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The impact of biasing schemes on the clustering of tracers of the large-scale structure is analytically
studied in the weakly nonlinear regime. For this purpose, we use the one-loop approximation of the
integrated perturbation theory together with the renormalized bias functions of various, physically
motivated Lagrangian bias schemes. These include the halo, peaks, and excursion set peaks model, for
which we derive useful formulas for the evaluation of their renormalized bias functions. The shapes of the
power spectra and correlation functions are affected by the different bias models at the level of a few
percent on weakly nonlinear scales. These effects are studied quantitatively both in real and redshift space.
The amplitude of the scale-dependent bias in the presence of primordial non-Gaussianity also depends on
the details of the bias models. If left unaccounted for, these theoretical uncertainties could affect the
robustness of the cosmological constraints extracted from galaxy clustering data.

DOI: 10.1103/PhysRevD.93.123522

I. INTRODUCTION

The large-scale structure (LSS) of the universe contains
rich information on cosmology. The LSS is mainly probed
by the spatial distributions of astronomical objects, such as
galaxies, clusters of galaxies, or any other tracer that can be
observed in the distant Universe (such as the Lyman-alpha
forest, etc.) The spatial distribution of these objects differs
from that of the total mass (which includes the mysterious
dark matter), while direct predictions from cosmological
theories are made for the mass distributions. In fact, except
for the lensing shear, essentially all observables of the LSS
are biased tracers of the mass distribution.
Although a relation between the spatial distribution of

biased tracers and that of the matter is not trivial at small
scales owing to the complexity of the physical processes
governing star formation, etc., the large-scale clustering of
LSS tracers is much less complicated as it is “only”
governed by gravity. On very large scales, the biasing is
simply given by a linear relation [1,2], and all the
complications which arise from the biasing mechanisms
are confined to a single variable known as the linear bias
factor. In particular, the power spectrum PXðkÞ of biased
tracers X is linearly related to that of the mass PmðkÞ
through

PXðkÞ ¼ bX2PmðkÞ; ð1Þ

where bX is the linear bias factor of X. The label X
represents any kind of biased tracers, i.e. a particular type of
galaxies or clusters of galaxies within a certain range of
mass for instance. The correlation function, which is the
three-dimensional Fourier transform of the power spec-
trum, satisfies a similar relation, ξXðrÞ ¼ bX2ξmðrÞ.
In redshift surveys, the radial distances to the objects are

measured by their redshifts. The observed redshifts are
contaminated by the peculiar velocities of the LSS tracers.
As a result, clustering patterns in redshift space are
distorted along the lines of sight. This effect is known
as the redshift-space distortions. In the linear regime, the
redshift-space distortions of the power spectrum are ana-
lytically given by Kaiser’s formula [3],

PXðkÞ ¼ bX2ð1þ βXμ
2Þ2PmðkÞ; ð2Þ

where μ ¼ ẑ · k=jkj is the direction cosine between the lines
of sight ẑ and the wave vector k. The variable βX ¼ f=bX,
where f ¼ lnD= ln a is the linear growth rate, is called the
redshift-space distortion parameter. The correlation func-
tion in redshift space is given by a Fourier transform of
Kaiser’s formula [4].
However, the linear theory with linear bias is valid only

in the large-scale limit. It is severely violated at small scales
where nonlinearities induced by gravitational coupling
become important, and exact analytical treatments are
extremely difficult. Fortunately, there is an intermediate
range of scales between the linear and the highly nonlinear
regimes where nonlinearities are weak, so that statistical
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correlators such as the power spectrum and correlation
function are amenable to a perturbative treatment (for a
review of perturbation theory in LSS, see Ref. [5]).
The traditional perturbation theory predicts weakly non-

linear evolutions of unbiased dark matter in real space. The
integrated perturbation theory (iPT) [6,7] is a general
framework to predict the weakly nonlinear power spectra
and higher-order polyspectra of biased tracers both in real
space and in redshift space. This is essential for the analysis
of future redshift survey data. Furthermore, the iPT can also
include the effect of a primordial non-Gaussianity in the
curvature perturbation, which the power spectrum of biased
tracers is sensitive to [8]. In principle, any bias model could
be incorporated into the iPT. The dependence of the
polyspectra on the biasing scheme predicted by the theory
is encoded in the so-called renormalized bias functions.
Hereby, the framework of iPT separates the issue of biasing
at small scales from the weakly nonlinear dynamics at
larger scales.
The iPT is based on the Lagrangian perturbation theory

[9–16], and the renormalized bias functions are directly
calculated from the Lagrangian models of bias, in which the
bias relations are specified in Lagrangian space. The bias
relation is not necessarily a local function of the density in
Lagrangian space. In fact, it will involve, e.g., derivatives of
the linear density if a peak constraint is present [17,18],
as well as the tidal shear if the collapse is not spherical
[19–21]. Any kind of bias is represented by a “nonlocal”
bias in Lagrangian space, because all the structures in the
Universe are formed by a deterministic evolution of the
initial density field.
In this work, we investigate the predictions of one-loop

iPT for observables such as the power spectrum and
correlation function with representative models of
Lagrangian bias. The biasing schemes considered in this
paper include the halo bias [22,23], peaks model [17,18],
and excursion set peaks (ESP) [24,25]. These Lagrangian
biasing schemes are physically motivated, and the mass
scale is the only parameter left (once the halo mass function
or the collapse barrier is known).
The main goal of this paper is to see how differences in

the renormalized bias functions predicted by these models
are reflected in the weakly nonlinear power spectrum and
correlation function. It is not our purpose in this paper to
find an accurate model of bias. We are rather interested in
assessing the extent to which observed quantities are
affected by uncertainties in the biasing. We naively expect
that those effects should not be very significant on large
scales, because the characteristic formation scales of
astrophysical objects are small. Furthermore, the large-
scale behavior of the power spectrum and the correlation
function is not much affected by small-scale dynamics,
except for the scale-independent, linear bias factor.
However, scale-dependent corrections predicted, e.g., by
a peak constraint can affect the shape of a feature such as

the baryon acoustic oscillation [26,27]. These kinds of
effects cannot be neglected, should they mimic a signature
of fundamental physics detectable in future LSS data or
bias cosmological constraints.
Our paper is organized as follows. In Sec. II, the essential

equations of the one-loop iPT used in this paper are
summarized. In Sec. III, the renormalized bias functions
in the bias models considered in paper are derived. In
Sec. IV, the resulting predictions of iPT with various
biasing schemes are presented for the power spectra and
correlation functions in real space and redshift space. The
impacts on the scale-dependent bias from primordial non-
Gaussianity are indicated. Conclusions are summarized
in Sec. V.

II. ONE-LOOP INTEGRATED PERTURBATION
THEORY IN A NUTSHELL

In this section, we briefly summarize the formulas of
one-loop iPT for the weakly nonlinear power spectra and
correlation functions in the presence of bias in general [7].
In this section, we adopt the notation

k1���n ¼ k1 þ � � � þ kn ð3Þ

and

Z
k1���n¼k

� � � ¼
Z

d3k1
ð2πÞ3 � � �

d3kn
ð2πÞ3 ð2πÞ

3δ3Dðk−k1���nÞ � � � : ð4Þ

for brevity. The one-loop power spectrum of biased tracers
X is given by the formula

PXðkÞ ¼ ½Γð1Þ
X ðkÞ�2PLðkÞ

þ 1

2

Z
k12¼k

½Γð2Þ
X ðk1; k2Þ�2PLðk1ÞPLðk2Þ

þ Γð1Þ
X ðkÞ

Z
k12¼k

Γð2Þ
X ðk1; k2ÞBLðk; k1; k2Þ; ð5Þ

where PLðkÞ and BLðk; k1; k2Þ are the linear power spec-

trum and the linear bispectrum, respectively, and ΓðnÞ
X is the

nth-order multipoint propagator of biased tracers X.
Although the time dependence is omitted in the notation,

the functions PX, PL, BL, and ΓðnÞ
X depend also on the

cosmic time or the redshift of observed objects. In the
notation of this paper, the time variable is always omitted in
the argument of all the functions for shorthand
convenience.
The multipoint propagator of biased tracers can be

decomposed into a vertex resummation factor and a
normalized propagator as follows,

ΓðnÞ
X ðk1;…; knÞ ¼ Πðk1���nÞΓ̂ðnÞ

X ðk1;…; knÞ; ð6Þ
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whereΠðkÞ ¼ he−ik·Ψi is the vertex resummation factor and
Ψ is a displacement field in the Lagrangian description of
cosmological perturbations. The propagators are evaluated
with Lagrangian perturbation theory in iPT. The Fourier
transform of the displacement field, ~ΨðkÞ, is expanded by
the linear density contrast δLðkÞ in Fourier space as

~ΨðkÞ ¼
X∞
n¼1

i
n!

Z
k1���n¼k

LðnÞðk1;…;knÞδLðk1Þ � � �δLðknÞ; ð7Þ

which define the Lagrangian kernel functions LðnÞ. The
kernel functions are calculated by the Lagrangian pertur-
bation theory [9–12,16]. They are polynomials of the wave
vectors which make up their arguments. The Lagrangian
kernels in redshift space are obtained by linear trans-
formations of those in real space. For concrete expressions
for the Lagrangian kernels in real space and in redshift
space, see Refs. [16,28,29].
Up to the one-loop order in Eq. (5), we have

ΠðkÞ ¼ exp

�
−
1

2

Z
d3p
ð2πÞ3 ½k · L

ð1ÞðpÞ�2PLðpÞ
�
; ð8Þ

Γ̂ð1Þ
X ðkÞ ¼ cð1ÞX ðkÞ þ k · Lð1ÞðkÞ

þ
Z

d3p
ð2πÞ3 PLðpÞ

�
cð2ÞX ðk; pÞ½k · Lð1Þð−pÞ�

þ cð1ÞX ðpÞ½k · Lð1Þð−pÞ�½k · Lð1ÞðkÞ�

þ 1

2
k · Lð3Þðk; p;−pÞ þ cð1ÞX ðpÞ½k · Lð2Þðk;−pÞ�

þ ½k · Lð1ÞðpÞ�½k · Lð2Þðk;−pÞ�
�

ð9Þ

and

Γ̂ð2Þ
X ðk1;k2Þ ¼ cð2ÞX ðk1;k2Þ þ cð1ÞX ðk1Þ½k ·Lð1Þðk2Þ�

þ cð1ÞX ðk2Þ½k ·Lð1Þðk1Þ�
þ ½k ·Lð1Þðk1Þ�½k ·Lð1Þðk2Þ� þ k ·Lð2Þðk1;k2Þ;

ð10Þ

where cð1ÞX and cð2ÞX are the renormalized bias functions. The

third line of Eq. (9) is usually zero for cð1ÞX ðpÞ is only a

function of the modulus of p, cð1ÞX ðpÞ. The series of
renormalized bias functions is generally defined by [30]�

δnδLXðkÞ
δδLðk1Þ � � � δδLðknÞ

�

¼ ð2πÞ3−3nδ3Dðk − k1���nÞcðnÞX ðk1;…; knÞ; ð11Þ
where δLXðkÞ is the Fourier transform of the density contrast
of biased tracers in Lagrangian space, δ=δδLðkÞ is the

functional derivative with respect to δL, and h� � �i denotes
the statistical average. All the statistical information about
spatial biasing is included in the set of renormalized bias
functions.
In Lagrangian biasing schemes in general, the number

density nLX of biased tracers in Lagrangian space is
modelled as a functional of the linear density field,
nLX ¼ F ½δL�. The relation is generally given by a functional,
instead of a function, because the density of biased tracers
at some position is determined by the linear density field
not only at the same position but also at other positions as
well. We thus have functional derivatives as in Eq. (11).
Once the number density of biased tracers nLX is

modelled as a functional of the linear density field, and
the statistical distribution of the linear density field is
specified, the renormalized bias functions are obtained
from Eq. (11) and δLX ¼ nLX=hnLXi − 1. In order to evaluate
the one-loop power spectrum of Eq. (5), only two func-

tions, cð1ÞX ðkÞ and cð2ÞX ðk1; k2Þ, are required. Some of the
angular integrations can be performed analytically, so that
Eq. (9) reduces to two- and one-dimensional integrals [7].
In real space, the power spectrum PXðkÞ is a function of

the modulus of wave vector k ¼ jkj for homogeneous and
isotropic random fields. In this case, the correlation
function is simply given by

ξXðrÞ ¼
Z

∞

0

k2dk
2π2

j0ðkrÞPXðkÞ; ð12Þ

where j0ðzÞ denotes the spherical Bessel function jlðzÞ of
order zero, l ¼ 0. In redshift space, however, the power
spectrum has an angular dependence as well. Adopting the
distant-observer approximation where all the lines of sight
have a common direction, the power spectrum PXðk; μÞ is a
function of the modulus k and direction cosine μ relative to
the line of sight. In this case, it is convenient to expand the
angular dependence of the power spectrum in Legendre
polynomials PlðμÞ according to

PXðk; μÞ ¼
X∞
l¼0

pl
XðkÞPlðμÞ; ð13Þ

pl
XðkÞ ¼

2lþ 1

2

Z
1

−1
dμPlðμÞPXðk; μÞ: ð14Þ

The same expansion of the correlation function is given by

ξXðr; μÞ ¼
X∞
l¼0

ξlXðrÞPlðμÞ; ð15Þ

ξlXðrÞ ¼
2lþ 1

2

Z
1

−1
dμPlðμÞξXðr; μÞ: ð16Þ

The relation between the multipole coefficients is
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ξlXðrÞ ¼ i−l
Z

∞

0

k2dk
2π2

jlðkrÞpl
XðkÞ: ð17Þ

Thus, once the power spectrum in redshift space PXðk; μÞ is
calculated by iPT, the multipoles pl

XðkÞ and ξlXðrÞ are
evaluated by Eqs. (14) and (17). Analytical integrations of
Eq. (14) are also possible [7].

