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Reduced molecular size and altered disaccharide composition 
of cerebral chondroitin sulfate upon Alzheimer’s pathogenesis 

in mice
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ABSTRACT

Alzheimer’s disease (AD) is a progressive disorder leading to cognitive impairment and neuronal 
loss. Cerebral extracellular accumulation and deposition of amyloid ß plaques is a pathological hallmark 
of AD. Chondroitin sulfate (CS) is an extracellular component abundant in the brain. CS is a sulfated 
glycosaminoglycan covalently attached to a core protein, forming chondroitin sulfate proteoglycan. The 
structure of CS is heterogeneous with sulfation modification and elongation of the chain. The structural 
diversity of CS allows it to play various roles in the brain. Increasing evidence has shown that CS 
promotes aggregation of amyloid ß peptides into higher-order species such as insoluble amyloid ß fibrils. 
Difficulties in the structural analysis of brain CS, as well as its heterogeneity, limit the study of potential 
roles of CS in AD pathology. Here we established a microanalysis method with reversed-phase ion-pair 
high performance liquid chromatography and found that CS in the brains of Tg2576 AD model mice show 
a lower molecular size and an increased ratio of CS-B motif di-sulfated disaccharide. Our findings provide 
insight into the structural changes of cerebral CS upon Alzheimer’s pathogenesis.
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INTRODUCTION

Chondroitin sulfate (CS) is a linear polysaccharide found in the extracellular space. One 
or more CS chains are covalently attached to a core protein, comprising chondroitin sulfate 
proteoglycan.1) CS is a family of glycosaminoglycans consisting of repeating disaccharide units 
of glucuronic acid and N-acetylgalactosamine. Modification by sulfation and elongation of these 
disaccharides is governed by Golgi-resident enzymes, conferring the chains structural diversity.2) 
It is well known that these modifications are varied in physiological and pathological sets. CS 
is abundant in the brain as well as in skeletal tissues and plays an important role in neural 
development, plasticity, and regeneration after injury.3-6) These evidence have lead to investigation 
of the role of CS in neurodegenerative diseases.

Alzheimer’s disease (AD) is one of the most intensively studied neurological disorders.7) AD is 
a progressive neurodegenerative disease leading to cognitive impairment, neuronal loss, and brain 
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atrophy. Cerebral extracellular deposition of amyloid plaques is a pathological hallmark of AD.7) 
The plaques are composed of the self-aggregated amyloid ß (Aß) peptide and other extracellular 
molecules including sulfated glycosaminoglycans.8) Amyloid ß (Aß) peptides form soluble Aß 
oligomers and larger insoluble Aß fibrils. Robust neurotoxic activity of Aß requires its aggregation 
in oligomer forms.7) A long-standing debate is whether the aggregative state of Aß in fibrils is 
toxic or protective. Studies have shown that Aß fibrillogenesis is a neural defense mechanism, 
acting by immobilizing and concealing neurotoxic soluble Aß.9) CS with sulfation modifications 
to the size of either disaccharide or polysaccharide promotes fibril formation of Aß peptides in 
vitro.10, 11) Additionally, CS attenuated Aß cytotoxicity in culture neurons.12, 13) Interestingly, a 
recent study revealed that low molecular weight CS possesses protective effects on Aß-induced 
damage both in vitro and in vivo.14) Although increasing evidence has indicated that CS plays 
a pivotal role in AD pathogenesis, structural features of CS in the AD brain are not yet fully 
understood. Here, we used a microanalysis method to examine brain CS in Tg2576 mice, an 
AD transgenic mouse model, and present evidence that changes in CS molecular size with a 
lower molecular weight and CS composition with an increased ratio of di-sulfated disaccharide 
units occur in Alzheimer’s pathogenesis.15)

