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Spin and charge transport induced by a twisted light beam on the surface of a topological insulator
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We theoretically study spin and charge transport induced by a twisted light beam irradiated on a disordered
surface of a doped three-dimensional topological insulator (TI). We find that various types of spin vortices are
imprinted on the surface of the TI depending on the spin and orbital angular momentum of the incident light.
The key mechanism for the appearance of the unconventional spin structure is the spin-momentum locking in the
surface state of the TI. Besides, the diffusive transport of electrons under an inhomogeneous electric field causes
a gradient of the charge density, which then induces nonlocal charge current and spin density as well as the spin
current. We discuss the relation between these quantities within the linear response to the applied electric field
using the Keldysh-Green’s function method.
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I. INTRODUCTION

Emergence and manipulation of spins are a major research
topic in spintronics. Applying a controlled light is one of the
promising techniques to manipulate spins. Recently, the spin
angular momentum of a circularly polarized light has been
observed to induce the magnetization in solid-state materials
through spin-orbit interactions [1–4]. This technique has
further been applied to the ultrafast magnetization switching,
whose time is much shorter than that by an applied magnetic
field [5,6].

When a light is irradiated on a surface of a three-
dimensional topological insulator (TI), spin is predicted to
emerge in the perpendicular direction to the electric field
of the light [7–9]. Here, a TI is an anomalous material
with strong spin-orbit interactions. Electrons insulate in the
bulk, while they conduct on the surface of the TI, where the
exotic surface state of the TI is caused by both the spin-orbit
interaction and the topological electric structure [10–12]. On
the surface of the TI, the direction of the spin and that
of the momentum are perfectly locked to be perpendicular
to each other, which is dubbed spin-momentum locking.
Because of this spin-momentum locking, the charge current
generated along the direction of the electric field causes the
spin density in the perpendicular direction [7–9]. Such a
manipulation of spin and charge current using a light may
make it possible to develop magneto-optical devices based on
TIs [7–9,13,14].

Recently, magneto-optical effects and optical excitation
using a twisted light beam, whose phase is twisted around the
direction of the propagation of light, have been theoretically
predicted [15–20] and experimentally carried out [21,22].
A twisted light has the following two intriguing properties
distinct from a plane wave [23]. First, the phase of the
light is twisted around the center of the beam and, hence,
has a singularity at the center. As a result, strength of
the light becomes zero at the center of the beam. Second,
because of the twisted phase, the strength of the light strongly
depends on the space, whose distributions are manipulated
by the angular momentum of the light. The above properties
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can be well understood by writing the electric field of the
light. The electric field of the twisted light beam traveling
along the z axis at z = z0, E = (Ex,Ey), can be described
by [23–28]

E(r,ϕ,t,z0) = E(r,z0)Re
[(

1,iσ z
L

)
ei(qzz0−�t)eimz

Lϕ
]
, (1)

where (r,ϕ) is the two-dimensional polar coordinates at z = z0,
t is the time, and qz and � are the momentum and frequency
of the twisted light beam, respectively. Here, E(r,z0) denotes
the magnitude of the electric field, which depends on the space
and becomes zero at the center r = 0 for a nonzero mz

L due
to the phase singularity. σ z

L = 1, − 1 and mz
L = 0,±1,±2, . . .

represent the z components of the spin and orbital angular
momentum of the light, respectively. The former corresponds
to the direction of the circular polarization, i.e., σ z

L = 1(−1)
represents a right-handed (left-handed) circularly polarized
wave, while the latter describes the winding of the electric
field in the z = z0 plane. In fact, the electric field of a
twisted light has the topological quantity. We will see later
that the winding number of a twisted light given by Eq. (1)
is proportional to σ z

L and mz
L [see the discussion below

Eq. (67)].
So far, it has been theoretically predicted that in the presence

of the spin-orbit interaction, unconventional photoinduced
spin excitation and electric current emerge due to the spatial
dependence of the strength of the electric field of the twisted
light. It is expected that the interband excitation can be
influenced by not only the spin angular momentum, but
also the orbital angular momentum of the twisted beam.
However, the latter effect has not been observed so far.
Actually, the experimental investigation of the photoinduced
spin polarization [22] could not detect the orbital angu-
lar momentum dependence in the semiconductor with the
Rashba- and Dresselhaus-type spin-orbit interactions. There
is a theoretical prediction that the orbital angular momen-
tum dependence can be observed in cylindrical quantum
disks [15].

