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Impacts of biasing schemes in the one-loop integrated perturbation theory
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The impact of biasing schemes on the clustering of tracers of the large-scale structure is analytically
studied in the weakly nonlinear regime. For this purpose, we use the one-loop approximation of the
integrated perturbation theory together with the renormalized bias functions of various, physically
motivated Lagrangian bias schemes. These include the halo, peaks, and excursion set peaks model, for
which we derive useful formulas for the evaluation of their renormalized bias functions. The shapes of the
power spectra and correlation functions are affected by the different bias models at the level of a few
percent on weakly nonlinear scales. These effects are studied quantitatively both in real and redshift space.
The amplitude of the scale-dependent bias in the presence of primordial non-Gaussianity also depends on
the details of the bias models. If left unaccounted for, these theoretical uncertainties could affect the

robustness of the cosmological constraints extracted from galaxy clustering data.
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I. INTRODUCTION

The large-scale structure (LSS) of the universe contains
rich information on cosmology. The LSS is mainly probed
by the spatial distributions of astronomical objects, such as
galaxies, clusters of galaxies, or any other tracer that can be
observed in the distant Universe (such as the Lyman-alpha
forest, etc.) The spatial distribution of these objects differs
from that of the total mass (which includes the mysterious
dark matter), while direct predictions from cosmological
theories are made for the mass distributions. In fact, except
for the lensing shear, essentially all observables of the LSS
are biased tracers of the mass distribution.

Although a relation between the spatial distribution of
biased tracers and that of the matter is not trivial at small
scales owing to the complexity of the physical processes
governing star formation, etc., the large-scale clustering of
LSS tracers is much less complicated as it is “only”
governed by gravity. On very large scales, the biasing is
simply given by a linear relation [1,2], and all the
complications which arise from the biasing mechanisms
are confined to a single variable known as the linear bias
factor. In particular, the power spectrum Py (k) of biased
tracers X is linearly related to that of the mass P, (k)
through

Px<k) = bszm(k), (1)
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where by is the linear bias factor of X. The label X
represents any kind of biased tracers, i.e. a particular type of
galaxies or clusters of galaxies within a certain range of
mass for instance. The correlation function, which is the
three-dimensional Fourier transform of the power spec-
trum, satisfies a similar relation, &y (r) = by?&n, (7).

In redshift surveys, the radial distances to the objects are
measured by their redshifts. The observed redshifts are
contaminated by the peculiar velocities of the LSS tracers.
As a result, clustering patterns in redshift space are
distorted along the lines of sight. This effect is known
as the redshift-space distortions. In the linear regime, the
redshift-space distortions of the power spectrum are ana-
lytically given by Kaiser’s formula [3],

Py(k) = by*(1 + pxp?)* Py (k). (2)

where y = Z - k/|k| is the direction cosine between the lines
of sight Z and the wave vector k. The variable gy = f/by,
where f = In D/ In a is the linear growth rate, is called the
redshift-space distortion parameter. The correlation func-
tion in redshift space is given by a Fourier transform of
Kaiser’s formula [4].

However, the linear theory with linear bias is valid only
in the large-scale limit. It is severely violated at small scales
where nonlinearities induced by gravitational coupling
become important, and exact analytical treatments are
extremely difficult. Fortunately, there is an intermediate
range of scales between the linear and the highly nonlinear
regimes where nonlinearities are weak, so that statistical
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correlators such as the power spectrum and correlation
function are amenable to a perturbative treatment (for a
review of perturbation theory in LSS, see Ref. [5]).

The traditional perturbation theory predicts weakly non-
linear evolutions of unbiased dark matter in real space. The
integrated perturbation theory (iPT) [6,7] is a general
framework to predict the weakly nonlinear power spectra
and higher-order polyspectra of biased tracers both in real
space and in redshift space. This is essential for the analysis
of future redshift survey data. Furthermore, the iPT can also
include the effect of a primordial non-Gaussianity in the
curvature perturbation, which the power spectrum of biased
tracers is sensitive to [8]. In principle, any bias model could
be incorporated into the iPT. The dependence of the
polyspectra on the biasing scheme predicted by the theory
is encoded in the so-called renormalized bias functions.
Hereby, the framework of iPT separates the issue of biasing
at small scales from the weakly nonlinear dynamics at
larger scales.

The iPT is based on the Lagrangian perturbation theory
[9-16], and the renormalized bias functions are directly
calculated from the Lagrangian models of bias, in which the
bias relations are specified in Lagrangian space. The bias
relation is not necessarily a local function of the density in
Lagrangian space. In fact, it will involve, e.g., derivatives of
the linear density if a peak constraint is present [17,18],
as well as the tidal shear if the collapse is not spherical
[19-21]. Any kind of bias is represented by a “nonlocal”
bias in Lagrangian space, because all the structures in the
Universe are formed by a deterministic evolution of the
initial density field.

In this work, we investigate the predictions of one-loop
iPT for observables such as the power spectrum and
correlation function with representative models of
Lagrangian bias. The biasing schemes considered in this
paper include the halo bias [22,23], peaks model [17,18],
and excursion set peaks (ESP) [24,25]. These Lagrangian
biasing schemes are physically motivated, and the mass
scale is the only parameter left (once the halo mass function
or the collapse barrier is known).

The main goal of this paper is to see how differences in
the renormalized bias functions predicted by these models
are reflected in the weakly nonlinear power spectrum and
correlation function. It is not our purpose in this paper to
find an accurate model of bias. We are rather interested in
assessing the extent to which observed quantities are
affected by uncertainties in the biasing. We naively expect
that those effects should not be very significant on large
scales, because the characteristic formation scales of
astrophysical objects are small. Furthermore, the large-
scale behavior of the power spectrum and the correlation
function is not much affected by small-scale dynamics,
except for the scale-independent, linear bias factor.
However, scale-dependent corrections predicted, e.g., by
a peak constraint can affect the shape of a feature such as
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the baryon acoustic oscillation [26,27]. These kinds of
effects cannot be neglected, should they mimic a signature
of fundamental physics detectable in future LSS data or
bias cosmological constraints.

Our paper is organized as follows. In Sec. II, the essential
equations of the one-loop iPT used in this paper are
summarized. In Sec. III, the renormalized bias functions
in the bias models considered in paper are derived. In
Sec. 1V, the resulting predictions of iPT with various
biasing schemes are presented for the power spectra and
correlation functions in real space and redshift space. The
impacts on the scale-dependent bias from primordial non-
Gaussianity are indicated. Conclusions are summarized
in Sec. V.

II. ONE-LOOP INTEGRATED PERTURBATION
THEORY IN A NUTSHELL

In this section, we briefly summarize the formulas of
one-loop iPT for the weakly nonlinear power spectra and
correlation functions in the presence of bias in general [7].

In this section, we adopt the notation

kl---n :kl ++kn (3)
and

3 3
l _k...:/%...é:{;(2;;)36%(k—k1.4.n)~--. (4)

for brevity. The one-loop power spectrum of biased tracers
X is given by the formula

Px(k) = [ (k)] Po(K)

1
I LS IASIACS
K=k
+F§(l)(k)/k krg)(kl,kz)BL(kkl’b)’ (5)
12~

where Py (k) and By (k, k., k,) are the linear power spec-
trum and the linear bispectrum, respectively, and Fﬁ(”) is the
nth-order multipoint propagator of biased tracers X.

Although the time dependence is omitted in the notation,

the functions Py, P;, Bp, and Fg(") depend also on the
cosmic time or the redshift of observed objects. In the
notation of this paper, the time variable is always omitted in
the argument of all the functions for shorthand
convenience.

The multipoint propagator of biased tracers can be
decomposed into a vertex resummation factor and a
normalized propagator as follows,

Ik ky) = T )P (k). (6)
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where IT(k) = (e~*¥) is the vertex resummation factor and
W is a displacement field in the Lagrangian description of
cosmological perturbations. The propagators are evaluated
with Lagrangian perturbation theory in iPT. The Fourier

transform of the displacement field, ‘i‘(k), is expanded by
the linear density contrast §; (k) in Fourier space as

B =3 [ k) ) ()

which define the Lagrangian kernel functions L. The
kernel functions are calculated by the Lagrangian pertur-
bation theory [9-12,16]. They are polynomials of the wave
vectors which make up their arguments. The Lagrangian
kernels in redshift space are obtained by linear trans-
formations of those in real space. For concrete expressions
for the Lagrangian kernels in real space and in redshift
space, see Refs. [16,28,29].
Up to the one-loop order in Eq. (5), we have

3
) =exp {3 [ S5l LODEPD . )

(k) = ey (k) + k- LU k)
+ /(L;]z_l;PL(p){C;z)(k,p)[k LV (=p)]
+ e ()i - L) (=p)]e - LU (k)

ke L9k p.—p) + ) (p) - L) (k. —p)]
LY Q) k- LO G, —pn} 9)

and
P9 (ky k) = € ey k) + ) (y e - L) (k)]
+ i) ey e - L) (ky )]
+ k- LY (k)] k- LY (ky)] + k- L@ (ky k),
(10)
(1) (2)

where ¢y’ and ¢y’ are the renormalized bias functions. The

third line of Eq. (9) is usually zero for cg(l)(p) is only a

function of the modulus of p, cg(n(p). The series of

renormalized bias functions is generally defined by [30]

<55L (k?;(-s% ( I;ZSL (k) >

= (20)383 (k —ky..,)c\V (k. ...

k). (1)

where 8% (k) is the Fourier transform of the density contrast
of biased tracers in Lagrangian space, 6/65; (k) is the
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functional derivative with respect to &y, and (- - -) denotes
the statistical average. All the statistical information about
spatial biasing is included in the set of renormalized bias
functions.

In Lagrangian biasing schemes in general, the number
density nk of biased tracers in Lagrangian space is
modelled as a functional of the linear density field,
nk = F[5.). The relation is generally given by a functional,
instead of a function, because the density of biased tracers
at some position is determined by the linear density field
not only at the same position but also at other positions as
well. We thus have functional derivatives as in Eq. (11).

Once the number density of biased tracers n% is
modelled as a functional of the linear density field, and
the statistical distribution of the linear density field is
specified, the renormalized bias functions are obtained
from Eq. (11) and 6% = n&/(n%) — 1. In order to evaluate
the one-loop power spectrum of Eq. (5), only two func-

tions, cg)(k) and Cg(z) (ky,k,), are required. Some of the

angular integrations can be performed analytically, so that
Eq. (9) reduces to two- and one-dimensional integrals [7].