MATERIALS AND METHODS

Materials
The following commercial materials were used: Chondroitinase ABC from Proteus vulgaris, 

hyaluronidase from Streptomyces hyalurolyticus, chondroitin sulfate-A (whale cartilage) and chon-
droitin sulfate-C (shark cartilage) were from Seikagaku Corporation (Tokyo, Japan); chondroitin 
disaccharide sodium salt 0S (ΔDi-0S, 2-acetamide-2-deoxy-3-O-(ß-D-gluco-4-enepyranosyluronic 
acid)-D-galactose), 6S (ΔDi-6S, 2-acetamide-2-deoxy-3-O-(ß-D-gluco-4-enepyranosyluronic acid)-6-O-
sulfo-D-galactose), 4S (ΔDi-4S, 2-acetamide-2-deoxy-3-O-(ß-D-gluco-4-enepyranosyluronic acid)-4-O-
sulfo-D-galactose), 2S (ΔDi-2S, 2-acetamide-2-deoxy-3-O-(2-O-sulfo-ß-D-gluco-4-enepyranosyluronic 
acid)-D-galactose), DiSB (ΔDi-diSB(2,4), 2-acetamide-2-deoxy-3-O-(2-O-sulfo-ß-D-gluco-4-enepy-
ranosyluronic acid)-4-O-sulfo-D-galactose), DiSD (ΔDi-diSD(2,6), 2-acetamide-2-deoxy-3-O-(2-
O-sulfo-ß-D-gluco-4-enepyranosyluronic acid)-6-O-sulfo-D-galactose), DiSE (ΔDi-diSE(4,6), 
2-acetamide-2-deoxy-3-O-(ß-D-gluco-4-enepyranosyluronic acid)-4,6-bis-O-sulfo-D-galactose), 
and TriS (ΔDi-triS(2,4,6), 2-acetamide-2-deoxy-3-O-(2-O-sulfo-ß-D-gluco-4-enepyranosyluronic 
acid)-4,6-bis-O-sulfo-D-galactose), and tetra-n-butylammonium hydrogen sulfate were from Sigma; 
2-cyanoacetamide was from Wako (Osaka, Japan); Nanosep Centrifugal Devices 3K was from 
Nihon Pall (Tokyo, Japan); COSMOSIL 5C18 MS-II was from Nacalai Tesque (Kyoto, Japan); 
HiLoad 16/60 Superdex 200 pg was from GE Healthcare.

Animals
C57BL/6 mice were from SLC (Hamamatsu, Japan). Tg2576 mice bearing the human amyloid 

precursor protein with Swedish (K670N, M671L) mutation15) were purchased from Taconic Biosci-
ences (Hudson, NY). Animals were kept under controlled environmental conditions with standard 
food and water supply. The Nagoya University Institutional Animal Care and Use Committee 
approved the animal studies.

Tissue preparation
Anesthetized mice were transcardially perfused with 25 mL of ice-cold phosphate-buffered 

saline (PBS). The brains were dissected out and sagittally divided into sections. Regional sec-
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tions of hemi-brains, including olfactory bulb, cortex, hippocampus, thalamus, cerebellum, and 
brainstem, were snap-frozen separately and stored at –80 °C.

Preparation and structural analysis of brain CS
Brain CS was isolated as described previously for heparan sulfate and keratan sulfate with 

slight modifications.8, 16, 17) Snap-frozen mouse cerebral cortex (25 mg), hippocampus (15 mg) and 
cerebellum (35 mg) were prepared from 20-month-old non-transgenic (n=5) and Tg2576 (n=7) 
mice. The frozen tissues were suspended in 2 ml of 0.2 N NaOH and incubated overnight at room 
temperature. The samples were neutralized with 4 N HCl, as phenol red for a pH indicator, and 
then treated with DNase I and RNase A (0.04 mg/ml each; Roche) in 50 mM Tris-HCl, pH 8.0, 
10 mM MgCl2 for 3 h at 37 °C. Subsequently, the samples were treated with actinase E (0.04 
mg/ml; Kaken Pharmaceutical, Tokyo, Japan) overnight at 37 °C. The supernatant was collected 
by centrifugation at 5,000 × g at 4 °C for 10 min after heat inactivation of the enzyme, and 
then mixed with the same volume of 50 mM Tris-HCl, pH 7.2. The supernatant was collected as 
crude CS-containing solutions. The collected samples were subjected to DEAE-Sepharose column 
chromatography. The samples were applied onto the column, and then washed with 0.2 M NaCl. 
Most of the hyaluronic acid is washed out by this step. The bound materials were eluted with 
2 M NaCl. The resulting elution fractions were added to 3 volumes of ethanol at –80 °C for 
30 min. CS was precipitated by centrifugation at 10,000 × g for 15 min, and then rinsed with 
70% ethanol. The purified CS was dried, suspended with water, and then mixed with 3 volumes 
of ethanol containing 1.3% potassium acetate at –80 °C for 30 min. CS was precipitated by 
centrifugation at 10,000 × g at 4 °C for 30 min. The purified CS solution was treated with 
chondroitinase ABC. Yielded CS disaccharides were separated by filtering the mixture with a 
Nanosep 3K filter. The disaccharide compositions of CS were determined by reversed-phase 
ion-pair high performance liquid chromatography (HPLC) with post-column fluorescent labeling 
as shown in Fig. 1. 

