 0, we have

Re

(
Γ′

Γ

(s
2

))
= Re

(
Γ′

Γ

(s
2

+ 1
))

− Re

(
2

s

)
≥ Re

(
Γ′

Γ

(s
2

+ 1
))

.
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(4.18) and Lemma 4.14 yield

Re

(
Γ′

Γ

(s
2

))
≥ Γ′

Γ

(
1 − δ

2

)
≥ −0.58.

We apply this to (4.4). If q ≥ 7, we have

Re

(
L′

L
(s, χ)

)
≤ 0.29 − 1

2
log

7

π
< −0.110 < 0.

As the above discussion, we see Re((L′/L)(s, χ)) is negative on s ∈ C. Since
(L′/L)(s, χ) has no poles inside C, the argument principle says L′(s, χ) has no
zeros inside C. Since δ ∈ (0, 1/2000) is arbitrary, this implies the result when
χ(−1) = 1.

Next we treat the case χ(−1) = −1. We take the contour C determined by the
rectangle with vertices at −2 ± 1000i, ±1000i. Then we have already shown that
Re((L′/L)(s, χ)) < 0 holds on s ∈ C \ [−1000i, 1000i]. Let t ∈ [−1000, 1000]. Then
in the same manner as the case χ(−1) = 1, (4.4) gives

Re

(
L′

L
(it, χ)

)
≤ −1

2

Γ′

Γ

(
1

2

)
− 1

2
log

q

π
. (4.27)

Since (Γ′/Γ)(1/2) = −2 log 2 − cE, (4.27) is negative provided q > 4πecE =
22.38 . . .. Thus Re((L′/L)(s, χ)) < 0 holds on s ∈ C if q ≥ 23. Applying the
argument principle and taking the trivial zero s = −1 of L(s, χ) into account, we
see that L′(s, χ) has a unique zero inside C. This completes the proof.

4.2.5 Proof of Theorems 4.5 and 4.6

In this subsection we show Theorems 4.5 and 4.6.
For short we write the functional equation for L(s, χ) as L(s, χ) = F (s, χ)L(1−

s, χ), where

F (s, χ) = ε(χ)2sπs−1q
1
2
−s sin

(
π(s + κ)

2

)
Γ(1 − s).

Here ε(χ) is a constant depending on χ, which satisfies |ε(χ)| = 1. We also define
G(s, χ) by

G(s, χ) = − ms

χ(m) logm
L′(s, χ).

First of all we show

Lemma 4.15. For s = σ + it with σ ≥ 2 and t ∈ R we have

|G(s, χ) − 1| ≤ 2

(
1 +

8m

σ

)
exp

(
− σ

2m

)
.
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Proof. By the Dirichlet series expression for L(s, χ) we find

G(s, χ) = 1 +
ms

χ(m) logm

∞∑
n=m+1

χ(n) log n

ns
.

Thus we have

|G(s, χ) − 1| ≤ mσ

logm

∞∑
n=m+1

log n

nσ
. (4.28)

We divide the sum into n = m + 1 and n ≥ m + 2. The sum over n ≥ m + 2 is
estimated as follows:

∞∑
n=m+2

log n

nσ
≤
∫ ∞

m+1

log u

uσ
du

=
(m + 1)1−σ log(m + 1)

σ − 1
+

(m + 1)1−σ

(σ − 1)2

≤ 2(m + 1)1−σ log(m + 1)

σ − 1
.

Inserting this into (4.28), we have

|G(s, χ) − 1| ≤ log(m + 1)

logm

(
m

m + 1

)σ (
1 + 2

m + 1

σ − 1

)
≤ 2

(
1 +

8m

σ

)(
m

m + 1

)σ

.

(4.29)

Since log(1 + x) ≥ x/2 on x ∈ [0, 1], we find(
m

m + 1

)σ

= exp

(
−σ log

(
1 +

1

m

))
≤ exp

(
− σ

2m

)
.

Applying this to (4.29), we obtain the result.

By Lemma 4.15 we have

|G(s, χ) − 1| ≤ 4 exp
(
− σ

2m

)
(4.30)

for σ ≥ 10m. In particular G(s, χ) has no zeros on σ ≥ 8m.

Let bκ ∈ {1 + κ, 3 + κ}, T ≥ 2 and U ≥ 10m. We apply the Littlewood lemma
(see Lemma 2.2 or [Tit39, Section 3.8]) to G(s, χ) on the rectangle with vertices
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at −bκ ± iT and U ± iT . Taking the imaginary part, we have

2π
∑

ρ′=β′+iγ′

β′>−bκ,−T≤γ′≤T

(β′ + bκ)

=

∫ T

−T

log |G(−bκ + it, χ)|dt−
∫ T

−T

log |G(U + it, χ)|dt

+

∫ U

−bκ

argG(σ + iT, χ)dσ −
∫ U

−bκ

argG(σ − iT, χ)dσ.

(4.31)

Here we determine the branch of logG(s, χ) such that it tends to 0 as σ → ∞ and it
is holomorphic in C\{ρ′+λ | L′(ρ′, χ) = 0, λ ≤ 0}. When there are zeros of L′(s, χ)
on Im(s) = ±T , we determine argG(σ± iT ) = limε↓0 argG(σ± i(T + ε)). Thanks
to (4.30), the second integral on (4.31) tends to 0 as U → ∞. We also note that
Theorems 4.1, 4.2, and 4.4 give #{ρ′ = β′+iγ′ | L′(ρ′, χ) = 0, −bκ < β′ ≤ 0} ≪ 1,
where the implied constant is absolute. Combining these, we obtain

2π
∑

ρ′=β′+iγ′

β′>0,−T≤γ′≤T

(β′ + bκ) = I1 + I+2 − I−2 + O(1), (4.32)

where I1 = I1(bκ, χ, T ) and I±2 = I±2 (bκ, χ, T ) are given by

I1 =

∫ T

−T

log |G(−bκ + it, χ)|dt,

I±2 =

∫ ∞

−bκ

argG(σ ± iT, χ)dσ.

We deal with I1. By the definition we have

I1 = −2T (bκ logm + log logm) +

∫ T

−T

log |L′(−bκ + it, χ)|dt. (4.33)

We divide the interval t ∈ [−T, T ] into |t| ≤ 20, 20 < t ≤ T , and −T ≤ t < −20.
Firstly we consider the case |t| ≤ 20. We have

log |L′(−bκ + it, χ)| = log |L(−bκ + it, χ)| + log

∣∣∣∣L′

L
(−bκ + it, χ)

∣∣∣∣ .
By the functional equation, the first term on the right is (1/2 + bκ) log q + O(1)
uniformly on |t| ≤ 20. We see from the functional equation together with the
discussion in Section 4.2.2 that the second term on the right is O(log log q) on
|t| ≤ 20. In consequence we obtain∫ 20

−20

log |L′(−bκ + it, χ)|dt ≪ log q. (4.34)
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Next we deal with the integral over 20 ≤ t ≤ T . By the functional equation we
have ∫ T

20

log |L′(−bκ + it, χ)|dt

=

∫ T

20

log |F (−bκ + it, χ)|dt +

∫ T

20

log

∣∣∣∣F ′

F
(−bκ + it, χ)

∣∣∣∣ dt
+

∫ T

20

log |L(1 + bκ − it, χ)|dt

+

∫ T

20

log

∣∣∣∣1 − 1

(F ′/F )(−bκ + it, χ)

L′

L
(1 + bκ − it, χ)

∣∣∣∣ dt.
(4.35)

By Stirling’s formula we have

log |F (−bκ + it, χ)| =

(
1

2
+ bκ

)
log

qt

2π
+ O

(
1

t

)
,

so that∫ T

20

log |F (−bκ + it, χ)|dt =

(
1

2
+ bκ

)(
T log

qT

2π
− T

)
+ O(log(qT )). (4.36)

In a similar manner, Stirling’s formula for (Γ′/Γ)(z) gives

F ′

F
(−bκ + it, χ) = − log

qt

2π
+ O

(
1

t

)
.

Thus we have∫ T

20

log

∣∣∣∣F ′

F
(−bκ + it, χ)

∣∣∣∣ dt =

∫ T

20

log log
qt

2π
dt + O

(∫ T

20

dt

t log(qt)

)
. (4.37)

Integrating by parts, we see that the first integral on the right turns to∫ T

20

log log
qt

2π
dt = T log log

qT

2π
− 2π

q
Li

(
qT

2π

)
+ O(log log q).

We easily see that the last term on (4.37) is O(log log(qT )). Combining these, we
obtain∫ T

20

log

∣∣∣∣F ′

F
(−bκ + it, χ)

∣∣∣∣ dt = T log log
qT

2π
− 2π

q
Li

(
qT

2π

)
+O(log log(qT )). (4.38)

We see from the Dirichlet series expression for logL(s, χ) that∫ T

20

log |L(1 + bκ − it, χ)| ≪ 1. (4.39)

We treat the last term on (4.35). Firstly we show the following:
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Lemma 4.16. For s = σ + it with σ ≤ −1 and t ≥ 20 we have∣∣∣∣ 1

(F ′/F )(s, χ)

L′

L
(1 − s, χ)

∣∣∣∣ ≤ 2σ.

Proof. We have

F ′

F
(s, χ) = − log

q

2π
+

π

2
cot

(
π(s + κ)

2

)
− Γ′

Γ
(1 − s). (4.40)

Below let s = σ + it with σ ≤ −1 and t ≥ 1. It is easy to see that∣∣∣∣π2 cot

(
π(s + κ)

2

)
+

πi

2

∣∣∣∣ ≤ π

eπt − 1
. (4.41)

We estimate the last term. We start with (4.10). Integration by parts gives∫ ∞

0

u− [u] − 1
2

(u + z)2
du = − 1

12z2
+

∫ ∞

0

B2(u− [u])

(u + z)3
du

for z = x + iy with x ≥ 1 and y ∈ R, where B2(X) = X2 −X + 1
6

is the second
Bernoulli polynomial. Estimating it trivially, we find∣∣∣∣∫ ∞

0

u− [u] − 1
2

(u + z)2
du

∣∣∣∣ ≤ 1

12|z|2
+

1

6

∫ ∞

0

du

|u + z|3

≤ 1

12|z|2
+

1

6

∫ ∞

0

du

(u2 + |z|2)3/2

=
1

4|z|2
.

This gives ∣∣∣∣Γ′

Γ
(1 − s) − Log(1 − s)

∣∣∣∣ ≤ 1

2|1 − s|
+

1

4|1 − s|2
. (4.42)

Inserting (4.41) and (4.42) into (4.40), we obtain∣∣∣∣F ′

F
(s, χ) + Log

q(1 − s)

2π
+

πi

2

∣∣∣∣ ≤ π

eπt − 1
+

1

2t
+

1

4t2
.

This implies∣∣∣∣F ′

F
(s, χ)

∣∣∣∣ ≥ ∣∣∣∣Re

(
F ′

F
(s, χ)

)∣∣∣∣ ≥ log
qt

2π
− π

eπt − 1
− 1

2t
− 1

4t2
.

Next we deal with (L′/L)(1 − s, χ). Using the Dirichlet series expression, we have∣∣∣∣L′

L
(1 − s, χ)

∣∣∣∣ ≤ ∞∑
n=2

log n

n1−σ
≤ log 2

21−σ
+

∫ ∞

2

log u

u1−σ
du
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≤
(

1 +
3

2
log 2

)
2σ.

Taking q ≥ 3 into account, we see that

log
qt

2π
− π

eπt − 1
− 1

2t
− 1

4t2
≥ 1 +

3

2
log 2

holds if t ≥ 20. This completes the proof.

By Lemma 4.16 we can determine the branch of

log

(
1 − 1

(F ′/F )(s, χ)

L′

L
(1 − s, χ)

)
(4.43)

such that it is holomorphic in a region including {σ + it | σ ≤ −1, t ≥ 20} and
it tends to 0 as σ → −∞. We apply Cauchy’s theorem to (4.43) on the triangle
joining −bκ + 20i, −bκ + iT , and −T + iT . Lemma 4.16 says that (4.43) is O(2σ)
on the triangle. This gives∫ T

20

log

∣∣∣∣1 − 1

(F ′/F )(−bκ + it, χ)

L′

L
(1 + bκ − it, χ)

∣∣∣∣ dt ≪ 1. (4.44)

Inserting (4.36), (4.38), (4.39), and (4.44) into (4.35), we obtain∫ T

20

log |L′(−bκ + it, χ)|dt

=

(
1

2
+ bκ

)(
T log

qT

2π
− T

)
+ T log log

qT

2π
− 2π

q
Li

(
qT

2π

)
+ O(log(qT )).

(4.45)
Since |L′(s, χ)| = |L′(s, χ)|, we obtain the same formula as (4.45) for the integral
over [−T,−20]. Applying these and (4.34) to (4.33), we reach

I1 = 2

(
1

2
+ bκ

)(
T log

qT

2π
− T

)
− 2T (bκ logm + log logm)

+ 2T log log
qT

2π
− 4π

q
Li

(
qT

2π

)
+ O(log(qT )).

(4.46)

Next we deal with I±2 . For this purpose we give the following bounds for
argG(σ ± iT, χ):

Proposition 4.17. For T ≥ 2 we have

argG(σ ± iT, χ) ≪


exp(−σ/(2m)) if 10m ≤ σ,

m/σ if 3 ≤ σ ≤ 10m,

m1/2 log(qT ) if −5 ≤ σ ≤ 3,

(4.47)

where the implied constant is absolute.
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In order to show this, we collect consequences of well-known facts. First of all
we recall estimates for G(s, χ).

Lemma 4.18. For s = σ + it with −10 ≤ σ ≤ 3 and t ∈ R we have

G(s, χ) ≪ (qτ)20,

where τ := |t| + 2 and the implied constant is absolute.

Proof. Cauchy’s integral formula gives

L′(s, χ) =
1

2πi

∫
|w−s|=1

L(w, χ)

(w − s)2
dw. (4.48)

According to [MV06, Corollary 10.10 and Lemma 10.15], L(s, χ) ≪ (qτ)15 holds
for −11 ≤ σ ≤ 4 and t ∈ R. Inserting this into (4.48) and using m ≪ log q, we
reach the result.

Next we recall the following formula:

Lemma 4.19. For a > 0 and b > 0 we have

1

2π

∫ 2π

0

log |a + b cos θ|dθ =

{
log a+

√
a2−b2

2
if a > b,

log(b/2) if a ≤ b.