In real space, the power spectrum Py (k) is a function of
the modulus of wave vector k = |k| for homogeneous and
isotropic random fields. In this case, the correlation
function is simply given by

) = [T S alkori.  (2)

where ji(z) denotes the spherical Bessel function j;(z) of
order zero, [ = 0. In redshift space, however, the power
spectrum has an angular dependence as well. Adopting the
distant-observer approximation where all the lines of sight
have a common direction, the power spectrum Py (k, i) is a
function of the modulus k and direction cosine u relative to
the line of sight. In this case, it is convenient to expand the
angular dependence of the power spectrum in Legendre
polynomials P;(u) according to

Pallo) =3 p(kP(u): (13)
=0
i) =22 [ e pyn.  (4)

-1

The same expansion of the correlation function is given by

Edrop) = > E(PP W) (15)
=0
(=202 [ P (10

The relation between the multipole coefficients is
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_, [ k*dk
o) = [T T itnpk®. a7)
0 /A

Thus, once the power spectrum in redshift space Py (k, u) is
calculated by iPT, the multipoles p' (k) and & (r) are
evaluated by Eqgs. (14) and (17). Analytical integrations of
Eq. (14) are also possible [7].

III. RENORMALIZED BIAS FUNCTIONS
IN SEMILOCAL MODELS OF BIAS

The concept of renormalized bias functions in the
formalism of iPT is applicable to a broad range of generally
nonlocal models of bias. However, most of the bias models
that have been proposed in recent years fall into a category
of, what we call in this paper, semilocal models of bias. In
this type of biasing models, the formation sites of LSS
tracers depend on the local values of the smoothed mass
density field and its spatial derivatives. In this section, we
present a general derivation of the renormalized bias
functions for a class of semilocal models of Lagrangian
bias. To illustrate our method, we compute the renormal-
ized bias functions for a few bias models: the halo, peaks,
and ESP models.

A. Semilocal models of Lagrangian bias

In the semilocal models, the number density field ny(x)
of observable objects X is described by a function of the
smoothed linear density contrast J; and its spatial deriv-
atives 9,6, 0;;0;, etc. In general, various types of filtering
kernels can be simultaneously introduced to accommodate
specific variables. For instance, the linear gravitational
potential can be included in a straightforward manner by
adding a suitable smoothing kernel.

To keep the discussion general, we consider here various
smoothing of the linear density contrast,

3
5,(x) = / %&(k)m(meae*‘x, (18)

where the index s refers to the types of smoothing kernel;
0y, is a linear density contrast in Fourier space; and W and
R, are, respectively, a smoothing function and a smoothing
radius for each type s of the smoothing kernel. Popular
kernels include the top-hat (s = T) and Gaussian (s = G)
window functions,

Wrlx) = 3j,(0)/x.  Wolx) = e™/2  (19)
The linear gravitational potential ¢; can also be expressed
in the form of Eq. (18) with a smoothing kernel W(x) =
—1/x* and smoothing radius R, = a~' (47Gp)~"/%. In this

case, we have s = ¢ and 5, = ¢ . Another example is the

effective window function W g (x) = Wr(x)Wg(f, éf/fzx/ 3)
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recently proposed by Ref. [31] to model Lagrangian halos.
Here, f. is a free parameter that must be calibrated with
simulations. This effective window function furnishes a
good fit to the small-scale, scale-dependent Lagrangian
halo bias measured from numerical simulations.

While Eq. (18) can incorporate many different smooth-
ing functions such as, e.g., s = ¢, we specifically consider
biasing models that depend on the spatial derivatives of the
smoothed field up to second order, 9;6, and 0;;5,, in
addition to the field values themselves, ;. It is convenient
to introduce the spectral moments o, = ((6,)%)!/?,
o = (V8,-V5)1/2, and 6, = ((V-V5,)%)1/? so as to
normalize the linear density fields:

0;6,(x) . aiaj5s(x)

o ’7si<x):U—Slv Csij(x)—T'

(20)

The spectral parameters are integrals of the linear power
spectrum Py (k),

2
of = [ Sa PO GRE. 1)

The number density field ny(x) of biased objects is
assumed to be a multivariate function of vy, 1, and ;.
where the filtering kernels can be s = T, G, eff, ..., and the
spatial indices run over i = 1,2, 3 and ij = 11, 22, 33, 12,
23, 13. These linear field variables are denoted by y,, where
the index « indicates one of the above field variables, such
as v, Nz, Caiss ete.

The Fourier transform of the variables y,(x) is of the
form

Ya(k)

where the functions U, (k) corresponding to the variables
in Eq. (20) are given by W,(k)/oy, ik;W(k)/o,, and
—k;k;W(k)/o,,, respectively. The renormalized bias func-
tions of iPT are given by [6]

(n) = ! A

o Ua (kn) (23)

n

= U, (k)5 (k). (22)

Here, iy = (ny) is the mean number density of objects X.
It is convenient to define a differential operator

0
D(k) = ZUa(k)W
N SR T
- Sk [ i =5

(24)
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where

0
Djk) =3 ki~ =D _kik; (%w (25)

i 51 i<j

Although the set of variables {;; is a symmetric tensor and
has six independent degrees of freedom, it is useful to
introduce a set of redundant variables,

_ Coj (PZ])
$oij = { Lo (i) . (26)

Any function of ;; (i < j) can be considered as a function
of &;;. The differentiation with respect to independent
variables {;; is given by

9 D
= o (27)
I ij {%U—I—%ﬂ (i<])

when it acts on an explicit function of &;;. With the

variables &;;, the differential operator D} (k) in Eq. (25)
reduces to

Zk, 5 éw (28)

Using the differential operator D(k), Eq. (23) reduces to

1

cgf) (ky,....k,) = a (D(ky) - - - D(k,)ny)
= %/ d"yny(y)D(k;) - - - D(k,)P(y).
(29)

where P(y) is the joint probability distribution function and
N is the dimension of y,. Integrations by parts are applied
in the second line. The mean number density is given by

iy = (nx) = / N yny(y)P). (30)

For a given model of bias, the functions ny(y) and U, (k)
are specified, and the renormalized bias functions are
calculated by Egs. (29) and (30). The joint probability
distribution function P(y) is determined by the statistics of
the initial density field &y .

Equations (29) and (30) are also applicable in the
presence of initial non-Gaussianity. When the initial den-
sity field is random Gaussian, P is a multivariate Gaussian
distribution function. In this case, the covariance matrix of
the set of variables {y,},
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Mas = (yays) = / %Umwﬂ(kmk» (31)

completely determines the distribution function as

1

PO = v ae <

1
- EyTM‘ly) . (32)

Generalization of the following analysis in the presence of
initial non-Gaussianity is fairly straightforward by applying
the multivariate Gram-Charlier expansion of the distribu-
tion function [32-34].

B. Simple halo model

The renormalized bias functions in the halo model of
bias are derived in Ref. [30]. We summarize the results in
this subsection. In the halo model, the smoothing radius R
is associated with a mass scale M by a relation,

-
M= @R% (33)
where p is the mean matter density at the present time. The
above relation is equivalently represented by

M S
- n' Mpe, (34
<1.163x1012h‘1M@Qm0) pe. (34)

where Mo = 1.989 x 10°* kg is the solar mass, Qg
is the density parameter of the present universe, and
h = Hy/(100 kms~! Mpc™!) is the dimensionless Hubble
parameter.

The mass element at a Lagrangian position x is assumed
to be contained in a halo of mass larger than M, if the value
of linear density contrast §,, smoothed by the mass scale M
exceeds a critical value .. The critical value is usually
taken to be &, = 3(37/2)*3/5=1.686, which follows
from the spherical collapse calculation. The localized
differential number density of halos at a Lagrangian
position x is given by [30]

2py O

n(x M) = =200y (x) ~ 5l (39)
where n(x, M) is the differential mass function of halos and
O(x) is the step function. This model is a generalization of
the Press-Schechter (PS) formalism [35]. In fact, on taking
the spatial average of the above equation, the number
density of halos n(M) in the original PS formalism is
recovered.

When the initial condition is Gaussian, and the smoothed
mass density contrast §,,(x) is a Gaussian field, the spatial
average of the step function (©(5,(x) —&.)) is given by
the complementary error function. In this case, the global
(spatially averaged) mass function has the form
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n(myam =20 )%, (36)

where v = 8,/0y, 63 = {(8))?)'/? are functions of mass
M and f(v) = (2/7)"/?ve™"/2. The function f(v) is called
the “multiplicity function” [Note that another convention
defines f(v) as n(M)dM = (po/M) f(v)dv].

While the mass function of dark matter halos identified
in N-body simulations broadly agrees with the PS pre-
diction, the agreement is far from perfect. Recent studies
have shown that using multiplicity functions different from
the PS mass function provides better models for halo
statistics. One of the simplest models is given by a
Sheth-Tormen mass function [36], for which the multiplic-
ity function reads

flv) = A(P)\/% {1 + L] Vave 2 (37)

B (q*)P

where p=03, ¢=0.707, and A(p)=[1+
7~1/227PT'(1/2 — p)]~" is a normalization factor.

When the mass function is changed from the PS one,
Eq. (35) should be simultaneously changed in order to be
compatible with Eq. (36). This can be achieved by sub-
stituting the step function (5, — §.) with an auxiliary
function E(8y; — 8., 07). This function should explicitly
depend on the mass M through o,,. Otherwise, if the mass
dependence is only implicit through the smoothing kernel
of 8y, the resulting mass function is only compatible with
the PS mass function. More details on the relation between
the multiplicity function and the auxiliary function is
discussed in Appendix A.

The relation between the multiplicity function f(v) and
the new function E is given by

(Elou—duon) =3 ACVARNED

and the local mass function is given by

2py O
n(x.M) = =20 Eloy (x) = ..o
2py [O6y(x) O _
) iou(x) 3o
doy 0 _
o Zloule) = B . (39)

The model of Eq. (39) for the number density field
depends on the linear density field through two variables,
Sy (x) and 96, (x)/OM, which corresponds to the variables
v, in Sec. Il A. The window functions for these variables
U, (k) are given by W(kR) and OW (kR)/OM, respectively,
where R and M are related by Eq. (33) or (34). The
renormalized bias functions in this model are derived by
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Egs. (23) and (39). The unknown function = can be
removed from the resulting expressions thanks to the
relation of Eq. (38). Closed forms for all the renormalized
bias functions are derived in Ref. [30]. (In the notation of
Ref. [30], the dependence of o), in the function = is
implicit, but it is actually assumed.) The results are given by

(k. ... k,) = bEW(KR) - -- W(k,R)
[in—l(ﬁl) d
—jgr—dmaMmth%~W4hRm
(40)
where
N BRI
bn(M)_< 6M> ) (41)
AL =37 " 5 mb o). )
m=0""""

In this paper, we need only the first two functions, c&l)

and cgf), which are explicitly given by

Dy _ L 1 dW(kR)
CX (k) - bl W(kR) +5c danM ’ (43)
Cg(z)(khkz) = DYW(kiR)W (kyR)
Lot AW RIWIRR)

5.2 dino,,

C. Peaks model

In the peaks model, the formation sites of dark matter
halos are identified with density peaks in Lagrangian space.
The peaks are described by field values with up to second
derivatives of a smoothed density field, vy, 7, and ;.
While the choice of smoothing kernel s is arbitrary (so long
as the convergence of the spectral moments is ensured), the
Gaussian kernel (s = G) is frequently adopted. In the peaks
model, only a single kind of smoothing kernel is involved.
Therefore, we omit the subscript s in this subsection below
and use notations like v, n;, {;;, 09, 01, 07, €tc.