Size exclusion chromatography
Purified CS from the cerebral cortex (100 mg) was obtained from 17-month-old non-transgenic 

(n=3) and Tg2576 (n=3) mice as described above. The samples were treated with hyaluronidase. 
A Superdex 200 16/60 column was used to separate the CS by size fractionation. The Superdex 
200 column was equilibrated with a buffer of 0.2 M NaCl, 20 mM Tris-HCl and run at a flow 
rate of 1 ml/min. One ml fractions were collected. The collected fractions were lyophilized, 
and then dissolved in a buffer. The samples were digested with chondroitinase ABC. Yielded 
disaccharides were separated by filtering the mixture with a Nanosep 3K filter. Post-column 
labeling reversed-phase ion-pair HPLC was performed to analyze the fractions. The level of CS 
content was determined by summing the amounts of all disaccharides detected in each sample.

Statistical analysis
All data are presented as mean ± SD. The values were analyzed by unpaired Student’s t-test 

using Prism software (GraphPad Software, La Jolla, CA). P values less than 0.05 were considered 
to be significant.

RESULTS

Total amount of CS is reduced in the cerebral cortex of Tg2576 mice
Parenchymal amyloid plaque deposition starts to occur at 11–13 months of age in Tg2576 
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mice. The amyloid plaque formation in Tg2576 mice was found in the cerebral cortex and 
hippocampus, which are important for cognitive functioning, while amyloidogenesis was not 
detected in the cerebellum.8) To investigate whether the CS level is changed in the brain upon 
Alzheimer’s pathogenesis, we collected cerebral cortices of 20-month-old Tg2576 mice and their 
non-transgenic (Non-Tg) littermates. The CS was purified from the tissues and analyzed by 
reversed-phase ion-pair HPLC (Fig. 1). We found that the total amount of CS in the cortex of 
Tg2576 mice was reduced to 56% of the level in Non-Tg littermates (Fig. 2).

CS molecular size is reduced in the cerebral cortex of Tg2576
We then investigated whether the molecular size of brain CS is altered with Alzheimer’s 

pathology. To address this question, we extracted the CS from the cerebral cortex of 17-month-old 

Fig. 1 Schematic diagram of the reversed-phase ion-pair HPLC with post-column labeling used for chondroitin 
sulfate (CS) structural analysis.

 Schematic diagram of the HPLC used to analyze CS structures is indicated. Solvent 1, 2, 3, and 4, 
and reaction solution 5 and 6 are displayed. A representative chromatogram with an elution profile of 
authentic CS disaccharides, 0S, 4S, 6S, 2S, DiSE, DiSB, DiSD, and TriS, and their structures are shown.
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Tg2576 mice and their Non-Tg littermates. The CS was subjected to size exclusion chromatog-
raphy using the Superdex 200 column. Cerebral cortex CS in both Non-Tg and Tg2576 mice 
showed one single peak (Fig. 3). A shift to a later retention time value was observed in the 
peak of the Tg2576 mice CS. Molecular mass of the peak position was 68 kDa for CS extracted 
from Non-Tg mice, while that of CS from Tg2576 mice was 58 kDa (Fig. 3).