Proof. We calculate the left-hand side as

1

2π

∫ 2π

0

log |a + b cos θ|dθ

=
1

2π

∫ 2π

0

log

∣∣∣∣a + b
eiθ + e−iθ

2

∣∣∣∣ dθ
= log

(
b

2

)
+

1

2π

∫ 2π

0

log

∣∣∣∣e2iθ +
2a

b
eiθ + 1

∣∣∣∣ dθ.
(4.49)

We put α± = −a
b
±
√

(a
b
)2 − 1, which are solutions of X2 + 2a

b
X + 1 = 0. By

Jensen’s theorem (see Lemma 2.1 or [Tit39, Section 3.61]), (4.49) turns to

= log

(
b

2

)
+ log+ |α+| + log+ |α−|,

where log+ x = max{log x, 0}. We easily check that |α+| < 1 and |α−| > 1 when
a > b and that |α±| = 1 when a ≤ b. This completes the proof.

Now we are ready to prove Proposition 4.17. In the proof below c1, c2, . . . are
positive constants independent of any parameters.
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Proof of Proposition 4.17. We see from G(s, χ) = G(s, χ) that argG(σ − iT, χ) =
− argG(σ + iT, χ). Thus it suffices to show (4.47) for argG(σ + iT, χ) only. Thus
we concentrate on argG(σ+iT, χ) below. We also note that (4.47) is an immediate
consequence of Lemma 4.15 or (4.30) when σ ≥ 10m.

Let σ ∈ [−10, 10m]. We put h := #{x ∈ [σ, 10m] | Re(G(σ + iT, χ)) = 0}.
Then we see that argG(σ + iT, χ) ≤ (h + 3/2)π. In order to estimate h, we put

H(z, χ) :=
G(z + iT, χ) + G(z − iT, χ)

2
.

For r > 0 we denote by n(r) the number of zeros of H(z, χ) on |z − 11m| ≤ r,
counted with multiplicity. Since H(z, χ) = Re(G(z+ iT, χ)) for z ∈ R, we see that
h ≤ n(R), where

R := 11m− σ.

We see from the above discussion that

argG(σ + iT, χ) ≪ n(R). (4.50)

Below we estimate n(R). We take R0 > 0. Then by Jensen’s theorem we have∫ R+R0

0

n(r)

r
dr =

1

2π

∫ 2π

0

log |H(11m + (R + R0)e
iθ, χ)|dθ − log |H(11m,χ)|.

Since n(r) is nonnegative and monotonically increasing, the left-hand side is bounded
below as ∫ R+R0

0

n(r)

r
dr ≥

∫ R+R0

R

n(r)

r
dr ≥ n(R) log

(
1 +

R0

R

)
.

Combining this with log |H(11m,χ)| = O(1), which follows from (4.30), we have

n(R) ≤ 1

log(1 + R0

R
)

(
1

2π

∫ 2π

0

log |H(11m + (R + R0)e
iθ, χ)|dθ + c1

)
. (4.51)

First of all we consider the case 3 ≤ σ ≤ 10m. In this case we restrict R0 by

0 < R0 ≤ σ − 2. (4.52)

Then we note 11m− (R + R0) ≥ 2. We see from Lemma 4.15 that

1

2π

∫ 2π

0

log |H(11m + (R + R0)e
iθ, χ)|dθ

≤ 1

2π

∫ 2π

0

log
m

11m + (R + R0) cos θ
dθ + c2.
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By Lemma 4.19, this is

≤ logm− log

(
11m

2

)
+ c2 ≤ c3.

We also note that the restriction (4.52) implies 0 < R0/R ≤ c4, so that log(1 +
R0/R) ≫ R0/R. Combining these, we obtain

n(R) ≪ R

R0

.

Taking R0 = σ − 2, we obtain n(R) ≪ m/σ. This together with (4.50) completes
the proof when 3 ≤ σ ≤ 10m.

Finally we deal with the case −5 ≤ σ ≤ 3. In this case we choose R0 = 5. In
order to estimate the integral on (4.51), we divide [0, 2π] = I1 ∪ I2, where

I1 := {θ ∈ [0, 2π] | 11m + (R + 5) cos θ ≥ 2},
I2 := {θ ∈ [0, 2π] | 11m + (R + 5) cos θ < 2}.

We take θ0 ∈ (0, π/2) such that

cos θ0 =
11m− 2

R + 5
.

Then we have I1 = [0, π − θ0] ∪ [π + θ0, 2π] and I2 = (π − θ0, π + θ0). Since
cos θ0 = 1 + O(1/m) and cos θ0 = 1 − 2 sin2(θ0/2), we see that

θ0 = O(m−1/2). (4.53)

We deal with the integral over I1. By Lemma 4.15 we have

1

2π

∫
I1

log |H(11m + (R + 5)eiθ, χ)|dθ

≤ logm− 1

2π

∫
I1

log |11m + (R + 5) cos θ|dθ + c5.

(4.54)

We see from Lemma 4.19 together with R + 5 ≥ 11m that

1

2π

∫
I1

log |11m + (R + 5) cos θ|dθ

= log
R + 5

2
− 1

2π

∫ π+θ0

π−θ0

log |11m + (R + 5) cos θ|dθ

≥ logm− θ0
π

log(30m).
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Inserting this into (4.54) and using (4.53), we obtain

1

2π

∫
I1

log |H(11m + (R + 5)eiθ, χ)|dθ ≤ c6.

Next we treat the integral over I2. By Lemma 4.18

H(11m + (R + 5)eiθ, χ) ≪ (qT ′)20

holds on θ ∈ I2, where T ′ := max{T,m}. This together with (4.53) yields

1

2π

∫
I2

log |H(11m + (R + 5)eiθ, χ)|dθ ≤ c7m
−1/2 log(qT ′).

Inserting this and log(1 + 5/R) ≫ 1/R ≫ 1/m into (4.51), we obtain

n(R) ≪ m(m−1/2 log(qT ′) + 1) ≪ m1/2 log(qT ′) ≪ m1/2 log(qT ). (4.55)

Here in the second inequality we used m ≪ log q. In the last inequality we also
used log(qT ′) ≪ log(q log q) ≪ log q ≪ log(qT ) when T ≤ m. Applying (4.55) to
(4.50), we reach the result when −5 ≤ σ ≤ 3.

The proof of Proposition 4.17 is completed.

Proof of Theorem 4.5. Subtracting (4.31) with bκ = 1+κ from that with bκ = 3+κ,
we have

4πN1(T, χ) = (I1(3 + κ, χ, T ) − I1(1 + κ, χ, T ))

+ (I+2 (3 + κ, χ, T ) − I+2 (1 + κ, χ, T ))

− (I−2 (3 + κ, χ, T ) − I−2 (1 + κ, χ, T )) + O(1).

By (4.46) we have

I1(3 + κ, χ, T ) − I1(1 + κ, χ, T ) = 4T log
qT

2πm
− 4T + O(log(qT )).

On the other hand Proposition 4.17 gives

I±2 (3 + κ, χ, T ) − I±2 (1 + κ, χ, T ) =

∫ −1−κ

−3−κ

argG(σ ± iT, χ)dσ

≪ m1/2 log(qT ).

Combining these, we obtain the result.
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Proof of Theorem 4.6. We start with (4.32). We estimate I±2 = I±2 (bκ, χ, T ). By
Proposition 4.17 we have

I±2 ≪ m logm + m1/2 log(qT ) ≪ m1/2 log(qT ). (4.56)

Here in the last inequality we used m ≪ log q. We also note that

2π
∑

ρ′=β′+iγ′

β′>0,−T≤γ′≤T

(β′ + bκ)

= 2π
∑

ρ′=β′+iγ′

β′>0,−T≤γ′≤T

(
β′ − 1

2

)
+ 2π

(
bκ +

1

2

)
N1(T, χ).

Applying Theorem 4.5, (4.56), and (4.46), we complete the proof.

4.2.6 Proof of Theorems 4.7, 4.8, and 4.9

In this subsection we show Theorems 4.7–4.9. First of all we investigate the
sign of (L′/L)(s, χ) on Re(s) = 1/2. For convenience we put

T = Tχ := R \ {t ∈ R | L(1/2 + it, χ) = 0}.

Lemma 4.20. Let χ be a non-principal primitive Dirichlet character. Then for
t ∈ T

Re

(
L′

L

(
1

2
+ it, χ

))
< 0 (4.57)

holds if one of the following conditions holds:

1. κ = 0 and q ≥ 216.

2. κ = 0 and |t| ≥ 2.

3. κ = 1 and q ≥ 10.

4. κ = 1 and |t| ≥ 3.

Proof. We begin with (4.5). Since L(s, χ) = F (s, χ)L(1 − s, χ) and L(s, χ) =
L(s, χ), each zero of L(s, χ) in Re(s) > 1/2 can be written by 1 − ρ uniquely,
where ρ = β + iγ is a zero of L(s, χ) in 0 < β < 1/2. Furthermore, routine
calculation gives

σ − β

|s− ρ|2
+

σ − (1 − β)

|s− (1 − ρ)|2
= (2σ − 1)

(σ − 1
2
)2 − (β − 1

2
)2 + (t− γ)2

|s− ρ|2|s− 1 + ρ|2
.
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Applying these to (4.5), for s = σ + it with L(s, χ) ̸= 0 we find

Re

(
L′

L
(s, χ)

)
= −1

2
log

q

π
− 1

2
Re

(
Γ′

Γ

(
s + κ

2

))
+

(
σ − 1

2

)
J(s, χ), (4.58)

where

J(s, χ) =
∑
β= 1

2

1

|s− ρ|2
+ 2

∑
β<1/2

(σ − 1
2
)2 − (β − 1

2
)2 + (t− γ)2

|s− ρ|2|s− 1 + ρ|2
.

Thus, for t ∈ T we have

Re

(
L′

L

(
1

2
+ it, χ

))
= −1

2
log

q

π
− 1

2
Re

(
Γ′

Γ

(
1

4
+

κ

2
+

it

2

))
. (4.59)

We note that the right-hand side is an even function with respect to t. Therefore
we concentrate on t ≥ 0 below. Let t0 ∈ [0,∞). Since the right-hand side of
(4.59) is monotonically decreasing on t ≥ 0 thanks to (4.18), it holds that for
t ∈ T ∩ [t0,∞) we have

Re

(
L′

L

(
1

2
+ it, χ

))
≤ −1

2
log

q

π
− 1

2
Re

(
Γ′

Γ

(
1

4
+

κ

2
+

it0
2

))
. (4.60)

We take t0 = 0. Then we see that (4.57) holds for t ∈ T provided

q > π exp

(
−Γ′

Γ

(
1

4
+

κ

2

))
. (4.61)

By [GR00, 8.366.4 and 8.366.5] the right-hand side of (4.61) equals

= 8π exp
(
cE + (−1)κ

π

2

)
=

{
215.3 . . . if κ = 0,

9.3 . . . if κ = 1.

Thus (4.57) holds if the condition (1) or (3) is satisfied.
We go back to (4.60) and consider the case κ = 0. In this case q ≥ 5 holds. We

have

log
5

π
> 0.46.

On the other hand by numerical computation together with (4.18) and [GR00,
8.366.4] we find

Re

(
Γ′

Γ

(
1

4
+ i

))
= −cE − π

2
− 3 log 2 +

∞∑
n=0

1

(n + 1
4
){(n + 1

4
)2 + 1}
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> −0.04.

Here in the last inequality we discard the sum over n > 5 and carry out a numerical
calculation. Combining these and (4.60), we see that (4.57) holds if the condition
(2) is satisfied.

Finally we treat the case κ = 1. We note that κ = 1 implies q ≥ 3. In a similar
manner as the case κ = 0 we find

log
3

π
> −0.05 and Re

(
Γ′

Γ

(
3

4
+

3i

2

))
> 0.37.

This together with (4.60) says that (4.57) holds under the condition (4).

As was mentioned in the remark below Theorem 4.7, (4.2) has already been
established in [GS15] for q < 216. Thus, when we show Theorems 4.7–4.9, we may
assume one of the following conditions:

• κ = 0 and q ≥ 216,

• κ = 1 and q ≥ 23.

We temporarily fix χ and T ≥ 2. Let ρ0 = 1/2 + iγ0 be a zero of L(s, χ) with
−T ≤ γ0 ≤ T . Then thanks to (4.58) together with the above assumption on
q, there exists ε > 0 such that Re((L′/L)(s, χ)) is negative on the left semicircle
{s = σ + it | |s − ρ0| = ε, σ ≤ 1/2}. Thus, considering the discussion in Section
4.2.4, Lemma 4.20 and the above discussion into account, we see that there exists
a rectangle R with vertices ±iT and 1/2± iT having small left semicircles at zeros
of L(s, χ) on Re(s) = 0 and Re(s) = 1/2 such that Re((L′/L)(s, χ)) is negative on
the vertical sides of R. We apply the argument principle to (L′/L)(s, χ) on R. In
consequence we obtain

1

2π
∆R arg

L′

L
(s, χ) = N−

1 (T, χ) −N−(T, χ) −

{
1 if κ = 0,

0 if κ = 1.
(4.62)

Here we used the fact that s = 0 is a trivial zero of L(s, χ) if κ = 0. Based on
(4.62), we show Theorems 4.7–4.9 below.

Proof of Theorem 4.7. Since Re((L′/L)(s, χ)) < 0 on the vertical sides of R, the
continuous variation of arg(L′/L)(s, χ) along each vertical side is O(1). Next we
investigate the horizontal sides. We have

arg
L′

L
(s, χ)

∣∣∣∣s=iT

s=1/2+iT

= argL′(s, χ)|s=iT
s=1/2+iT − argL(s, χ)|s=iT

s=1/2+iT . (4.63)
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The continuous variation of argL′(s, χ) from s = 1/2 + iT to s = iT equals that of
argG(s, χ), where the branch of argG(s, χ) is determined in the same manner as in
Section 4.2.5. Combining Proposition 4.17, we see that the variation of argL′(s, χ)
on (4.63) is O(m1/2 log(qT )). On the other hand it is well-known that the last term
on (4.63) is O(log(qT )): see [MV06, Lemma 12.8] for example. In summary we see
that (4.63) is O(m1/2 log(qT )). In the same manner the variation of arg(L′/L)(s, χ)
from s = −iT to s = 1/2 − iT is O(m1/2 log(qT )).

By the above discussion we conclude that the left-hand side of (4.62) is

O
(
m1/2 log(qT )

)
as desired.

The following proposition is a key point to show Theorems 4.8 and 4.9:

Proposition 4.21. Let χ be a fixed primitive Dirichlet character satisfying κ = 0
and q ≥ 216, or κ = 1 and q ≥ 23. Then at least one of the following assertions
holds:

1. There exists T0 = T0(χ) > 0 such that N−(T, χ) > T/2 for any T ≥ T0.

2. There exists a sequence {Tj}∞j=1 such that Tj → ∞ as j → ∞ and

N−
1 (Tj, χ) = N−(Tj, χ) +

{
1 if κ = 0,

0 if κ = 1

holds for any j ∈ Z≥1.