1. Derivation of renormalized bias
Junctions in the peaks model

The differential number density of discrete peaks with a
peak height v, is given by [17]
33/2

dp (v = )8 (1)O(43)| det &

, (45)

npk

where R, = v/36, /0, is a characteristic radius and A5 is the
smallest eigenvalue of the 3 x 3 matrix (=(;;). The number

123522-6



IMPACTS OF BIASING SCHEMES IN THE ONE-LOOP ...

density of peaks with peak height between v, and v, + dv,
is given by npdu..

The variables (y,) consists of ten variables, (v,#;.{;;)
with 1 <i < j <3, and the corresponding kernels (U,)

( [W(kR)/Uo, lle<kR)/61, —klk]W(kR)/Uz]

When the linear density field & is statistically isotropic,
the joint probability distribution function P(y) only
depends on rotationally invariant quantities [32,33,37].
Using the redundant variables &;; defined in Eq. (26),
these are

3~ -~ 9~ ~ -
n=nn Ji=-=&. Eigijéjia J3 Zifijf-fjkfki,
(46)
where repeated indices are summed over, and
~ 1
Sij Egij"’gfsij-]l’ (47)

is the traceless part of &;;. Covariances among the field
variables are given by [17]

}' 1
<U2>:1’ <m7i>:0’ <l/é:l]> 3 l]’ <77i71j>:§5ij’
(48)
1
&) =0, (&éu) = (6115kl +0ub;+06u0jk),  (49)
where
2
o1
=— 50
v 00)0) ( )

characterizes the broadband shape of the smoothed linear
power spectrum. Adopting the above covariances, the
multivariate distribution function of Eq. (32) reduces to
[17,18,32,33,37,38]

V4+J2=2wl; 3, 5

P(y) « exp 207 XA Tp (51)
up to a normalization constant, which is irrelevant for our
applications in the following. The distribution function
above is still for linear variables y, and not for rotationally
invariant variables.

Since the distribution function P(y) depends only on
four rotationally invariant variables v, Jy, 7, and J,, the
first-order derivatives are given by

0 0 0 0 0
8_;1,73 —8(;72)73’ @P 5,](9] —|—3§,]aj

(52)

PHYSICAL REVIEW D 93, 123522 (2016)

for which the relations

A(n*) aJ, oJ,

- i - _5i'7
on; 1 afij ! afz/

= 35!/ (53)

are used. Further differentiating the above equations, we
have

o? { 0 ? ]
P — |25, +4 P, (54
oo, ~ [P am T aeee) > OV
0 o ; iy
mp = |:5ij5le = 3(8;j8u + Ouij) 07,07,
0? 0
+ 95;,@1 5 + (36501 — 6;01) ﬁ} P
2

(55)

where a relation aék,/ag,, = 001 — 0;;04/3 is used.
The number density of peaks 7, (y) and the distribution
function P(y) both depend only on rotationally invariant
variables. Thus, the differential operators D(k,) - - - D(k,,)
in Eq. (29) can be replaced by those averaged over the
rotation of coordinates, (---)q. For that purpose, we have

1 -
(ni)a =0, <’7i77j>g = —51'/'72, <§ij>g =0, (56)
3
-~ - 1 2
(&ii¢u)g = 15 Oixdji + 66 — 551‘;51(1 Jr. (57)

and so forth.
Combining Egs. (24), (25), (28), and (52)—(57), we have

10 k0

—) P, (58)

(DaP = WikR) (154 0

50 O
(D(k1)D(k )>
W (ki R)W (k2R)
{<608u ]:7122531><010881/+k;;3811>
A

01 3 8( ?)
3(k; 'kz)z—]ﬁzkz 2 9
[ 5C 812] GJZ}P‘ 9)

+
022

Derivatives with respect to variables v and J; in Egs. (58)
and (59) can be represented by bivariate Hermite poly-

nomials [38],
(=) foNi [/ 0\
H;i(v,Jy) m(a) (3—J1> N(v,Jp), (60)
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where

ep{ v+ J% =2y,
<p | —
2m\/1 —y? 2(1-7%)

N, J)) = (61)

is the bivariate normal distribution function. Derivatives
with respect to variables #”> and J, are straightforwardly
obtained as

{1+§’12i} 0 6_3,72/2:%(”2_1)6_3,72/2

()] o(n?)
_ _L§1/2) <§ﬂ2> 6—3;72/2’

(62)

2 979 5
1427, 91 9 5022 _1\pg=50/2
{ 3 2812] a5, 5= l)e

5
=P <512> e>/2(63)
where

x %e* d"

() n+a ,—x
Ly = - 4
() n! dx" (x"*ee™) (64)

are the generalized Laguerre polynomials.
Substituting Eqgs. (58) and (59) into the integrand of
Eq. (29), we obtain

(k) = (bro + bo )W (KR), (65)

e (k1 k) = {bzo + b1y (k* + kp?)
+ boski*ky® = 27, (ky - Key)
o3l ko)? — k] W R (o)
(66)
where

1

—
00 GZank

(1) / (1/2) (3
= dOyn_ L 2P, 68
Xk (o] 2kflpk ynpk k 2 n P ( )

b= /dloynpkHij(V’ J1)P, (67)
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The higher-order renormalized bias functions cg(") can be

similarly obtained by further differentiating Eqgs. (54) and
(55) and following similar procedures as above.

The above results have exactly the same form as the peak
bias functions, which have been derived in Refs. [18,38].
These authors generalized the peak-background split and
argued that the peak bias factors indeed are the ensemble
average of orthogonal polynomials. However, they did not
explicitly demonstrate that their generalized polynomial
expansion holds beyond second order. In Appendix B, we
briefly sketch how this could be done and emphasize the
connection between the peak approach and the iPT.

Note that, as the peak constraint ny has a factor 5]3) (n),
only the constant term of the generalized Laguerre poly-
nomials L\ (0)=T'(n+a-+1)/[T(n+1)T'(a+1)] appears.
Therefore, Eq. (68) reduces to

(2k + 1)1 (=1)k
2%kl o

Xk = (70)

The integrals Egs. (67), (68), and (69) appear up to second
order, i.e., in the functions cg) and cg). Note, however, that

the bias coefficients will generically take the form [33]

3
/ d"yny H,i(v.J, )Ll(cl/2> <2’72> Fi,, (542, J3)P,  (71)

in the renormalized bias functions c&") with n >3 [18],
where

r(5/2)
3" (3m + 5/2)

3m+3/2) (3 J3

are polynomials of J, and J3, orthogonalized with the
Gram-Schmidt procedure and P,,(x) are Legendre poly-
nomials. The appearance of P,,(x) reflects the fact that J5 is
an “angular” variable. This is the reason why we adopt the
notation y; and w;q of Ref. [18]. We refer the reader to this
work for more details.

Fu,, (575, 03) = (=1)!

2. Bias coefficients of peaks model

Even though the bias coefficients b;;, yx, and wy are
explicitly defined as ten-dimensional integrals, they can be
reduced to one-dimensional integrals at most. Explicit
formulas of the coefficients are derived below.

To begin with, we define a set of integrals:

1
A = [ domearr. (3
pk
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IMPACTS OF BIASING SCHEMES IN THE ONE-LOOP ...

1
. / leynpkan']) (74
P

B (1) =

~—

All the bias coefficients defined in Eqs (67) and (68) can be
represented by the above functlons AP% and B of Egs. (73)
and (74), because H;; and L ) are just polynomials of their
arguments, and peak constraints in np contain delta
functions as &p (v — v, )d5 (n). Defining invariant variables

1 1
x=2A+A+1, }’25(/11 —A2), 225(11 =24 +43),

(75)

where 4, 4,, 43 are eigenvalues of —(;; with a descending
order (4; > 4, > 13), the peak number density of Eq. (45)
reduces to [17]

o = ﬁ%%(y — 1)83 () (x = 20)[(x + 2) = (3y)]
x Oy —2)0(y+2)0(x =3y + 2). (76)

Other variables in Eqs. (73) and (74) correspond to J; = x,
J, = 3y? + z2. Following similar calculations in Ref. [17],
and defining a function

F(x.y.z) = (x=22)[(x +2)* = By’ y(* = 2. (77)

Egs. (73) and (74) reduce to

JoZdxx"fo(x)N (ve, x)
Jo®dxfo(x)N (ve,x)

Jodxf, ()N (ve. x)
Jodxfo(x)N (ve. x)

where the function A is given by Eq. (61) and

3255/2
= </ dy/dz+/ dy/ dz>
/4 3y—x

(3y +22)"F(x,y, 2)e ) (80)

A (,) = (78)

ng(yc) =

(79)

The function f(x) is identical to the function f(x) defined
by Eq. (A.15) of Ref. [17]:

Folx) = ;—C(x2 -3) [erf G \éx> n erf(\éxﬂ
I )]

(81)

With the same consideration in Ref. [38], the analytically
closed form of Eq. (80) is derived from fj(x) as

PHYSICAL REVIEW D 93, 123522 (2016)

1/2
o o(a'/?x)
fulx) = < 5 80:) { ot ]
For example, the explicit form of n = 1 is given by
x(, 21 1 \f \f
== —— | |erf =4/= f | /=
f1(x) Z(x 5) [e <2 7 +e X
3 x72 _ 64 —5x2/2
5z/\2 25

27 209 64 >
sS4 =7 2 T 5078 . 83
+<16x+20x —|—25>e ] (83)

(82)

a=1

Thus, the originally ten-dimensional integrals of
Egs. (73) and (74) reduce to just one-dimensional ones of
Egs. (78) and (79), for which numerically evaluations are
straightforward.

Equations (67) and (70) can be straightforwardly repre-

sented by Ap and BE , using explicit expressions for the

(a)

polynomials H;; and L. The results are given by

k
1 Ve _}/AII’ (Vc)

bjg=— , 84
10 6o 1_7/2 ( )
1 - AP
bOl _ }/Vc + 12 (VC) , (85)
0, -y
1 1 yg—2yycAﬁ)k(yc)+y2Agk(uc)
20 ="> —1[, (86)
1- 1-
1 1
bjy=———>
600y 1 —y
k k
« |:_YV%+(1+72)UCA[1)2(’/C)_7A5 (Uc)+y:|’ (87)
-y
11 [P 2yucAPk<uc>+A‘;“<vc>
21 2
o6y 11—y 1—y?
and
3
=——, 89
X1 20_12 ( )
5 ok
D ="5_>3 [1 - B (Vc)]- (90)
2

The quantities AP (v, ), AB(,), and B" (1, are given by
one-dimensional integrals of Eqgs. (78) and (79) with
Egs. (61), (81), and (83).