Fig. 2 Decreased CS content in the cerebral cortex of Tg2576 Alzheimer’s disease model mice.
 CS was prepared from cerebral cortices of age-matched 20-month-old Non-Tg (n=5) and Tg2576 (n=7) 

mice. CS disaccharide composition was analyzed by the HPLC system. Total contents of CS were 
calculated. ***P < 0.001.

Fig. 3 Reduced molecular size of CS in the cortex of Tg2576 Alzheimer’s disease model mice.
 CS was prepared from cerebral cortices of age-matched 17-month-old Non-Tg (n=3) and Tg2576 (n=3) 

mice and separated with a Superdex 200 column. Arrows indicate elution positions of the standard dextran. 
Molecular mass corresponding to the peak position was estimated (dashed lines). Representative profile 
for each genotype is shown.
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Di-sulfated disaccharide components are increased in CS of Tg2576 brain
A widely used approach to determine CS components is to treat CS with the bacterial 

endo-type enzyme, chondroitinase ABC, and then analyze the yielded disaccharides by HPLC. 
To determine whether structural changes in the brain CS occurs in Alzheimer’s pathology, we 
analyzed CS disaccharide composition in the cortex, hippocampus, and cerebellum of 20-month-
old Tg2576 mice and their Non-Tg littermates. In all tissues analyzed, we found that the 4S 
mono-sulfated disaccharide was a major CS component with 87 to 96% of total disaccharides, 
and that the level of the 2S mono-sulfated disaccharide was under the detection level in both 
genotypes (Fig. 4). Percentage of DiSE di-sulfated disaccharide is significantly up-regulated 
1.4- to 1.6-fold in the cortex, hippocampus, and cerebellum of Tg2576 mice compared to that 
of Non-Tg littermates (Fig. 4 and Table 1). In the cortex and hippocampus of Tg2576 mice, 

Fig. 4 Changes in CS composition with increased di-sulfated disaccharide structures in the brain of Tg2576 
Alzheimer’s disease model mice.

 CS was prepared from the cortex, hippocampus, and cerebellum of aged-matched 20-month-old Non-Tg 
(n=5) and Tg2576 (n=7) mice. After chondroitinase ABC treatment, composition of each CS disaccharide 
was calculated as the percentage of total disaccharides. *P < 0.05, **P < 0.01, ***P < 0.001.
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where amyloid plaque deposition is abundant, percentage of DiSB di-sulfated disaccharide was 
significantly up-regulated 1.3- to 1.7-fold. These up-regulations were not observed in the cerebel-
lum of Tg2576 mice, in which amyloid plaque deposition is absent (Fig. 4 and Table 1). The 
level of the 6S mono-sulfated disaccharide was reduced to 78% of the level in Non-Tg mice in 
the hippocampus of Tg2576 mice.

DISCUSSION

In the present study, we found that total amount and average molecular size of CS were 
significantly reduced in the cerebral cortex of Tg2576 mice. Moreover, in the cerebral cortex 
and hippocampus but not in the cerebellum, the component of DiSB, the unsaturated form of 
the CS-B motif di-sulfated disaccharide, was up-regulated in Tg2576 mice. These results clearly 
indicate that CS structures are altered upon Alzheimer’s pathogenesis. 

Cortical areas abundant in CS proteoglycans are less susceptible to cytoskeletal changes in AD 
patients.18) It is likely that CS may have a protective effect on AD pathology. Reduction in the 
amount of CS might cause the mice to be more affected by Aß-induced damage. Although the 
mechanisms underlying down-regulation of cortical CS in Tg2576 mice are currently unknown, 
potential roles of CS, especially in an ameliorative way, should be explored with administration 
of CS or genetic manipulation of CS synthesis in AD model mice. Recent findings revealed that 
low molecular weight CS is protective against Aß-induced neurotoxicity in vivo.14) Our finding that 
the molecular size of CS in Tg2576 mice was lower than that in Non-Tg littermates could be 
interpreted as a defense mechanism response. Since CS is a linear polysaccharide, it is presumed 
that the length of the CS chain in the cortex of Tg2576 mice is shorter than that in Non-Tg 
littermates. It has previously been reported that sulfation modification by the Golgi-resident 
GalNAc4S-6-sulfotransferase acts as a terminating signal for CS chain elongation.19) It is conceiv-
able that GalNAc4S-6-sulfotransferase activity or expression level of the sulfotransferase gene 
might be changed upon Alzheimer’s pathogenesis. Further investigation is needed to determine the 
expression levels of CS sulfotransferases and elucidate their mechanisms of action on cerebral CS.