Proof. First of all we suppose that there exists a sequence {Tj}∞j=1 such that
Re((L′/L)(σ ± iTj, χ)) < 0 holds for any j and σ ∈ [0, 1/2]. Then for any j,
Re((L′/L)(s, χ)) is negative on R with T = Tj. This implies that the left-hand
side of (4.62) is 0 when T = Tj. In this case the assertion (2) in Proposition 4.21
holds.

Next we suppose that {Tj}∞j=1 with the above property does not exist. Then
for any sufficiently large t there exists σ ∈ [0, 1/2] such that Re((L′/L)(σ + it, χ))
or Re((L′/L)(σ − it, χ)) is nonnegative. By Stirling’s formula the first two terms
on the right-hand side of (4.58) are negative for s = σ + it or s = σ − it. Thus
J(σ+ it, χ) or J(σ− it, χ) has to be negative. This implies that there exists a zero
ρ = β + iγ of L(s, χ) with β < 1/2 satisfying

(β − 1
2
)2 > (σ − 1

2
)2 + (t− γ)2 or (β − 1

2
)2 > (σ − 1

2
)2 + (t + γ)2.

This yields |t−γ| < 1/2 or |t+γ| < 1/2. We take t as a sufficiently large integer n.
Then we see that there exists at least one zero ρ = β + iγ of L(s, χ) with β < 1/2
and n− 1/2 < |γ| < n + 1/2. In summary we obtain N−(T, χ) ≥ T + Oχ(1). This
implies the assertion (1) in Proposition 4.21.
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Proof of Theorems 4.8 and 4.9. As was mentioned in the remark below Theorem
4.9, Yıldırım [Yıl96b] has already established the implications (i)=⇒(ii). We sup-
pose (ii). Then we see from the assumption (ii) and Theorem 4.7 that N−(T, χ) =
Oχ(log T ). This implies that the assertion (1) in Proposition 4.21 cannot be satis-
fied. Thus the assertion (2) in Proposition 4.21 holds. Using the assumption (ii)
again, we see N−(Tj, χ) = 0 for any j, which is nothing but (i).

4.3 Results obtained under the truth of the gen-

eralized Riemann hypothesis for k = 1

In this section, we extend the results of Akatsuka [Aka12, Theorems 1 and 3],
introduced in the previous chapter, to L′(s, χ).

Throughout this section, we retain some notation defined in the previous section
with a slight modification for zeros of L′(s, χ): We let ρ = β + iγ and ρ′ = β′ + iγ′

denote the zeros of L(s, χ) and L′(s, χ) in the right half-plane Re(s) > 0. We know
that L(s, χ) has only trivial zeros in Re(s) ≤ 0 (see Chapter 2 Section 2.3). We
remark that zeros of L′(s, χ) satisfying Re(s) ≤ 0 can also be regarded as “trivial”
zeros (see Theorems 4.1, 4.2, and 4.4 in the previous section or [AS-p, Theorems
1, 2, and 4]). We define N1(T, χ) for T > 0 as the number of zeros of L′(s, χ)
satisfying Re(s) > 0 and | Im(s)| ≤ T , counted with multiplicity. Recall also that
Li(x) is as defined in Theorem 2.4.

Our main theorems in this section are as follows:

Theorem 4.22. Assume that the generalized Riemann hypothesis is true, then for
T ≥ 2, we have∑

ρ′=β′+iγ′,
|γ′|≤T

(
β′ − 1

2

)
=

T

π
log log

qT

2π
+

T

π

(
1

2
logm− log logm

)
− 2

q
Li

(
qT

2π

)

+ O
(
m1/2(log log (qT ))2 + m log log (qT ) + m1/2 log q

)
,

where the sum is counted with multiplicity.

Theorem 4.23. Assume that the generalized Riemann hypothesis is true, then for
T ≥ 2, we have

N1(T, χ) =
T

π
log

qT

2mπ
− T

π
+ O

(
m1/2 log (qT )

(log log (qT ))1/2
+ m1/2 log q

)
.

Remarks. We mentioned in the previous chapter that in a recent preprint, F. Ge
[Ge-p, Theorem 1] showed that we can improve the error term in the estimate on
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the number of zeros of ζ ′(s) shown by Akatsuka [Aka12, Theorem 3] to

O

(
log T

log log T

)
.

It is expected that we can extend Ge’s result to L′(s, χ). The author is currently
working on this topic.

In this section, we first review some basic estimates related to logL(s, χ) near
the critical line and zero-free regions of L′(s, χ) in Subsection 4.3.1. In Subsection
4.3.2, we show important lemmas crucial for the proofs of our main theorems and
finally prove them in Subsection 4.3.3. For convenience, we use variables s and z
as complex numbers, with σ = Re(s) and t = Im(s). Finally, we abbreviate the
generalized Riemann hypothesis as GRH.

4.3.1 Preliminaries

4.3.1.1 Bounds related to logL(s, χ) near the critical line

In this subsection we give some bounds related to logL(s, χ) which can be found
in [MV06, Sections 12.1, 13.2, 14.1]. Only for this subsection, we put τ := |t| + 4.

Lemma 4.24. Assume GRH, then

logL(σ + it, χ) = O

(
(log (qτ))2(1−σ)

(1 − σ) log log (qτ)
+ log log log (qτ)

)
holds uniformly for 1/2 + (log log (qτ))−1 ≤ σ ≤ 3/2.

Proof. This is straightforward from the inequalities in exercise 6 of [MV06, Section
13.2] (see also page 3 of [MV06-cor] for the corrected exercise 6).

Lemma 4.25. Assume GRH, then

argL(σ + it, χ) = O

(
log (qτ)

log log (qτ)

)
holds uniformly for σ ≥ 1/2.

Proof. See [Sel46, Section 5] or exercise 11 of [MV06, Section 13.2].

With the above lemma and [MV06, Corollary 14.6], we obtain the following
estimate on the number of zeros of L(s, χ) under GRH which is mentioned in
Theorem 2.12:
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Proposition 4.26. Assume GRH and let N(T, χ) denote the number of zeros of
L(s, χ) satisfying Re(s) > 0 and | Im(s)| ≤ T , counted with multiplicity. Then for
T ≥ 2,

N(T, χ) =
T

π
log

qT

2π
− T

π
+ O

(
log (qT )

log log (qT )

)
.

Proof. This is a straightforward consequence of [MV06, Corollary 14.6] and [Sel46,
Theorem 6] (see exercise 1 of [MV06, Section 14.1]).

Lemma 4.27.

L′

L
(σ + it, χ) =

∑
ρ=β+iγ,
|γ−t|≤1

1

σ + it− ρ
+ O(log (qτ))

holds uniformly for −1 ≤ σ ≤ 2.

Proof. See [MV06, Lemma 12.6].

4.3.1.2 Zero-free regions of L′(s, χ)

We begin with a zero-free region of L′(s, χ) to the right of the critical line.

Proposition 4.28. L′(s, χ) has no zeros when

σ > 1 +
m

2

(
1 +

√
1 +

4

m logm

)
.

Proof. See [Yıl96b, Theorem 2] for k = 1.

From the above proposition, it is not difficult to check that L′(s, χ) ̸= 0 when
σ ≥ 1 + 3m/2. Next we introduce a zero-free region of L′(s, χ) to the left of the
critical line.

Proposition 4.29. L′(s, χ) has no zeros when σ ≤ 0 and |t| ≥ 6. Furthermore,
assuming GRH,

1. if κ = 0 and q ≥ 216, then L′(s, χ) has a unique zero in 0 < Re(s) < 1/2;

2. if κ = 1 and q ≥ 23, then L′(s, χ) has no zeros in 0 < Re(s) < 1/2.

Here

κ =

{
0, χ(−1) = 1;

1, χ(−1) = −1.

Thus under GRH, for any fixed ϵ > 0, there are only possibly finitely many zeros
in the region defined by 0 < σ < 1/2 and |t| ≤ ϵ for any L′(s, χ).

Proof. See [AS-p, Theorems 1, 8, and 9] (or see Theorems 4.1, 4.8, and 4.9 in the
previous section) and note that q ≥ 3 in our case.
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4.3.2 Key lemmas

For convenience, we define the function F (s, χ) and G(s, χ) as in the previous
section:

F (s, χ) := ϵ(χ)2sπs−1q
1
2
−s sin

(
π(s + κ)

2

)
Γ(1 − s), (4.64)

G(s, χ) := − ms

χ(m) logm
L′(s, χ). (4.65)

Recall that ϵ(χ) is a factor that depends only on χ, satisfying |ϵ(χ)| = 1 and
that from the functional equation for L(s, χ), we have L(s, χ) = F (s, χ)L(1−s, χ).

4.3.2.1 Constants σ1 and tq

Lemma 4.30. For σ ≥ 2, we have

|G(σ + it, χ) − 1| ≤ 2

(
1 +

8m

σ

)(
1 +

1

m

)−σ

and ∣∣∣∣GL (σ + it, χ) − 1

∣∣∣∣ ≤ 2

(
1 +

8m

σ

)(
1 +

1

m

)−σ

Proof. Let σ ≥ 2. Then from (4.65) and by using the Dirichlet series expression
of L′(s, χ), we can calculate

|G(s, χ) − 1| =

∣∣∣∣∣− ms

χ(m) logm

(
−

∞∑
n=1

χ(n) log n

ns

)
− 1

∣∣∣∣∣
=

∣∣∣∣∣ ms

χ(m) logm

∞∑
n=m+1

χ(n) log n

ns

∣∣∣∣∣ ≤ mσ

logm

∞∑
n=m+1

log n

nσ

≤ mσ

logm

log (m + 1)

(m + 1)σ
+

mσ

logm

∫ ∞

m+1

log x

xσ
dx

=
mσ

logm

log (m + 1)

(m + 1)σ

(
1 +

m + 1

σ − 1
+

m + 1

(σ − 1)2 log (m + 1)

)
≤ mσ

logm

2 logm

(m + 1)σ

(
1 +

4m

σ − 1

)
≤ 2

(
m

m + 1

)σ (
1 +

8m

σ

)
,

where we have used m+1 ≤ 2m ≤ m2 and σ−1 ≥ σ/2 in the last two inequalities.

By using the Dirichlet series expansion of (L′/L)(s, χ), with calculation similar
to the above, we can show the second inequality in the lemma.
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Applying Stirling’s formula of the following form

log Γ(z) =

(
z − 1

2

)
log z − z +

1

2
log 2π +

∫ ∞

0

[u] − u + 1
2

u + z
du (4.66)

(−π + δ ≤ arg z ≤ π − δ, for any δ > 0),

we can define the holomorphic function

logF (s, χ) := log ϵ(χ) +

(
1

2
− s

)
log

q

2π
+

1

2
log

2

π
+ log sin

π

2
(s + κ)

+ log Γ(1 − s)

(4.67)

for σ < 1 and |t| > 1, where 0 ≤ arg ϵ(χ) < 2π and log sin (π(s + κ)/2) is the
holomorphic function on σ < 1, |t| > 1 satisfying

log sin
π

2
(s + κ) :=



(1 − s− κ)π

2
i− log 2 −

∞∑
n=1

eπi(s+κ)n

n
, t > 1;

(s + κ− 1)π

2
i− log 2 −

∞∑
n=1

e−πi(s+κ)n

n
, t < −1.

Under the above definitions, we can show the following lemma.

Lemma 4.31. For σ < 1 and ±t > 1, we have

F ′

F
(s, χ) = − log (q(1 − s)) + log 2π ∓ πi

2
+

1

2(1 − s)
+ O

(
1

|1 − s|2

)
+ O

(
e−π|t|) ,

where −π/2 < arg (1 − s) < π/2.

Proof. Applying Stirling’s formula (4.66) to log Γ(z) for arg z ∈ (−π/2, π/2), we
have

log Γ(1 − s) =

(
1

2
− s

)
log (1 − s) − (1 − s) +

1

2
log 2π +

∫ ∞

0

[u] − u + 1
2

u + 1 − s
du

in the region σ < 1, |t| > 1. From (4.67), we can show that

logF (s, χ) = log ϵ(χ) +
π

2

(
1

2
− κ

)
i− 1 +

(
1

2
− s

)(
log (q(1 − s)) − log 2π +

πi

2

)
+ s +

∫ ∞

0

[u] − u + 1
2

u + 1 − s
du−

∞∑
n=1

eπi(s+κ)n

n
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holds when σ < 1 and t > 1. Differentiating both sides of the above equation with
respect to s, we obtain

F ′

F
(s, χ) = − log (q(1 − s)) + log 2π − πi

2
+

1

2(1 − s)
+ O

(
1

|1 − s|2

)
+ O

(
e−π|t|)

for σ < 1 and t > 1. We can show similarly for σ < 1 and t < −1.

Lemma 4.32. There exists a σ1 ≤ −1 such that∣∣∣∣∣ 1
F ′

F
(s, χ)

L′

L
(1 − s, χ)

∣∣∣∣∣ < 2σ

holds for any s with σ ≤ σ1 and |t| ≥ 2.

Proof. From Lemma 4.31, we know that

F ′

F
(s, χ) = − log (q(1 − s)) + O(1)

holds when σ < 1 and |t| ≥ 2. Hence∣∣∣∣F ′

F
(s, χ)

∣∣∣∣ ≥ log (q(1 − σ)) − |O(1)|

holds in the region σ < 1, |t| ≥ 2. Thus, we can take σ′
1 ≤ −1 sufficiently small

(i.e. sufficiently large in the negative direction) so that for any s with σ ≤ σ′
1 and

|t| ≥ 2, we have ∣∣∣∣F ′

F
(s, χ)

∣∣∣∣ ≥ 1

2
log (q(1 − σ)) (4.68)

for all s in the region σ ≤ σ′
1, |t| ≥ 2.

Next we estimate (L′/L)(1−s, χ). In the region σ ≤ −1, |t| ≥ 2, (L′/L)(1−s, χ)
can be written as a Dirichlet series, thus we have∣∣∣∣L′

L
(1 − s, χ)

∣∣∣∣ ≤ log 2

21−σ
+

∞∑
n=3

log n

n1−σ
≤ 2σ log 2

2
+

∫ ∞

2

log x

x1−σ
dx

= 2σ

(
log 2

2
− log 2

σ
+

1

σ2

)
≤ 2σ

(
1 +

3

2
log 2

)
.

(4.69)

Now combining inequalities (4.68) and (4.69), we have∣∣∣∣∣ 1
F ′

F
(s, χ)

L′

L
(1 − s, χ)

∣∣∣∣∣ < 2σ 2 + 3 log 2

log (q(1 − σ))
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for σ ≤ σ′
1 and |t| ≥ 2. Hence we can find some σ1 ≤ σ′

1 (≤ −1) such that
(2 + 3 log 2)/ log (q(1 − σ)) < 1 holds for any σ ≤ σ1. This implies that∣∣∣∣∣ 1

F ′

F
(s, χ)

L′

L
(1 − s, χ)

∣∣∣∣∣ < 2σ

holds in the region σ ≤ σ1, |t| ≥ 2.