III. RENORMALIZED BIAS FUNCTIONS
IN SEMILOCAL MODELS OF BIAS

The concept of renormalized bias functions in the
formalism of iPT is applicable to a broad range of generally
nonlocal models of bias. However, most of the bias models
that have been proposed in recent years fall into a category
of, what we call in this paper, semilocal models of bias. In
this type of biasing models, the formation sites of LSS
tracers depend on the local values of the smoothed mass
density field and its spatial derivatives. In this section, we
present a general derivation of the renormalized bias
functions for a class of semilocal models of Lagrangian
bias. To illustrate our method, we compute the renormal-
ized bias functions for a few bias models: the halo, peaks,
and ESP models.

A. Semilocal models of Lagrangian bias

In the semilocal models, the number density field nXðxÞ
of observable objects X is described by a function of the
smoothed linear density contrast δs and its spatial deriv-
atives ∂iδs, ∂ijδs, etc. In general, various types of filtering
kernels can be simultaneously introduced to accommodate
specific variables. For instance, the linear gravitational
potential can be included in a straightforward manner by
adding a suitable smoothing kernel.
To keep the discussion general, we consider here various

smoothing of the linear density contrast,

δsðxÞ ¼
Z

d3k
ð2πÞ3 δLðkÞWsðkRsÞeik·x; ð18Þ

where the index s refers to the types of smoothing kernel;
δL is a linear density contrast in Fourier space; and Ws and
Rs are, respectively, a smoothing function and a smoothing
radius for each type s of the smoothing kernel. Popular
kernels include the top-hat (s ¼ T) and Gaussian (s ¼ G)
window functions,

WTðxÞ ¼ 3j1ðxÞ=x; WGðxÞ ¼ e−x
2=2: ð19Þ

The linear gravitational potential ϕL can also be expressed
in the form of Eq. (18) with a smoothing kernel WϕðxÞ ¼
−1=x2 and smoothing radius Rϕ ¼ a−1ð4πGρ̄Þ−1=2. In this
case, we have s ¼ ϕ and δϕ ¼ ϕL. Another example is the

effective window function WeffðxÞ ¼ WTðxÞWGðf1=2eff x=5Þ

recently proposed by Ref. [31] to model Lagrangian halos.
Here, feff is a free parameter that must be calibrated with
simulations. This effective window function furnishes a
good fit to the small-scale, scale-dependent Lagrangian
halo bias measured from numerical simulations.
While Eq. (18) can incorporate many different smooth-

ing functions such as, e.g., s ¼ ϕ, we specifically consider
biasing models that depend on the spatial derivatives of the
smoothed field up to second order, ∂iδs and ∂ijδs, in
addition to the field values themselves, δs. It is convenient
to introduce the spectral moments σs0 ¼ hðδsÞ2i1=2,
σs1 ¼ h∇δs · ∇δsi1=2, and σs2 ¼ hð∇ · ∇δsÞ2i1=2 so as to
normalize the linear density fields:

νsðxÞ¼
δsðxÞ
σs0

; ηsiðxÞ¼
∂iδsðxÞ
σs1

; ζsijðxÞ¼
∂i∂jδsðxÞ

σs2
:

ð20Þ
The spectral parameters are integrals of the linear power
spectrum PLðkÞ,

σsj
2 ¼

Z
k2dk
2π2

k2jPLðkÞ½WsðkRsÞ�2: ð21Þ

The number density field nXðxÞ of biased objects is
assumed to be a multivariate function of νs, ηsi, and ζsij,
where the filtering kernels can be s ¼ T;G; eff;…, and the
spatial indices run over i ¼ 1, 2, 3 and ij ¼ 11, 22, 33, 12,
23, 13. These linear field variables are denoted by yα, where
the index α indicates one of the above field variables, such
as νT, ηG2, ζG13, etc.
The Fourier transform of the variables yαðxÞ is of the

form

~yαðkÞ ¼ UαðkÞδLðkÞ; ð22Þ

where the functions UαðkÞ corresponding to the variables
in Eq. (20) are given by WsðkÞ=σs0, ikiWsðkÞ=σs1, and
−kikjWsðkÞ=σs2, respectively. The renormalized bias func-
tions of iPT are given by [6]

cðnÞX ðk1;…; knÞ ¼
1

n̄X

X
α1;…;αn

� ∂nnX
∂yα1 � � � ∂yαn

�

×Uα1ðk1Þ � � �UαnðknÞ: ð23Þ
Here, n̄X ¼ hnXi is the mean number density of objects X.
It is convenient to define a differential operator

DðkÞ≡X
α

UαðkÞ
∂
∂yα

¼
X
s

WsðkRsÞ
�
1

σs0

∂
∂νs þ

i
σs1

Ds
ηðkÞ −

1

σs2
Ds

ζðkÞ
�
;

ð24Þ
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where

Ds
ηðkÞ ¼

X
i

ki
∂

∂ηsi ; Ds
ζðkÞ ¼

X
i≤j

kikj
∂

∂ζsij : ð25Þ

Although the set of variables ζsij is a symmetric tensor and
has six independent degrees of freedom, it is useful to
introduce a set of redundant variables,

ξsij ≡
(
ζsij ði ≤ jÞ
ζsji ði > jÞ : ð26Þ

Any function of ζsij (i ≤ j) can be considered as a function
of ξsij. The differentiation with respect to independent
variables ζsij is given by

∂
∂ζsij ¼

( ∂
∂ξsii ði ¼ jÞ
∂

∂ξsij þ ∂
∂ξsji ði < jÞ ; ð27Þ

when it acts on an explicit function of ξsij. With the
variables ξsij, the differential operator Ds

ζðkÞ in Eq. (25)
reduces to

Ds
ζðkÞ ¼

X
i;j

kikj
∂

∂ξsij : ð28Þ

Using the differential operator DðkÞ, Eq. (23) reduces to

cðnÞX ðk1;…; knÞ ¼
1

n̄X
hDðk1Þ � � �DðknÞnXi

¼ ð−1Þn
n̄X

Z
dNynXðyÞDðk1Þ � � �DðknÞPðyÞ;

ð29Þ

where PðyÞ is the joint probability distribution function and
N is the dimension of yα. Integrations by parts are applied
in the second line. The mean number density is given by

n̄X ¼ hnXi ¼
Z

dNynXðyÞPðyÞ: ð30Þ

For a given model of bias, the functions nXðyÞ and UαðkÞ
are specified, and the renormalized bias functions are
calculated by Eqs. (29) and (30). The joint probability
distribution function PðyÞ is determined by the statistics of
the initial density field δL.
Equations (29) and (30) are also applicable in the

presence of initial non-Gaussianity. When the initial den-
sity field is random Gaussian, P is a multivariate Gaussian
distribution function. In this case, the covariance matrix of
the set of variables fyαg,

Mαβ ¼ hyαyβi ¼
Z

d3k
ð2πÞ3U

�
αðkÞUβðkÞPLðkÞ; ð31Þ

completely determines the distribution function as

PðyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞN detM

p exp

	
−
1

2
yTM−1y



: ð32Þ

Generalization of the following analysis in the presence of
initial non-Gaussianity is fairly straightforward by applying
the multivariate Gram-Charlier expansion of the distribu-
tion function [32–34].

B. Simple halo model

The renormalized bias functions in the halo model of
bias are derived in Ref. [30]. We summarize the results in
this subsection. In the halo model, the smoothing radius R
is associated with a mass scale M by a relation,

M ¼ 4πρ̄0
3

R3; ð33Þ

where ρ̄0 is the mean matter density at the present time. The
above relation is equivalently represented by

R ¼
	

M
1.163 × 1012h−1M⊙Ωm0



1=3

h−1 Mpc; ð34Þ

where M⊙ ¼ 1.989 × 1030 kg is the solar mass, Ωm0

is the density parameter of the present universe, and
h ¼ H0=ð100 km s−1Mpc−1Þ is the dimensionless Hubble
parameter.
The mass element at a Lagrangian position x is assumed

to be contained in a halo of mass larger thanM, if the value
of linear density contrast δM smoothed by the mass scaleM
exceeds a critical value δc. The critical value is usually
taken to be δc ¼ 3ð3π=2Þ2=3=5≃ 1.686, which follows
from the spherical collapse calculation. The localized
differential number density of halos at a Lagrangian
position x is given by [30]

nðx;MÞ ¼ −
2ρ̄0
M

∂
∂MΘ½δMðxÞ − δc�; ð35Þ

where nðx;MÞ is the differential mass function of halos and
ΘðxÞ is the step function. This model is a generalization of
the Press-Schechter (PS) formalism [35]. In fact, on taking
the spatial average of the above equation, the number
density of halos nðMÞ in the original PS formalism is
recovered.
When the initial condition is Gaussian, and the smoothed

mass density contrast δMðxÞ is a Gaussian field, the spatial
average of the step function hΘðδMðxÞ − δcÞi is given by
the complementary error function. In this case, the global
(spatially averaged) mass function has the form
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nðMÞdM ¼ ρ̄0
M

fðνÞ dν
ν
; ð36Þ

where ν ¼ δc=σM, σM ¼ hðδMÞ2i1=2 are functions of mass
M and fðνÞ ¼ ð2=πÞ1=2νe−ν2=2. The function fðνÞ is called
the “multiplicity function” [Note that another convention
defines fðνÞ as nðMÞdM ¼ ðρ̄0=MÞfðνÞdν].
While the mass function of dark matter halos identified

in N-body simulations broadly agrees with the PS pre-
diction, the agreement is far from perfect. Recent studies
have shown that using multiplicity functions different from
the PS mass function provides better models for halo
statistics. One of the simplest models is given by a
Sheth-Tormen mass function [36], for which the multiplic-
ity function reads

fðνÞ ¼ AðpÞ
ffiffiffi
2

π

r �
1þ 1

ðqν2Þp
� ffiffiffi

q
p

νe−qν
2=2; ð37Þ

where p ¼ 0.3, q ¼ 0.707, and AðpÞ ¼ ½1þ
π−1=22−pΓð1=2 − pÞ�−1 is a normalization factor.
When the mass function is changed from the PS one,

Eq. (35) should be simultaneously changed in order to be
compatible with Eq. (36). This can be achieved by sub-
stituting the step function ΘðδM − δcÞ with an auxiliary
function ΞðδM − δc; σMÞ. This function should explicitly
depend on the mass M through σM. Otherwise, if the mass
dependence is only implicit through the smoothing kernel
of δM, the resulting mass function is only compatible with
the PS mass function. More details on the relation between
the multiplicity function and the auxiliary function is
discussed in Appendix A.
The relation between the multiplicity function fðνÞ and

the new function Ξ is given by

hΞðδM − δc; σMÞi ¼
1

2

Z
∞

ν

fðνÞ
ν

dν; ð38Þ

and the local mass function is given by

nðx;MÞ ¼ −
2ρ̄0
M

∂
∂M Ξ½δMðxÞ − δc; σM�

¼ 2ρ̄0
M

�∂δMðxÞ
∂M

∂
∂δc Ξ½δMðxÞ − δc; σM�

−
dσM
dM

∂
∂σM Ξ½δMðxÞ − δc; σM�

�
: ð39Þ

The model of Eq. (39) for the number density field
depends on the linear density field through two variables,
δMðxÞ and ∂δMðxÞ=∂M, which corresponds to the variables
yα in Sec. III A. The window functions for these variables
UαðkÞ are given byWðkRÞ and ∂WðkRÞ=∂M, respectively,
where R and M are related by Eq. (33) or (34). The
renormalized bias functions in this model are derived by

Eqs. (23) and (39). The unknown function Ξ can be
removed from the resulting expressions thanks to the
relation of Eq. (38). Closed forms for all the renormalized
bias functions are derived in Ref. [30]. (In the notation of
Ref. [30], the dependence of σM in the function Ξ is
implicit, but it is actually assumed.) The results are given by

cðnÞX ðk1;…;knÞ ¼ bLnWðk1RÞ � � �WðknRÞ

þ An−1ðMÞ
δc

n

d
d ln σM

½Wðk1RÞ � � �WðknRÞ�;

ð40Þ

where

bLnðMÞ≡
	
−

1

σM



n fðnÞðνÞ

fðνÞ ; ð41Þ

AnðMÞ≡Xn
m¼0

n!
m!