The above results for b;; can be conveniently represented
by matrix notation as follows We note that Eq. (61) is a
multivariate Gaussian function with a covariance matrix,
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M:(i i) (1)

Defining
2
p() = ("Ob‘O), b0 = ( % bao "O‘Zzb“), (92)
62by, 0002b11 0Dy
and

( v pAR (vc>)
UcAll)k(Vc) Agk(yc)

(93)

A(l);( pk”° ) e
Al (yc)

Eqgs. (84)—(88) are equivalently represented by

p() = M4, b =M'APDM —M-'. (94)

D. Excursion set peaks

The ESP model extends the peaks model with another
constraint that the smoothed linear density field should
increase when the mass scale decreases, 99,/0R; < 0, in
order to avoid the cloud-in-cloud problem. We define the
normalized slope of the smoothed linear density field with
respect to the smoothing radius,

1 96,
Ao OR,’

(B

The constraint of the ESP model is to require an inequality
us > 0. The differential number density of the ESP model
is given by [24,25,34]

s = (95)

where

dogo\~' K
nESP:_<dRO> AsOU_G(ﬂs)npkv (97)

where np, is the differential number density of discrete
peaks given by Eq. (45). This implies that the multiplicity
function of the excursion reads

fESP(Vc) =V, / d”ynESPPv (98)

where V = M/p, is the Lagrangian volume of a halo of
mass M and the vector (y,) now consists of the 11
variables (v, u,1;, ;).

Although it would be desirable to use the same window
function (such as the window shape of Ref. [31] measured

PHYSICAL REVIEW D 93, 123522 (2016)

directly from simulations), for all the relevant fields, our
approach remains perfectly consistent when different filters
are applied. For instance, top-hat smoothing is not appro-
priate to define density peaks because the window function
does not vanish sufficiently fast at high k. As a result,
spectral moments like o, do not converge for a cold dark
matter (CDM) power spectrum. However, since top-hat
smoothing is the natural choice to relate the peak height to
the spherical collapse expectation, Refs. [39,40] suggested
applying the top-hat window W the variables v, and y, and
a Gaussian filter Wq to the variables 5; and {;;. In the
following, we denote the window function for v, and p, by
W(kR) and that for n; and ¢,;; by W(kR). When a single
window function is applied, one can simply set R = R and
W(kR) = W(kR). In the following, we omit the subscript s
in this subsection below and use notations such as v, y, 7;,
¢ij- The quantity o is associated with the window function
of W(kR), and &, &, are associated with W(kR). The rms
of Eq. (96) is represented by A, with a window function of
W and explicitly given by

K*dk

A = / SRV ERPPLR),  (99)
b3

where W'(x) = dW(x)/dx is the first derivative of the

window function.

1. Derivation of renormalized bias
Junctions in the ESP model

We define rotationally invariant quantities 52, J;, J,, and
J3 as in Eq. (46). For a Gaussian initial condition, the joint
probability distribution function is given by

3 5
Py) & N (v Jy. 1) exp (—5712 —QJZ), (100)

where N (v,Jy,u) is the trivariate distribution function,
which is given by

1 1
N, Jy, p) = ————exp (——aTM‘1a>, 101
1) = e =3 (101)
where
v L 72 73
a=\|J |, M= 1|y, 1 3 (102)
H Y13 V23 1

The matrix M is the covariance matrix of a: M;; = (a;a;).
The variables are normalized so as to have the diagonal
elements of this matrix unity. The off-diagonal elements are

given by
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k2dk o
0002
1 k2dk
= =—— | ——kW(kRYW'(kR) Py (k 104
o= ) =——x / LS KW(GR)W (KR)PL(K). (104)
1 Kdk .- -
yon = (i) = — / K15 (R)W (kR) P (k).
GZAO 271'

(105)

The determinant |[M| and the inverse matrix M~' are
given by

PHYSICAL REVIEW D 93, 123522 (2016)

1 1—y° V23713 =712 Y12V23 — V13
M = M V23713 — 712 1—y5° Y13712 =723
Y12V23 =713 Yi3¥i2 — 723 1—y?
(107)

Choosing a Gaussian filter for both windows, i.e.,
W(kR) = W(kR) = Wg(kR), leads to —kWg(kR) =
RI*Wq(kR) and u = (R5,/Ay)J;, which signifies that u
and J; are redundant variables. In this special case, the third
variable in a is not necessary, and we only need a two-
dimensional covariance matrix. We will not consider this
simpler case in what follows.

Using the fact that P is a function of only , u, n*, Jy, and

M| =1=712" —123° = 115> + 2112723713, (106) J,, and following the same steps of Egs. (54)—(59), we have
|
W(kR) 0 kK*W(kR) 0 kW'(kR) O
D(k = — _—— 108
< ( )>QP |: (o} 31/ 52 8J1 A() (9/1 7) ( )
R W (kR ! k>2W (ko R kyW' (k,R
(D(ky)D(ky)) P = W(k, )24_ ky V‘i(kl ) 0 kW' (kiR) O] [W(kR) O LR V‘i(kz ) 0 kW(kR) O
(o0} 61/ () 8.]1 AO 8/4 () 81/ 0) 8]1 AO 8;4
2(ky - ko)W (ki R)W (kyR) 2, 9
- 2 L+2n 2\ (12
G 37 00P) 0('7 )
[3(k; - ky)* = ki *ky*]W (ki R)W (kR ){ 9 } 9 }
+ 1+-J P 109
P 5”00 o0, 1o
Substituting Eqs. (108) and (109) into the integrand of Eq. (29), we have
(k) = biooW(KR) + by1gk*W (KR) — boo kW' (kR), (110)
¢ 1, ke2) = baog W (ki R)W (kaR) + bijo[ko>W (ki R)W (FkoR) + (1452)]
+ {bosoki*ka® + @10[3(ky - ky)* — ki2ky?] = 21 (ky - ky) } W (ky R)W (k5 R)
= bioi [y W (ki R)W (kyR) + (152)] = oy [k ko> W' (kg R)W (ko R) 4 (1452)] + bogok i ko W (k1 R)W' (k2 R),
(111)
|
where (=1)HTE LN 0\ O\*
H" 1J 9 = | 7 ar a y] ) )
l]k(l/ 1 :u) N(I/,J],,M) (91/ 8]1 alu N(l/ 1 ﬂ)
1
bijk :ﬁ/dnynESPHijk(y»Jl’/"),P» (112) (115)
00'62/ Ay figsp
and we have exploited the fact that nggp contains a delta
. function &3 (n7) to simplify y;.
P (2k+ D1 (=1) (113) Again, Eqs. (110) and (111) exactly agree with the
g kK 5%k results derived independently in Refs. [18,41] in a fairly
different manner.
—1)! 5 . .
wp = 5(21_ ) / d"yngsp L§3/2) <E J2> P. (114) 2. Bias coefficients of the ESP model
2 NEsp

Here, H;j; are trivariate Hermite polynomials

The coefficients b;j; and wy, also reduce to expressions
with up to one-dimensional integrals, extending the method
of Sec. III C 2. For this purpose, we define integrals,
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1
ARF(ve) Ei/d“)’nﬁsphnﬂmp’ (116)
ESP

B (ve)

1
_/ d”ynEssz"'P. (117)

Ngsp

Just in a similar manner of deriving Egs. (78) and (79),
Egs. (116) and (117) reduce to

ESP _ fOoodxxnf()(x)gm(yc’x)
Aum (¥ = fomdxfo(x)go(yc,x) ’ (118)
ESP(,, \ — fo""dxfn(x)go(vc,x)
B ) = fooodxfo(x)go(%,x) ’

(119)
where

I (Ves X) = /oo dpp" N (ve, x, ). (120)
0

The function g,, (., x) is analytically represented by the
parabolic cylinder function D,(z) which has an integral
representation,

2
i 2t—12/2 —1 14 121
D = — B " dt.
@ =t e (121)
For our convenience, we define a function
H,(z) = €/*D,(2). (122)

When 4 = n is a non-negative integer, this function reduces
to Hermite polynomials H,(z). When A = —n is a negative
integer, integral representation of H_,(z) is given by

1 © o
H_,(z) BCEN] WA eI 21y

) () o
First, several functions are explicitly given by

H_\(z) = \/gezz/zerfc (\%) , (124)

Hoy(z)=1- \/gzezz/zerfc <\%> . (129

H_3(z) = % {—z + \/g(z2 + 1)e¥2erfc (%)] . (126)
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1
H_4(2) = 3 [22 +2- \/;;(31 + 23)e?Perfc (\/iiﬂ :
(127)

Using the function H_,(z) defined above, an integration
by u in Eq. (120) can be analytically performed, resulting in

(Vo) = (m+1)!
V (2z)} | M(Mz] )/

1
X eXp [— 5 (M7lv? 4+ 2Mpvex + M;zlxz)]

VM

where M;;! = [M~'];; are matrix elements of the inverse
matrix M~! given by Eq. (107). Substituting Egs. (123) and
(128) into Egs. (118) and (119), only one-dimensional
numerical integrations of smooth functions are required.
Equations (112), (113), and (114) can be straightfor-

wardly represented by functions AESP(v.) and BESP(v,),

x H—(m+2) <

using explicit forms of polynomials H,j, Ll((l). As in

Egs. (91)-(94) of the peaks model, the results for b;j
are conveniently represented by matrix notation. Defining

oob10o
b(l) = 62b010 ) (129)
AN
502b200 6062b110 608D 101
b = | 6oob11g  5%boy  Grlobon |, (130)
60Dob1o1  G280bo11  Aobooa
and
Ve
A0 = [ a8, |, (131)
AGF (ve)
v2 v ABP (1) v AR (v,)
AP = | vARPw)  ARP()  AFP() |, (132)
VAR () AR () AR (k)
we have
p() = M-1AW), b =M'APM —M-', (133)

where M~! is given by Eq. (107). All the coefficients to
evaluate the renormalized bias functions up to second order
in Egs. (110) and (111) for the ESP model are thus
obtained. The results for y; and w;, are
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3
=, 134
X1 2512 ( )
5 ESP
o= (1= BET WL (139)
IV. RESULTS

In this section, all the formulas in previous sections are
put together, and the results of power spectra and corre-
lation functions with various biasing schemes are pre-
sented. In the following, the flat ACDM model with
cosmological parameters Qo = 0.3089, Q, = 0.0486,
h=0.6774, ngy=0.9667, o5=0.8159 (Planck2015
[42]) is assumed. We will hereafter present for the repre-
sentative redshifts z =1, 2, 3, which are of particular
interest because currently planned, forthcoming redshift
surveys will harvest this redshift range. We have checked
that results at lower redshift, such as z = 0.5, are qualita-
tively similar to those at z = 1. Another reason for focusing
at z>1 is the fact that the applicability range of the
perturbation theory decreases noticeably for 7 <« 1.

A. Bias models

Four different models of bias are considered in this
section. The “halo model” refers to a model described in
Sec. III B, and the renormalized bias functions are given by
Egs. (43) and (44) with coefficients of Eq. (41). The top-hat
window function Wr(kR) and the Sheth-Tormen mass
function, Eq. (37), are adopted in this model. The only
parameter in this model is a smoothing radius R, or
equivalently a mass scale M of Eq. (33).