Lemma 4.33. Assume GRH and fix a σ1 that satisfies Lemma 4.32. Then there
exists a t1 > −σ1 such that

1. for any s satisfying σ1 ≤ σ ≤ 1/2 and |t| ≥ t1 − 1,∣∣∣∣F ′

F
(s, χ)

∣∣∣∣ ≥ 1

holds and we can take the logarithmic branch of log (F ′/F )(s, χ) in that region
such that it is holomorphic there and 5π/6 < arg (F ′/F )(s, χ) < 7π/6 holds;

2. for any s satisfying σ1 ≤ σ < 1/2 and |t| ≥ t1 − 1,

L′

L
(s, χ) ̸= 0

holds and we can take the logarithmic branch of log (L′/L)(s, χ) in that region
such that it is holomorphic there and π/2 < arg (L′/L)(s, χ) < 3π/2 holds.

Proof. We begin by examining condition (1). Again, from Lemma 4.31, we see
that

F ′

F
(s, χ) = − log (q(1 − s)) + O(1)

holds when σ < 1 and |t| ≥ 2. Thus for σ1 ≤ σ ≤ 1/2 and |t| ≥ 2, we have∣∣∣∣F ′

F
(s, χ)

∣∣∣∣ ≥ log (q|t|) − |O(1)| ≥ log |t| − |O(1)|.

Hence, we can find some t′1 ≥ 100 such that∣∣∣∣F ′

F
(s, χ)

∣∣∣∣ ≥ 1 (4.70)

holds for all s with σ1 ≤ σ ≤ 1/2 and |t| ≥ t′1 − 1. We note that Lemma 4.31 also
implies that

F ′

F
(s, χ) = − log (q|t|) + O(1)
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holds when σ1 ≤ σ ≤ 1/2 and |t| ≥ 2 − σ1. Consequently, we can find some
t′′1 ≥ max {t′1, 3 − σ1} such that

5π

6
< arg

F ′

F
(s, χ) <

7π

6

holds for σ1 ≤ σ ≤ 1/2 and |t| ≥ t′′1 − 1. Since (F ′/F )(s, χ) is holomorphic,
inequality (4.70) tells us that log (F ′/F )(s, χ) is holomorphic in the region σ1 ≤
σ ≤ 1/2, |t| ≥ t′′1 − 1 with this branch.

By the above calculations, we find that t′′1 is a candidate for t1. Below we
examine condition (2) to completely prove the existence of t1.

Corollary 10.18 of [MV06] allows us to show that

Re

(
L′

L
(s, χ)

)
< −1

2
log

q

π
− 1

2
Re

(
Γ′

Γ

(
s + κ

2

))
holds for σ1 ≤ σ < 1/2, under GRH. For any small δ > 0, let |t| > σ1 tan δ.
Stirling’s formula (4.66) implies

1

2
Re

(
Γ′

Γ

(
s + κ

2

))
=

1

2
log

∣∣∣∣s + κ

2

∣∣∣∣+ O

(
1

|s|

)
.

Hence we can find some t1 ≥ t′′1 large enough so that

Re

(
L′

L
(s, χ)

)
< 0

holds for σ1 ≤ σ < 1/2 and |t| ≥ t1 − 1 and hence (L′/L)(s, χ) ̸= 0. Moreover, we
can define a branch of log (L′/L)(s, χ) so that it is holomorphic in σ1 ≤ σ < 1/2,
|t| ≥ t1 − 1 and

π

2
< arg

L′

L
(s, χ) <

3π

2

holds there. Since this t1 also satisfies condition (1), the proof is complete.

Now we fix t1 which satisfies Lemma 4.33 and take tq ∈ [t1 + 1, t1 + 2] such that

L(σ ± itq, χ) ̸= 0, L′(σ ± itq, χ) ̸= 0 (4.71)

for all σ ∈ R.

Remark. We note that tq depends on q but it is bounded by a fixed constant that
does not depend on q: tq ≪ t1 ≪ 1.

76



4.3.2.2 Bounds related to logG(s, χ)

In this subsection, we give bounds for arg (G/L)(s, χ) and argG(s, χ). We take
the logarithmic branches so that logL(s, χ) and logG(s, χ) tend to 0 as σ → ∞
and are holomorphic in C\{z + λ | L(z, χ) = 0, λ ≤ 0} and C\{z + λ | L′(z, χ) =
0, λ ≤ 0}, respectively. We write

− argL(σ ± iτ, χ) + argG(σ ± iτ, χ) = arg
G

L
(σ ± iτ, χ)

and take the argument on the right-hand side so that log (G/L)(s, χ) tends to 0
as σ → ∞ and is holomorphic in C\{z + λ | (L′/L)(z, χ) = 0 or ∞, λ ≤ 0}.

Lemma 4.34. Assume GRH and let τ ≥ tq. Then we have for 1/2 < σ ≤ 10m,

arg
G

L
(σ ± iτ, χ) ≪


m

σ
3 ≤ σ ≤ 10m,

m1/2 log log (qτ) + m

σ − 1/2
1/2 < σ ≤ 3.

Proof. Let τ ≥ tq and 1/2 < σ ≤ 10m. Let

uG/L = uG/L(σ, τ ;χ) := #

{
u ∈ [σ, 11m] | Re

(
G

L
(u± iτ, χ)

)
= 0

}
,

then ∣∣∣∣arg
G

L
(σ ± iτ, χ)

∣∣∣∣ ≤ (uG/L + 1
)
π.

To estimate uG/L, we set

H1(z, χ) :=
1

2

(
G

L
(z ± iτ, χ) +

G

L
(z ∓ iτ, χ)

)
and

nH1(r, χ) := #{z ∈ C | H1(z, χ) = 0, |z − 11m| ≤ r}.
Since H1(x, χ) = Re((G/L)(x± iτ, χ)) for x ∈ R, we have uG/L ≤ nH1(11m−σ, χ)
for 1/2 < σ ≤ 10m.

Now we estimate nH1(11m − σ, χ). We take ϵ = ϵσ,τ > 0. It is easy to show
that

nH1(11m− σ, χ) ≤ 1

log (1 + ϵ/(11m− σ))

∫ 11m−σ+ϵ

0

nH1(r, χ)

r
dr.

Applying Jensen’s theorem (cf. Lemma 2.1 or [Tit39, Section 3.61]), we have∫ 11m−σ+ϵ

0

nH1(r, χ)

r
dr =

1

2π

∫ 2π

0

log |H1(11m + (11m− σ + ϵ)eiθ, χ)|dθ
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− log |H1(11m,χ)|.

Applying the second inequality in Lemma 4.30, we can easily see that log |H1(11m,χ)| =
O(1). Therefore∣∣∣∣arg

G

L
(σ ± iτ, χ)

∣∣∣∣ ≤ 1

log (1 + ϵ/(11m− σ))

×
(

1

2π

∫ 2π

0

log |H1(11m + (11m− σ + ϵ)eiθ, χ)|dθ + C

)
for some absolute constant C > 0.

Now we divide the rest of the proof in two cases:

(a) For 3 ≤ σ ≤ 10m, we restrict ϵ to satisfy 0 < ϵ ≤ σ − 2. Then 11m +
(11m− σ + ϵ) cos θ ≥ 2. Applying the second inequality in Lemma 4.30, we
can easily obtain

|H1(11m + (11m− σ + ϵ)eiθ, χ)| ≤ 100m

11m + (11m− σ + ϵ) cos θ
.

Recall from Lemma 4.19 that for c > r > 0,

1

2π

∫ 2π

0

log |c + r cos θ|dθ = log
c +

√
c2 − r2

2
(4.72)

holds. By using (4.72), we can easily show that

1

2π

∫ 2π

0

log |H1(11m + (11m− σ + ϵ)eiθ, χ)|dθ

≤ log (100m) − 1

2π

∫ 2π

0

log (11m + (11m− σ + ϵ) cos θ)dθ

= log (100m) − log
11m +

√
11m2 − (11m− σ + ϵ)2

2

≤ log (100m) − log
11m

2
≪ 1.

Note that ϵ/(11m − σ) ≤ 10, thus log (1 + ϵ/(11m− σ)) ≫ ϵ/(11m − σ).
Hence

arg
G

L
(σ ± iτ, χ) ≪ 11m− σ

ϵ
≪ m

ϵ
.

By taking ϵ = σ − 2, we obtain

arg
G

L
(σ ± iτ, χ) ≪ m

σ
.

This is the first inequality in Lemma 4.34.
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(b) For 1/2 < σ ≤ 3, we restrict ϵ to satisfy 0 < ϵ < σ − 1/2 and we divide the
interval of integration into

• I1 := {θ ∈ [0, 2π] | 11m + (11m− σ + ϵ) cos θ ≥ 2} and

• I2 := {θ ∈ [0, 2π] | 11m + (11m− σ + ϵ) cos θ < 2}.

Since 11m + (11m− σ + ϵ) cos θ > 1/2 and 11m− σ + ϵ < 11m, on I1, as in
the calculation of case (a), we can show that

1

2π

∫
θ∈I1

log |H1(11m + (11m− σ + ϵ)eiθ, χ)|dθ

≤ 1

2π

∫
θ∈I1

log
100m

11m + (11m− σ + ϵ) cos θ
dθ

≤ 1

2π

∫ 2π

0

log
100m

11m + (11m− σ + ϵ) cos θ
dθ ≪ 1.

Now we estimate the integral on I2. Setting

cos θ0 :=
11m− 2

11m− σ + ϵ

for θ0 ∈ (0, π/2), we have I2 = (π − θ0, π + θ0). Applying Lemma 4.27 and
Proposition 4.26, and noting that (L′/L)(x + iy, χ) = O(1) when x ≥ 2, we
have

L′

L
(x + iy, χ) = O

(
log (q(|y| + 1))

x− 1/2

)
for 1/2 < x ≤ A, for any fixed A ≥ 2. Thus,

|H1(11m+ (11m− σ + ϵ)eiθ, χ)| ≤ C1
m2

logm

log (q(τ + 11m))

11m + (11m− σ + ϵ) cos θ − 1/2

for some absolute constant C1 > 0. Hence

1

2π

∫
θ∈I2

log |H1(11m + (11m− σ + ϵ)eiθ, χ)|dθ

≤ 1

2π

∫ π+θ0

π−θ0

log
C1m

2

logm

log (q(τ + 11m))

11m− 1/2 + (11m− σ + ϵ) cos θ
dθ

=
1

2π

∫ θ0

−θ0

log
C1m

2

logm

log (q(τ + 11m))

11m− 1/2 − (11m− σ + ϵ) cos θ
dθ

=
θ0
π

log
C1m

2 log (q(τ + 11m))

logm
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− 1

2π

∫ θ0

−θ0

log

(
11m− 1

2
− (11m− σ + ϵ) cos θ

)
dθ.

We note that cos θ0 = 1 + O(1/m). By using 1 − cos θ0 = 2 sin2 (θ0/2), we
can show

θ0 ≪
∣∣∣∣sin2 θ0

2

∣∣∣∣≪ 1

m1/2
.

Hence,∫ θ0

−θ0

log

(
11m− 1

2
− (11m− σ + ϵ) cos θ

)
dθ

=

∫ θ0

−θ0

log
11m− 1/2 − (11m− σ + ϵ) cos θ

11m− 1/2
dθ +

∫ θ0

−θ0

log (11m− 1/2)dθ

=

∫ θ0

−θ0

log

(
1 − 11m− σ + ϵ

11m− 1/2
cos θ

)
dθ + O

(
logm

m1/2

)
Recalling that σ − ϵ > 1/2 and θ0 ∈ (0, π/2), we have∫ θ0

−θ0

log (1 − cos θ)dθ ≤
∫ θ0

−θ0

log

(
1 − 11m− σ + ϵ

11m− 1/2
cos θ

)
dθ ≤ 0.

Meanwhile,∫ θ0

−θ0

log (1 − cos θ)dθ =

∫ θ0

−θ0

log

(
2 sin2 θ

2

)
dθ = 2θ0 log 2 + 4

∫ θ0

0

log

(
sin

θ

2

)
dθ

= 2θ0 log 2 + 4

∫ θ0

0

log
sin (θ/2)

θ/2
dθ + 4

∫ θ0

0

log
θ

2
dθ

= O (θ0) + O
(
θ30
)

+ O
(
θ0 log θ−1

0

)
= O

(
logm

m1/2

)
.

Therefore when 1/2 < σ ≤ 3, we have

1

2π

∫ 2π

0

log |H1(11m + (11m− σ + ϵ)eiθ, χ)|dθ

=
1

2π

(∫
θ∈I1

+

∫
θ∈I2

)
log |H1(11m + (11m− σ + ϵ)eiθ, χ)|dθ

≪ 1 +
log log (q(τ + 11m))

m1/2
+

logm

m1/2
≪ 1 +

log log (qτ)

m1/2
.

Since 0 < ϵ/(11m− σ) < 1, we have log (1 + ϵ/(11m− σ)) ≫ ϵ/m, thus

arg
G

L
(σ ± iτ, χ) ≪ m

ϵ

(
1 +

log log (qτ)

m1/2

)
.

Taking ϵ = (σ − 1/2)/2, we obtain the second inequality in Lemma 4.34.
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Lemma 4.35. Assume GRH and let A ≥ 2 be fixed. Then there exists a constant
C0 > 0 such that

|L′(σ + it, χ)| ≤ exp

(
C0

(
(log qτ)2(1−σ)

log log (qτ)
+ (log (qτ))1/10

))
holds for 1/2 − 1/ log log (qτ) ≤ σ ≤ A and τ = |t| + 4.

Proof. Applying Lemma 4.24 and Cauchy’s integral formula, Lemma 4.35 follows.

Lemma 4.36. Assume GRH. Then for any 1/2 ≤ σ ≤ 3/4, we have

argG(σ ± iτ, χ) = O

(
m1/2(log log (qτ))

×
(
m1/2 + (log (qτ))1/10 +

(log (qτ))2(1−σ)

(log log (qτ))3/2

))
.

Proof. The proof is similar to that of Lemma 4.34 but we provide the details for
clarity. Let 1/2 ≤ σ ≤ 3/4 and τ > 1 be large. Put

uG = uG(σ, τ ;χ) := # {u ∈ [σ, 1 + 3m/2] | Re (G(u± iτ, χ)) = 0} ,

then
|argG(σ ± iτ, χ)| ≤ (uG + 1) π.