δc
mbLmðMÞ: ð42Þ

In this paper, we need only the first two functions, cð1ÞX

and cð2ÞX , which are explicitly given by

cð1ÞX ðkÞ ¼ bL1WðkRÞ þ 1

δc

dWðkRÞ
d ln σM

; ð43Þ

cð2ÞX ðk1; k2Þ ¼ bL2Wðk1RÞWðk2RÞ

þ 1þ δcbL1
δc

2

d½Wðk1RÞWðk2RÞ�
d ln σM

: ð44Þ

C. Peaks model

In the peaks model, the formation sites of dark matter
halos are identified with density peaks in Lagrangian space.
The peaks are described by field values with up to second
derivatives of a smoothed density field, νs, ηsi, and ζsij.
While the choice of smoothing kernel s is arbitrary (so long
as the convergence of the spectral moments is ensured), the
Gaussian kernel (s ¼ G) is frequently adopted. In the peaks
model, only a single kind of smoothing kernel is involved.
Therefore, we omit the subscript s in this subsection below
and use notations like ν, ηi, ζij, σ0, σ1, σ2, etc.

1. Derivation of renormalized bias
functions in the peaks model

The differential number density of discrete peaks with a
peak height νc is given by [17]

npk ¼
33=2

R�3
δDðν − νcÞδ3DðηÞΘðλ3Þj det ζj; ð45Þ

where R� ¼
ffiffiffi
3

p
σ1=σ2 is a characteristic radius and λ3 is the

smallest eigenvalue of the 3 × 3 matrix ð−ζijÞ. The number
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density of peaks with peak height between νc and νc þ dνc
is given by npkdνc.
The variables ðyαÞ consists of ten variables, ðν; ηi; ζijÞ

with 1 ≤ i ≤ j ≤ 3, and the corresponding kernels ðUαÞ
are ½WðkRÞ=σ0; ikiWðkRÞ=σ1;−kikjWðkRÞ=σ2�.
When the linear density field δL is statistically isotropic,

the joint probability distribution function PðyÞ only
depends on rotationally invariant quantities [32,33,37].
Using the redundant variables ξij defined in Eq. (26),
these are

η2≡η ·η; J1≡−ξii; J2≡3

2
~ξij ~ξji; J3 ¼

9

2
~ξij ~ξjk ~ξki;

ð46Þ

where repeated indices are summed over, and

~ξij ≡ ξij þ
1

3
δijJ1; ð47Þ

is the traceless part of ξij. Covariances among the field
variables are given by [17]

hν2i¼ 1; hνηii¼ 0; hνξiji¼−
γ

3
δij; hηiηji¼

1

3
δij;

ð48Þ

hηiξjki¼ 0; hξijξkli¼
1

15
ðδijδklþδikδjlþδilδjkÞ; ð49Þ

where

γ ≡ σ1
2

σ0σ2
ð50Þ

characterizes the broadband shape of the smoothed linear
power spectrum. Adopting the above covariances, the
multivariate distribution function of Eq. (32) reduces to
[17,18,32,33,37,38]

PðyÞ ∝ exp

�
−
ν2 þ J12 − 2γνJ1

2ð1 − γ2Þ −
3

2
η2 −

5

2
J2

�
ð51Þ

up to a normalization constant, which is irrelevant for our
applications in the following. The distribution function
above is still for linear variables y, and not for rotationally
invariant variables.
Since the distribution function PðyÞ depends only on

four rotationally invariant variables ν, J1, η2, and J2, the
first-order derivatives are given by

∂
∂ηiP¼ 2ηi

∂
∂ðη2ÞP;

∂
∂ξijP¼

�
−δij

∂
∂J1þ3~ξij

∂
∂J2

�
P;

ð52Þ

for which the relations

∂ðη2Þ
∂ηi ¼ 2ηi;

∂J1
∂ξij ¼ −δij;

∂J2
∂ξij ¼ 3~ξij ð53Þ

are used. Further differentiating the above equations, we
have

∂2

∂ηi∂ηj P ¼
�
2δij

∂
∂ðη2Þ þ 4ηiηj

∂2

∂ðη2Þ2
�
P; ð54Þ

∂2

∂ξij∂ξkl P ¼
�
δijδkl

∂2

∂J12 − 3ðδij ~ξkl þ δkl ~ξijÞ
∂2

∂J1∂J2
þ 9~ξij ~ξkl

∂2

∂J22 þ ð3δikδjl − δijδklÞ
∂
∂J2

�
P;

ð55Þ

where a relation ∂ ~ξkl=∂ξij ¼ δikδjl − δijδkl=3 is used.
The number density of peaks npkðyÞ and the distribution

function PðyÞ both depend only on rotationally invariant
variables. Thus, the differential operators Dðk1Þ � � �DðknÞ
in Eq. (29) can be replaced by those averaged over the
rotation of coordinates, h� � �iΩ. For that purpose, we have

hηiiΩ ¼ 0; hηiηjiΩ ¼ 1

3
δijη

2; h~ξijiΩ ¼ 0; ð56Þ

h~ξij ~ξkliΩ ¼ 1

15

	
δikδjl þ δilδjk −

2

3
δijδkl



J2; ð57Þ

and so forth.
Combining Eqs. (24), (25), (28), and (52)–(57), we have

hDðkÞiΩP ¼ WðkRÞ
	
1

σ0

∂
∂νþ

k2

σ2

∂
∂J1



P; ð58Þ

hDðk1ÞDðk2ÞiΩP
¼ Wðk1RÞWðk2RÞ

×

�	
1

σ0

∂
∂νþ

k12

σ2

∂
∂J1


	
1

σ0

∂
∂νþ

k22

σ2

∂
∂J1




−
2ðk1 · k2Þ

σ1
2

�
1þ 2

3
η2

∂
∂ðη2Þ

� ∂
∂ðη2Þ

þ 3ðk1 · k2Þ2 − k12k22

σ2
2

�
1þ 2

5
ζ2

∂
∂J2

� ∂
∂J2

�
P: ð59Þ

Derivatives with respect to variables ν and J1 in Eqs. (58)
and (59) can be represented by bivariate Hermite poly-
nomials [38],

Hijðν; J1Þ≡ ð−1Þiþj

N ðν; J1Þ
	 ∂
∂ν



i
	 ∂
∂J1



j
N ðν; J1Þ; ð60Þ
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where

N ðν; J1Þ≡ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p exp

�
−
ν2 þ J12 − 2γνJ1

2ð1 − γ2Þ
�

ð61Þ

is the bivariate normal distribution function. Derivatives
with respect to variables η2 and J2 are straightforwardly
obtained as�
1þ 2

3
η2

∂
∂ðη2Þ

� ∂
∂ðη2Þ e

−3η2=2 ¼ 3

2
ðη2 − 1Þe−3η2=2

¼ −Lð1=2Þ
1

	
3

2
η2


e−3η

2=2;

ð62Þ

�
1þ2

5
J2

∂
∂J2

� ∂
∂J2e

−5J2=2¼5

2
ðJ2−1Þe−5J2=2

¼−Lð3=2Þ
1

	
5

2
J2



e−5J2=2; ð63Þ

where

LðαÞ
n ðxÞ ¼ x−αex

n!
dn

dxn
ðxnþαe−xÞ ð64Þ

are the generalized Laguerre polynomials.
Substituting Eqs. (58) and (59) into the integrand of

Eq. (29), we obtain

cð1ÞX ðkÞ ¼ ðb10 þ b01k2ÞWðkRÞ; ð65Þ

cð2ÞX ðk1;k2Þ ¼
�
b20 þ b11ðk12 þ k22Þ

þ b02k12k22 − 2χ1ðk1 · k2Þ

þω10½3ðk1 · k2Þ2 − k12k22�
�
Wðk1RÞWðk2RÞ;

ð66Þ
where

bij ≡ 1

σ0
iσ2

jn̄pk

Z
d10ynpkHijðν; J1ÞP; ð67Þ

χk ≡ ð−1Þk
σ1

2kn̄pk

Z
d10ynpkL

ð1=2Þ
k

	
3

2
η2


P; ð68Þ

ωl0 ≡ ð−1Þl
σ2

2ln̄pk

Z
d10ynpkL

ð3=2Þ
l

	
5

2
J2



P: ð69Þ

The higher-order renormalized bias functions cðnÞX can be
similarly obtained by further differentiating Eqs. (54) and
(55) and following similar procedures as above.
The above results have exactly the same form as the peak

bias functions, which have been derived in Refs. [18,38].
These authors generalized the peak-background split and
argued that the peak bias factors indeed are the ensemble
average of orthogonal polynomials. However, they did not
explicitly demonstrate that their generalized polynomial
expansion holds beyond second order. In Appendix B, we
briefly sketch how this could be done and emphasize the
connection between the peak approach and the iPT.
Note that, as the peak constraint npk has a factor δ3DðηÞ,

only the constant term of the generalized Laguerre poly-

nomials LðαÞ
n ð0Þ¼Γðnþαþ1Þ=½Γðnþ1ÞΓðαþ1Þ� appears.

Therefore, Eq. (68) reduces to

χk ¼
ð2kþ 1Þ!!

2kk!
ð−1Þk
σ1

2k : ð70Þ

The integrals Eqs. (67), (68), and (69) appear up to second

order, i.e., in the functions cð1ÞX and cð2ÞX . Note, however, that
the bias coefficients will generically take the form [33]

Z
d10ynpkHijðν; J1ÞLð1=2Þ

k

	
3

2
η2


Flmð5J2; J3ÞP; ð71Þ

in the renormalized bias functions cðnÞX with n ≥ 3 [18],
where

Flmð5J2; J3Þ≡ ð−1Þl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γð5=2Þ
23mΓð3mþ 5=2Þ

s

× Lð3mþ3=2Þ
l

	
5

2
J2



Pm

	
J3

J23=2



ð72Þ

are polynomials of J2 and J3, orthogonalized with the
Gram-Schmidt procedure and PmðxÞ are Legendre poly-
nomials. The appearance of PmðxÞ reflects the fact that J3 is
an “angular” variable. This is the reason why we adopt the
notation χk and ωl0 of Ref. [18]. We refer the reader to this
work for more details.

2. Bias coefficients of peaks model

Even though the bias coefficients bij, χk, and ωl0 are
explicitly defined as ten-dimensional integrals, they can be
reduced to one-dimensional integrals at most. Explicit
formulas of the coefficients are derived below.
To begin with, we define a set of integrals:

Apk
n ðνcÞ≡ 1

n̄pk

Z
d10ynpkJ1nP; ð73Þ
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Bpk
n ðνcÞ≡ 1

n̄pk

Z
d10ynpkJ2nP: ð74Þ

All the bias coefficients defined in Eqs. (67) and (68) can be
represented by the above functions Apk

n and Bpk
n of Eqs. (73)

and (74), becauseHij and L
ðαÞ
n are just polynomials of their

arguments, and peak constraints in npk contain delta
functions as δDðν − νcÞδ3DðηÞ. Defining invariant variables

x¼ λ1þ λ2þ λ3; y¼ 1

2
ðλ1−λ2Þ; z¼ 1

2
ðλ1−2λ2þλ3Þ;

ð75Þ

where λ1, λ2, λ3 are eigenvalues of −ζij with a descending
order (λ1 ≥ λ2 ≥ λ3), the peak number density of Eq. (45)
reduces to [17]

npk ¼
2ffiffiffi
3

p
R�3

δDðν − νcÞδ3DðηÞðx − 2zÞ½ðxþ zÞ2 − ð3yÞ2�

× Θðy − zÞΘðyþ zÞΘðx − 3yþ zÞ: ð76Þ

Other variables in Eqs. (73) and (74) correspond to J1 ¼ x,
J2 ¼ 3y2 þ z2. Following similar calculations in Ref. [17],
and defining a function

Fðx; y; zÞ≡ ðx − 2zÞ½ðxþ zÞ2 − ð3yÞ2�yðy2 − z2Þ; ð77Þ

Eqs. (73) and (74) reduce to

Apk
n ðνcÞ ¼

R
0
∞dxxnf0ðxÞN ðνc; xÞR
0
∞dxf0ðxÞN ðνc; xÞ

; ð78Þ

Bpk
n ðνcÞ ¼

R
0
∞dxfnðxÞN ðνc; xÞR

0
∞dxf0ðxÞN ðνc; xÞ

; ð79Þ

where the function N is given by Eq. (61) and

fnðxÞ≡ 3255=2ffiffiffiffiffiffi
2π

p
	Z

x=4

0

dy
Z

y

−y
dzþ

Z
x=2

x=4
dy

Z
y

3y−x
dz




× ð3y2 þ z2ÞnFðx; y; zÞe−5ð3y2þz2Þ=2: ð80Þ

The function f0ðxÞ is identical to the function fðxÞ defined
by Eq. (A.15) of Ref. [17]:

f0ðxÞ ¼
x
2
ðx2 − 3Þ

�
erf

	
1

2

ffiffiffi
5

2

r
x



þ erf

	 ffiffiffi
5

2

r
x


�

þ
ffiffiffiffiffiffi
2

5π

r �	
x2

2
−
8

5



e−5x

2=2 þ
	
31

4
x2 þ 8

5



e−5x

2=8

�
:

ð81Þ

With the same consideration in Ref. [38], the analytically
closed form of Eq. (80) is derived from f0ðxÞ as

fnðxÞ ¼
	
−
2

5

∂
∂α



n
�
f0ðα1=2xÞ

α4

�����
α¼1

: ð82Þ

For example, the explicit form of n ¼ 1 is given by

f1ðxÞ ¼
x
2

	
x2 −

21

5


�
erf

	
1

2

ffiffiffi
5

2

r
x



þ erf

	 ffiffiffi
5

2

r
x


�

þ
ffiffiffiffiffiffi
2

5π

r �	
x2

2
−
64

25



e−5x

2=2

þ
	
27

16
x4 þ 209

20
x2 þ 64

25



e−5x

2=8

�
: ð83Þ

Thus, the originally ten-dimensional integrals of
Eqs. (73) and (74) reduce to just one-dimensional ones of
Eqs. (78) and (79), for which numerically evaluations are
straightforward.
Equations (67) and (70) can be straightforwardly repre-

sented by Apk
n and Bpk

n , using explicit expressions for the

polynomials Hij and LðαÞ
n . The results are given by

b10 ¼
1

σ0

νc − γApk
1 ðνcÞ

1 − γ2
; ð84Þ

b01 ¼
1

σ2

−γνc þ Apk
1 ðνcÞ

1 − γ2
; ð85Þ

b20¼
1

σ0
2

1

1− γ2

�
ν2c −2γνcA

pk
1 ðνcÞþ γ2Apk

2 ðνcÞ
1− γ2

−1

�
; ð86Þ

b11¼
1

σ0σ2

1

1− γ2

×

�
−γν2c þð1þ γ2ÞνcApk

1 ðνcÞ− γApk
2 ðνcÞ

1− γ2
þ γ

�
; ð87Þ

b02¼
1

σ2
2

1

1− γ2

�
γ2ν2c −2γνcA

pk
1 ðνcÞþApk

2 ðνcÞ
1− γ2

−1

�
; ð88Þ

and

χ1 ¼ −
3

2σ1
2
; ð89Þ

ω10 ¼ −
5

2σ2
2
½1 − Bpk

1 ðνcÞ�: ð90Þ

The quantities Apk
1 ðνcÞ, Apk

2 ðνcÞ, and Bpk
1 ðνcÞ are given by

one-dimensional integrals of Eqs. (78) and (79) with
Eqs. (61), (81), and (83).
The above results for bij can be conveniently represented

by matrix notation as follows. We note that Eq. (61) is a
multivariate Gaussian function with a covariance matrix,
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M ¼
	
1 γ

γ 1



: ð91Þ

Defining

bð1Þ≡
	
σ0b10
σ2b01



; bð2Þ≡

	
σ0

2b20 σ0σ2b11
σ0σ2b11 σ2

2b02



; ð92Þ

and

Að1Þ ≡
	

νc

Apk
1 ðνcÞ



; Að2Þ ≡

	
νc

2 νcA
pk
1 ðνcÞ

νcA
pk
1 ðνcÞ Apk

2 ðνcÞ



;

ð93Þ

Eqs. (84)–(88) are equivalently represented by

bð1Þ ¼ M−1Að1Þ; bð2Þ ¼ M−1Að2ÞM−1 −M−1: ð94Þ

D. Excursion set peaks

The ESP model extends the peaks model with another
constraint that the smoothed linear density field should
increase when the mass scale decreases, ∂δs=∂Rs < 0, in
order to avoid the cloud-in-cloud problem. We define the
normalized slope of the smoothed linear density field with
respect to the smoothing radius,

μs ¼ −
1

Δs0

∂δs
∂Rs

; ð95Þ

where

Δs0 ¼
�	∂δs

∂Rs



2
�

1=2
: ð96Þ

The constraint of the ESP model is to require an inequality
μs > 0. The differential number density of the ESP model
is given by [24,25,34]

nESP ¼ −
	
dσs0
dRs



−1
Δs0

μs
νs

ΘðμsÞnpk; ð97Þ

where npk is the differential number density of discrete
peaks given by Eq. (45). This implies that the multiplicity
function of the excursion reads

fESPðνcÞ≡ Vνc

Z
d11ynESPP; ð98Þ

where V ¼ M=ρ̄0 is the Lagrangian volume of a halo of
mass M and the vector ðyαÞ now consists of the 11
variables ðν; μ; ηi; ζijÞ.
Although it would be desirable to use the same window

function (such as the window shape of Ref. [31] measured

directly from simulations), for all the relevant fields, our
approach remains perfectly consistent when different filters
are applied. For instance, top-hat smoothing is not appro-
priate to define density peaks because the window function
does not vanish sufficiently fast at high k. As a result,
spectral moments like σ2 do not converge for a cold dark
matter (CDM) power spectrum. However, since top-hat
smoothing is the natural choice to relate the peak height to
the spherical collapse expectation, Refs. [39,40] suggested
applying the top-hat windowWT the variables νs and μs and
a Gaussian filter WG to the variables ηsi and ζsij. In the
following, we denote the window function for νs and μs by
WðkRÞ and that for ηsi and ζsij by W̄ðkR̄Þ. When a single
window function is applied, one can simply set R̄ ¼ R and
W̄ðkR̄Þ ¼ WðkRÞ. In the following, we omit the subscript s
in this subsection below and use notations such as ν, μ, ηi,
ζij. The quantity σ0 is associated with the window function
of WðkRÞ, and σ̄1, σ̄2 are associated with W̄ðkR̄Þ. The rms
of Eq. (96) is represented by Δ0 with a window function of
W and explicitly given by

Δ0
2 ¼

Z
k2dk
2π2

k2½W0ðkRÞ�2PLðkÞ; ð99Þ

where W0ðxÞ ¼ dWðxÞ=dx is the first derivative of the
window function.

1. Derivation of renormalized bias
functions in the ESP model

We define rotationally invariant quantities η2, J1, J2, and
J3 as in Eq. (46). For a Gaussian initial condition, the joint
probability distribution function is given by

PðyÞ ∝ N ðν; J1; μÞ exp
	
−
3

2
η2 −

5

2
J2



; ð100Þ

where N ðν; J1; μÞ is the trivariate distribution function,
which is given by

N ðν; J1; μÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ3jMj
p exp

	
−
1

2
aTM−1a



; ð101Þ

where

a ¼

0
B@

ν

J1
μ

1
CA; M ¼

0
B@

1 γ12 γ13

γ12 1 γ23

γ13 γ23 1

1
CA: ð102Þ

The matrix M is the covariance matrix of a: Mij ¼ haiaji.
The variables are normalized so as to have the diagonal
elements of this matrix unity. The off-diagonal elements are
given by
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γ12¼hνJ1i¼
1

σ0σ̄2

Z
k2dk
2π2

k2WðkRÞW̄ðkR̄ÞPLðkÞ; ð103Þ

γ13¼hνμi¼−
1

σ0Δ0

Z
k2dk
2π2

kWðkRÞW0ðkRÞPLðkÞ; ð104Þ

γ23 ¼ hJ1μi ¼ −
1

σ̄2Δ0

Z
k2dk
2π2

k3W̄ðkR̄ÞW0ðkRÞPLðkÞ:

ð105Þ

The determinant jMj and the inverse matrix M−1 are
given by

jMj ¼ 1 − γ12
2 − γ23

2 − γ13
2 þ 2γ12γ23γ13; ð106Þ

M−1 ¼ 1

jMj

0
BB@

1 − γ23
2 γ23γ13 − γ12 γ12γ23 − γ13

γ23γ13 − γ12 1 − γ13
2 γ13γ12 − γ23

γ12γ23 − γ13 γ13γ12 − γ23 1 − γ12
2

1
CCA:

ð107Þ
Choosing a Gaussian filter for both windows, i.e.,

WðkRÞ ¼ W̄ðkR̄Þ ¼ WGðkRÞ, leads to −kW0
GðkRÞ ¼

Rk2WGðkRÞ and μ ¼ ðRσ̄2=Δ0ÞJ1, which signifies that μ
and J1 are redundant variables. In this special case, the third
variable in a is not necessary, and we only need a two-
dimensional covariance matrix. We will not consider this
simpler case in what follows.
Using the fact that P is a function of only ν, μ, η2, J1, and

J2, and following the same steps of Eqs. (54)–(59), we have

hDðkÞiΩP ¼
�
WðkRÞ
σ0

∂
∂νþ

k2W̄ðkR̄Þ
σ̄2

∂
∂J1 −

kW0ðkRÞ
Δ0

∂
∂μ

�
P; ð108Þ

hDðk1ÞDðk2ÞiΩP ¼
��

Wðk1RÞ
σ0

∂
∂νþ

k12W̄ðk1R̄Þ
σ̄2

∂
∂J1 −

k1W0ðk1RÞ
Δ0

∂
∂μ

��
Wðk2RÞ

σ0

∂
∂νþ

k22W̄ðk2R̄Þ
σ̄2

∂
∂J1 −

k2W0ðk2RÞ
Δ0

∂
∂μ

�

−
2ðk1 · k2ÞW̄ðk1R̄ÞW̄ðk2R̄Þ

σ̄1
2

�
1þ 2

3
η2

∂
∂ðη2Þ

� ∂
∂ðη2Þ

þ ½3ðk1 · k2Þ2 − k12k22�W̄ðk1R̄ÞW̄ðk2R̄Þ
σ̄2

2

�
1þ 2

5
J2

∂
∂ðJ2Þ

� ∂
∂ðJ2Þ

�
P: ð109Þ

Substituting Eqs. (108) and (109) into the integrand of Eq. (29), we have

cð1ÞX ðkÞ ¼ b100WðkRÞ þ b010k2W̄ðkR̄Þ − b001kW0ðkRÞ; ð110Þ

cð2ÞX ðk1; k2Þ ¼ b200Wðk1RÞWðk2RÞ þ b110½k22Wðk1RÞW̄ðk2R̄Þ þ ð1↔2Þ�
þ fb020k12k22 þ ω10½3ðk1 · k2Þ2 − k12k22� − 2χ1ðk1 · k2ÞgW̄ðk1R̄ÞW̄ðk2R̄Þ
− b101½k1W0ðk1RÞWðk2RÞ þ ð1↔2Þ� − b011½k1k22W0ðk1RÞW̄ðk2R̄Þ þ ð1↔2Þ� þ b002k1k2W0ðk1RÞW0ðk2RÞ;

ð111Þ

where

bijk ¼
1

σ0
iσ̄2

jΔ0
kn̄ESP

Z
d11ynESPHijkðν; J1; μÞP; ð112Þ

χk ¼
ð2kþ 1Þ!!

2kk!
ð−1Þk
σ̄1

2k ; ð113Þ

ωl0 ¼
ð−1Þl
σ̄2l2 n̄ESP

Z
d11ynESPL

ð3=2Þ
l

	
5

2
J2



P: ð114Þ

Here, Hijk are trivariate Hermite polynomials

Hijkðν;J1;μÞ≡ ð−1Þiþjþk

N ðν;J1;μÞ
	 ∂
∂ν



i
	 ∂
∂J1



j
	 ∂
∂μ



k
N ðν;J1;μÞ;

ð115Þ
and we have exploited the fact that nESP contains a delta
function δ3DðηÞ to simplify χi.
Again, Eqs. (110) and (111) exactly agree with the

results derived independently in Refs. [18,41] in a fairly
different manner.

2. Bias coefficients of the ESP model

The coefficients bijk and ωl0 also reduce to expressions
with up to one-dimensional integrals, extending the method
of Sec. III C 2. For this purpose, we define integrals,
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AESP
nm ðνcÞ≡ 1

n̄ESP

Z
d11ynESPJ1nμmP; ð116Þ

BESP
n ðνcÞ≡ 1

n̄ESP

Z
d11ynESPJ2nP: ð117Þ

Just in a similar manner of deriving Eqs. (78) and (79),
Eqs. (116) and (117) reduce to

AESP
nm ðνcÞ ¼

R
0
∞dxxnf0ðxÞgmðνc; xÞR
0
∞dxf0ðxÞg0ðνc; xÞ

; ð118Þ

BESP
n ðνcÞ ¼

R
0
∞dxfnðxÞg0ðνc; xÞR

0
∞dxf0ðxÞg0ðνc; xÞ

; ð119Þ

where

gmðνc; xÞ ¼
Z

∞

0

dμμmþ1N ðνc; x; μÞ: ð120Þ

The function gmðνc; xÞ is analytically represented by the
parabolic cylinder function DλðzÞ which has an integral
representation,

DλðzÞ ¼
e−z

2=4

Γð−λÞ
Z

∞

0

e−zt−t
2=2t−λ−1dt: ð121Þ

For our convenience, we define a function

HλðzÞ≡ ez
2=4DλðzÞ: ð122Þ

When λ ¼ n is a non-negative integer, this function reduces
to Hermite polynomials HnðzÞ. When λ ¼ −n is a negative
integer, integral representation of H−nðzÞ is given by

H−nðzÞ ¼
1

ðn − 1Þ!
Z

∞

0

e−zt−t
2=2tn−1dt

¼
ffiffiffiffiffiffiffiffi
π=2

p
ðn − 1Þ!