In this paper, we theoretically study spin and charge
generation due to the electric field of the twisted light beam
on a disordered surface of a doped TI by using the Green’s
function technique. We analytically calculate the linear re-
sponse function of the spin density to a space-time-dependent
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external electric field. We find that the local and nonlocal spin
densities are induced by the electric field and the gradient of
the electric field, respectively, via the spin-momentum locking.
Here, the local spin density comes from the charge current
that flows along the electric field, whereas the nonlocal one
couples to the diffusive charge current due to the impurity
scatterings on the disordered surface of the TI. In addition,
the gradient of the electric field also induces the charge
density and the spin current. Applying the obtained results
to the electric field of a twisted light beam, we find that
various spin distributions appear depending on the orbital as
well as spin angular momentum of the light. Moreover, the
spin distributions have topological structures, i.e., magnetic
vortexlike textures, characterized with winding numbers,
which depend on both σ z

L and mz
L. The induced spin structure

evolves in time but its winding number remains a constant.
The manipulation of such a topological spin structure could be
applicable for the spintronics related to magnetic vortices and
skyrmions.

This paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian for the disordered surface of the TI
in the presence of a space-time-dependent electromagnetic
field. We also present the Green’s functions on the disordered
surface of the TI. In Sec. III, we calculate the response function
on the surface of the TI within the linear response to the
applied electric field. Readers who are interested only in the
physical meaning of the responses can skip Sec. III. Section IV
discusses the main results of the responses [Eqs. (39), (46),
and (48)], e.g., general properties of the charge density, spin
density, charge current, and spin current induced by the
electric field on the surface of the TI. Section V discusses
the properties of the twisted light induced spin and charge
distributions. Section VI summarizes the paper. Appendixes A
and B–H give the detailed calculations used in Secs. II and III,
respectively.

II. MODEL

In this paper, we consider a high-quality TI such as
Bi1.5Sb0.5Te1.7Se1.3, namely, the Fermi level is assumed to
be located between the valance and conduction bands of
the bulk TI [29] as schematically illustrated in Fig. 1(a).
In such a high-quality TI, only the electrons at the surface
contribute to the transport and the bulk is an ideal insulator.
In the surface state, the spin and momentum are perfectly
locked. The low-energy effective Hamiltonian describing the
electrons in the surface states has been theoretically derived
and experimentally demonstrated [10–12] as

HTI =
∫

dx ψ†[−i�vF(σ̂ × ∇)z − εF]ψ, (2)

where ψ† ≡ ψ†(x,t) = (ψ†
↑ ψ

†
↓) and ψ are the creation and

annihilation operators of conduction electrons on the surface
of the TI, σ̂j (=x,y,z) are the Pauli matrices, and e < 0 is the
elementary charge of electrons. Here, we assume a doped TI,
and εF and vF are the Fermi energy and the Fermi velocity,
respectively, on the surface of the doped TI. We further take
into account nonmagnetic impurities on the surface of the TI as

(b)

εFEg

εc

εv

(a)

surface state

bulk

k

E

bulk

(2)

(2)

(3)

(4)energy
Fermi

(1)

FIG. 1. (a) Schematic illustration of energy band of topological
insulator and (b) processes of optical transitions: (1) interband
transition from the valence band to the conduction band in the bulk TI,
(2) interband transition from a surface state to a bulk energy band of
the TI and vice versa, and (3) interband transition from a surface state
to the other surface state with opposite helicity. This paper considers
only (4) intraband excitation near the Fermi surface (see text).

well as an applied electromagnetic field. The total Hamiltonian
is given by

H = HTI + Hem + Vimp, (3)