To estimate uG, we set

X1(z, χ) :=
G(z ± iτ, χ) + G(z ∓ iτ, χ)

2

and
nX1(r, χ) := #{z ∈ C | X1(z, χ) = 0, |z − (1 + 3m/2)| ≤ r}.

Then we have uG ≤ nX1(1 + 3m/2 − σ, χ).
Now we estimate nX1(1+3m/2−σ, χ). For each σ ∈ [1/2, 3/4], we take ϵ = ϵσ,τ

satisfying 0 < ϵ ≤ σ − 1/2 + (log log (qτ))−1. It is easy to show that

nX1(1 + 3m/2 − σ, χ) ≤ 1 + 3m

ϵ

∫ 1+3m/2−σ+ϵ

0

nX1(r, χ)

r
dr.

Applying Jensen’s theorem, we have∫ 1+3m/2−σ+ϵ

0

nX1(r, χ)

r
dr

81



=
1

2π

∫ 2π

0

log |X1(1 + 3m/2 + (1 + 3m/2 − σ + ϵ)eiθ, χ)|dθ

− log |X1(1 + 3m/2, χ)|.

By using the first inequality in Lemma 4.30, we can easily show

log |X1(1 + 3m/2, χ)| = O(1).

As in the proof of Lemma 4.34, we divide the interval of integration into

• J1 := {θ ∈ [0, 2π] | 1 + 3m/2 + (1 + 3m/2 − σ + ϵ) cos θ ≥ 2} and

• J2 := {θ ∈ [0, 2π] | 1 + 3m/2 + (1 + 3m/2 − σ + ϵ) cos θ < 2}.

Then similarly, applying the first inequality in Lemma 4.30 and (4.72), we can
show that

1

2π

∫
θ∈J1

log |X1(1 + 3m/2 + (1 + 3m/2 − σ + ϵ)eiθ, χ)|dθ = O(1).

Next we estimate the integral on J2. Setting

cos θ0 :=
1 + 3m/2 − 2

1 + 3m/2 − σ + ϵ

for θ0 ∈ (0, π/2), we have J2 = (π − θ0, π + θ0) and θ0 = O(m−1/2). Applying
Lemma 4.35, we have

|X1(1 + 3m/2 + (1 + 3m/2 − σ + ϵ)eiθ, χ)|

≤ m2

logm
exp

(
C ′

0

(
(log (qτ))−3m−2(1+3m/2−σ+ϵ) cos θ

log log (qτ)
+ (log (qτ))1/10

))
for some absolute constant C ′

0 > 0. Thus,

1

2π

∫
θ∈J2

log |X1(1 + 3m/2 + (1 + 3m/2 − σ + ϵ)eiθ, χ)|dθ

≤ θ0

(
log

m2

logm
+ C ′

0(log (qτ))1/10
)

+
C ′

0(log (qτ))−3m

2π log log (qτ)

∫ π+θ0

π−θ0

(log (qτ))−2(1+3m/2−σ+ϵ) cos θdθ

≤ θ0

(
log

m2

logm
+ C ′

0(log (qτ))1/10
)

+
C ′

0(log (qτ))−3m

2π log log (qτ)

∫ 2π

0

(log (qτ))−2(1+3m/2−σ+ϵ) cos θdθ
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= θ0

(
log

m2

logm
+ C ′

0(log (qτ))1/10
)

+
C ′

0(log (qτ))−3m

log log (qτ)
I0(2(1 + 3m/2 − σ + ϵ) log log (qτ)),

where Iν is the Bessel function. Since

I0(x) =
ex√
2πx

(1 + o(1)),

there exists a constant C ′
1 > 0 such that

I0(2(1 + 3m/2 − σ + ϵ) log log (qτ)) ≤ C ′
1

(log (qτ))2(1+3m/2−σ+ϵ)

(m log log (qτ))1/2
.

Hence,

1

2π

∫
θ∈J2

log |X1(1 + 3m/2 + (1 + 3m/2 − σ + ϵ)eiθ, χ)|dθ

≪ 1

m1/2

(
(log (qτ))1/10 +

(log (qτ))2(1−σ+ϵ)

(log log (qτ))3/2

)
.

Concluding the above, we have

argG(σ ± iτ, χ) ≪ nX1(1 + 3m/2 − σ, χ)

≪ m

ϵ

(
1 +

1

m1/2

(
(log (qτ))1/10 +

(log (qτ))2(1−σ+ϵ)

(log log (qτ))3/2

))
.

Taking ϵ = (log log (qτ))−1 completes the proof.

4.3.3 Proof of theorems

4.3.3.1 Evaluation of the main terms

We first prove two propositions which state out the main terms of the equations
in our main theorems. We use the functions F (s, χ) and G(s, χ) defined in the
previous section (see (4.64) and (4.65)).

The following proposition states out the main term of the equation in Theorem
4.22.

Proposition 4.37. Assume GRH. Take tq as in (4.71), and set aq := 4m. From
Proposition 4.28, we note that L′(s, χ) ̸= 0 when σ ≥ aq. Then for T ≥ tq which
satisfies L(σ ± iT, χ) ̸= 0 and L′(σ ± iT, χ) ̸= 0 for any σ ∈ R, we have∑

ρ′=β′+iγ′,
tq<±γ′≤T

(
β′ − 1

2

)
=

T

2π
log log

qT

2π
+

T

2π

(
1

2
logm− log logm

)
− 1

q
Li

(
qT

2π

)
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∓ 1

2π

∫ aq

1/2

(− argL(σ ± itq, χ) + argG(σ ± itq, χ)) dσ

± 1

2π

∫ aq

1/2

(− argL(σ ± iT, χ) + argG(σ ± iT, χ)) dσ

+ O(log log q) + O(m),

where the logarithmic branches are taken as in Subsection 4.3.2.2.

Proof. We first set aq := 4m and take tq as in (4.71). We again note that tq ≪
t1 ≪ 1. We also take σ1 which satisfies Lemma 4.32 and fix it. Take T ≥ tq such
that L(σ± iT, χ) ̸= 0 and L′(σ± iT, χ) ̸= 0 for all σ ∈ R. Let δ ∈ (0, 1/2] and put
b := 1/2 − δ.

Applying Littlewood’s lemma (cf. Lemma 2.2 or [Tit39, Section 3.8]) to G(s, χ)
on the rectangles with vertices b± itq, aq ± itq, aq ± iT , and b± iT , we obtain

2π
∑

ρ′=β′+iγ′,
tq<±γ′≤T

(β′ − b)

=

∫ T

tq

log |G(b± it, χ)|dt−
∫ T

tq

log |G(aq ± it, χ)|dt

∓
∫ aq

b

argG(σ ± itq, χ)dσ ±
∫ aq

b

argG(σ ± iT, χ)dσ

=: I±1 + I±2 ∓
∫ aq

b

argG(σ ± itq, χ)dσ ±
∫ aq

b

argG(σ ± iT, χ)dσ.

(4.73)

Applying the first inequality in Lemma 4.30, we can show that I+2 = I−2 = O(m).
Below we estimate I+1 .

I+1 =

∫ T

tq

log |G(b + it, χ)|dt =

∫ T

tq

log

(
mb

logm
|L′(b + it, χ)|

)
dt

=

∫ T

tq

log
mb

logm
dt +

∫ T

tq

log |L′(b + it, χ)|dt

= (b logm− log logm)T +

∫ T

tq

log |F (b + it, χ)|dt

+

∫ T

tq

log

∣∣∣∣F ′

F
(b + it, χ)

∣∣∣∣dt +

∫ T

tq

log |L(1 − b− it, χ)|dt

+

∫ T

tq

log

∣∣∣∣∣1 − 1
F ′

F
(b + it, χ)

L′

L
(1 − b− it, χ)

∣∣∣∣∣dt + O(tq logm)

=: (b logm− log logm)T + I12 + I13 + I14 + I15 + O(logm).

(4.74)
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Here we recall that tq = O(1) from our choice of tq in (4.71).
From (4.67) and Stirling’s formula (4.66), we have

I12 =

∫ T

tq

log |F (b + it, χ)|dt =

∫ T

tq

((
1

2
− b

)
log

qt

2π
+ O

(
1

t2

))
dt

=

(
1

2
− b

)(
T log

qT

2π
− T − tq log

qtq
2π

+ tq

)
+ O(1).

Lemma 4.31 gives us

log

∣∣∣∣F ′

F
(b + it, χ)

∣∣∣∣ = Re

(
log

F ′

F
(b + it, χ)

)
= log log

q|t|
2π

+ O

(
1

t2 log (q|t|)

)
,

thus we have

I13 =

∫ T

tq

log

∣∣∣∣F ′

F
(b + it, χ)

∣∣∣∣dt =

∫ T

tq

(
log log

qt

2π
+ O

(
1

t2 log (q|t|)

))
dt

= T log log
qT

2π
− tq log log

qtq
2π

−
∫ T

tq

1

log qt
2π

dt + O(1)

= T log log
qT

2π
− tq log log

qtq
2π

− 2π

q
Li

(
qT

2π

)
+ O (tq)

= T log log
qT

2π
− 2π

q
Li

(
qT

2π

)
+ O (log log q) .

Next, we estimate I14. We note that L(s, χ) = L(s, χ), hence |L(1−b−it, χ)| =
|L(1 − b + it, χ)|. Take the logarithmic branch of logL(s, χ) so that logL(s, χ) =∑∞

n=2 χ(n)Λ(n)(log n)−1n−s holds for Re(s) > 1 and that it is holomorphic in
C\{z + λ | L(z, χ) = 0, λ ≤ 0}. Then applying Cauchy’s integral theorem to
logL(s, χ) on the rectangle with vertices 1 − b + itq, aq + itq, aq + iT , 1 − b + iT
and taking the imaginary part, we can show that

I14 =

∫ T

tq

log |L(1 − b− it, χ)|dt =

∫ T

tq

log |L(1 − b + it, χ)|dt

=

∫ aq

1−b

argL(σ + itq, χ)dσ −
∫ aq

1−b

argL(σ + iT, χ)dσ + O(1).

Finally we estimate I15. Since L(s, χ) = F (s, χ)L(1 − s, χ), we have

1
F ′

F
(s, χ)

L′

L
(s, χ) = 1 − 1

F ′

F
(s, χ)

L′

L
(1 − s, χ). (4.75)

From Lemma 4.33, the function on the left-hand side of (4.75) is holomorphic and
has no zeros in σ1 ≤ σ < 1/2, |t| ≥ t1 − 1. From Lemma 4.32, the function on the
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right-hand side of (4.75) is holomorphic and has no zeros in σ ≤ σ1, |t| ≥ 2. Thus
we can determine

log

(
1 − 1

F ′

F
(s, χ)

L′

L
(1 − s, χ)

)
so that it tends to 0 as σ → −∞ which follows from Lemma 4.32, and that it is
holomorphic in σ < 1/2, |t| > tq − 1(> t1 − 1). Now we apply Cauchy’s integral
theorem to it on the trapezoid with vertices −tq + itq, b+ itq, b+ iT , and −T + iT .
Lemma 4.32 allows us to show(∫ −T+iT

σ1+iT

+

∫ −tq+itq

−T+iT

+

∫ σ1+itq

−tq+itq

)
log

(
1 − 1

F ′

F
(s, χ)

L′

L
(1 − s, χ)

)
ds = O(1).

Thus taking the imaginary part, we obtain∫ T

tq

log

∣∣∣∣∣1 − 1
F ′

F
(b + it, χ)

L′

L
(1 − b− it, χ)

∣∣∣∣∣dt
=

∫ b

σ1

arg

(
1 − 1

F ′

F
(σ + iT, χ)

L′

L
(1 − σ − iT, χ)

)
dσ

−
∫ b

σ1

arg

(
1 − 1

F ′

F
(σ + itq, χ)

L′

L
(1 − σ − itq, χ)

)
dσ + O(1)

Now we let

log

(
1

F ′

F
(s, χ)

L′

L
(s, χ)

)
= log

(
1 − 1

F ′

F
(s, χ)

L′

L
(1 − s, χ)

)

and determine the logarithmic branch of log (F ′/F )(s, χ) and log (L′/L)(s, χ) in
the region σ1 ≤ σ < 1/2, |t| ≥ tq − 1 as in Lemma 4.33. Note that both of them
and the functions on both sides of (4.75) are all continuous with respect to s in
σ1 ≤ σ < 1/2, |t| ≥ tq − 1. Furthermore, the two regions σ1 ≤ σ < 1/2, t ≥ tq − 1
and σ1 ≤ σ < 1/2,−t ≥ tq − 1 are connected. Thus we have

arg

(
1 − 1

F ′

F
(s, χ)

L′

L
(1 − s, χ)

)
= − arg

F ′

F
(s, χ) + arg

L′

L
(s, χ) + 2πnq

for some nq ∈ Z that depends only at most on q. From our choice of logarithmic
branch, we have nq = 0. Thus,

−2π

3
< arg

(
1 − 1

F ′

F
(s, χ)

L′

L
(1 − s, χ)

)
<

2π

3
(4.76)
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for σ1 ≤ σ < 1/2, |t| ≥ tq − 1. Therefore we obtain

I15 =

∫ T

tq

log

∣∣∣∣∣1 − 1
F ′

F
(b + it, χ)

L′

L
(1 − b− it, χ)

∣∣∣∣∣dt = O(1).

Collecting the above calculations, we have

I+1 = T log log
qT

2π
+ (b logm− log logm)T − 2π

q
Li

(
qT

2π

)
+

(
1

2
− b

)(
T log

qT

2π
− T − tq log

qtq
2π

+ tq

)
+

∫ aq

1−b

argL(σ + itq, χ)dσ −
∫ aq

1−b

argL(σ + iT, χ)dσ + O(log log q).

Similarly, we can show that

I−1 = T log log
qT

2π
+ (b logm− log logm)T − 2π

q
Li

(
qT

2π

)
+

(
1

2
− b

)(
T log

qT

2π
− T − tq log

qtq
2π

+ tq

)
−
∫ aq

1−b

argL(σ − itq, χ)dσ +

∫ aq

1−b

argL(σ − iT, χ)dσ + O(log log q).

Thus we have

2π
∑

ρ′=β′+iγ′,
tq<±γ′≤T

(β′ − b) = T log log
qT

2π
+ (b logm− log logm)T − 2π

q
Li

(
qT

2π

)

+

(
1

2
− b

)(
T log

qT

2π
− T − tq log

qtq
2π

+ tq

)
±
∫ aq

1−b

argL(σ ± itq, χ)dσ ∓
∫ aq

1−b

argL(σ ± iT, χ)dσ

∓
∫ aq

b

argG(σ ± itq, χ)dσ ±
∫ aq

b

argG(σ ± iT, χ)dσ

+ O(log log q) + O(m).

Taking δ → 0, we obtain Proposition 4.37.