	
−

d
dz



n−1

�
ez

2=2erfc

	
zffiffiffi
2

p

�

: ð123Þ

First, several functions are explicitly given by

H−1ðzÞ ¼
ffiffiffi
π

2

r
ez

2=2erfc

	
zffiffiffi
2

p


; ð124Þ

H−2ðzÞ ¼ 1 −
ffiffiffi
π

2

r
zez

2=2erfc
	

zffiffiffi
2

p


; ð125Þ

H−3ðzÞ ¼
1

2

�
−zþ

ffiffiffi
π

2

r
ðz2 þ 1Þez2=2erfc

	
zffiffiffi
2

p

�

; ð126Þ

H−4ðzÞ ¼
1

6

�
z2 þ 2 −

ffiffiffi
π

2

r
ð3zþ z3Þez2=2erfc

	
zffiffiffi
2

p

�

:

ð127Þ

Using the function H−nðzÞ defined above, an integration
by μ in Eq. (120) can be analytically performed, resulting in

gmðνc; xÞ ¼
ðmþ 1Þ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ3jMj
p

ðM−1
33 Þm=2þ1

× exp

�
−
1

2
ðM−1

11 νc
2 þ 2M−1

12 νcxþM−1
22 x

2Þ
�

×H−ðmþ2Þ

	
M−1

13 νc þM−1
23 xffiffiffiffiffiffiffiffiffi

M−1
33

p 

; ð128Þ

where M−1
ij ¼ ½M−1�ij are matrix elements of the inverse

matrixM−1 given by Eq. (107). Substituting Eqs. (123) and
(128) into Eqs. (118) and (119), only one-dimensional
numerical integrations of smooth functions are required.
Equations (112), (113), and (114) can be straightfor-

wardly represented by functions AESP
nm ðνcÞ and BESP

n ðνcÞ,
using explicit forms of polynomials Hijk, LðαÞ

i . As in
Eqs. (91)–(94) of the peaks model, the results for bijk
are conveniently represented by matrix notation. Defining

bð1Þ ≡
0
B@

σ0b100
σ̄2b010
Δ0b001

1
CA; ð129Þ

bð2Þ ≡
0
B@

σ0
2b200 σ0σ̄2b110 σ0Δ0b101

σ0σ̄2b110 σ̄2
2b020 σ̄2Δ0b011

σ0Δ0b101 σ̄2Δ0b011 Δ0
2b002

1
CA; ð130Þ

and

Að1Þ ≡
0
B@

νc

AESP
10 ðνcÞ

AESP
01 ðνcÞ

1
CA; ð131Þ

Að2Þ ≡
0
B@

νc
2 νcAESP

10 ðνcÞ νcAESP
01 ðνcÞ

νcAESP
10 ðνcÞ AESP

20 ðνcÞ AESP
11 ðνcÞ

νcAESP
01 ðνcÞ AESP

11 ðνcÞ AESP
02 ðνcÞ

1
CA; ð132Þ

we have

bð1Þ ¼ M−1Að1Þ; bð2Þ ¼ M−1Að2ÞM−1 −M−1; ð133Þ

where M−1 is given by Eq. (107). All the coefficients to
evaluate the renormalized bias functions up to second order
in Eqs. (110) and (111) for the ESP model are thus
obtained. The results for χ1 and ω10 are
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χ1 ¼ −
3

2σ̄1
2
; ð134Þ

ω10 ¼ −
5

2σ̄2
2
½1 − BESP

1 ðνcÞ�: ð135Þ

IV. RESULTS

In this section, all the formulas in previous sections are
put together, and the results of power spectra and corre-
lation functions with various biasing schemes are pre-
sented. In the following, the flat ΛCDM model with
cosmological parameters Ωm0 ¼ 0.3089, Ωb0 ¼ 0.0486,
h ¼ 0.6774, ns ¼ 0.9667, σ8 ¼ 0.8159 (Planck2015
[42]) is assumed. We will hereafter present for the repre-
sentative redshifts z ¼ 1, 2, 3, which are of particular
interest because currently planned, forthcoming redshift
surveys will harvest this redshift range. We have checked
that results at lower redshift, such as z ¼ 0.5, are qualita-
tively similar to those at z ¼ 1. Another reason for focusing
at z ≥ 1 is the fact that the applicability range of the
perturbation theory decreases noticeably for z ≪ 1.

A. Bias models

Four different models of bias are considered in this
section. The “halo model” refers to a model described in
Sec. III B, and the renormalized bias functions are given by
Eqs. (43) and (44) with coefficients of Eq. (41). The top-hat
window function WTðkRÞ and the Sheth-Tormen mass
function, Eq. (37), are adopted in this model. The only
parameter in this model is a smoothing radius R, or
equivalently a mass scale M of Eq. (33).
The “local halo” refers to a model with scale-

independent values of renormalized bias functions,

cð1ÞX ¼ bL1 , c
ð2Þ
X ¼ bL2 , where b

L
n are given by the halo model

above. This model is a simplified version of the halo model,
in which the renormalized bias functions are replaced by
their low-k limits. Hence, this is equivalent to completely
neglecting the effects of the window function in Eqs. (43)
and (44). Scale-independent bias functions correspond to a
bias model in which the number density of biased tracers
nLXðxÞ solely is a function of linear density field δLðxÞ at the
same Lagrangian position x. We consider this model for the
purpose of assessing the importance of the window
functions in the halo model.
The “peaks model” refers to the model described in

Sec. III C. Its renormalized bias functions are given by
Eqs. (65) and (66) with coefficients calculated by
Eqs. (84)–(90). A Gaussian window function WGðkRGÞ
is adopted throughout. While the threshold νc is originally a
free parameter of the peaks model, we fix its value with a
relation νc ¼ δc=σG0ðRGÞ, where σG0ðRGÞ ¼ σ0ðRGÞ is the
rms of variance. Therefore, the Gaussian smoothing radius
RG is the only parameter in this model.

The “ESP model” refers to a model described in
Sec. III D, and the renormalized bias functions are given
by Eqs. (110) and (111) with coefficients calculated by
Eqs. (129)–(135). There are two kinds of window functions
in this model: a top-hat and Gaussian, which we denote as
WðkRÞ ¼ WTðkRTÞ and W̄ðkR̄Þ ¼ WGðkRGÞ, respectively.
These smoothing radii are related by RG ¼ 0.46RT [40].
Furthermore, the threshold value is fixed by
νc ¼ δc=σT0ðRÞ, where σT0ðRÞ ¼ σ0ðRÞ is the rms of
variance with the top-hat window function. Hence, the
top-hat smoothing radius R is the only free parameter of
this model.
Each bias model has a unique parameter in our settings

described above. To make comparisons among various
biasing schemes, the parameter of each model is adjusted so
as to give the same value for the first-order renormalized
bias function in the low-k limit, limk→0c

ð1Þ
X ðkÞ. This limiting

value is the bias parameter bL1 , b10, or b100, depending on
the model details. For the purpose of presentation, we
define the value by the parameter bL1 ðMÞ with the top-hat
window function and a mass scaleM ¼ 1 × 1013h−1M⊙ in
Eq. (34). The resulting values are bL1 ¼ 1.053 (z ¼ 1),
2.694 (z ¼ 2), 5.039 (z ¼ 3). The smoothing radii of peaks
and ESP models are adjusted to reproduce the same values
in b10 and b100. The corresponding mass scale varies in the
range M ¼ 0.7–1.8 × 1013h−1M⊙ for the peaks and ESP
models, with a slight dependence on redshift.

B. Renormalized bias functions

The renormalized bias functions, cð1ÞX ðkÞ and cð2ÞX ðk1; k2Þ,
are shown in Fig. 1. For the second-order functions, the
horizontal axis corresponds to the amplitude of
jk1 þ k2j≡ k, which is relevant to the scale of power
spectrum PðkÞ. Three different shapes corresponding to the
triangles ½jk1j;jk2j;jk1þk2j�¼½k;k;k�;½5k;5k;k�;½k=5;k;k�
are plotted to illustrate the characteristic behaviors.
These configurations correspond to equilateral, folded,
and squeezed shapes of a triangle, respectively.
The local halo model has a constant value in each panel

by definition. Other models have asymptotes cðnÞX → 0 in
large k, because the window functions vanish in this limit.
This reflects the fact that the halo centers cannot have
clustering power on scales smaller than the halo mass. The
value of second-order parameter bL2 turns out to be very
close to zero at redshift z ¼ 1 for our cosmology and
fiducial mass function. Consequently, the low-k limit of the
renormalized bias function in the halo model also is very
close to zero.
A striking feature in the scale dependence of the

renormalized bias functions is the appearance of peaks
before the cðnÞX decay to zero in the large-k limit. The height
of these peaks is generally larger at lower redshift.
However, the amplitudes depend strongly on bias models.
The peak height of the halo model is lower than those of
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peaks and ESP models. There are oscillations around the
asymptote in the large-k tails for halo and ESP models.
These oscillations reflect the property of top-hat window
function. Such oscillations are not seen in peaks model in
which only Gaussian window functions are used.
The first-order renormalized bias function cð1ÞX has

recently been measured from the analysis of halos in N-
body simulations [31,43]. The appearance of peaks at
around kR ∼ 2.5 and oscillating features in high-k tails
are clearly observed. For instance, the behavior of the
numerical results in the z ¼ 0.95 sample of Ref. [31] (see
its Fig. 5) lies somewhere between the predictions of the
halo model and ESP model in the z ¼ 1 plot of our Fig. 1:
the peak height in the numerical simulations is larger than
the halo model and smaller than the ESP model, and the
amplitude of oscillations in the high-k tail is smaller than
the halo model and larger than the ESP model. The authors
of Ref. [31] use an effective window function Weff and a
model which is similar to our Eq. (43) but consider the
coefficients bL1 and 1=δc as free parameters. Fitting the three
parameters R, bL1 , and 1=δc to their numerical results, the
scale dependence of the Lagrangian bias factor is nicely
accounted for.
One should, however, bear in mind that the precise

shapes of renormalized bias functions depend on the details

of the halo identification procedure. While the numerical
simulations mentioned above use the “Friends-of-Friends”
algorithm [44], one should naturally expect that other
methods, such as the “Spherical Overdensity” algorithm
[45], yield different results. Since the purpose of this paper
is to investigate the impacts of different biasing schemes
rather than fit our models to numerical results based on a
specific halo-finding algorithm, we will keep on inves-
tigating how the four different models affect the predictions
of iPT for the power spectra and correlation functions.

C. Power spectra and correlation functions in real space

Our predictions for the one-loop power spectra in real
space are shown in Fig. 2. The upper panels show the power
spectra divided by a no-wiggle linear power spectrum
PnwðkÞ [46] and by the square of Eulerian linear bias
parameter, b2 ¼ ð1þ bL1 Þ2. The lower panels show the
scale-dependent bias, which is defined as the square
root of the ratio between the power spectrum of biased
tracers and that of the mass distribution, ½PXðkÞ=PmðkÞ�1=2.
Horizontally straight lines in bottom panels indicate the
linear bias factor b. Here and henceforth, the shaded region
in each figure corresponds to a rough estimate of the k
range in which the one-loop iPT is inaccurate at the level of
a few percent. In this figure, they are given by k≳ 0.45=σd,
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FIG. 1. Renormalized bias functions, cð1ÞX and cð2ÞX . The results for three redshifts z ¼ 1, 2, 3 are shown as indicated in each figure. Four
models of bias are plotted in different lines: local halo (solid, orange), halo model (dashed, red), peaks model (dotted, blue), and ESP
model (dot-dashed, green).
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where σd ¼ hjΨZelj2i1=2 is the rms of the displacement field
evaluated with the Zel’dovich approximation. Our estimate
is fairly reasonable when comparison between the iPT and
numerical simulations is available [47–49].
There are deviations from the predictions of linear theory

even in the large-scale limit, k < 0.01hMpc−1, owing
mainly to a white-noise-like contribution generated by
second-order Lagrangian bias [50]; the contribution of
the first term on the rhs of Eq. (10) to the biased power
spectrum of Eq. (5) is given by