Hem = −evF

∫
dx ψ†(σ̂ × Aem)zψ, (4)

Vimp =
∫

dx uiψ
†ψ. (5)

Here, Hem is the gauge coupling between conduction electrons
and the electromagnetic field. The vector potential of the elec-
tromagnetic field Aem generally depends on the space and time,
and the electric field and the magnetic field are, respectively,
given by E = −∂t Aem and B = ∇ × Aem. Vimp in Eq. (5)
describes the potential due to the nonmagnetic impurity scat-
terings [8,30–33], where ui(x) = ∑Ni

j=1 u0[δ(x − Rj ) − 1
L2 ]

is the potential energy density with Ni being the number
of the impurities, u0 a constant, Rj the position of the j th
impurity on the surface, and L2 the area of the surface.
Here, the contribution from the impurity potential is treated

as the impurity average 〈ui(q)ui(q ′)〉i = Niu
2
0

L4 δq,q ′ , where ui(q)
is the Fourier transform of ui(x). Because the electrons
that contribute to transport exist at the surface of the TI,
whose wave function spreads over a few unit cells from the
surface [34], we take account of impurities only at the surface,
i.e., impurities existing within a few unit cells from the surface.
Moreover, since the metallic surface states at the Fermi level
are energetically well separated from the bulk conduction and
valence bands, impurity scattering occurs within the surface
states as described by Eq. (5) [8,30–32].

Figure 1 shows a schematic illustration of the energy band of
the TI and the possible optical transition processes. Among the
three interband transitions (1)–(3) and one intraband transition
(4) shown in Fig. 1(b), this paper takes account of only the
process (4). This is because we are considering to apply a
terahertz beam [35], whose energy is in the order of a few
meV. By contrast to this, in the case of Bi1.5Sb0.5Te1.7Se1.3,
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for example, the bulk energy gap and the Fermi energy
measured from the Dirac point are, respectively, given by Eg ∼
0.3 eV [12] and εF ∼ 0.2 eV [29]. Since the characteristic
energies required for the transition processes (1)–(3) are (1)
Eg , (2) εv ∼ Eg/2 + εF and εc ∼ Eg/2 − εF, and (3) 2εF, the
low-energy incident light (�� ∼ a few meV) cannot excite any
of the interband transitions (1)–(3).

To calculate the spin density and the charge density, we
use the Green’s function method. In the absence of the
electromagnetic field, the retarded Green’s function is given
by [30,31,36]

ĝr
k,ω = [�ω + εF − �vFσ̂ · (k × z) − 
̂k,ω]−1. (6)

Here, a variable with a hat denotes a 2 × 2 matrix. By
calculating the self-energy 
̂k,ω within the self-consistent
Born approximation [30,31,36] and expanding it with respect
k up to the linear terms [30,31,37], Eq. (6) is rewritten as

ĝr
k,ω = [�ω + εF − �ṽFσ̂ · (k × z) + iη]−1, (7)

where ṽF = vF/(1 + ξ ) is the modified Fermi velocity due
to nonmagnetic impurity scatterings with ξ = niu

2
0/(4π�

2v2
F)

being a constant depending on the properties of the TI, and
the imaginary part of the self-energy η = πniu

2
0νe/2 defines

the transport relaxation time τ = �/(2η). Here, ni = Ni/L
2

is the concentration of the impurities on the surface and νe

is the density of states of electrons on the surface. Since
we are considering a metallic state, τ satisfies �/(εFτ ) 	 1.
By comparing Eqs. (2) and (7), we see that the effective
Hamiltonian for the surface electrons affected by impurities is
given by the right-hand side of Eq. (2) with replacing vF with
ṽF. Accordingly, vF in Eq. (4) is replaced by ṽF. The detailed
derivation is shown in Appendix A. Although the value of ṽF

is almost the same as that of vF [38], we keep ṽF instead of vF

in this paper so as to explicitly express the contribution from
impurity scatterings.