The “local halo” refers to a model with scale-

independent values of renormalized bias functions,

Y = b, ¢?) = bL. where b are given by the halo model

above. This model is a simplified version of the halo model,
in which the renormalized bias functions are replaced by
their low-k limits. Hence, this is equivalent to completely
neglecting the effects of the window function in Egs. (43)
and (44). Scale-independent bias functions correspond to a
bias model in which the number density of biased tracers
n%(x) solely is a function of linear density field &y (x) at the
same Lagrangian position x. We consider this model for the
purpose of assessing the importance of the window
functions in the halo model.

The “peaks model” refers to the model described in
Sec. HIC. Its renormalized bias functions are given by
Egs. (65) and (66) with coefficients calculated by
Egs. (84)-(90). A Gaussian window function Wg(kRg)
is adopted throughout. While the threshold v, is originally a
free parameter of the peaks model, we fix its value with a
relation v, = 8./0Go(Rg), where 660(Rg) = 0¢(Rg) is the
rms of variance. Therefore, the Gaussian smoothing radius
Rg is the only parameter in this model.

PHYSICAL REVIEW D 93, 123522 (2016)

The “ESP model” refers to a model described in
Sec. I D, and the renormalized bias functions are given
by Egs. (110) and (111) with coefficients calculated by
Egs. (129)—(135). There are two kinds of window functions
in this model: a top-hat and Gaussian, which we denote as
W(kR) = Wr(kRy) and W(kR) = W (kR ), respectively.
These smoothing radii are related by Rg = 0.46Rt [40].
Furthermore, the threshold value is fixed by
Ve = 8./019(R), where o1g(R) = o6((R) is the rms of
variance with the top-hat window function. Hence, the
top-hat smoothing radius R is the only free parameter of
this model.

Each bias model has a unique parameter in our settings
described above. To make comparisons among various
biasing schemes, the parameter of each model is adjusted so
as to give the same value for the first-order renormalized
bias function in the low-k limit, lim,_ ¢\’ (k). This limiting
value is the bias parameter bk, by, or byg, depending on
the model details. For the purpose of presentation, we
define the value by the parameter b} (M) with the top-hat
window function and a mass scale M = 1 x 10*2~'M in
Eq. (34). The resulting values are bt = 1.053 (z = 1),
2.694 (z = 2), 5.039 (z = 3). The smoothing radii of peaks
and ESP models are adjusted to reproduce the same values
in byo and bygy. The corresponding mass scale varies in the
range M = 0.7-1.8 x 10'3h~'M, for the peaks and ESP
models, with a slight dependence on redshift.

B. Renormalized bias functions

The renormalized bias functions, cg(l) (k) and c&z) (ky,k>),

are shown in Fig. 1. For the second-order functions, the
horizontal axis corresponds to the amplitude of
|k, + k| = k, which is relevant to the scale of power
spectrum P (k). Three different shapes corresponding to the
triangles  [|k,|, |k |, |k +k,|] = [k, k,k],[5k,5k k], [k/5,k,k]
are plotted to illustrate the characteristic behaviors.
These configurations correspond to equilateral, folded,
and squeezed shapes of a triangle, respectively.

The local halo model has a constant value in each panel
by definition. Other models have asymptotes cg(") — 0 in
large k, because the window functions vanish in this limit.
This reflects the fact that the halo centers cannot have
clustering power on scales smaller than the halo mass. The
value of second-order parameter b turns out to be very
close to zero at redshift z =1 for our cosmology and
fiducial mass function. Consequently, the low-k limit of the
renormalized bias function in the halo model also is very
close to zero.

A striking feature in the scale dependence of the
renormalized bias functions is the appearance of peaks
before the cg(n) decay to zero in the large-k limit. The height
of these peaks is generally larger at lower redshift.
However, the amplitudes depend strongly on bias models.
The peak height of the halo model is lower than those of

’
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FIG. 1. Renormalized bias functions, cg(> and c;). The results for three redshifts z = 1, 2, 3 are shown as indicated in each figure. Four

models of bias are plotted in different lines: local halo (solid, orange), halo model (dashed, red), peaks model (dotted, blue), and ESP

model (dot-dashed, green).

peaks and ESP models. There are oscillations around the
asymptote in the large-k tails for halo and ESP models.
These oscillations reflect the property of top-hat window
function. Such oscillations are not seen in peaks model in
which only Gaussian window functions are used.

The first-order renormalized bias function cg) has
recently been measured from the analysis of halos in N-
body simulations [31,43]. The appearance of peaks at
around kR ~ 2.5 and oscillating features in high-k tails
are clearly observed. For instance, the behavior of the
numerical results in the z = 0.95 sample of Ref. [31] (see
its Fig. 5) lies somewhere between the predictions of the
halo model and ESP model in the z = 1 plot of our Fig. 1:
the peak height in the numerical simulations is larger than
the halo model and smaller than the ESP model, and the
amplitude of oscillations in the high-k tail is smaller than
the halo model and larger than the ESP model. The authors
of Ref. [31] use an effective window function W and a
model which is similar to our Eq. (43) but consider the
coefficients b} and 1/, as free parameters. Fitting the three
parameters R, b, and 1/8, to their numerical results, the
scale dependence of the Lagrangian bias factor is nicely
accounted for.

One should, however, bear in mind that the precise
shapes of renormalized bias functions depend on the details

of the halo identification procedure. While the numerical
simulations mentioned above use the “Friends-of-Friends”
algorithm [44], one should naturally expect that other
methods, such as the “Spherical Overdensity” algorithm
[45], yield different results. Since the purpose of this paper
is to investigate the impacts of different biasing schemes
rather than fit our models to numerical results based on a
specific halo-finding algorithm, we will keep on inves-
tigating how the four different models affect the predictions
of iPT for the power spectra and correlation functions.

C. Power spectra and correlation functions in real space

Our predictions for the one-loop power spectra in real
space are shown in Fig. 2. The upper panels show the power
spectra divided by a no-wiggle linear power spectrum
P, (k) [46] and by the square of Eulerian linear bias
parameter, b> = (1 + b%)2. The lower panels show the
scale-dependent bias, which is defined as the square
root of the ratio between the power spectrum of biased
tracers and that of the mass distribution, [Py (k)/P,,(k)]'/>.
Horizontally straight lines in bottom panels indicate the
linear bias factor b. Here and henceforth, the shaded region
in each figure corresponds to a rough estimate of the k
range in which the one-loop iPT is inaccurate at the level of
a few percent. In this figure, they are given by k = 0.45/0y,
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FIG. 2. The one-loop power spectra in real space with different biasing schemes. Upper panels show the power spectra divided by the
linear, no-wiggle power spectrum with the linear bias, Py (k)/[b?P,y(k)]. The lower panels show the scale-dependent bias,
[Py (k)/ Py (k)]'/2. The meanings of different lines are indicated in the panels. Shaded regions represent rough estimates where the

one-loop perturbation theory is expected to be inaccurate.

where 64 = (|U,|?)!/? is the rms of the displacement field
evaluated with the Zel’dovich approximation. Our estimate
is fairly reasonable when comparison between the iPT and
numerical simulations is available [47-49].

There are deviations from the predictions of linear theory
even in the large-scale limit, k < 0.012Mpc~', owing
mainly to a white-noise-like contribution generated by
second-order Lagrangian bias [50]; the contribution of
the first term on the rhs of Eq. (10) to the biased power
spectrum of Eq. (5) is given by

1

Px(k) D 5

/ [Cg(z)(kl’k2)]2PL(kl)PL(k2)' (136)
ki=k

The second-order bias function c;z) (ky,k,) does not gen-

erally approach zero in the large-scale limit of
k =k, + ky — 0, and therefore the above term approaches
a positive constant in the same limit. As a result, the
nonlinear power spectra of biased tracers in the large-scale
limit are always larger than the predictions of linear
theory. At redshift z =1, the second-order function is
coincidentally close to zero in the large-scale limit, so that
this white-noise-like term is small.

In each of our bias models, the power spectra are
systematically larger than the predictions of linear theory
toward small scales. Consequently, the nonlinear scale-
dependent bias [Py (k)/Py,(k)]'/? increases at small scales.

This property is not solely due to the scale dependencies of

the first-order bias function, c;”

model, in which cg(l) does not have any scale dependence,

exhibits the same behavior. Therefore, the second-order
effects are important to account for the scale-dependent

(k) since the local halo

enhancements of the power spectrum in the presence
of bias.

The qualitative behavior of the power spectrum does not
vary significantly among the different biasing schemes.
Except for the simplistic local halo, the differences between
the models are at the level of 2%—4% at k < 0.2hMpc~!.
Although the renormalized bias functions behave fairly
differently among different biasing schemes, these devia-
tions do not have a pronounced impact on the shape of the
power spectrum. The reason is that the biasing schemes
start deviating significantly from each other on scales
smaller than the halo mass M =1 x 103 42~'M,, which
corresponds to R = 3h~! Mpc or k ~ 1A Mpc~!, on which
perturbation theory cannot be applied. It is the asymptotic

value of the renormalized bias functions c@ in the large-

scale limit k — O which determines the overall shape of the
nonlinear power spectrum. Clearly, however, these subtle
differences will be important to determine the shape of
Py (k) at the percent level.

The one-loop correlation function in real space, &(r), is
plotted in Fig. 3. In the upper panels, the correlation has been
multiplied by the square of the separation 7> to highlight the
shape of the baryon acoustic oscillation (BAO), as is common
practice in the literature. In the lower panels, the nonlinear
scale-dependent bias [Ex (r) /&, (r)]'/? is shown as a function
of distance. Shaded regions correspond to the region r < 504
where the one-loop iPT is expected to fail at a level of a few
percent at least.

The upper panels indicate that the shape of the BAO peak
is not significantly affected by the choice of biasing
scheme. The differences on scales r > 20h~! Mpc are as
small as 1% at z =1 and the subpercent level at z =2
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inaccurate.

and 3, except for the simplistic local halo. As seen in the

lower panels with z = 1, the BAO peaks of biased tracers

are slightly sharper than that of mass by a few percent.
However, the shapes of the peaks for z =2 and 3 are
slightly distorted by a few percent in nontrivial ways. At
redshift z =2 and 3, the scale-dependent bias on scales
30-80A4~! Mpc is slightly lower than the predictions of

linear theory by about 1%.

Po®) 1 T6° Ry P, ()]

[pok) / Pli]"?

D. Power spectra and correlation functions

in redshift space

The monopole components of the one-loop power
spectra in redshift space are plotted in Fig. 4. In the upper
panels, the results are normalized by the no-wiggle power
spectrum with a linear enhancement factor b>R,, where
Ry =1+2B/3+ /5 is the redshift-space enhancement

factor of the monopole component in linear theory [3].
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FIG. 4. The monopole components of one-loop power spectra in redshift space with different biasing schemes. Upper panels show the
power spectra divided by the no-wiggle power spectrum, the linear bias parameter, and the linear redshift-space distortion factor,
Po(k)/[b*RoPpy (k)]. The lower panels show the scale-dependent bias in redshift space, [pg(k)/ Py (k)]'/>. Meanings of different lines
are indicated in the panels. Shaded regions represent rough estimates where the one-loop perturbation theory is expected to be
inaccurate.
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po(k)/[b*R, P,y (k)]. The lower panels show the ratio between the quadrupole components and the monopole components.