Disaccharide constituents of CS from the cortex of AD and control patients has previ-
ously been reported.20) The levels of 0S, 4S, and 6S were unchanged in AD patients.20) This is 

Table 1 Composition of chondroitin sulfate (CS) disaccharides quantified by reversed-phase ion-pair HPLC

Unsaturated 
disaccharidea

0S 4S 6S 2S DiSE DiSB DiSD TriS

Cortex
Non-Tg 1.77b 95.89 1.13 ND 0.80 0.19 0.20 ND

Tg2576 1.91 95.20 1.02 ND 1.27* 0.32* 0.28 ND

Hippocampus
Non-Tg 2.44 94.23 1.79 ND 0.77 0.35 0.35 0.07

Tg2576 2.76 93.86 1.39** ND 1.06** 0.44** 0.40 0.09

Cerebellum
Non-Tg 2.45 88.62 0.48 ND 1.20 6.48 0.42 0.36

Tg2576 3.09 86.95 0.49 ND 1.71*** 6.92 0.42 0.42

a Percentage of total disaccharides
b The values are means of data shown in Fig. 4 (Non-Tg, n=5; Tg2576, n=7).
ND, not detected.
*P < 0.05, **P < 0.01, ***P < 0.001.
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consistent with the findings of our present study using Tg2576 AD model mice, in which the 
level of 0S, 4S, or 6S disaccharide was unaltered. Our method is capable of determining the 
levels of di-sulfated and tri-sulfated disaccharide components, as well as the levels of non- and 
mono-sulfated disaccharides. DiSB and DiSE di-sulfated disaccharide components were found to 
be up-regulated in Tg2576 mice.

Since up-regulation of DiSB was found in the cortex and hippocampus, but not in cerebellum, 
where amyloid plaques are absent, it is plausible that the increase in the DiSB level may correlate 
with amyloid plaque formation and deposition. Endogenous CS rich in the CS-B disaccharide 
structure, the saturated disaccharide form of DiSB, has been shown to promote the fibril forma-
tion of Aß peptides. The Aß fibrils, whose assembly was facilitated by CS-B-rich CS, became 
stable and reduced their cytotoxicity.21) The increased level of DiSB in Tg2576 mice might be 
a response to neurotoxic Aß species and might act to reduce their neurotoxicity in the cortex 
and hippocampus.

DiSE di-sulfated disaccharide was up-regulated in all three tissues. It is possible that the 
increase in DiSE di-sulfated disaccharide might be associated with AD progression within the 
whole brain, rather than just in amyloid-specific regions. The CS that contains the CS-E disac-
charide structure, the saturated disaccharide form of DiSE, has been shown to be a side chain 
covalently attached to appican, the proteoglycan form of the amyloid precursor protein.22) Although 
the mechanisms underlying the up-regulation of DiSE di-sulfated disaccharide are unknown in 
Tg2576 mice, it is possible that the Tg2576 transgene products, which are human amyloid 
precursor proteins, could be modified by CS-E-containing CS chains. Up-regulation of DiSE in 
Tg2576 mice could be dependent on the expression of the transgene product. CS is present as 
side-chains covalently bound to scaffold proteins in tissues. It is likely that reduction in the 
total amount of CS reflects changes in the protein-bound form of CS. Application of the assays 
described in this study to identify and quantify core proteins will enhance our understanding 
of the potential roles of CS. Furthermore, analysis of human postmortem AD brains with our 
established method will likely help to clarify the mechanisms underlying the up-regulation of 
CS and its potential mitigating role in Alzheimer’s pathogenesis.
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