The following proposition states out the main term of the equation in Theorem
4.23.
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Proposition 4.38. Assume GRH. Take tq as in (4.71). Then for T ≥ 2 which
satisfies L(σ ± iT, χ) ̸= 0 and L′(σ ± iT, χ) ̸= 0 for all σ ∈ R, we have

N1(T, χ) =
T

π
log

qT

2mπ
− T

π
− A(tq, χ) −B(tq, χ) + A(T, χ) + B(T, χ)

+ A(−tq, χ) + B(−tq, χ) − A(−T, χ) −B(−T, χ) + O(m1/2 log q),

where

A(τ, χ) :=
1

2π
argG

(
1

2
+ iτ, χ

)
, B(τ, χ) :=

1

2π
argL

(
1

2
+ iτ, χ

)
,

and the logarithmic branches are taken as in Subsection 4.3.2.2.

Proof. Take aq, σ1, tq, T, δ, b as in the beginning of the proof of Proposition 4.37.
Let b′ := 1/2 − δ/2. Replacing b by b′ in (4.73), we have

2π
∑

ρ′=β′+iγ′,
tq<±γ′≤T

(β′ − b′) =

∫ T

tq

log |G(b′ ± it, χ)|dt−
∫ T

tq

log |G(aq ± it, χ)|dt

∓
∫ aq

b′
argG(σ ± itq, χ)dσ ±

∫ aq

b′
argG(σ ± iT, χ)dσ.

Subtracting these from (4.73), we obtain

δπ
∑

ρ′=β′+iγ′,
tq<±γ′≤T

1 =

∫ T

tq

(log |G(b± it, χ)| − log |G(b′ ± it, χ)|) dt

∓
∫ b′

b

argG(σ ± itq, χ)dσ ±
∫ b′

b

argG(σ ± iT, χ)dσ

=: J±
1 ∓

∫ b′

b

argG(σ ± itq, χ)dσ ±
∫ b′

b

argG(σ ± iT, χ)dσ.

We estimate J±
1 . From (4.74), we have

J+
1 =

∫ T

tq

(log |G(b + it, χ)| − log |G(b′ + it, χ)|) dt

= (b− b′)(T − tq) logm +

∫ T

tq

(log |F (b + it, χ)| − log |F (b′ + it, χ)|)dt

+

∫ T

tq

(
log

∣∣∣∣F ′

F
(b + it, χ)

∣∣∣∣− log

∣∣∣∣F ′

F
(b′ + it, χ)

∣∣∣∣) dt
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+

∫ T

tq

(log |L(1 − b− it, χ)| − log |L(1 − b′ − it, χ)|) dt

+

∫ T

tq

(
log

∣∣∣∣∣1 − 1
F ′

F
(b + it, χ)

L′

L
(1 − b− it, χ)

∣∣∣∣∣
− log

∣∣∣∣∣1 − 1
F ′

F
(b′ + it, χ)

L′

L
(1 − b′ − it, χ)

∣∣∣∣∣
)
dt

=: (b− b′)(T − tq) logm + J12 + J13 + J14 + J15.

Applying Cauchy’s theorem to logF (s, χ) on the rectangle C with vertices b+ itq,
b′ + itq, b

′ + iT , b + iT , and taking the imaginary part, we have

J12 =

∫ b′

b

argF (σ + itq, χ)dσ −
∫ b′

b

argF (σ + iT, χ)dσ.

From (4.67), we can show that

J12 =

(
T log

qT

2π
− T

)
δ

2
−
(
tq log

qtq
2π

− tq

)
δ

2
+ O(δ)

Next, we take the logarithmic branch of log (F ′/F )(s, χ) as in condition (1) of
Lemma 4.33. Applying Cauchy’s integral theorem to log (F ′/F )(s, χ) on C taking
the imaginary part, we have

J13 =

∫ b′

b

arg
F ′

F
(σ + itq, χ)dσ −

∫ b′

b

arg
F ′

F
(σ + iT, χ)dσ = O(δ)

To estimate J14, we define a branch of logL(s, χ) as in the estimation of I14 in the
proof of Proposition 4.37 and apply Cauchy’s integral theorem on the rectangle
with vertices 1− b′ + itq, 1− b+ itq, 1− b+ iT , 1− b′ + iT . Taking the imaginary
part we obtain

J14 = −
∫ 1−b

1−b′
argL(σ + itq, χ)dσ +

∫ 1−b

1−b′
argL(σ + iT, χ)dσ.

Finally, we define a branch of

log

(
1 − 1

F ′

F
(s, χ)

L′

L
(1 − s, χ)

)
as in the estimation of I15 in the proof of Proposition 4.37 and apply Cauchy’s
integral theorem to it on C. Taking the imaginary part, we have

J15 =

∫ b′

b

arg

(
1 − 1

F ′

F
(σ + itq, χ)

L′

L
(1 − σ − itq, χ)

)
dσ
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−
∫ b′

b

arg

(
1 − 1

F ′

F
(σ + iT, χ)

L′

L
(1 − σ − iT, χ)

)
dσ

= O(δ)

by (4.76). Then we estimate J−
1 similarly.

We then obtain

δπ
∑

ρ′=β′+iγ′,
tq<±γ′≤T

1 = −(T − tq)
δ

2
logm +

(
T log

qT

2π
− T

)
δ

2
−
(
tq log

qtq
2π

− tq

)
δ

2

∓
∫ 1−b

1−b′
argL(σ ± itq, χ)dσ ±

∫ 1−b

1−b′
argL(σ ± iT, χ)dσ

∓
∫ b′

b

argG(σ ± itq, χ)dσ ±
∫ b′

b

argG(σ ± iT, χ)dσ + O(δ).

Taking the limit δ → 0 and applying the mean value theorem, for τ = ±tq and
τ = ±T we have

lim
δ→0

1

πδ

∫ 1−b

1−b′
argL(σ + iτ, χ)dσ = B(τ, χ)

and

lim
δ→0

1

πδ

∫ b′

b

argG(σ + iτ, χ)dσ = A(τ, χ)

by noting that b = 1/2 − δ and b′ = 1/2 − δ/2. Hence,

N1(T, χ) −N1(tq, χ) =
T

π
log

qT

2mπ
− T

π
−
(
tq
π

log
qtq

2mπ
− tq

π

)
− A(tq, χ) −B(tq, χ) + A(T, χ) + B(T, χ)

+ A(−tq, χ) + B(−tq, χ) − A(−T, χ) −B(−T, χ) + O(1).

Referring to [AS-p, Theorem 5] (see Theorem 4.5), we see that

N1(tq, χ) =
tq
π

log
qtq

2mπ
− tq

π
+ O

(
m1/2 log (qtq)

)
. (4.77)

Hence,

N1(T, χ) =
T

π
log

qT

2mπ
− T

π
− A(tq, χ) −B(tq, χ) + A(T, χ) + B(T, χ)

+ A(−tq, χ) + B(−tq, χ) − A(−T, χ) −B(−T, χ) + O(m1/2 log q).

If 2 ≤ T < tq, then N1(T, χ) ≤ N1(tq, χ) = O(m1/2 log q), which can be included
in the error term. Thus the proof is complete.
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4.3.3.2 Completion of the proofs

We begin with the proof of Theorem 4.22. Referring to [AS-p, Theorem 6] (see
Theorem 4.6), we have ∑

ρ′=β′+iγ′,
|γ′|≤tq

(
β′ − 1

2

)
≪ m1/2 log q. (4.78)

This also implies that when 2 ≤ T < tq,∑
ρ′=β′+iγ′,
|γ′|≤T

(
β′ − 1

2

)
≪ m1/2 log q.

Next, we estimate ∑
ρ′=β′+iγ′,
tq<|γ′|≤T

(
β′ − 1

2

)
.

We divide the proof in two cases.

Case 1: For T ≥ tq which satisfies L(σ ± iT, χ) ̸= 0, L′(σ ± iT, χ) ̸= 0 for all
σ ∈ R.

In this case, we apply Proposition 4.37 and provoke Lemmas 4.25, 4.34, and
4.36 to obtain the error term.

We apply Lemmas 4.25, 4.36, and 4.34 to obtain∫ 1/2+(log (qτ))−1

1/2

argL(σ ± iτ, χ)dσ ≪ 1,

∫ aq

3

arg
G

L
(σ ± iτ, χ)dσ ≪ m logm

for τ ≥ tq, and∫ 1/2+(log (qtq))−1

1/2

argG(σ ± itq, χ)dσ ≪ m1/2

(log log q)1/2
,

∫ 1/2+(log (qT ))−1

1/2

argG(σ ± iT, χ)dσ ≪ m1/2

(log log (qT ))1/2
,

∫ 3

1/2+(log (qtq))−1

arg
G

L
(σ ± itq, χ)dσ ≪ m1/2(log log q)2 + m log log q,
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∫ 3

1/2+(log (qT ))−1

arg
G

L
(σ ± iT, χ)dσ ≪ m1/2(log log (qT ))2 + m log log (qT ).

Inserting the above estimates into the formula given in Proposition 4.37 and
adding this to (4.78), we obtain the equation in Theorem 4.22 for Case 1.

Case 2: For T ≥ tq such that any of L(σ + iT, χ) ̸= 0, L(σ − iT, χ) ̸= 0,
L′(σ + iT, χ) ̸= 0, or L′(σ − iT, χ) ̸= 0 is not satisfied for some σ ∈ R.

In this case, first we look for some small 0 < ϵ < (log log (qT ))−1 such that
L(σ ± i(T ± ϵ), χ) ̸= 0, L′(σ ± i(T ± ϵ), χ) ̸= 0 holds for all σ ∈ R and apply the
method of Case 1, so we obtain∑

ρ′=β′+iγ′,
|γ′|≤T±ϵ

(
β′ − 1

2

)
=

(T ± ϵ)

π
log log

q(T ± ϵ)

2π

+
T ± ϵ

π

(
1

2
logm− log logm

)
− 2

q
Li

(
q(T ± ϵ)

2π

)
+ O

(
m1/2(log log (qT ))2 + m log log (qT ) + m1/2 log q

)
.

Noting that∑
ρ′=β′+iγ′,

tq−1<|γ′|≤T−ϵ

(
β′ − 1

2

)
≤

∑
ρ′=β′+iγ′,

tq−1<|γ′|≤T

(
β′ − 1

2

)
≤

∑
ρ′=β′+iγ′,

tq−1<|γ′|≤T+ϵ

(
β′ − 1

2

)

together with (4.78), we easily show that the equation in Theorem 4.22 also holds
for this case.

To complete the proof of Theorem 4.23, as in the proof of Theorem 4.22, we
also consider two cases. In the first case, for T ≥ 2 which satisfies L(σ ± iT, χ) ̸=
0, L′(σ ± iT, χ) ̸= 0 for all σ ∈ R, the error terms are estimated as follows: From
Lemma 4.36, we have

argG

(
1

2
± itq, χ

)
= O

(
m1/2 log q

(log log q)1/2

)
and

argG

(
1

2
± iT, χ

)
= O

(
m1/2 log (qT )

(log log (qT ))1/2

)
.

From Lemma 4.25, we have

argL

(
1

2
± itq, χ

)
= O

(
log q

log log q

)
, argL

(
1

2
± iT, χ

)
= O

(
log (qT )

log log (qT )

)
.
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Therefore,

N1(T, χ) =
T

π
log

qT

2mπ
− T

π
+ O

(
m1/2 log (qT )

(log log (qT ))1/2

)
+ O(m1/2 log q)

for this case.
In the second case, we consider for T ≥ 2 such that any of L(σ + iT, χ) ̸= 0,

L(σ − iT, χ) ̸= 0, L′(σ + iT, χ) ̸= 0, or L′(σ − iT, χ) ̸= 0 is not satisfied for some
σ ∈ R. Similar to the proof of Theorem 4.22, we look for some small 0 < ϵ <
(log (qT ))−1 such that L(σ ± i(T ± ϵ), χ) ̸= 0, L′(σ ± i(T ± ϵ), χ) ̸= 0 holds for all
σ ∈ R. Applying the method of the first case we obtain

N1(T ± ϵ, χ) =
T ± ϵ

π
log

q(T ± ϵ)

2mπ
− T ± ϵ

π
+ O

(
m1/2 log (qT )

(log log (qT ))1/2

)
+ O(m1/2 log q).

(4.79)

Noting the inequalities

N1(T − ϵ, χ) ≤ N1(T, χ) ≤ N1(T − ϵ, χ) + (N1(T + ϵ, χ) −N1(T − ϵ, χ)) ,

from (4.79) we can easily deduce

N1(T, χ) =
T

π
log

qT

2mπ
− T

π
+ O

(
m1/2 log (qT )

(log log (qT ))1/2

)
+ O(m1/2 log q)

for this case.

93



Chapter 5

Further research: An ergodic
value distribution of zeta
functions and L-functions

In this chapter, we introduce the author’s collaborative work [LS-p] with J.
Lee on a certain mean-value of meromorphic functions by using specific ergodic
transformations, which we call affine Boolean transformations. Birkhoff’s ergodic
theorem is used to transform the mean-value into a computable integral which al-
lows us to completely determine the mean-value of this ergodic type. As examples,
we introduce some applications to zeta functions and L-functions. We also prove an
equivalence of the Lindelöf hypothesis of the Riemann zeta function in terms of its
certain ergodic value distribution associated with affine Boolean transformations.

5.1 Introduction

In [LW09], M. Lifshitz and M. Weber investigated the value distribution of the
Riemann zeta function ζ(s) by using the Cauchy random walk. They proved that
almost surely

lim
N→∞

1

N

N∑
n=1

ζ

(
1

2
+ iSn

)
= 1 + o

(
(logN)b

N1/2

)
holds for any b > 2 where {Sn}∞n=1 is the Cauchy random walk. This result implies
that most of the values of ζ(s) on the critical line are quite small. Analogous
to [LW09], T. Srichan investigated the value distributions of Dirichlet L-functions
and Hurwitz zeta functions by using the Cauchy random walk in [Sri15].

The first approach to investigate the ergodic value distribution of ζ(s) was
done by J. Steuding. In [Ste12], he studied the ergodic value distribution of ζ(s)
on vertical lines under the Boolean transformation.
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We are interested in studying the ergodic value distribution of a larger class of
meromorphic functions which includes but is not limited to the Selberg class (of
zeta functions and L-functions) and their derivatives, on vertical lines under more
general Boolean transformations, which we shall call affine Boolean transformation
Tα,β : R → R given by

Tα,β(x) :=


α

2

(
x + β

α
− α

x− β

)
, x ̸= β;

β, x = β
(5.1)

for an α > 0 and a β ∈ R. Below is our main theorem. For a given c ∈ R,
we shall denote by Hc and Lc the half-plane {z ∈ C | Re(z) > c} and the line
{z ∈ C | Re(z) = c}.