Again, the shaded regions correspond to k = 0.33 /04, for
which the one-loop iPT is not expected to apply at the level
of a few percent.

Comparing the behaviors of monopole components in
redshift space with those of Fig. 2 in real space shows that
the nonlinear enhancements at smaller scales are less
pronounced in redshift space. Overall, however, the impact
of nonlinearities is similar to that in real space. The
differences among different biasing schemes are about
2%—4% at k < 0.2hMpc~! except for the simplistic local
halo, i.e., at the same level as in real space.

The quadrupole and hexadecapole components of the
one-loop power spectra in redshift space are shown in
Figs. 5 and 6. In the upper panels, the additional normali-

distortions are R, = 4f3/3 + 4f?/7 and R, = 84%/35. In
the lower panels, ratios of the quadrupole and hexadecapole
to the monopole component are shown. These ratios are
commonly used for constraining the nature of gravity
through a measurement of the redshift-space distortion
parameter f (e.g., Refs. [51,52]). Estimates of the appli-
cability of iPT for the quadrupole and hexadecapole
components are relatively uncertain, because a detailed
comparison between the iPT and numerical simulations is
not available in the literature. Therefore, we have tenta-
tively defined the confidence region as k < 0.2/04 for the
quadrupole and k < 0.18/64 for the hexadecapole.
Although the multipole components appear to behave
strangely at smaller scales, we warn the reader that our

zation factor induced by the linear redshift-space  criteria may be inaccurate.
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FIG. 6. Same as Fig. 5, but for the hexadecapole components.

123522-17



TAKAHIKO MATSUBARA and VINCENT DESJACQUES

PHYSICAL REVIEW D 93, 123522 (2016)

o~ ‘ ‘ linear AN ‘ linear 200 FIY ‘ ‘ linear ------- 7
SN 120 | £5) b b
80 F £ % 7= mass FA 7= mass Y 7= mass
—_ / \ local halo Fo local halo | 3, local halo
%) } "'a halo model - 100 _,’ \\ halo model - 150 1\ halo model -- B
ED‘ - AN peaks model 80 / \ peaks model i / \ peaks model
R ] [ N, ESPmodel - j N ESP model -
= e .
= 60 - N 1 100 H; \
Z 40 -Ii N ~ ’ N 2
o AVANE \ -
- \
20 NS . Vi
e N /A
Il Il Il Il Il 0 Il Il Il Il Il
7 1': T T T T T § N !'II T T T T T
o 255 5 1970 7
— . y i ;‘1% i 66 F [ it E
= 42 R H I i \
=, 245 4.15 B 1 i\ B i / i 3
oF 21 B0 7 \ { o5 4 ] \ i
= 235 05 H VAN 2 JXY S | ] y
:(% . . ) 9‘5‘ 7 '.‘\‘\% — R \ ;/ 1 63k ‘» i \\ / ]
W, . r = N T R et
225 39 ¢ w4 62 .
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
s [n Mpe] s [h" Mpc] s [n Mpce]
FIG. 7.

The monopole components of one-loop correlation function in redshift space with different biasing schemes. Upper panels

show the monopole functions multiplied by the square of distance, s2&;(s). The lower panels show the scale-dependent bias in redshift

space, [§o(s)/&m(s)]"/.

The variances among different biasing schemes are at
most at the level of a few percent, as is the case of the
monopole component. The multipole-to-monopole ratios
show relatively large deviations from the predictions of
linear theory, R;/R,. The nonlinear ratios are smaller than
the linear predictions by 5%—15% even on a scale as large
as k =0.06hMpc~! usually considered to belong to the
linear regime. When the bias factor is large, which is the
case at redshift z = 2 and 3, the ratios never attain the linear
values at any scale. Since the ratios of linear theory, R, /R
and R4/R,, are increasing functions of £, a blind applica-
tion of linear theory to the power spectrum in redshift space

would result in an underestimation of the f parameter
if the bias factor were fixed (in actual analyses, however,
the bias parameter is simultaneously fitted to the data).
Notwithstanding, the deviations from the linear ratios are
much larger than the variances among biasing schemes.
The iPT provides a way to quantify the systematic effects
produced by the weakly nonlinear evolution fairly inde-
pendently of the biasing schemes.

In Figs. 7-9, the monopole, quadrupole, and hexadeca-
pole of the halo correlation functions in redshift space are
plotted. Our estimates for the applicability of our one-loop
iPT prediction are r < 604, r < 1264, and r < 150, for the
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FIG. 8.

The quadrupole components of one-loop correlation functions in redshift space with different biasing schemes. Upper panels

show the quadrupole functions multiplied by the minus square of distance, —s?&,(r). The lower panels show the ratio between the

quadrupole components and the monopole components.
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FIG. 9. Same as Fig. 8, but for the hexadecapole components.

monopole, quadrupole, and hexadecapole components,
respectively. While these bounds are estimated by extrapo-
lating the comparisons of Ref. [47], they could be inaccu-
rate, especially in the case of hexadecapole.

The variances of different biasing schemes are within a
few percent as in the case of the previous figures. The BAO
peaks of the monopole components in redshift space are
smoother than those in real space. Accordingly, the scale-
dependent bias [&)(7)/&y(r)]"/? varies more than those in
real space. This effect of BAO smoothing does not
significantly depend on the biasing schemes (except for
the simplistic local halo, as usual).

Differences between the quadrupole and hexadecapole
predicted by the halo and peaks/ESP models can be seen in
the upper panels of Figs. 8 and 9. However, they have a
similar degree of deviations as that seen in the monopole
components in Fig. 7, where it is less apparent because the
scales of vertical axes are much larger. The lower panels
show that deviations in the quadrupole-to-monopole and
hexadecapole-to-monopole ratios among the different
biasing schemes are extremely small in the correlation
functions in redshift space.

E. Scale-dependent bias in the presence
of non-Gaussianity

If some amount of inflationary non-Gaussianity is
imprinted in the initial cosmological perturbations, then
the bispectrum of the linear density field receives a non-
trivial primordial contribution, By (k;, ks, k3). When this
primordial bispectrum is strongly scale dependent, as in, for
instance, the case for local-type non-Gaussianity, Fourier
modes of the density fluctuations with long and short
wavelengths, i.e., with wave numbers k; < k,, are coupled
to each other. As a result, the power spectrum of biased

tracers is affected on very large scales as it depends on the
biasing processes which are small-scale phenomena
[8,53,54]. In the iPT formalism, the contributions are given
by the last term in Eq. (5), the general implications of which
are discussed in Ref. [30].

The primordial non-Gaussianity also changes the precise
shapes of the renormalized bias functions through the
multivariate distribution function P(y); see Egs. (29)
and (30). However, this effect is small enough because
the shapes of the renormalized bias functions are domi-
nantly determined by Gaussian components [30]. For
instance, the non-Gaussian corrections to cgf) are at the
level of 107> f.. By contrast, the scale-dependent bias on
very large scales predominantly arises from the primordial
non-Gaussianity. Hence, we will neglect the subdominant
corrections to the renormalized bias functions due to
primordial non-Gaussianity for simplicity.

In Fig. 10, one-loop power spectra and correlation
functions are shown for the different biasing schemes.
We focus on the monopole component in redshift space, as
it is a quantity observed in actual redshift surveys. The
primordial non-Gaussianity is assumed to be of local,
quadratic type, so that the primordial bispectrum takes
the form

By (ki ka,k3) =2f\0 %PLU‘O})LU@‘FC}’Q 5
(137)

where
M) =3D.6) s (138)
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FIG. 10. Effects of primordial non-Gaussianity on the power spectra (left) and correlation functions (right) of monopole components
in redshift space at the redshift of z = 1. Local-type non-Gaussianity with fy; = 3 is assumed. Upper panels show the monopole
components of power spectra and correlation functions. Lower panels show the pure contributions from the primordial non-Gaussianity.

is the transfer function between the potential deeply in
matter domination and the linear density. Here, D is a
linear growth factor, normalized as D, — a in the matter-
dominated epoch, and T'(k) is the linear transfer function,
normalized to T'(k) — 1 in the limit K — 0. The parameter
S 1s observationally constrained to be fy;. = 0.8 £5.0
(68% C.L.) [55]. For illustration purposes, we assume
fnL = 3 consistent with the observational bound.

In the large-scale limit, k — 0, the contribution of local-
type primordial non-Gaussianity to the monopole power
spectrum is given by [30]

Apy(k) ~ 4fNL<1 + cg(l)(k) +J_c> i}lig

3
X / (Z;Tl)js P (. —p)PL(p),

(139)

where Ap% (k) = p%(k) — pSC(k) and pC(k) is the
Gaussian contribution with fy; = 0. The simplistic local
halo [cg(z)(p, —p) = const] gives a logarithmically divergent
result for the above equation if ng = 1 because Py (k) o
k"% in the limit of kK — oo for ACDM models. Since the
spectral index ng; = 0.9667 is slightly less than unity, the
above integral in the simplistic local halo converges,
although it is much larger than other schemes in which
the renormalized bias functions are suppressed by window
functions in the small-scale limit. Thus, the effects of
primordial non-Gaussianity on very large scales depend not
only on the asymptotic values of cgf) but also on their shape
at small scales. However, while the amplitude of Apg)(

strongly depends on the biasing schemes, the power-law
scaling of the scale dependence in the large-scale limit,
Ap§ o« Py (k)/M(k) o k™72, does not depend on biasing
schemes. Note that the constant term Eq. (136) also
contributes to the power spectra in the large-scale limit,
k — 0, in addition to the non-Gaussian contribution with
which it is partly degenerate.

The non-Gaussian bias amplitude Eq. (139) is consistent
with the peak-background expectation Olnn/JInog
obtained by Ref. [54] for the peaks and ESP implementa-
tions considered here (Ref. [34]; see, however, the dis-
cussion of Ref. [56] for moving stochastic barriers).
However, substituting Eq. (40) into Eq. (139) shows that
this is generally not the case of the local and halo models,
unless the multiplicity is of the Press-Schechter form.

In the lower panel of the left figure, contributions from the
primordial non-Gaussianity Ap% (k) are shown. Variations
among the biasing schemes can be seen. They are not
significant, except for the local halo. Still, if a nonlinear
parameter fy; # 0 were detected, the different biasing
schemes would change its estimated value by ~25%.