PXðkÞ ⊃
1

2

Z
k12¼k

½cð2ÞX ðk1; k2Þ�2PLðk1ÞPLðk2Þ: ð136Þ

The second-order bias function cð2ÞX ðk1; k2Þ does not gen-
erally approach zero in the large-scale limit of
k ¼ k1 þ k2 → 0, and therefore the above term approaches
a positive constant in the same limit. As a result, the
nonlinear power spectra of biased tracers in the large-scale
limit are always larger than the predictions of linear
theory. At redshift z ¼ 1, the second-order function is
coincidentally close to zero in the large-scale limit, so that
this white-noise-like term is small.
In each of our bias models, the power spectra are

systematically larger than the predictions of linear theory
toward small scales. Consequently, the nonlinear scale-
dependent bias ½PXðkÞ=PmðkÞ�1=2 increases at small scales.
This property is not solely due to the scale dependencies of

the first-order bias function, cð1ÞX ðkÞ since the local halo

model, in which cð1ÞX does not have any scale dependence,
exhibits the same behavior. Therefore, the second-order
effects are important to account for the scale-dependent

enhancements of the power spectrum in the presence
of bias.
The qualitative behavior of the power spectrum does not

vary significantly among the different biasing schemes.
Except for the simplistic local halo, the differences between
the models are at the level of 2%–4% at k≲ 0.2hMpc−1.
Although the renormalized bias functions behave fairly
differently among different biasing schemes, these devia-
tions do not have a pronounced impact on the shape of the
power spectrum. The reason is that the biasing schemes
start deviating significantly from each other on scales
smaller than the halo mass M ¼ 1 × 1013h−1M⊙, which
corresponds to R≃ 3h−1 Mpc or k ∼ 1hMpc−1, on which
perturbation theory cannot be applied. It is the asymptotic

value of the renormalized bias functions cðnÞX in the large-
scale limit k → 0 which determines the overall shape of the
nonlinear power spectrum. Clearly, however, these subtle
differences will be important to determine the shape of
PXðkÞ at the percent level.
The one-loop correlation function in real space, ξðrÞ, is

plotted in Fig. 3. In the upper panels, the correlation has been
multiplied by the square of the separation r2 to highlight the
shapeof the baryon acoustic oscillation (BAO), as is common
practice in the literature. In the lower panels, the nonlinear
scale-dependent bias ½ξXðrÞ=ξmðrÞ�1=2 is shown as a function
of distance. Shaded regions correspond to the region r≲ 5σd
where the one-loop iPT is expected to fail at a level of a few
percent at least.
The upper panels indicate that the shape of the BAO peak

is not significantly affected by the choice of biasing
scheme. The differences on scales r≳ 20h−1 Mpc are as
small as 1% at z ¼ 1 and the subpercent level at z ¼ 2
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FIG. 2. The one-loop power spectra in real space with different biasing schemes. Upper panels show the power spectra divided by the
linear, no-wiggle power spectrum with the linear bias, PXðkÞ=½b2PnwðkÞ�. The lower panels show the scale-dependent bias,
½PXðkÞ=PmðkÞ�1=2. The meanings of different lines are indicated in the panels. Shaded regions represent rough estimates where the
one-loop perturbation theory is expected to be inaccurate.
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and 3, except for the simplistic local halo. As seen in the
lower panels with z ¼ 1, the BAO peaks of biased tracers
are slightly sharper than that of mass by a few percent.
However, the shapes of the peaks for z ¼ 2 and 3 are
slightly distorted by a few percent in nontrivial ways. At
redshift z ¼ 2 and 3, the scale-dependent bias on scales
30–80h−1 Mpc is slightly lower than the predictions of
linear theory by about 1%.

D. Power spectra and correlation functions
in redshift space

The monopole components of the one-loop power
spectra in redshift space are plotted in Fig. 4. In the upper
panels, the results are normalized by the no-wiggle power
spectrum with a linear enhancement factor b2R0, where
R0 ¼ 1þ 2β=3þ β2=5 is the redshift-space enhancement
factor of the monopole component in linear theory [3].
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Again, the shaded regions correspond to k≳ 0.33=σd, for
which the one-loop iPT is not expected to apply at the level
of a few percent.
Comparing the behaviors of monopole components in

redshift space with those of Fig. 2 in real space shows that
the nonlinear enhancements at smaller scales are less
pronounced in redshift space. Overall, however, the impact
of nonlinearities is similar to that in real space. The
differences among different biasing schemes are about
2%–4% at k≲ 0.2hMpc−1 except for the simplistic local
halo, i.e., at the same level as in real space.
The quadrupole and hexadecapole components of the

one-loop power spectra in redshift space are shown in
Figs. 5 and 6. In the upper panels, the additional normali-
zation factor induced by the linear redshift-space

distortions are R2 ¼ 4β=3þ 4β2=7 and R4 ¼ 8β2=35. In
the lower panels, ratios of the quadrupole and hexadecapole
to the monopole component are shown. These ratios are
commonly used for constraining the nature of gravity
through a measurement of the redshift-space distortion
parameter β (e.g., Refs. [51,52]). Estimates of the appli-
cability of iPT for the quadrupole and hexadecapole
components are relatively uncertain, because a detailed
comparison between the iPT and numerical simulations is
not available in the literature. Therefore, we have tenta-
tively defined the confidence region as k < 0.2=σd for the
quadrupole and k < 0.18=σd for the hexadecapole.
Although the multipole components appear to behave
strangely at smaller scales, we warn the reader that our
criteria may be inaccurate.
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The variances among different biasing schemes are at
most at the level of a few percent, as is the case of the
monopole component. The multipole-to-monopole ratios
show relatively large deviations from the predictions of
linear theory, Rl=R0. The nonlinear ratios are smaller than
the linear predictions by 5%–15% even on a scale as large
as k≃ 0.06hMpc−1 usually considered to belong to the
linear regime. When the bias factor is large, which is the
case at redshift z ¼ 2 and 3, the ratios never attain the linear
values at any scale. Since the ratios of linear theory, R2=R0

and R4=R0, are increasing functions of β, a blind applica-
tion of linear theory to the power spectrum in redshift space

would result in an underestimation of the β parameter
if the bias factor were fixed (in actual analyses, however,
the bias parameter is simultaneously fitted to the data).
Notwithstanding, the deviations from the linear ratios are
much larger than the variances among biasing schemes.
The iPT provides a way to quantify the systematic effects
produced by the weakly nonlinear evolution fairly inde-
pendently of the biasing schemes.
In Figs. 7–9, the monopole, quadrupole, and hexadeca-

pole of the halo correlation functions in redshift space are
plotted. Our estimates for the applicability of our one-loop
iPT prediction are r < 6σd, r < 12σd, and r < 15σd for the
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monopole, quadrupole, and hexadecapole components,
respectively. While these bounds are estimated by extrapo-
lating the comparisons of Ref. [47], they could be inaccu-
rate, especially in the case of hexadecapole.
The variances of different biasing schemes are within a

few percent as in the case of the previous figures. The BAO
peaks of the monopole components in redshift space are
smoother than those in real space. Accordingly, the scale-
dependent bias ½ξ0ðrÞ=ξmðrÞ�1=2 varies more than those in
real space. This effect of BAO smoothing does not
significantly depend on the biasing schemes (except for
the simplistic local halo, as usual).
Differences between the quadrupole and hexadecapole

predicted by the halo and peaks/ESP models can be seen in
the upper panels of Figs. 8 and 9. However, they have a
similar degree of deviations as that seen in the monopole
components in Fig. 7, where it is less apparent because the
scales of vertical axes are much larger. The lower panels
show that deviations in the quadrupole-to-monopole and
hexadecapole-to-monopole ratios among the different
biasing schemes are extremely small in the correlation
functions in redshift space.

E. Scale-dependent bias in the presence
of non-Gaussianity

If some amount of inflationary non-Gaussianity is
imprinted in the initial cosmological perturbations, then
the bispectrum of the linear density field receives a non-
trivial primordial contribution, BLðk1; k2; k3Þ. When this
primordial bispectrum is strongly scale dependent, as in, for
instance, the case for local-type non-Gaussianity, Fourier
modes of the density fluctuations with long and short
wavelengths, i.e., with wave numbers kl ≪ ks, are coupled
to each other. As a result, the power spectrum of biased

tracers is affected on very large scales as it depends on the
biasing processes which are small-scale phenomena
[8,53,54]. In the iPT formalism, the contributions are given
by the last term in Eq. (5), the general implications of which
are discussed in Ref. [30].
The primordial non-Gaussianity also changes the precise

shapes of the renormalized bias functions through the
multivariate distribution function PðyÞ; see Eqs. (29)
and (30). However, this effect is small enough because
the shapes of the renormalized bias functions are domi-
nantly determined by Gaussian components [30]. For

instance, the non-Gaussian corrections to cð2ÞX are at the
level of 10−5fNL. By contrast, the scale-dependent bias on
very large scales predominantly arises from the primordial
non-Gaussianity. Hence, we will neglect the subdominant
corrections to the renormalized bias functions due to
primordial non-Gaussianity for simplicity.
In Fig. 10, one-loop power spectra and correlation

functions are shown for the different biasing schemes.
We focus on the monopole component in redshift space, as
it is a quantity observed in actual redshift surveys. The
primordial non-Gaussianity is assumed to be of local,
quadratic type, so that the primordial bispectrum takes
the form

BLðk1;k2;k3Þ¼2fNL
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FIG. 9. Same as Fig. 8, but for the hexadecapole components.
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is the transfer function between the potential deeply in
matter domination and the linear density. Here, Dþ is a
linear growth factor, normalized as Dþ → a in the matter-
dominated epoch, and TðkÞ is the linear transfer function,
normalized to TðkÞ → 1 in the limit k → 0. The parameter
fNL is observationally constrained to be fNL ¼ 0.8� 5.0
(68% C.L.) [55]. For illustration purposes, we assume
fNL ¼ 3 consistent with the observational bound.
In the large-scale limit, k → 0, the contribution of local-

type primordial non-Gaussianity to the monopole power
spectrum is given by [30]

Δp0
XðkÞ ≈ 4fNL

	
1þ cð1ÞX ðkÞ þ f

3



PLðkÞ
MðkÞ

×
Z

d3p
ð2πÞ3 c

ð2Þ
X ðp;−pÞPLðpÞ; ð139Þ

where Δp0
XðkÞ ¼ p0

XðkÞ − p0G
X ðkÞ and p0G

X ðkÞ is the
Gaussian contribution with fNL ¼ 0. The simplistic local

halo [cð2ÞX ðp;−pÞ ¼ const] gives a logarithmically divergent
result for the above equation if ns ¼ 1 because PLðkÞ ∝
kns−4 in the limit of k → ∞ for ΛCDM models. Since the
spectral index ns ¼ 0.9667 is slightly less than unity, the
above integral in the simplistic local halo converges,
although it is much larger than other schemes in which
the renormalized bias functions are suppressed by window
functions in the small-scale limit. Thus, the effects of
primordial non-Gaussianity on very large scales depend not

only on the asymptotic values of cðnÞX but also on their shape
at small scales. However, while the amplitude of Δp0

X

strongly depends on the biasing schemes, the power-law
scaling of the scale dependence in the large-scale limit,
Δp0

X ∝ PLðkÞ=MðkÞ ∝ kns−2, does not depend on biasing
schemes. Note that the constant term Eq. (136) also
contributes to the power spectra in the large-scale limit,
k → 0, in addition to the non-Gaussian contribution with
which it is partly degenerate.
The non-Gaussian bias amplitude Eq. (139) is consistent

with the peak-background expectation ∂ ln n=∂ ln σ8
obtained by Ref. [54] for the peaks and ESP implementa-
tions considered here (Ref. [34]; see, however, the dis-
cussion of Ref. [56] for moving stochastic barriers).
However, substituting Eq. (40) into Eq. (139) shows that
this is generally not the case of the local and halo models,
unless the multiplicity is of the Press-Schechter form.
In the lower panel of the left figure, contributions from the

primordial non-Gaussianity Δp0
XðkÞ are shown. Variations

among the biasing schemes can be seen. They are not
significant, except for the local halo. Still, if a nonlinear
parameter fNL ≠ 0 were detected, the different biasing
schemes would change its estimated value by ∼25%.
In the right figure, the monopole components of the

correlation function in redshift space are shown. The
primordial non-Gaussianity slightly increases the correla-
tion functions on large scales s≳ 100h−1 Mpc in a
scale-dependent way, approximately Δξ0XðsÞ ∝ s−2. The
simplistic local halo even boosts the amplitude on the
BAO scales by about 100%, which is much larger than what
is measured in N-body simulations (see, e.g., Ref. [57]).
The variance among other biasing schemes in Δξ0X is about
25%, in accordance with the result of Δp0