III. SPIN AND CHARGE DENSITIES INDUCED
BY AN APPLIED ELECTRIC FIELD

In this section, we calculate the response functions, i.e.,
the spin density and the charge density, to an applied
electromagnetic field within the linear response theory. The
results are summarized at the beginning of Sec. IV. Those
who are interested only in the results can skip this section and
go to Sec. IV.

We calculate the spin density induced by an applied electric
field on a disordered surface of a doped TI by using the
Keldysh Green’s function method within the linear response
to Hem. The spin density s = 1

2 〈ψ†σ̂ψ〉 is described by using
the lesser component of the Keldysh-Green’s function in the
same position and time −i�Ĝ<(x,t,x,t) = 〈ψ†(x,t)ψ(x,t)〉

as

si(x,t) = − i�

2
tr[σ̂iĜ

<(x,t,x,t)] (i = x,y,z), (8)

where tr denotes the trace over the spin indices. Then, from
the Dyson’s equation for Ĝ<(x,t,x,t) the induced spin density
within the linear response to Hem is given by

sμ(x,t) = i�eṽF

2L2

∑
ν,u=x,y,z

εzνu

∑
q,�

ei(�t−q·x)tr[�̂μν(q,�)]

× Aem,u(q,�), (9)

where εzνu is the Levi-Civita symbol, �̂μν is the spin-spin
response function, and q = (qx,qy) and � are the momentum
and frequency of Aem,u(q,�), respectively. The response
function �̂μν can be decomposed as �̂μν = σ̂μ�̂ν and �̂ν

is represented by

�̂ν(q,�) =
∑
k,ω

[
ĝk− q

2 ,ω− �
2
�̂ν(ω,q,�)ĝk+ q

2 ,ω+ �
2

]<
. (10)

Here, �̂ν is the vertex function due to Vimp, whose diagram is
shown in Fig. 2, and is given by

�̂ν(ω,q,�) = σ̂ν +
∑

μ=0,x,y,z

∞∑
n=1

[�(ω,q,�)]nνμσ̂μ, (11)

where σ̂0 is the 2 × 2 identity matrix and � is a 4 × 4 matrix
defined from the following equation:

�̂ν(ω,q,�) ≡ niu
2
i

∑
k

ĝk− q

2 ,ω− �
2
σ̂ν ĝk+ q

2 ,ω+ �
2

(12)

=
∑

μ=0,x,y,z

�νμ(ω,q,�)σ̂μ. (13)

Expanding Eq. (10) with respect to the retarded and
advanced Green’s functions, ĝr and ĝa, based on the for-
mula [33] ĝ<

k,ω = fω(ĝa
k,ω − ĝr

k,ω), where fω ≡ 1/(eβ�ω + 1)
is the Fermi distribution function, the spin-spin response
function can be divided into three terms:

�̂ν(q,�) = �̂ra
ν (q,�) + �̂rr

ν (q,�) + �̂aa
ν (q,�), (14)

�̂ra
ν (q,�) ≡

∑
k,ω

(
fω+ �

2
− fω− �

2

)
ĝr

k− q
2 ,ω− �

2

× �̂ra
ν (ω,q,�)ĝa

k+ q
2 ,ω+ �

2
, (15)

�̂rr
ν (q,�) ≡ −

∑
k,ω

fω+ �
2
ĝr

k− q
2 ,ω− �

2
�̂rr

ν (ω,q,�)ĝr
k+ q

2 ,ω+ �
2
, (16)

�̂aa
ν (q,�) ≡

∑
k,ω

fω− �
2
ĝa

k− q
2 ,ω− �

2
�̂aa

ν (ω,q,�)ĝa
k+ q

2 ,ω+ �
2
. (17)

FIG. 2. Vertex function due to Vimp. The dashed and wavy lines mean the potential due to the nonmagnetic impurity scatterings and gauge
coupling between conduction electrons and the electromagnetic field, respectively.
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Here, �̂AB
ν (A,B = r,a) is defined by

�̂AB
ν (ω,q,�) = σ̂ν +

∞∑
n=1

[�AB(ω,q,�)]nνμσ̂μ, (18)