In the right figure, the monopole components of the
correlation function in redshift space are shown. The
primordial non-Gaussianity slightly increases the correla-
tion functions on large scales s> 100~2~' Mpc in a
scale-dependent way, approximately A&} (s) o s72. The
simplistic local halo even boosts the amplitude on the
BAO scales by about 100%, which is much larger than what
is measured in N-body simulations (see, e.g., Ref. [57]).
The variance among other biasing schemes in A% is about
25%, in accordance with the result of A pg)(.
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V. CONCLUSIONS

Using the iPT formalism, we have studied the impact of
biasing schemes on the power spectra and correlation
functions of biased tracers in the weakly nonlinear regime.
In this paper, we have focused on three representative bias
schemes: the halo, peaks, and ESP models. We have also
considered a simplified version of the halo model in which
the renormalized bias functions are assumed to be scale
independent. This has allowed us to quantify the impact of
the scale dependence of the bias functions on the power
spectra and correlation functions.

In the iPT, all the degrees of freedom of different biasing
schemes are contained in a series of renormalized bias
functions. The biasing schemes we considered in this paper
are semilocal models, in which the number density of
biased tracers at a Lagrangian position is determined by the
smoothed linear density field and its spatial derivatives at
the same Lagrangian position. After deriving a compact
formula to evaluate the renormalized bias functions in
semilocal models of bias, these functions in individual
biasing schemes are derived up to second order. Our results
agree with previous works and show that the coefficients of
the perturbative peaks and ESP bias expansions are
associated with the iPT renormalized bias functions. In
order to efficiently evaluate the renormalized bias func-
tions, we have provided analytic reductions of various
integrals in coefficients of the bias functions, so that all the
coefficients are given by one-dimensional integrals with
sufficiently smooth functions of integrands.

We have compared the renormalized bias functions of
different biasing schemes. The cgg) of all the models
(except for the simplistic local halo, which is not physically
motivated) converge toward zero in the high-k limit

because of the window functions. While the low-k limit

of the first-order function, cgfl), is the same for all models by

construction, differences among biasing schemes can be
seen in the low-k limit of the second-order functions cg).
These differences are, however, not very significant.

By contrast, the behaviors of the renormalized bias
functions around and below the smoothing scales,
kR =z 1, vary noticeably among the bias models.
Notwithstanding, they all exhibit a peak around kR ~ 2.5
in lower redshifts. The presence of oscillations in the
Lagrangian bias functions of low redshift halos can actually
be seen in the outcome of N-body simulations [31,43]. The

amplitude of the peaks in functions cg(") strongly depends

on the biasing schemes or how biased tracers are identified
in simulations/observations.

However, we have found that the various schemes,
including the unphysical local halo, do not change the
qualitative behavior of the one-loop power spectra and
correlation functions. While, in the power spectra,
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differences are at the level of 2%—-4%, they are as small
as 1% on scales r > 20h~! Mpc in the z = 1 correlation
function and subpercent at higher redshift. This partly
follows from the fact that the shape of the power spectra is
more affected by nonlinearities than correlation functions.
Furthermore, the simplistic local halo performs comparably
well, confirming that the scale dependence of the renor-
malized bias functions is not the decisive factor governing
the shape of the power spectra and correlation functions.

These conclusions also hold in redshift space, with the
caveat that the distortions induced by peculiar velocities are
accounted for by the Kaiser formula. The quadrupole and
hexadecapole components exhibit almost the same level of
differences among biasing schemes as the monopole
components. The multipoles-to-monopole ratios in the
power spectra, which are scale independent in linear theory,
become scale dependent due to nonlinear effects. In
addition, the ratios are significantly smaller than the
prediction of linear theory by 5%-15% even at
k = 0.06h Mpc~!. This illustrates the importance of includ-
ing nonlinear effects when estimating the redshift-space
distortion parameter . Of course, a realistic calculation
should include the virial motions of galaxies within halos.

We have also estimated the effects of local-type non-
Gaussianity in the initial conditions for the various biasing
schemes. In this case, the simplistic local halo biasing
scheme, in which small-scale filtering is absent, is inap-
propriate. The primordial non-Gaussianity adds power
through the mode coupling between large and small scales,
such that the behavior of renormalized bias functions at
small scales can critically affect the power spectrum on very
large scales. The amplitude of the non-Gaussian bias does
not differ significantly among the other bias schemes, with
deviations no larger than 25% both in the power spectra and
correlation functions.

Before concluding, let us emphasize that, for the peaks
and ESP models, the linear velocities are biased owing to
the coupling between the velocity 9~'6 and 06 [26]. This
statistical bias affects the redshift space distortions [58] as
well as the two-point correlation around the BAO scales
[27]. While it is difficult to measure this effect in numerical
simulations (see, e.g., the discussion in Ref. [59]), several
lines of evidence indicate that it is present in the Lagrangian
space [43,60] and remains constant throughout time [43].
Although we did not highlight it explicitly, this effect is
already included in the iPT. We plan to address this
important issue in more details in future work.
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APPENDIX A: THE AUXILIARY FUNCTION
E(dy — ¢, 6y) IN THE SIMPLE HALO MODEL

In the simple halo model of Sec. IIIB, we have
introduced an auxiliary function E(6y — 8., 0y). This
function is a phenomenological alternative to the step
function ® designed to produce a mass function more
general than the PS one. The mass function may not be
universal. As explained in the main text, we do not need its
actual form in deriving the renormalized bias functions.
However, one may wonder whether this auxiliary function
exists for an arbitrary mass function. In this Appendix, we
discuss some details of the relation between the auxiliary
function and the mass function.

The differential mass function n(M) is given by Eq. (36).
This defines the multiplicity function f(v), which we
assume universal in what follows,

_PofW) dv
M v dM’

n(M) (A1)

where v = /0, and we denote ¢ = o, for simplicity. In
our simple halo model, the localized differential number
density of halos at a Lagrangian position x is given by
Eq. (39), i.e.,

20 O _
n(x, M) = —ﬁa—M:[ém — 5.0,

(A2)
where we denote 5(x) = &,(x) for simplicity. Both § and &
depend on the mass M through the smoothing kernel, and
the partial derivative 0/0OM applies with fixed &.. The PS
mass function corresponds to the case that the function
E(6—68.,0) is given by a step function O(5—6,).
Substituting the step function by the general function E
corresponds to adopting a fuzzy barrier for the identifica-
tion of the collapsed regions. Therefore, it is desirable to
have the same asymptotes as the step function,

0 (x—>-x)

I (x= 4o0) (A3)

2(x.0) - {

while the transition between the two limits can be arbitrary.

The above model of a fuzzy barrier is closely related to
the model of square-root stochastic moving barrier
[40,61,62], where the barrier is replaced by B = . + flo
and f is a stochastic variable with a probability distribution
function p(f). With this model, the sharp barrier repre-
sented by the step function ®(5 — &.) in the PS formalism is
replaced by

5—5.
(2

00-8)~ [ app(po6-s.~pr)=o(" ). (a4
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where ®() = [?_ p(B')dp’ is the cumulative distribution
function of . Thus, the square-root stochastic moving barrier
corresponds to choosing the function E(x,y) = ®(x/y).

The mass fraction of the halos with a mass greater than
M is given by

L nymam = / “fW) = Fw), (a9)
PoJm v v

which corresponds to the filling factor of collapsed

regions in Lagrangian space. Because the ensemble

average of Eq. (A2) should give the global mass

function, n(M) = (n(M,x)), the auxiliary function should

satisfy

(A6)
or
(A7)

where P,(5) is the one-point probability distribution
function of 6. This distribution function explicitly depends
on the mass M through . Applying a partial differentia-
tion /96|, =07'9/0v|, to Eq. (A7) with o fixed,
and performing integration by parts, we arrive at the
relation

@ =20 /_: E(6 —vo,0) apa,,(a)

The rhs of Eq. (A7) is a convolution integral of the
function E(x, ) and P,(x) for a fixed value of ¢. Thus,
obtaining the auxiliary function E from the mass function
requires the deconvolution, the inverse problem of the
convolution integral. Deconvolution is an ill-posed prob-
lem, because the solution is not unique in general: some-
times the solution does not exist, and sometimes there are
many solutions. Therefore, it is not guaranteed that the
solution of Eq. (A7) can be found for arbitrary function
F(v) [equivalently, for arbitrary function f(v)].

Nevertheless, numerically fitted mass functions, such as
the Sheth-Tormen (ST) mass function, are derived from a
finite range of v, i.e., 0.7 <v < 3.5 [36]. Thus, trying to
invert the convolution integral, Eq. (A7), from the mass
function extrapolated to all ranges of 0 < v < oo iS not
what we should do. Instead, it is sufficient to find a
reasonable kernel function & which can reproduce the
mass function in finite ranges of interest where a fitting
formula applies. Numerically, the deconvolution tech-
niques are widely used in signal/image restorations, e.g.,
a simple iterative method known as the Richardson-Lucy
deconvolution [63,64].

5. (A8)
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f)

S fgr (V)

FIG. 11. The multiplicity functions derived by the model of the
auxiliary function, Z(x) = 1/(e"892* 4 1)!882 (2 fit 1, solid
line) and Z(x) = erfc[—(x — 0.4778)/(0.7671\/2)] (& fit 2,
dashed line), which are fitted to give the Sheth-Tormen mass
function (dotted line). The case of Press-Schechter mass function

(dot-dashed line) is also shown as a reference.

For Gaussian initial conditions, the distribution function
is given by P,(5) = (2z062)""/2¢=%/27’  Changing the
integration variable as 6 — t = §/¢ in this case, the rhs
of Eq. (A7) reduces to (2/z)'/2 [E(t6 — vo,0)e " dt.
Since the lhs is a function of only v, the function E(t6 —
vo,o) in the integrand should not depend on . This
condition is represented by 0= (6, 6)/do = 0 with ¢ fixed,
which is equivalent to a partial differential equation
x0Z(x,y)/0x + yOE(x,y)/dy = 0. Its general solution is
given by Z(x, y) = E(x/y), where 2 is an arbitrary, single-
valued function. Therefore, we have

L (5-6
2(6 - 5..0) :5( )

_ (49)
in order to have a universal mass function in Gaussian
initial conditions. If we use the form of Eq. (A9) in non-
Gaussian initial conditions, the mass function does not have
the universal form, and the resulting multiplicity function
has an additional dependence of &, which arises from the
additional dependence of mass in P,(5) through higher-
order cumulants. The model of Eq. (A4) is consistent with
the form of Eq. (A9), and the function = is identified as the
cumulative distribution function of the stochastic moving
barrier, ®(f). If the function E(6 — ., 06) were to not
explicitly depend on ¢ and E(x,y) = E(x) were indepen-
dent of y, the above differential equation would become
x0Z(x)/0x = 0. The unique solution with a condition like
Eq. (A3) is the step function E(x) = ©(x), which corre-
sponds to the PS mass function. Thus, the explicit depend-
ence of the mass in the auxiliary function Z is necessary to
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obtain non-PS mass functions. Adopting Eq. (A9) in
Gaussian initial conditions, Eq. (A7) and (A8) reduce to

Flv) = \/% /_ : B(x—v)edx, (A0

- .