X.
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V. CONCLUSIONS

Using the iPT formalism, we have studied the impact of
biasing schemes on the power spectra and correlation
functions of biased tracers in the weakly nonlinear regime.
In this paper, we have focused on three representative bias
schemes: the halo, peaks, and ESP models. We have also
considered a simplified version of the halo model in which
the renormalized bias functions are assumed to be scale
independent. This has allowed us to quantify the impact of
the scale dependence of the bias functions on the power
spectra and correlation functions.
In the iPT, all the degrees of freedom of different biasing

schemes are contained in a series of renormalized bias
functions. The biasing schemes we considered in this paper
are semilocal models, in which the number density of
biased tracers at a Lagrangian position is determined by the
smoothed linear density field and its spatial derivatives at
the same Lagrangian position. After deriving a compact
formula to evaluate the renormalized bias functions in
semilocal models of bias, these functions in individual
biasing schemes are derived up to second order. Our results
agree with previous works and show that the coefficients of
the perturbative peaks and ESP bias expansions are
associated with the iPT renormalized bias functions. In
order to efficiently evaluate the renormalized bias func-
tions, we have provided analytic reductions of various
integrals in coefficients of the bias functions, so that all the
coefficients are given by one-dimensional integrals with
sufficiently smooth functions of integrands.
We have compared the renormalized bias functions of

different biasing schemes. The cðnÞX of all the models
(except for the simplistic local halo, which is not physically
motivated) converge toward zero in the high-k limit
because of the window functions. While the low-k limit

of the first-order function, cð1ÞX , is the same for all models by
construction, differences among biasing schemes can be

seen in the low-k limit of the second-order functions cð2ÞX .
These differences are, however, not very significant.
By contrast, the behaviors of the renormalized bias

functions around and below the smoothing scales,
kR≳ 1, vary noticeably among the bias models.
Notwithstanding, they all exhibit a peak around kR ∼ 2.5
in lower redshifts. The presence of oscillations in the
Lagrangian bias functions of low redshift halos can actually
be seen in the outcome of N-body simulations [31,43]. The

amplitude of the peaks in functions cðnÞX strongly depends
on the biasing schemes or how biased tracers are identified
in simulations/observations.
However, we have found that the various schemes,

including the unphysical local halo, do not change the
qualitative behavior of the one-loop power spectra and
correlation functions. While, in the power spectra,

differences are at the level of 2%–4%, they are as small
as 1% on scales r≳ 20h−1 Mpc in the z ¼ 1 correlation
function and subpercent at higher redshift. This partly
follows from the fact that the shape of the power spectra is
more affected by nonlinearities than correlation functions.
Furthermore, the simplistic local halo performs comparably
well, confirming that the scale dependence of the renor-
malized bias functions is not the decisive factor governing
the shape of the power spectra and correlation functions.
These conclusions also hold in redshift space, with the

caveat that the distortions induced by peculiar velocities are
accounted for by the Kaiser formula. The quadrupole and
hexadecapole components exhibit almost the same level of
differences among biasing schemes as the monopole
components. The multipoles-to-monopole ratios in the
power spectra, which are scale independent in linear theory,
become scale dependent due to nonlinear effects. In
addition, the ratios are significantly smaller than the
prediction of linear theory by 5%–15% even at
k≃ 0.06hMpc−1. This illustrates the importance of includ-
ing nonlinear effects when estimating the redshift-space
distortion parameter β. Of course, a realistic calculation
should include the virial motions of galaxies within halos.
We have also estimated the effects of local-type non-

Gaussianity in the initial conditions for the various biasing
schemes. In this case, the simplistic local halo biasing
scheme, in which small-scale filtering is absent, is inap-
propriate. The primordial non-Gaussianity adds power
through the mode coupling between large and small scales,
such that the behavior of renormalized bias functions at
small scales can critically affect the power spectrum on very
large scales. The amplitude of the non-Gaussian bias does
not differ significantly among the other bias schemes, with
deviations no larger than 25% both in the power spectra and
correlation functions.
Before concluding, let us emphasize that, for the peaks

and ESP models, the linear velocities are biased owing to
the coupling between the velocity ∂−1δ and ∂δ [26]. This
statistical bias affects the redshift space distortions [58] as
well as the two-point correlation around the BAO scales
[27]. While it is difficult to measure this effect in numerical
simulations (see, e.g., the discussion in Ref. [59]), several
lines of evidence indicate that it is present in the Lagrangian
space [43,60] and remains constant throughout time [43].
Although we did not highlight it explicitly, this effect is
already included in the iPT. We plan to address this
important issue in more details in future work.
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APPENDIX A: THE AUXILIARY FUNCTION
ΞðδM − δc; σMÞ IN THE SIMPLE HALO MODEL

In the simple halo model of Sec. III B, we have
introduced an auxiliary function ΞðδM − δc; σMÞ. This
function is a phenomenological alternative to the step
function Θ designed to produce a mass function more
general than the PS one. The mass function may not be
universal. As explained in the main text, we do not need its
actual form in deriving the renormalized bias functions.
However, one may wonder whether this auxiliary function
exists for an arbitrary mass function. In this Appendix, we
discuss some details of the relation between the auxiliary
function and the mass function.
The differential mass function nðMÞ is given by Eq. (36).

This defines the multiplicity function fðνÞ, which we
assume universal in what follows,

nðMÞ ¼ ρ̄0
M

fðνÞ
ν

dν
dM

; ðA1Þ

where ν ¼ δc=σ, and we denote σ ¼ σM for simplicity. In
our simple halo model, the localized differential number
density of halos at a Lagrangian position x is given by
Eq. (39), i.e.,

nðx;MÞ ¼ −
2ρ̄0
M

∂
∂M Ξ½δðxÞ − δc; σ�; ðA2Þ

where we denote δðxÞ ¼ δMðxÞ for simplicity. Both δ and σ
depend on the mass M through the smoothing kernel, and
the partial derivative ∂=∂M applies with fixed δc. The PS
mass function corresponds to the case that the function
Ξðδ − δc; σÞ is given by a step function Θðδ − δcÞ.
Substituting the step function by the general function Ξ
corresponds to adopting a fuzzy barrier for the identifica-
tion of the collapsed regions. Therefore, it is desirable to
have the same asymptotes as the step function,

Ξðx; σÞ →
�
0 ðx → −∞Þ
1 ðx → þ∞Þ ; ðA3Þ

while the transition between the two limits can be arbitrary.
The above model of a fuzzy barrier is closely related to

the model of square-root stochastic moving barrier
[40,61,62], where the barrier is replaced by B ¼ δc þ βσ
and β is a stochastic variable with a probability distribution
function pðβÞ. With this model, the sharp barrier repre-
sented by the step functionΘðδ − δcÞ in the PS formalism is
replaced by

Θðδ−δcÞ→
Z

dβpðβÞΘðδ−δc−βσÞ¼Φ

	
δ−δc
σ



; ðA4Þ

where ΦðβÞ ¼ R
β
−∞ pðβ0Þdβ0 is the cumulative distribution

function ofβ. Thus, the square-root stochasticmoving barrier
corresponds to choosing the function Ξðx; yÞ ¼ Φðx=yÞ.
The mass fraction of the halos with a mass greater than

M is given by

1

ρ̄0

Z
∞

M
nðMÞMdM ¼

Z
∞

ν

fðνÞ
ν

dν≡ FðνÞ; ðA5Þ

which corresponds to the filling factor of collapsed
regions in Lagrangian space. Because the ensemble
average of Eq. (A2) should give the global mass
function, nðMÞ ¼ hnðM; xÞi, the auxiliary function should
satisfy

hΞðδ − νσ; σÞi ¼ 1

2
FðνÞ ðA6Þ

or

FðνÞ ¼ 2

Z
∞

−∞
Ξðδ − νσ; σÞPσðδÞdδ; ðA7Þ

where PσðδÞ is the one-point probability distribution
function of δ. This distribution function explicitly depends
on the mass M through σ. Applying a partial differentia-
tion ∂=∂δcjσ ¼ σ−1∂=∂νjσ to Eq. (A7) with σ fixed,
and performing integration by parts, we arrive at the
relation

fðνÞ
ν

¼ −2σ
Z

∞

−∞
Ξðδ − νσ; σÞ ∂PσðδÞ

∂δ dδ: ðA8Þ

The rhs of Eq. (A7) is a convolution integral of the
function Ξðx; σÞ and PσðxÞ for a fixed value of σ. Thus,
obtaining the auxiliary function Ξ from the mass function
requires the deconvolution, the inverse problem of the
convolution integral. Deconvolution is an ill-posed prob-
lem, because the solution is not unique in general: some-
times the solution does not exist, and sometimes there are
many solutions. Therefore, it is not guaranteed that the
solution of Eq. (A7) can be found for arbitrary function
FðνÞ [equivalently, for arbitrary function fðνÞ].
Nevertheless, numerically fitted mass functions, such as

the Sheth-Tormen (ST) mass function, are derived from a
finite range of ν, i.e., 0.7≲ ν≲ 3.5 [36]. Thus, trying to
invert the convolution integral, Eq. (A7), from the mass
function extrapolated to all ranges of 0 < ν < ∞ is not
what we should do. Instead, it is sufficient to find a
reasonable kernel function Ξ which can reproduce the
mass function in finite ranges of interest where a fitting
formula applies. Numerically, the deconvolution tech-
niques are widely used in signal/image restorations, e.g.,
a simple iterative method known as the Richardson-Lucy
deconvolution [63,64].
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For Gaussian initial conditions, the distribution function
is given by PσðδÞ ¼ ð2πσ2Þ−1=2e−δ2=2σ2. Changing the
integration variable as δ → t ¼ δ=σ in this case, the rhs
of Eq. (A7) reduces to ð2=πÞ1=2 R Ξðtσ − νσ; σÞe−t2=2dt.
Since the lhs is a function of only ν, the function Ξðtσ −
νσ; σÞ in the integrand should not depend on σ. This
condition is represented by ∂Ξðtσ; σÞ=∂σ ¼ 0 with t fixed,
which is equivalent to a partial differential equation
x∂Ξðx; yÞ=∂xþ y∂Ξðx; yÞ=∂y ¼ 0. Its general solution is
given by Ξðx; yÞ ¼ Ξ̂ðx=yÞ, where Ξ̂ is an arbitrary, single-
valued function. Therefore, we have

Ξðδ − δc; σÞ ¼ Ξ̂
	
δ − δc
σ



; ðA9Þ

in order to have a universal mass function in Gaussian
initial conditions. If we use the form of Eq. (A9) in non-
Gaussian initial conditions, the mass function does not have
the universal form, and the resulting multiplicity function
has an additional dependence of σ, which arises from the
additional dependence of mass in PσðδÞ through higher-
order cumulants. The model of Eq. (A4) is consistent with
the form of Eq. (A9), and the function Ξ̂ is identified as the
cumulative distribution function of the stochastic moving
barrier, ΦðβÞ. If the function Ξðδ − δc; σÞ were to not
explicitly depend on σ and Ξðx; yÞ ¼ ΞðxÞ were indepen-
dent of y, the above differential equation would become
x∂ΞðxÞ=∂x ¼ 0. The unique solution with a condition like
Eq. (A3) is the step function ΞðxÞ ¼ ΘðxÞ, which corre-
sponds to the PS mass function. Thus, the explicit depend-
ence of the mass in the auxiliary function Ξ is necessary to

obtain non-PS mass functions. Adopting Eq. (A9) in
Gaussian initial conditions, Eq. (A7) and (A8) reduce to

FðνÞ ¼
ffiffiffi
2

π

r Z
∞

−∞
Ξ̂ðx − νÞe−x2=2dx; ðA10Þ

fðνÞ
ν

¼
ffiffiffi
2

π

r Z
∞

−∞
Ξ̂ðx − νÞxe−x2=2dx: ðA11Þ

Rather than deconvolving Eq. (A8) in some way, it is
more straightforward to find a fitting formula of Ξ which
can reproduce the required mass function. As a demon-
stration, let us try to find an approximate solution by
assuming a simple functional form,

Ξ̂ðxÞ ¼ 1

ðe−ax þ 1Þb ; ðA12Þ

where a > 0 and b > 0 are fitting parameters and Gaussian
initial conditions are assumed. This function has the
desirable asymptotes of Eq. (A3). For a given mass function
with a finite range of ν, one can fit the parameters to
approximately reproduce Eq. (A11). We find the best fit
parameters to reproduce the ST mass function in the range
0.7 ≤ ν ≤ 3.5, which corresponds to the fitted range of the
fitting formula [36], to be a ¼ 1.802 and b ¼ 1.882. The
resulting mass function is shown in Fig. 11 (Ξ fit 1). It is
seen that the ST mass function is precisely recovered within
a few percent.
For another trial function, we consider

Ξ̂ðxÞ ¼ 1

2
erfc

�
−
x − μffiffiffi

2
p

s

�
; ðA13Þ

where μ and s > 0 are fitting parameters. This function is a
cumulative Gaussian distribution function with a mean μ
and a variance s2 and also satisfies the property of Eq. (A3).
The best fit parameters in this case are given by μ ¼ 0.4778
and s ¼ 0.7671. The resulting mass function is also shown
in Fig. 11 (Ξ fit 2). The overall fit is slightly better than the
previous one.
If we extend the curve to the low-mass end (ν≲ 0.6),

both fits of Eqs. (A12) and (A13) somehow underestimate
the ST mass function, but in this region the ST mass
function tends to overpredict the true mass function of
halos in the numerical simulations [65]. It might be also
possible that low-mass halos are not described well by the
simple model of Eq. (A2) in the first place, since the
formation process of low-mass halos could be extremely
stochastic and not be described well by the local values of
the linear density field.
Finally, we comment on the difficulty in trying to

analytically deconvolve the equations by using the
Fourier transformation. The convolution integral is

10-2

10-1

100

f (
ν)

Ξ fit 1

Ξ fit 2

ST

PS

0.96
0.98

1
1.02

1.0 1.5 2.0 2.5 3.0 3.5

f (
ν )

 / 
f S

T
 (

ν)

ν

FIG. 11. The multiplicity functions derived by the model of the
auxiliary function, Ξ̂ðxÞ ¼ 1=ðe−1.802x þ 1Þ1.882 (Ξ fit 1, solid
line) and Ξ̂ðxÞ ¼ erfc½−ðx − 0.4778Þ=ð0.7671 ffiffiffi