�̂AB
ν (ω,q,�) ≡ niu

2
i

∑
k

ĝA
k− q

2 ,ω− �
2
σ̂ν ĝ

B
k+ q

2 ,ω+ �
2

(19)

=
∑

μ=0,x,y,z

�AB
νμ (ω,q,�)σ̂μ. (20)

By expanding �̂rr
ν and �̂aa

ν with respect to q and �, we
find that they are in the order of �

εFτ
	 1 and �̂rr

ν (�̂aa
ν ) in

�̂rr
ν (�̂aa

ν ) can be approximated with σ̂ν (see Appendixes B–
D for the detailed calculation). Then, by expanding the
Fermi distribution function with respect to �, the domi-
nant contributions of Eqs. (15), (16), and (17) are written
by

�̂ra
ν = �

∑
k,ω

f ′
ωĝr

k− q
2 ,ω− �

2
�̂ra

ν (ω,q,�)ĝa
k+ q

2 ,ω+ �
2
, (21)

�̂rr
ν = −

∑
k,ω

{
fωĝr

k− q
2 ,ω− �

2
σ̂ν ĝ

r
k+ q

2 ,ω+ �
2

+ 1

2
�f ′

ωĝr
k− q

2 ,ω− �
2
σ̂ν ĝ

r
k+ q

2 ,ω+ �
2

}
, (22)

�̂aa
ν =

∑
k,ω

{
fωĝa

k− q
2 ,ω− �

2
σ̂ν ĝ

a
k+ q

2 ,ω+ �
2

− 1

2
�f ′

ωĝa
k− q

2 ,ω− �
2
σ̂ν ĝ

a
k+ q

2 ,ω+ �
2

}
. (23)

In addition, �̂rr
ν and �̂aa

ν are shown to be much smaller than �̂ra
ν (the detailed calculation is given in Appendix E). Thus, �̂ν is

approximately given by

�̂ν � �̂ra
ν = �

∑
k,ω

f ′
ωĝr

k− q
2 ,ω− �

2
�̂ra

ν (ω,q,�)ĝa
k+ q

2 ,ω+ �
2
. (24)

In the low-temperature limit, we approximate the derivative of the Fermi distribution function as f ′
ω = −δ(ω). Then, the integral

over ω in �̂ra
ν reduces to

�̂ra
ν (q,�) = − �

2π

∑
k

ĝr
k− q

2 ,− �
2
�̂ra

ν (0,q,�)ĝa
k+ q

2 , �
2
. (25)

We further expand �̂ra
ν as �̂ra

ν = ∑
α=0,x,y,z σ̂α�ra

να , and rewrite Eq. (25) as

�̂ra
ν (q,�) = − �

2π

∑
ζ=0,x,y,z

Îζ (q,�)�ra
νζ (0,q,�). (26)

Here, we define Îζ (q,�) ≡ ∑
k ĝr

k− q
2 ,− �

2
σ̂ζ ĝ

a
k+ q

2 , �
2
, which is calculated up to the quadratic terms in q and the primary terms in �

as (see Appendixes B and C for the detailed derivation)

Îζ=0 = πνe

2η

[(
1 − i�τ − 1

2
�2q2

)
σ̂0 +

∑
α,u=x,y

i

2
�σ̂uqαεuαz

]
+ O

(
�

εFτ

)
, (27)

Îζ=x,y = πνe

2η

[∑
ν=x,y

{
1

2

(
1 − i�τ − 3

4
�2q2

)
δζν + 1

4
�2qζ qν

}
σ̂ν +

∑
α=x,y

i

2
�σ̂0qαεζαz

]
+ O

(
�

εFτ

)
, (28)

Îζ=z = O

(
�

εFτ

)
, (29)

where � = ṽFτ is the mean-free path. Since Îζ=z is negligibly small as compared with Îζ=0 and Îζ=x,y , we consider only the
contributions from Îζ=0,x,y . Since Eqs. (27) and (28) do not include σ̂z, they are represented by using the Pauli matrices as