Theorem 5.1. Let f be a meromorphic function on Hc satisfying the following
conditions.

1. There exists an M > 0 and a c′ > c such that for any t ∈ R, we have

|f({σ + it | σ > c′})| ≤ M.

2. There exists a non-increasing continuous function ν : (c,∞) → R such that
if σ is sufficiently near c then ν(σ) ≤ 1 + c−σ, and that for any small ϵ > 0,
f(σ + it) ≪f,ϵ |t|ν(σ)+ϵ as |t| → ∞.

3. f has at most one pole of order m in Hc at s = s0 = σ0 + it0, that is, we can
write its Laurent expansion near s = s0 as

a−m

(s− s0)m
+

a−(m−1)

(s− s0)m−1
+ · · · +

a−1

s− s0
+ a0 +

∞∑
n=1

an(s− s0)
n (5.2)

for m ≥ 0, where we set m = 0 if f has no pole in Hc.

Then for any s ∈ Hc\Lσ0, we have

lim
N→∞

1

N

N−1∑
n=0

f
(
s + iT n

α,βx
)

=
α

π

∫
R

f(s + iτ)

α2 + (τ − β)2
dτ (5.3)

for almost all x ∈ R.
We denote the right-hand side of the above formula by lα,β(s). If f has no pole

in Hc,

lα,β(s) = f(s + α + iβ) (5.4)
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for all s ∈ Hc. If f has a pole at s = s0 = σ0 + it0,

lα,β(s) =


f(s + α + iβ) + Bm(s0), c < Re(s) < σ0, s ̸= s0 − α− iβ;
m∑

n=0

a−n

(−2α)n
, c < Re(s) < σ0, s = s0 − α− iβ;

f(s + α + iβ), Re(s) > σ0;

(5.5)

where

Bm(s0) =
m∑

n=1

a−n

in (β + iα− i(s− s0))
n −

m∑
n=1

a−n

in (β − iα− i(s− s0))
n .

Moreover when m = 1, we can extend the result in (5.3) to the line Lσ0 by setting

lα,β(σ0 + it) = f(σ0 + α + i(t + β)) − a−1α

α2 + (t0 − t− β)2
(5.6)

for any t ∈ R.

In the next section, we first give a few examples as applications of our main the-
orem, Theorem 5.1, to the Riemann zeta function, Dirichlet L-functions, Dedekind
zeta functions, Hurwitz zeta functions, and their derivatives. We will briefly review
some basics of ergodic theory and see an ergodic property of affine Boolean trans-
formations in Section 5.3. In Section 5.4, we will complete the proof of Theorem
5.1.

5.2 Some applications to zeta functions and L-

functions

In the following examples, we write f (0) to express f itself and we define

Ak(s) :=
(−1)kk!

ik+1

(
1

(β + iα− i(s− 1))k+1
− 1

(β − iα− i(s− 1))k+1

)

for any non-negative integer k.

Example 5.2 (The Riemann zeta function). For any k ≥ 0 and s ∈ H−1/2\L1,
we have

lim
N→∞

1

N

N−1∑
n=0

ζ(k)
(
s + iT n

α,βx
)

=
α

π

∫
R

ζ(k)(s + iτ)

α2 + (τ − β)2
dτ

for almost all x ∈ R.
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Denoting the right-hand side of the above formula by l
(k)
α,β(s), we have

l
(k)
α,β(s) =


ζ(k)(s + α + iβ) + Ak(s), −1/2 < Re(s) < 1, s ̸= 1 − α− iβ;

(−1)kγk −
k!

(2α)k+1
, −1/2 < Re(s) < 1, s = 1 − α− iβ;

ζ(k)(s + α + iβ), Re(s) > 1;

where

γk := lim
N→∞

(
N∑

n=1

logk n

n
− logk+1N

k + 1

)
.

If k = 0, we can extend the result to the line L1 by setting

l
(0)
α,β(1 + it) = ζ(0)(1 + α + i(t + β)) − α

α2 + (t + β)2
.

Remark that Steuding showed Example 5.2 when k = 0, α = 1, and β = 0 thus
Example 5.2 is a generalization of [Ste12, Theorem 1.1].

Proof of Example 5.2. We first note that for any k ≥ 0, ζ(k)(s) has an absolute
convergent Dirichlet series expression when Re(s) > 1. Thus condition (1) of
Theorem 5.1 is satisfied for any c′ > 1. From the Laurent expansion of ζ(s) near
its pole s = 1 (see [Bri55, Theorem]), we can deduce the Laurent expansion of
ζ(k)(s) for any k ≥ 0 near s = 1:

ζ(k)(s) =
(−1)kk!

(s− 1)k+1
+ (−1)kγk +

∞∑
n=k

(−1)n+1γn+1

(n− k + 1)!
(s− 1)n−k+1.

Thus for k ≥ 0, ζ(k)(s) has a pole of order k + 1 at s = 1. Moreover, we can show
by using [Tit86, pp. 95–96]2 that

ζ(k)(σ + it) ≪k,ϵ |t|µ(σ)+ϵ (5.7)

holds with

µ(σ) ≤


0 if σ > 1;

(1 − σ)/2 if 0 ≤ σ ≤ 1;

1/2 − σ if σ < 0;

for any k ≥ 0. Therefore we can apply Theorem 5.1 with c = −1/2, s0 = 1, and
m = k + 1 to ζ(k)(s).

2Phragmén-Lindelöf theorem, as introduced in Lemma 1.1, is used here.
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We can also show that this ergodic mean-value is related to the Lindelöf hy-
pothesis. We first show that the Lindelöf hypothesis can be rewritten in terms of
ζ(k)(s).

Theorem 5.3. Let k ∈ N. The Lindelöf hypothesis: For any ϵ > 0,

ζ

(
1

2
+ it

)
≪ϵ |t|ϵ as |t| → ∞

holds if only if, for any ϵ > 0,

ζ(k)
(

1

2
+ it

)
≪k,ϵ |t|ϵ as |t| → ∞

holds.

The above theorem implies that we can restate the Lindelöf hypothesis as:

For any ϵ > 0, ζ(k)
(

1

2
+ it

)
≪k,ϵ |t|ϵ as |t| → ∞

for any non-negative integer k.

Proof of Theorem 5.3. Suppose that the Lindelöf hypothesis is true. Thus by using
the functional equation for ζ(s),

ζ(σ + it) ≪ϵ |t|µ(σ)+ϵ/2

holds for any ϵ > 0 with

µ(σ) ≤

{
0 if σ ≥ 1/2;

1/2 − σ if σ < 1/2.

Then by Cauchy’s integral theorem, for any k ∈ N we have

ζ(k)
(

1

2
+ it

)
=

k!

2πi

∫
γr

ζ(z)

(z − 1/2 − it)k+1
dz,

where γr := {z ∈ C | |z − 1/2 − it| = r}. Taking r = ϵ/2,∣∣∣∣ζ(k)(1

2
+ it

)∣∣∣∣≪k

∫
γr

|ζ(z)|
|z − 1/2 − it|k+1

|dz| ≪k,ϵ |t + ϵ/2|µ(1/2−ϵ/2)+ϵ/2

≪ϵ |t|µ(1/2−ϵ/2)+ϵ/2 ≤ |t|1/2−(1/2−ϵ/2)+ϵ/2 = |t|ϵ.
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Now suppose that for some k ∈ N,

ζ(k)
(

1

2
+ it

)
≪k,ϵ |t|ϵ

holds for any ϵ > 0. Then ζ(k)(σ + it) ≪k,ϵ |t|µ(σ)+ϵ for σ ≥ 1/2. Note that∣∣∣∣ζ(k−1)

(
1

2
+ it

)∣∣∣∣ ≤ ∣∣ζ(k−1)(3 + it)
∣∣+

∫ 3+it

1/2+it

∣∣ζ(k)(z)
∣∣ |dz| ≪k,ϵ |t|ϵ.

This implies ∣∣∣∣ζ (1

2
+ it

)∣∣∣∣≪ϵ |t|ϵ.

We can then reformulate the Lindelöf hypothesis in terms of ergodic value
distribution of ζ(k)(s) on vertical lines under affine Boolean transformations as
follows:

Theorem 5.4. Let k be a non-negative integer. The Lindelöf hypothesis is true if
and only if, there exist α > 0, β ∈ R such that for any l ∈ N,

lim
N→∞

1

N

N−1∑
n=0

∣∣ζ(k) (1/2 + iT n
α,βx

)∣∣2l (5.8)

exists for almost all x ∈ R.

Proof of Theorem 5.4. From Theorem 5.3, we can restate the Lindelöf hypothesis
as

ζ(k)
(

1

2
+ it

)
≪k,ϵ |t|ϵ as |t| → ∞ (5.9)

for any non-negative integer k. We then show that the hypothesis in the form (5.9)
is equivalent to the existence of the limit in (5.8).

Replacing the function ζ(s) by ζ(k)(s) in the proof of Theorem 4.1 in [Ste12],
we can easily show the necessary condition for the Lindelöf hypothesis (in the form
(5.9)).

To show the sufficient condition for the Lindelöf hypothesis, we note that

ζ(k)(s) = (−1)k−1

∫ ∞

1

[x] − x + 1/2

xs+1
(log x)k−1 (−s log x + k) dx +

(−1)kk!

(s− 1)k+1

so that |ζ(k+1)(1/2 + it)| < Ck|t| holds for any |t| ≥ 1 for some Ck > 0 which may
depend only on k. Further, for τ ≥ 1,

1

α2 + (τ − β)2
=

1

τ 2(1 + (α/τ)2 + 2|β|/τ + (β/τ)2)
≥ Cα,β

1

τ 2
≥ Cα,β

1

1 + τ 2
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for some Cα,β > 0 that depends only on α and β. Then again we can replace
the function ζ(s) by ζ(k)(s) in the proof of Theorem 4.1 in [Ste12] to obtain the
sufficient condition for the Lindelöf hypothesis (in the form (5.9)). This completes
our proof of Theorem 5.4.

Example 5.5 (Dirichlet L-functions). Let L(s, χ) be the Dirichlet L-function as-
sociated with Dirichlet character χ.

(i) If χ is non-principal, for any s ∈ H−1/2, we have

lim
N→∞

1

N

N−1∑
n=0

L(k)
(
s + iT n

α,βx, χ
)

=
α

π

∫
R

L(k)(s + iτ, χ)

α2 + (τ − β)2
dτ

= L(k)(s + α + iβ, χ)

for almost all x ∈ R.

(ii) If χ = χ0 is principal, for any s ∈ H−1/2\L1, we have

lim
N→∞

1

N

N−1∑
n=0

L(k)
(
s + iT n

α,βx, χ0

)
=

α

π

∫
R

L(k)(s + iτ, χ0)

α2 + (τ − β)2
dτ

for almost all x ∈ R. Denoting the right-hand side of the above formula by
l
(k)
α,β(s, χ0), we have

l
(k)
α,β(s, χ0) =



L(k)(s + α + iβ, χ0) + γ−1(χ0)Ak(s),

−1/2 < Re(s) < 1, s ̸= 1 − α− iβ;

γk(χ0) −
k!γ−1(χ0)

(2α)k+1
,

−1/2 < Re(s) < 1, s = 1 − α− iβ;

L(k)(s + α + iβ, χ0),

Re(s) > 1;

where γ−1(χ0), γk(χ0)’s are constants that depend only on χ0. They are
coefficients of the Laurent expansion of L(k)(s, χ0) near s = 1. If k = 0, we
can also show the result on L1 by setting

l
(0)
α,β(1 + it, χ0) = L(0)(1 + α + i(t + β), χ0) −

αγ−1(χ0)

α2 + (t + β)2
.

Proof of Example 5.5. As in the proof of Example 5.2, for any non-negative integer
k, L(k)(s, χ) has an absolute convergent Dirichlet series expression when Re(s) > 1.
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Referring to [Red82, Lemma 2], we know that L(k)(s, χ) also satisfies an inequality
similar to (5.7).

If χ is non-principal, L(k)(s, χ) is entire for all k ≥ 0. Thus L(k)(s, χ) satisfies
(5.4) of Theorem 5.1 for all s ∈ H−1/2.

Otherwise (that is, when χ = χ0), L
(k)(s, χ0) (k ≥ 1) has a pole of order k+1 at

s = 1. Hence we can also apply Theorem 5.1 with c = −1/2, s0 = 1, and m = k+1
to L(k)(s, χ0) with the Laurent coefficients as discussed in [IK99, Theorem 2].

Example 5.6 (Dedekind zeta functions). Let ζK(s) be the Dedekind zeta function
of a number field K over Q of degree dK. Then for any k ≥ 0 and s ∈ H1/2−1/dK\L1,
we have

lim
N→∞

1

N

N−1∑
n=0

ζ
(k)
K
(
s + iT n

α,βx
)

=
α

π

∫
R

ζ
(k)
K (s + iτ)

α2 + (τ − β)2
dτ

for almost all x ∈ R.
Denoting the right-hand side of the above formula by lK

(k)
α,β(s), we have

lK
(k)
α,β(s) =



ζ
(k)
K (s + α + iβ) + γ−1(K)Ak(s),

1/2 − 1/dK < Re(s) < 1, s ̸= 1 − α− iβ;

k!γk(K) − k!γ−1(K)

(2α)k+1
,

1/2 − 1/dK < Re(s) < 1, s = 1 − α− iβ;

ζ
(k)
K (s + α + iβ),

Re(s) > 1;

where γ−1(K), γk(K)’s are constants that depend only on K. They are coefficients

of the Laurent expansion of ζ
(k)
K (s) near s = 1. If k = 0, we can also show the

result on L1 by setting

lK
(0)
α,β(1 + it) = ζ

(0)
K (1 + α + i(t + β)) − αγ−1(K)

α2 + (t + β)2
.

Proof of Example 5.6. We refer to [Ste03, Theorem 2] for the bound of the form

(5.7) and to [HIKW04, pp. 496–497] for the Laurent coefficients of ζ
(k)
K (s) near its

pole at s = 1. The rest of the proof proceeds as in the proof of Example 5.2 with
c = 1/2 − 1/dK, s0 = 1, and m = k + 1.

Remark. We can also show results analogous to Theorems 5.3 and 5.4 for Dirich-
let L-functions associated with primitive Dirichlet characters and Dedekind zeta
functions, if we formulate the extended Lindelöf hypothesis as:

For any ϵ > 0, f

(
1

2
+ it

)
≪f,ϵ |t|ϵ as |t| → ∞

101



for these functions (f is any of these zeta functions and L-functions). We do not
discuss this further but we remark that we can show these analogous results by
using methods similar to the methods used in proving Theorems 5.3 and 5.4.