2
p Þ� (Ξ fit 2,

dashed line), which are fitted to give the Sheth-Tormen mass
function (dotted line). The case of Press-Schechter mass function
(dot-dashed line) is also shown as a reference.
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formally solved by the Fourier transformation, and
Eq. (A7) is given by

Ξðx; σÞ ¼ 1

2

Z
∞

−∞

dk
2π

e−ikx=σ
~FðkÞ

~Pσðk=σÞ
; ðA14Þ

where ~FðkÞ and ~PσðkÞ are the Fourier transforms of FðνÞ
and PσðδÞ, respectively. For a Gaussian distribution, we
have ~Pσðk=σÞ ¼ e−k

2=2, and this integral converges only if
~FðkÞ decays as fast as e−k2=2 for k → ∞. Thus, the function
FðνÞ should be a sufficiently smooth function in the range
of −∞ < ν < ∞. Although the variable ν is a positive
number, one can apply the analytic continuation to the
function FðνÞ for the negative values of ν.
The Fourier transform ~F can be represented directly by a

multiplicity function as

~FðkÞ ¼
Z

∞

−∞
dν

	
πδDðkÞ þ

i
k
e−ikν



fðνÞ
ν

; ðA15Þ

where we assume the analytic continuation of the function
fðνÞ with negative argument ν < 0 and use the fact
that Fourier transform of the step function is given by a
formula ~ΘðkÞ ¼ πδDðkÞ − i=k.
For the PS mass function with a Gaussian distribution,

deconvolution with Eqs. (A14) and (A15) actually works.
In fact, we have fðνÞ ¼ ð2=πÞ1=2νe−ν2=2 and ~FðkÞ ¼
2πδDðkÞ þ 2ie−k

2=2=k in this case. Substituting the last
expression and ~Pσðk=σÞ ¼ e−k

2=2 into Eq. (A14), we have
Ξðx; σÞ ¼ ΘðxÞ, as expected.
In the ST mass function of Eq. (37), however, the integral

of Eq. (A14) does not converge. The factor fðνÞ=ν is not
regular at ν → 0 and scales as ∼ν−2p near the origin. When
p > 0, the derivative of FðνÞ at the origin diverges. In the
Fourier space, Eq. (A15) indicates that ~FðkÞ ∼ jkj2p−2 for
large jkj, and the integral of Eq. (A14) does not converge for
~Pσðk=σÞ ∼ e−k

2=2. Thus, the convolution equation, Eq. (A7),
does not have a regular solution when the function fðνÞ=ν is
singular at ν ¼ 0, as in the case of ST mass function. The
nonexistence of the solution in this case is more easily
understood by Eq. (A8). According to this equation, we have
fðνÞ=νjν→0 ¼ −2σ

R
Ξðδ; σÞ½∂PσðδÞ=∂δ�dδ. The rhs of this

equation is finite as long as the distribution functionPσðδÞ is
a regular function and cannot reproduce the singularity of the
lhs. This property is the reason why smooth models of Ξ,
such as Eq. (A12), tend to underestimate the ST mass
function extrapolated to the low-mass end.

APPENDIX B: ON THE CONNECTION
BETWEEN PEAK THEORY AND THE iPT

In this Appendix, we highlight the connection that exists
between the (Lagrangian) renormalized bias function in iPT
[6,7] and the polynomial series expansion of Refs. [18,38].

Unlike in iPT, where the renormalized bias functions are
defined independently of the statistical correlators under
consideration, we shall start from the peak two-point
correlation in Lagrangian space. Therefore, our conclusions
formally apply to the two-point correlation only. However,
wewill argue below that it should also hold for higher-order
correlation functions.
The Lagrangian, two-point correlation ξpkðrÞ of the

density peaks can generically be written as

½1þ ξpkðrÞ�n̄2pk ¼
Z

dNy1dNy2npkðy1Þnpkðy2ÞPðy1; y2; rÞ;

ðB1Þ

where npkðyÞ is the localized number density of the biased
tracers (represented here as a set of constraints applied to
the linear fluctuations fields y), whereas n̄pk is the average
number density.
We can write down the joint probablity distribution

function (PDF) Pðy1; y2; rÞ as the Fourier transform

Pðy1; y2; rÞ ¼
1

ð2πÞ2N
Z

dNJ1dNJ2 exp

	
−
1

2
J⊤ΣJ



e−iJ

⊤y;

ðB2Þ

where N is the dimension of yi and, for shorthand
convenience, we have J ¼ ðJ1; J2Þ and y ¼ ðy1; y2Þ.
Moreover, Σ≡ ðM;B⊤;B;MÞ is the covariance matrix
of y. Substituting this relation into the definition of
ξpkðrÞ, we arrive at

1þ ξpkðrÞ ¼
Y2
a¼1

	
1

ð2πÞNn̄pk

Z
dNJa ~npkðJaÞe−ð1=2ÞJ⊤a MJa




× exp ð−J⊤1 B⊤J2Þ; ðB3Þ

where

~npkðJaÞ≡
Z

dNyanpkðyaÞe−iJ⊤a ya ðB4Þ

is the Fourier transform of the localized number density.
Wewill now expand expð−J⊤1 B⊤J2Þ in series and exploit

the fact that the covariance matrix M can be block
diagonalized, i.e., M ¼ diagðM1;…;Mi;…;MpÞ. Let
Ja ¼ ðJa;1;…; Ja;i;…; Ja;pÞ be the corresponding decom-
position of Ja in the frame in which M is diagonal (not
necessarily unique block diagonal decomposition, but there
is certainly a unique frame in which the number of blocks is
maximal). Substituting the expression of npkðJÞ, Eq. (B4),
into Eq. (B3), we obtain
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ξpkðrÞ ¼
1

½ð2πÞNn̄pk�2
Z

dNJ1

�Z
dNy1npkðy1Þe−iJ⊤1 y1

�
e−

1
2
J⊤
1
MJ1

×
Z

dNJ2

�Z
dNy2npkðy2Þe−iJ⊤2 y2

�
e−

1
2
J⊤
2
MJ2

	X∞
n¼1

ð−1Þn
n!

ðJ1B⊤J2Þn



¼
X∞
n¼1

ð−1Þn
n!

Xp
I1;L1¼1

� � �
Xp

In;Ln¼1

1

n̄pk

Z
dNy1npkðy1Þ

�
1

ð2πÞN
Z

dNJ1J⊤1;I1 × � � � × J⊤1;Ine
−1
2
J⊤
1
MJ1e−iJ

⊤
1
y1

�
B⊤
I1L1

× � � � × B⊤
InLn

×
1

n̄pk

Z
dNy2npkðy2Þ

�
1

ð2πÞN
Z

dNJ2J2;L1
× � � � × J2;Ln

e−
1
2
J⊤
2
MJ2e−iJ

⊤
2
y2

�

¼
X∞
n¼1

ð−1Þn
n!

Xp
I1;L1¼1

� � �
Xp

In;Ln¼1

�
1

n̄pk

Z
dNy1npkðy1Þin

∂⊤
∂y1;I1

� � � ∂⊤
∂y1;In

Pðy1Þ
�
B⊤
I1L1

× � � � × B⊤
InLn

×

�
1

n̄pk

Z
dNy2npkðy2Þin

∂
∂y2;L1

� � � ∂
∂y2;Ln

Pðy2Þ
�
: ðB5Þ

Here, Iα (respectively, Lα) designates the subsets of
variables y1;Iα ∈ y1 (respectively, y2;Lα

∈ y2) that correlate
at a given spatial location. The block diagonalization
implies that we have p ≤ N such subsets. Through a
suitable change of variables, we can also write y1;Iα in
the form y1;Iα ¼ ðwIα ;ΩIαÞ, where ΩIα are angles which we
want to integrate out. For illustration, in the case of the peak
constraint for which y1 ¼ fν; ηi; ζijg, we can split y1 into
three subsets, y1 ¼ ðy1;I¼1; y1;I¼2; y1;I¼3Þ such that

y1;I¼1 ¼ fν; J1g ðB6Þ

y1;I¼2 ¼ fη1; η2; η3g ¼ fη2; 2 anglesg ðB7Þ

y1;I¼3 ¼ f~ζijg ¼ fJ2; J3; 3 anglesg; ðB8Þ

where ~ζij are the five independent components of the
Hessian; the two angles in y1;2 and the three angles in y1;3
describe the orientation of the vector η and the principal
axis frame of the tensor ~ζij, respectively; and the invariants
Ji are defined in Ref. [18].

Furthermore, the cross-covariance matrix B⊤
IL is of the

form

B⊤
IL ¼

Z
d3k
ð2πÞ3UIð−kÞU⊤

L ðkÞPLðkÞeik·r; ðB9Þ

where δðkÞ are the Fourier mode of the unsmoothed linear
density field, P0ðkÞ is its power spectrum, and UIðkÞ are
functions of the wave number analogous to those intro-
duced in Eq. (22). For instance,

UI¼1ðkÞ ¼
	
1

σ0
;
k2

σ2



WsðkRsÞ ðB10Þ

for the peak height ν and curvature J1, and

UI¼2ðkÞ ¼
i
σ1

ðk1; k2; k3ÞWsðkRsÞ ðB11Þ

for y1;2 corresponding to the vector components ηi, whereas

UI¼3ðkÞ ¼
1

σ2

	
−k21 þ

k2

3
;−k22 þ

k2

3
;−k23 þ

k2

3
;−k1k2;−k1k3;−k2k3



WsðkRsÞ ðB12Þ

for the components ~ζij of the traceless matrix. Here, k2 ¼ k21 þ k22 þ k23, and WsðkRsÞ is the Fourier transform of the
filtering kernel. We use the same notation as Ref. [6] to emphasize that we are talking about the same quantity.
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Substituting this relation into the expression of ξpkðrÞ, we obtain

ξpkðrÞ ¼
X∞
n¼1

1

n!

Xp
I1;L1¼1

� � �
Xp

In;Ln¼1

Z
d3k1
ð2πÞ3 � � �

Z
d3kn
ð2πÞ3

×

�
1

n̄pk

Z
dNy1npkðy1Þ

∂⊤
∂y1;I1

UI1ð−k1Þ � � �
∂⊤

∂y1;In
UInð−knÞPðy1Þ

�

×

�
1

n̄pk

Z
dNy2npkðy2ÞU⊤

L1
ðk1Þ

∂
∂y2;L1

� � �U⊤
Ln
ðknÞ

∂
∂y2;Ln

Pðy2Þ
�

× PLðk1Þ…PLðknÞeiðk1þ���þknÞ·r: ðB13Þ

It is not difficult to see that the partial derivatives with respect to the variables y1;I and y2;L correspond to the renormalized
bias functions of iPT. Namely, we have

cLn ðk1;…; knÞ≡
Xp

I1;…;In¼1

�
1

n̄pk

Z
dNynpkðyÞU⊤

I1
ðk1Þ

∂
∂yI1

� � �U⊤
In
ðknÞ

∂
∂yIn

PðyÞ
�
: ðB14Þ

For example, considering only the variables relevant to a peak constraint and on writing PðyÞ ¼ Q
IPðyIÞ ¼

PðwÞPðΩη;Ω~ζÞ, where Ωη and Ω~ζ are the angles associated with η and ~ζij and w ¼ ðν; J1; 3η2; 5J2; J3Þ, we find that
the linear renormalized bias function is

Xp
I¼1

1

n̄pk

Z
dNynpkðyÞU⊤

I ðkÞ
∂
∂yI PðyÞ

¼ 1

n̄pk

Z
dNynpkðyÞPðyÞ

Xp
I¼1

	
PðyIÞ−1U⊤

I ðkÞ
∂
∂yI PðyIÞ




¼ 1

n̄pk

Z
dwnpkðwÞPðwÞ

�
N ðν; J1Þ−1

1

σ0

	 ∂
∂νþ

k2

σ2

∂
∂J1



N ðν; J1Þ

þ
Z

Ωηe3η
2=2 i

σ1

X
i

ki
∂
∂ηi e

−3η2=2 þ
Z

Ω~ζe
5J2=2

1

σ2

X
i≤j

	
−kikj þ

1

3
δijk2


 ∂
∂ ~ζij

e−5J2=2
�
WsðkRsÞ

≡ ðb10 þ b01k2ÞWsðkRsÞ;

which coincides indeed with the linear bias of peaks. We have exploited the fact that the localized peak number density
depends only on the variables w to average the derivative operators over the angular variables ðΩη;Ω~ζÞ. This way, we follow
the same logic as Ref. [18] and our discussion in Sec. III. We have also checked that the agreement also holds at second
order, though the calculation is already much more involved.
Therefore, this clearly suggests that the peak two-point correlation ξpkðrÞ can also be written as

ξpkðrÞ ¼
X∞
n¼1

1

n!

Z
d3k1
ð2πÞ3 …

Z
d3kn
ð2πÞ3 ½c

ðnÞ
X ðk1;…; knÞ�2PLðk1Þ � � �PLðknÞeiðk1þ���þknÞ·r; ðB15Þ

which agrees with the iPT result in the absence of gravitationally induced motions.
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