Îζ =
∑

μ=0,x,y

Iζμσ̂μ + O

(
�

εFτ

)
, (30)

where Iζμ is the 3 × 3 symmetric matrix given by

I = πνe

2η

⎛
⎜⎝

1 − i�τ − 1
2�2q2 i

2�qy − i
2�qx

i
2�qy

1
2

(
1 − i�τ − 1

2�2q2
)+ 1

8�2
(
q2

x − q2
y

)
1
4�2qxqy

− i
2�qx

1
4�2qxqy

1
2

(
1 − i�τ − 1

2�2q2
)− 1

8�2
(
q2

x − q2
y

)
⎞
⎟⎠. (31)

On the other hand, from Eq. (18), the vertex function �̂ra
ν can be described by

�̂ra
ν = σ̂ν +

∑
α=0,x,y

�ra
νασ̂α +

∑
α=0,x,y

[(�ra)2]νασ̂α + · · · =
∑

α=0,x,y

[(1 − �ra)−1]νασ̂α, (32)

195415-4



SPIN AND CHARGE TRANSPORT INDUCED BY A . . . PHYSICAL REVIEW B 93, 195415 (2016)

where the second equality holds when max{∑ν |�ra
μν |} < 1 is satisfied. By using 1 − i�τ = 1

1+i�τ
+ O(�2), �ra = niu

2
i I , and

Eq. (31), one can see �ra indeed satisfies max{∑ν |�ra
μν |} < 1. Then, the matrix �ra�ra is calculated as

�ra�ra = −1 + (1 − �ra)−1 =
⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠+

⎛
⎜⎜⎝

1
q2�2+i�τ

i�qy

q2�2+i�τ
− i�qx

q2�2+i�τ

i�qy

q2�2+i�τ
− q2

y �2

q2�2+i�τ

qxqy�
2

q2�2+i�τ

− i�qx

q2�2+i�τ

qxqy�
2

q2�2+i�τ
− q2

x �2

q2�2+i�τ

⎞
⎟⎟⎠, (33)

from which we obtain the spin-spin response function as

�̂ν � −�νe

4η

∑
ζ ′=0,x,y

[�ra�ra]ζ ′ν σ̂ζ ′ , (34)

where we have used the fact that I and �ra are symmetric matrices. Thus, from Eqs. (9) and (34), the μ = x,y components of
the spin density are given by

sμ = −eṽFνeτ

2L2
εzνu∂t

∑
q,�

ei(�t−q·x)[�ra�ra]μνAem,u. (35)

Substituting Eq. (33) in (35), we obtain

sx = 1

2
eṽFνeτEy + eṽFνeτ

2L2
∂t

∑
q,�

ei(�t−q·x)
�2
(
q2

yAem,y + qyqxAem,x

)
q2�2 + i�τ

, (36)

sy = −1

2
eṽFνeτEx − eṽFνeτ

2L2
∂t

∑
q,�

ei(�t−q·x) �
2
(
q2

xAem,x + qyqxAem,y

)
q2�2 + i�τ

. (37)

The second terms of Eqs. (36) and (37) can be described by using the charge density ρe on the surface. Here, ρe ≡ e〈ψ†ψ〉 =
i�e2ṽF

L2 εzνu

∑
q,� ei(�t−q·x)tr[�̂ra

0ν]Aem,u(q,�) is obtained from the charge-spin response function �̂0ν = �̂ν as

ρe = − i�e2ṽFνe

2ηL2
εzνu

∑
q,�

ei(�t−q·x)�{[�ra�ra]0νAem,u} = e2ṽFνeτ

L2
�∂t∇ν

∑
q,�

ei(�t−q·x) 1

q2�2 + i�τ
Aem,ν (38)

= −2e2νeDτ∇ · 〈E〉D, (39)

where D ≡ 1
2 ṽ2

Fτ = 1
2 ṽF� is the diffusion constant. Here,

〈E〉D is defined by the convolution of E and the diffusive
propagation function D as

〈E〉D ≡ 1

τ

∫ ∞

−∞
dt ′
∫

dx′D(x − x′,t − t ′)E(x′,t ′), (40)