Rather than deconvolving Eq. (A8) in some way, it is
more straightforward to find a fitting formula of E which
can reproduce the required mass function. As a demon-
stration, let us try to find an approximate solution by
assuming a simple functional form,

[x»

(x — v)xe ™ 2dx. (A11)

~ (A12)

where a > 0 and b > 0 are fitting parameters and Gaussian
initial conditions are assumed. This function has the
desirable asymptotes of Eq. (A3). For a given mass function
with a finite range of v, one can fit the parameters to
approximately reproduce Eq. (Al1). We find the best fit
parameters to reproduce the ST mass function in the range
0.7 £ v £ 3.5, which corresponds to the fitted range of the
fitting formula [36], to be a = 1.802 and b = 1.882. The
resulting mass function is shown in Fig. 11 (E fit 1). It is
seen that the ST mass function is precisely recovered within
a few percent.
For another trial function, we consider

(x) = %erfc [— x\éf } :

where p and s > 0 are fitting parameters. This function is a
cumulative Gaussian distribution function with a mean p
and a variance s and also satisfies the property of Eq. (A3).
The best fit parameters in this case are given by u = 0.4778
and s = 0.7671. The resulting mass function is also shown
in Fig. 11 (Z fit 2). The overall fit is slightly better than the
previous one.

If we extend the curve to the low-mass end (v < 0.6),
both fits of Eqgs. (A12) and (A13) somehow underestimate
the ST mass function, but in this region the ST mass
function tends to overpredict the true mass function of
halos in the numerical simulations [65]. It might be also
possible that low-mass halos are not described well by the
simple model of Eq. (A2) in the first place, since the
formation process of low-mass halos could be extremely
stochastic and not be described well by the local values of
the linear density field.

Finally, we comment on the difficulty in trying to
analytically deconvolve the equations by using the
Fourier transformation. The convolution integral is

[xp»

(A13)

123522-23



TAKAHIKO MATSUBARA and VINCENT DESJACQUES

formally solved by the Fourier transformation, and
Eq. (A7) is given by

=(x, 0) = l/d%%WJﬁL, (A14)
2)-22 (ko)

where F(k) and P, (k) are the Fourier transforms of F(v)
and P,(5), respectively. For a Gaussian distribution, we
have P, (k/c) = e ¥/2, and this integral converges only if
F(k) decays as fast as e=*"/2 for k — oco. Thus, the function
F(v) should be a sufficiently smooth function in the range
of —o0 < v < 0. Although the variable v is a positive
number, one can apply the analytic continuation to the
function F(v) for the negative values of v.

The Fourier transform F can be represented directly by a
multiplicity function as

ﬁ@:/:wQ%w

where we assume the analytic continuation of the function
f(v) with negative argument v <0 and use the fact
that Fourier transform of the step function is given by a
formula ©(k) = z8p (k) — i/k.

For the PS mass function with a Gaussian distribution,
deconvolution with Eqs. (A14) and (A15) actually works.
In fact, we have f(v) = (2/7)"/2ve™/> and F(k) =
278 (k) 4 2ie™*'/2/k in this case. Substituting the last
expression and P,(k/c) = e~*'/2 into Eq. (A14), we have
E(x,0) = O(x), as expected.

In the ST mass function of Eq. (37), however, the integral
of Eq. (A14) does not converge. The factor f(v)/v is not
regular at v — 0 and scales as ~v~2” near the origin. When
p > 0, the derivative of F(v) at the origin diverges. In the
Fourier space, Eq. (A15) indicates that F(k) ~ |k|*’=2 for
large ||, and the integral of Eq. (A14) does not converge for
P,(k/c) ~ e™¥/2. Thus, the convolution equation, Eq. (A7),
does not have a regular solution when the function f(v)/v is
singular at v = 0, as in the case of ST mass function. The
nonexistence of the solution in this case is more easily
understood by Eq. (A8). According to this equation, we have

FW) /vl = =20 [E(6.0)[0P,(5)/08]ds. The rhs of this
equation is finite as long as the distribution function P (5) is
aregular function and cannot reproduce the singularity of the
lhs. This property is the reason why smooth models of E,
such as Eq. (A12), tend to underestimate the ST mass
function extrapolated to the low-mass end.

14

+£e‘”‘”> M, (A15)

APPENDIX B: ON THE CONNECTION
BETWEEN PEAK THEORY AND THE iPT

In this Appendix, we highlight the connection that exists
between the (Lagrangian) renormalized bias function in iPT
[6,7] and the polynomial series expansion of Refs. [18,38].
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Unlike in iPT, where the renormalized bias functions are
defined independently of the statistical correlators under
consideration, we shall start from the peak two-point
correlation in Lagrangian space. Therefore, our conclusions
formally apply to the two-point correlation only. However,
we will argue below that it should also hold for higher-order
correlation functions.

The Lagrangian, two-point correlation &, (r) of the
density peaks can generically be written as

[+ Eoe(r)] gy _/dNyldNyank(yl)npk(yZ)P(yl7y2;r),
(B1)

where 7, (y) is the localized number density of the biased
tracers (represented here as a set of constraints applied to
the linear fluctuations fields y), whereas iy is the average
number density.

We can write down the joint probablity distribution
function (PDF) P(y;,y,; r) as the Fourier transform

1 1 .
P(yy.y2; 1) :(zir)yv/dNJ1dezeXP <—2JTEJ>6_’JT)”
(B2)

where N is the dimension of y; and, for shorthand
convenience, we have J=(J;,J,) and y = (y;,y,).
Moreover, X = (M, BT;B,M) is the covariance matrix
of y. Substituting this relation into the definition of
ok (r), we arrive at

2
1—|—5pk H( /d J ol (Ja)e—(l/z)J;MJa)

exp (—JTBTle

(B3)

where

ﬁpk(-]a) = / dNyanpk (.ya)e_i'lzya (B4)

is the Fourier transform of the localized number density.

We will now expand exp(—J{ BT J,) in series and exploit
the fact that the covariance matrix M can be block
diagonalized, ie., M = diag(M,,....M,;,....M,). Let
Jo=Jars - Jais--nJ ) be the corresponding decom-
position of J, in the frame in which M is diagonal (not
necessarily unique block diagonal decomposition, but there
is certainly a unique frame in which the number of blocks is
maximal). Substituting the expression of ny (J), Eq. (B4),
into Eq. (B3), we obtain
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1 T 1T
épk(r> :W/dNJl{/dNy]npk(yl)e_ljly'}e__ M,

x/dNJz{/dNyznpk()’z)e_iJZTyz}e‘y;Mh (Z

n=1
B S (_1>n )4
_Z n! Z

_1)Vl

n!

(JIBTJZ)">

L 1 1 1T T
' Z ,—l_/dNylnpk()’l){W/dNJlJLl Koo XJITJ,,e Mgy }BIT]LI

1 1T —i
X o xB,TL Xﬁ_ dNy2npk(y2){W/dNJ2]2,Ll X e XJ2,L,,‘3_7IZMJ2€ JzTyz}

pr— . _— y n l ...
=t T o Uik UV Oy, v,
1 / 0 0 }
x {— [ dVy,n —rn-.—P .
{npk Y2 pk(yZ) 8y2_L1 aJ’an (>2)

Here, [, (respectively, L,) designates the subsets of
variables y; ; €y, (respectively, y,; € y,) that correlate
at a given spatial location. The block diagonalization
implies that we have p <N such subsets. Through a
suitable change of variables, we can also write y;; in
the formy, ; = (w; ,Q, ), where Q, are angles which we
want to integrate out. For illustration, in the case of the peak
constraint for which y, = {v.#;,{;;}, we can split y, into
three subsets, y; = (y;.7=1,¥1./=2.Y1./=3) such that

V=1 = {ijl} (B6)
Yii— = {m.m.m} = {’72’ 2 angles} (B7)
Yii=3 = {Zij} = {J,.J3,3 angles}, (B8)

where Z ;j are the five independent components of the
Hessian; the two angles in y; , and the three angles in y; 3
describe the orientation of the vector # and the principal
axis frame of the tensor Z ij» respectively; and the invariants
J; are defined in Ref. [18].

3 3

1 k> k? k
Ui—s(k) = — (‘k% + 5=k o =k o —kika, —ki ks, —k2k3) W, (kRy)

03

aT

aT

P(yl)}BIT]LI x---xBITnLn

Furthermore, the cross-covariance matrix B}, is of the
form

T _ &k T ikr
B, = / S UV PR (89)

where 5(k) are the Fourier mode of the unsmoothed linear
density field, Py(k) is its power spectrum, and U, (k) are
functions of the wave number analogous to those intro-
duced in Eq. (22). For instance,

1 K
Ui_(k) = | —.— | W (kR; B10
0= ()W) (B10)
for the peak height v and curvature J;, and
i
Ui (k) = ;(klakb k3)W(kR;) (B11)
1

fory, , corresponding to the vector components #;, whereas

2

3 (B12)

for the components 5 ij of the traceless matrix. Here, k*> = k¥ + k3 + k3, and W,(kRy) is the Fourier transform of the
filtering kernel. We use the same notation as Ref. [6] to emphasize that we are talking about the same quantity.
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Substituting this relation into the expression of &, (r), we obtain

© 1 & P Bk 4k,
fpk(”):Z; Z "'I.L /(27:)1 . /(2”)3

n=1"""1,L,=1 nlp=
1 dN T aT
y {_ [ #imin ,l<—k1>--~ﬁvh<—kﬂ>ml>}
X {_L/dN)bnpk@z)Uz (kl)i"'UIT (kn)ip()’z)}
fpk Oy, " Oy,
x Py (ky)...Py(k,)e' it +ka)T, (B13)

It is not difficult to see that the partial derivatives with respect to the variables y, ; and y, ; correspond to the renormalized
bias functions of iPT. Namely, we have

e k)= > {1 [ v )

Iy,...0,= Mtk

UF k) P . (B14)

1

For example, considering only the variables relevant to a peak constraint and on writing P(y) = [[,P(y;) =
P(w)P(Q,,€;), where Q, and Q; are the angles associated with 7 and {;; and w = (v,J1,3n%,5J5,J3), we find that
the linear renormalized bias function is

> L [ v <>£1P<y>

=1 Mpk

=— [ dyny (y)P(y) ij P(31) 1 UT () Pl
/ — ( ;1

1 o ko
= — d P _— _ s
or Wiy (W) P( { v,Jy)” (0y+62 8J1)N(1/ Jy)

i 5 1 1 0
+ / Q,e¥r2 — k,»—e‘3'7'/2+ / Q:e32/2 — (—kik»+6i-k2> Ne_SJZ/z}WS kR,
S kg e D (hiky 300 ) oo (kR,)

i<j

= (b1o + b1 K*)W,(kRy),

which coincides indeed with the linear bias of peaks. We have exploited the fact that the localized peak number density
depends only on the variables w to average the derivative operators over the angular variables (£, Qg). This way, we follow
the same logic as Ref. [18] and our discussion in Sec. IIIl. We have also checked that the agreement also holds at second
order, though the calculation is already much more involved.

Therefore, this clearly suggests that the peak two-point correlation &y (r) can also be written as

W R g e R Rk B15)

which agrees with the iPT result in the absence of gravitationally induced motions.
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