Example 5.7 (Hurwitz zeta functions). For non-negative integer k, 0 < a ≤ 1,
and any s satisfying Re(s) > −1/2 and Re(s) ̸= 1, we have

lim
N→∞

1

N

N−1∑
n=0

ζ(k)(s + iT n
α,βx, a) =

α

π

∫
R

ζ(k)(s + iτ, a)

α2 + (τ − β)2
dτ

for almost all x in R.
Denoting the right-hand side of the above formula by l

(k)
α,β(s, a), we have

l
(k)
α,β(s, a) =



ζ(k)(s + α + iβ, a) + Ak(s),

−1/2 < Re(s) < 1, s ̸= 1 − α− iβ;

k!γk(a) − k!

(2α)k+1
,

−1/2 < Re(s) < 1, s = 1 − α− iβ;

ζ(k)(s + α + iβ, a),

Re(s) > 1;

where

γk(a) :=
(−1)k

k!
lim

N→∞

(
N∑

n=0

logk (n + a)

n + a
− logk+1 (N + a)

k + 1

)

is a coefficient of the Laurent expansion of ζ
(k)
K (s) near s = 1. If k = 0, we can

also show the result on L1 by setting

l
(0)
α,β(1 + it, a) = ζ(0)(1 + α + i(t + β), a) − α

α2 + (t + β)2
.

Proof of Example 5.7. The proof also follows that of Example 5.2 where we put
c = −1/2, s0 = 1, and m = k + 1. Here, we refer to [Red82, Lemma 2] for the
bound of the form (5.7) and to [Ber72, Theorem 1] for the Laurent coefficients of
ζ(k)(s, a) near its pole at s = 1.

5.3 Affine Boolean transformations

In this section, we will show the ergodicity of Tα,β defined in (5.1) with respect
to a proper measure. To state our main theorem, let us recall some basic notation.
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We denote by B and ν the Borel σ-algebra on R and the Lebesgue measure on B.
For a given α > 0, β ∈ R, let us define the function µα,β by

µα,β(A) :=
α

π

∫
A

dτ

α2 + (τ − β)2

for any A ∈ B. One can easily check that µα,β is a probability on B and

µα,β(A) =
α

π

∫
A

dτ

α2 + (τ − β)2
≤
∫
A

dτ

απ
=

1

απ
ν(A) (5.10)

for any A ∈ B. In particular, this implies that µα,β(A) = 0 if ν(A) = 0.

Theorem 5.8. For given α > 0, β ∈ R, Tα,β : R → R is measure preserving with
respect to µα,β, that is, for any A ∈ B, we have

µα,β(T−1
α,β(A)) = µα,β(A).

Moreover, it is ergodic, that is, if T−1
α,β(A) = A, then either µα,β(A) or µα,β(X\A)

is 0.

Applying Birkhoff’s ergodic theorem, we have an ergodic mean-value of an
integrable function. Let us denote by T n

α,β the n-th iteration of Tα,β, that is,

T n
α,β := Tα,β ◦ Tα,β ◦ · · · ◦ Tα,β︸ ︷︷ ︸

n times

.

Corollary 5.9. If f : R → R is integrable with respect to µα,β, then

lim
N→∞

1

N

N−1∑
n=0

f ◦ T n
α,βx =

α

π

∫
R

f(τ)dτ

α2 + (τ − β)2
(5.11)

for almost all x ∈ R.

See [EW11, Theorem 2.30] for the proof of Birkhoff’s ergodic theorem. Corol-
lary 5.9 follows immediately from Birkhoff’s ergodic theorem and Theorem 5.8.

Birkhoff’s ergodic theorem describes the relation between the space average of
a function and the time average along the orbit. In the next section, we will apply
Corollary 5.9 to transform a mean-value of ergodic type into a computable integral.

In the rest of this section, we complete the proof of Theorem 5.8. We first recall
the famous result given by R. Adler and B. Weiss.

Lemma 5.10. The Boolean transformation T1,0 is measure preserving with respect
to ν. Moreover, it is ergodic.
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See [AW73, Theorem and Main Theorem] for the proof of Lemma 5.10.

Proof of Theorem 5.8. We first check that T := T1,0 is measure preserving and
ergodic with respect to µ := µ1,0. Let us denote by χA the indicator function of
A ⊂ R. It follows from a simple calculation that

µ(T−1(A)) =
1

π

∫
R

χA(T (τ))dτ

1 + τ 2

=
1

π

∫
R

χA(T (τ))dT (τ)

1 + T (τ)2
= µ(A)

for any A ∈ B. Thus T is measure preserving with respect to µ. If T−1(A) = A,
it follows from Lemma 5.10 that either ν(A) or ν(X\A) is 0. Hence, by (5.10),
either µ(A) or µ(X\A) must be 0.

Next, let us consider the general case. Defining the affine transformation ϕα,β :
R → R by ϕα,β(x) := αx + β, we can easily check that

Tα,β = ϕα,β ◦ T ◦ ϕ−1
α,β

and

µα,β(A) = µ(ϕ−1
α,β(A)).

Since T is measure preserving with respect to µ, we have

µα,β(T−1
α,β(A)) = µ(ϕ−1

α,β(T−1
α,β(A))

= µ(ϕ−1
α,β(ϕα,β(T−1(ϕ−1

α,β(A))))

= µ(T−1(ϕ−1
α,β(A)))

= µ(ϕ−1
α,β(A)) = µα,β(A).

Moreover, if T−1
α,β(A) = A, we have

T−1(ϕ−1
α,β(A)) = ϕ−1

α,β(T−1
α,β(A)) = ϕ−1

α,β(A).

Since T is ergodic with respect to µ, either µα,β(A) = µ(ϕ−1
α,β(A)) or µα,β(X\A) =

µ(X\ϕ−1
α,β(A)) is 0.

5.4 Proof of the main theorem

Proof of Theorem 5.1. It follows from Corollary 5.9 that (5.3) holds. For the case
m = 1, we set the values of the integrand to be the principal value on the line Lσ0

and since this is integrable, as we shall see below in Case 3 of the evaluation of
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lα,β, we can now apply Corollary 5.9 for all s ∈ Hc. In the rest of this section, we
evaluate lα,β to complete the proof of Theorem 5.1.

Suppose that f has no pole in Hc. The poles of the integrand in lα,β in Hc are
coming only from the zeros of α2 + (τ − β)2. For any s = σ + it ∈ Hc, we consider
the counterclockwise oriented semicircle ΓR for a sufficiently large R > |s|+α+ |β|
as in Figure 5.1. Then applying Cauchy’s integral theorem, we have

Figure 5.1:

R−R

ΓR

β + iα

β − iα

lα,β(s) =
α

π

∫
R

f(s + iτ)

α2 + (τ − β)2
dτ

=
α

π

(
lim
R→∞

∫
ΓR

f(s + iτ)

α2 + (τ − β)2
dτ − 2πiResτ=β−iα

f(s + iτ)

α2 + (τ − β)2

)
.

Note that we can find a σ′ ∈ (c, σ) sufficiently near c. Setting ϵ = (σ′ − c)/2, we
have∫

ΓR

f(s + iτ)

α2 + (τ − β)2
dτ =

∫ 2π

π

f(s + iReiθ)

α2 + (Reiθ − β)2
iReiθdθ

≪α,β
1

R

(∫ 5π/4

π

+

∫ 7π/4

5π/4

+

∫ 2π

7π/4

)
|f(s + iReiθ)|dθ

≪ 1

R

(
max

θ∈[π,5π/4]∪[7π/4,2π]
|f(σ −R sin θ + i(t + R cos θ))|

+ max
θ∈[5π/4,7π/4]

|f(σ −R sin θ + i(t + R cos θ))|
)

≤ 1

R

(
max

θ∈[π,5π/4]∪[7π/4,2π]
|t + R cos θ|ν(σ−R sin θ)+ϵ + M

)
≤ 1

R

(
max

θ∈[π,5π/4]∪[7π/4,2π]
|t + R cos θ|1+c−σ′+ϵ + M

)
≪f,ϵ R

c−σ′+ϵ

(
|t|
R

+ 1

)1+c−σ′+ϵ

+
M

R
,
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thus the integral on ΓR vanishes as R tends to ∞. By simple calculations, we find
that

Resτ=β−iα
f(s + iτ)

α2 + (τ − β)2
= lim

τ→β−iα
(τ − β + iα) × f(s + iτ)

α2 + (τ − β)2

=
f(s + α + iβ)

−2αi
.

(5.12)

Hence we obtain (5.4) for all s ∈ Hc.

Suppose that f has a pole at s = s0 = σ0 + it0 and σ0 > c. Now for s = σ+ it ∈
Hc, the integrand has three simple poles: τ = β+ iα, τ = β− iα, and τ = i(s−s0).
Here we divide the proof into three cases according to the condition whether the
pole τ = i(s − s0) is below (c < σ < σ0, see Figures 5.2 and 5.3), above (σ > σ0,
see Figure 5.4), or on the real line (σ = σ0, see Figure 5.5) of the τ -plane.

Case 1: Im(i(s− s0)) < 0.

We first consider when i(s− s0) ̸= β − iα and set ΓR as in Figure 5.2.

Figure 5.2:

R−R

ΓR

β + iα

β − iα
i(s− s0)

Figure 5.3:

R−R

ΓR

β + iα

β − iα = i(s− s0)

Again by applying Cauchy’s integral theorem, we can show that

lα,β(s) =
α

π

∫
R

f(s + iτ)

α2 + (τ − β)2
dτ

= −2αi

(
Resτ=β−iα

f(s + iτ)

α2 + (τ − β)2
+ Resτ=i(s−s0)

f(s + iτ)

α2 + (τ − β)2

)
.

Substituting (5.12) into the above, we obtain

lα,β(s) = f(s + α + iβ) − 2αiResτ=i(s−s0)
f(s + iτ)

α2 + (τ − β)2
.

From the Laurent expansion (5.2) of f , we can calculate

f(s + iτ)

α2 + (τ − β)2
=

i

2α

(
∞∑
n=0

(τ − i(s− s0))
n

(β + iα− i(s− s0))n+1
−

∞∑
n=0

(τ − i(s− s0))
n

(β − iα− i(s− s0))n+1

)
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×
∞∑

n=−m

ani
n(τ − i(s− s0))

n.

Thus

−2αiResτ=i(s−s0)
f(s + iτ)

α2 + (τ − β)2

=
m∑

n=1

a−n

in (β + iα− i(s− s0))
n −

m∑
n=1

a−n

in (β − iα− i(s− s0))
n .

Thus combining the above calculations and setting

Bm(s0) :=
m∑

n=1

a−n

in (β + iα− i(s− s0))
n −

m∑
n=1

a−n

in (β − iα− i(s− s0))
n ,

we obtain

lα,β(s) =
α

π

∫
R

f(s + iτ)

α2 + (τ − β)2
dτ = f(s + α + iβ) + Bm(s0).

This is the first equation of (5.5).
Now suppose that i(s− s0) = β − iα (see Figure 5.3). This case only appears

when σ0 − α > c. By calculations similar to the above, we have

lα,β(s) =
α

π

∫
R

f(s + iτ)

α2 + (τ − β)2
dτ = −2αiRes τ=β−iα

=i(s−s0)

f(s + iτ)

α2 + (τ − β)2
.

We consider the Laurent expansion of the integrand near τ = β − iα = i(s− s0):

f(s + iτ)

α2 + (τ − β)2
=

(
∞∑

n=−m

ani
n(τ − β + iα)n

)

× 1

τ − β + iα
× 1

−2αi
× 1

1 − τ−β+iα
2αi

=
1

−2αi
× 1

τ − β + iα
× 1

1 − τ−β+iα
2αi

∞∑
n=−m

ani
n(τ − β + iα)n

=
1

−2αi

1

τ − β + iα

∞∑
n=0

(
τ − β + iα

2αi

)n ∞∑
n=−m

ani
n(τ − β + iα)n.

Hence,

Res τ=β−iα
=i(s−s0)

f(s + iτ)

α2 + (τ − β)2
=

1

−2αi

m∑
n=0

a−n

(−2α)n
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and so we obtain the second equation of (5.5).

Case 2: Im(i(s− s0)) > 0.

In this case, the integrand of lα,β(s) has only one pole in the lower half-plane
(see Figure 5.4). Thus by a method similar to the case when f has no pole in Hc,

Figure 5.4:

R−R

ΓR

β + iα

β − iα

i(s− s0)

Figure 5.5:

CR

β + iα

β − iα

t0 − t

Cϵ

we can show that∫
R

f(s + iτ)

α2 + (τ − β)2
dτ = −2πiResτ=β−iα

f(s + iτ)

α2 + (τ − β)2
(5.12)
= −2πi× f(s + α + iβ)

−2αi

=
π

α
f(s + α + iβ).

Thus

lα,β(s) =
α

π

∫
R

f(s + iτ)

α2 + (τ − β)2
dτ = f(s + α + iβ).

This is the third equation of (5.5).

Case 3: Im(i(s− s0)) = 0 (only for the case m = 1).

Since Im(i(s− s0)) = 0 (s0 = σ0 + it0), s satisfies Re(s) = σ0 in this case. For
convenience, we write s = σ0 + it. In this case, we take the principal value of the
integrand as in [Ste12, p. 367] and so we obtain∫

R

f(σ0 + i(t + τ))

α2 + (τ − β)2
dτ = lim

R→∞
ϵ→0+

(∫
CR

−
∫
Cϵ

)
f(σ0 + i(t + τ))

α2 + (τ − β)2
dτ

− 2πiResτ=β−iα
f(σ0 + i(t + τ))

α2 + (τ − β)2
,

(5.13)

where CR and Cϵ are the counterclockwise oriented semicircles of radius R (R >
1+ |s|+α+ |β|) and ϵ centered at τ = t0− t located in the lower half of the τ -plane
(see Figure 5.5).
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As the other cases, the integral along CR vanishes as R tends to ∞. On the
other hand, the integral along Cϵ is evaluated as∫

Cϵ

f(σ0 + i(t + τ))

α2 + (τ − β)2
dτ =

∫ 2π

π

f(σ0 + i(t0 + ϵeiθ))

α2 + (t0 − t + ϵeiθ − β)2
iϵeiθdθ

=

∫ 2π

π

( a−1

iϵeiθ
+ O(1)

) iϵeiθ

α2 + (t0 − t + ϵeiθ − β)2
dθ

hence

lim
ϵ→0+

∫
Cϵ

f(σ0 + i(t + τ))

α2 + (τ − β)2
dτ =

a−1π

α2 + (t0 − t− β)2
.

Again from (5.12),

Resτ=β−iα
f(σ0 + i(t + τ))

α2 + (τ − β)2
=

f(σ0 + α + i(t + β))

−2αi
.

These imply that (5.6) holds.

Remark that the method used in Case 3 in the proof does not work if m > 1.
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