D(x,t) = 1

L2

∑
q,�

ei(�t−q·x) 1

2Dq2 + i�
(41)

∼ θ (t)

8πDt
exp

[
− |x|2

8Dt

]
. (42)

The diffusive propagation function D is also the Green’s
function satisfying the following differential equation:

(∂t − 2D∇2)D(x,t) = δ(x)δ(t). (43)

Equations (39) and (40) show that due to the impurities, the
effect of the applied electric field on the surface electrons is
not instantaneous but diffusively propagates on the surface of
the TI. Equation (40) gives the definition of such a nonlocal
electric field. Suppose that the surface of the TI is isotropic,
the gradient of the charge density is given by

∇xρe = −e2ṽFνeτ

L2
∂t

∑
q,�

ei(�t−q·x) �
(
q2

xAem,x + qyqxAem,y

)
q2�2 + i�τ

,

(44)

∇yρe = −e2ṽFνeτ

L2
∂t

∑
q,�

ei(�t−q·x)
�
(
q2

yAem,y + qyqxAem,x

)
q2�2 + i�τ

,

(45)

which is related to the spin density [Eqs. (36) and (37)] as

s = 1

2
eṽFνeτ (E × z) + �

2e
(z × ∇)ρe. (46)

On the other hand, the spin density on the surface of the TI is
related to the charge current via

jμ = − ∂Hem

∂Aem,μ

= 2eṽF(z × s)μ, (47)

where we have replaced vF in Eq. (4) with ṽF so as to take
into account the effects of impurities. By substituting Eq. (46)
in (47), we obtain

j = e2ṽ2
Fνeτ E − ṽF�∇ρe. (48)

We have confirmed that Eqs. (39) and (48) satisfy the charge
conservation law ρ̇e + ∇ · j = 0 (see Appendix G for the
detailed calculation).
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TABLE I. Dependence on the applied electric field E of the induced charge density ρe, spin current density jα
i , spin density s, and charge

current density j on a disordered surface of a doped TI, where 〈E〉D is defined in Eq. (40).

ρe (Charge density) jα
i (Spin current) s (Spin density) j (Charge current)

Local z × E E
Nonlocal ∇ · 〈E〉D εzαi∇ · 〈E〉D (z × ∇)∇ · 〈E〉D ∇(∇ · 〈E〉D)

IV. PROPERTIES OF THE CHARGE, SPIN, CHARGE
CURRENT, AND SPIN CURRENT DENSITIES

We summarize the results obtained in the previous section
[Eqs. (39), (46), and (48)] in Table I. Using the above results,
we discuss the property of the charge, spin, charge current, and
spin current densities induced by an electric field applied on
the disordered surface of the doped TI. We find that there are
two types of quantities induced by the applied electric field:
one is directly proportional to the electric field E, such as the
first terms of Eqs. (46) and (48), and the other relates to E
via 〈E〉D, such as the second terms of Eqs. (46) and (48). We
define the former (latter) as the local (nonlocal) quantity and
decompose Eqs. (46) and (48) as

j = j (l) + j (nl), (49)

s = s(l) + s(nl), (50)

where j (l) (s(l)) and j (nl) (s(nl)) are local and nonlocal charge
current (spin) density, respectively. In the following sections,
first, we show the properties of the local quantities (Sec. IV A).
Next, we consider the physical meaning of the charge density
(Sec. IV B), and show the nonlocal charge current and spin
density (Sec. IV C), which are proportional to the spatial
gradient of the charge density, as shown in Table I. Finally,
we discuss the property of the spin current (Sec. IV D).

A. Local charge current and spin density

From Eq. (48), the local part of the charge current is given by

j (l)(x,t) = e2ṽ2
Fνeτ E(x,t). (51)

The local charge current is directly induced by the applied
electric field E(x,t): as in the conventional metal, electric
current emerges in the direction of the applied electric field.
The conductivity j (l)/E is proportional to ṽ2

F and τ . These
properties are consistent with the previous works [8,32].

Due to the spin-momentum locking, the spin density is also
induced by the electric field [7–9,32], which corresponds to
the local spin density given by the first term of Eq. (46):

s(l) = 1
2eṽFνeτ (E × z). (52)

It is found that the induced spin density is perpendicular to the
applied electric field. The magnitude of the local spin density
depends on the relaxation time. These properties agree with the
existing works [7–9,32]. The phenomenon of the electric field
induced spin polarization is similar to the Edelstein effect [39],
which occurs in the presence of the Rashba-type spin-orbit
interaction in a two-dimensional system.

B. Charge density

We find that as shown in Eq. (39) the charge density ρe is
induced by the divergence of the electric field with diffusion:
∇ · 〈E〉D. Therefore, when we apply a uniform electric field,
no charge density is induced. From Eqs. (40)–(42) we obtain
the diffusion equation for the charge transport:

(∂t − 2D∇2)ρe(x,t) = −2e2νeD∇ · E(x,t), (53)

which indicates that the divergence of the applied electric field
works as a source of the diffusive propagation of the charge
density. We find that from the left side of the equation above,
(∂t − 2D∇2)ρe, the diffusion constant is 2D, twice of that
on the surface of a metal [31]. The factor 2 comes from the
difference in the self-energy due to impurity scattering: The
self-energy on the surface of an isotropic metal is given by
πniu

2
i νe,m, where νe,m is the density of states in the metal,

whereas that on the surface of the TI is 1
2πniu

2
i νe. The factor

1
2 , which originates from the linear dispersion of the surface
of the TI, leads to the coefficient 2D. Here, the diffusive
equation of motion qualitatively agrees with the previous
works [32,40,41].

C. Nonlocal charge current and spin density

Next, we consider the nonlocal charge current and spin
density. The nonlocal charge current density corresponds to
the second term of Eq. (48):

j (nl) = e2ṽ2
F�

2νeτ∇(∇ · 〈E〉D). (54)

It is found that the nonlocal charge current is proportional
to the spatial gradient of the charge density, which is shown
in the previous subsection as j (nl) = −ṽF�∇ρe. The charge
current in this form indicates that the nonlocal charge current
is a diffusion current induced by the inhomogeneous charge
density. Since both the local and nonlocal charge currents are
proportional to ṽ2

F, their directions are the same for top and
bottom surfaces of the TI.

Due to the spin-momentum locking, the nonlocal spin
density s(nl) = �

2e
(z × ∇)ρe, which corresponds to the second

term of Eq. (46), is induced on the surface. The nonlocal spin
is given by

s(nl) = −eṽFνeτ�2

2
(z × ∇)(∇ · 〈E〉D). (55)

The spin density is generated by the second spatial derivative
of the nonlocal electric field 〈E〉D.

The nonlocal spin density diffusively propagates through
the impurity scatterings on the surface of the TI. The diffusion
propagation of the spin is described by

(∂t − 2D∇2)s(nl) = −eṽFνe�
2

2
(z × ∇)(∇ · E). (56)
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We find that the diffusion propagation of the spin is triggered
by an inhomogeneous electric field ∇(∇ · E). (This property is
also predicted in Ref. [34].) Hence, when we apply a uniform
electric field on the surface, the nonlocal spin density is not
generated. As in the case of charge density, the diffusion
constant for the spin density is 2D.

We note that both the local and nonlocal spin densities are
proportional to ṽF. Since ṽF’s on the top and the bottom sides
of the TI have opposite signs, the direction of the induced spin
on the top surface of the TI is perfectly opposite to that on
the bottom surface of the TI, when we apply the same electric
field on both the top and bottom sides of the TI.

D. Spin current

Next, we calculate the spin current due to the applied
electric field on the disordered surface of the doped TI. The
spin current jα

i is defined by

ṡα + ∇ij
α
i = T α, (57)

where the subscript and superscript of jα
i denote the direction

of the flow and spin, respectively, and T α represents the
spin relaxation. Using the Hamiltonian in Eq. (3) and the
Heisenberg equation for sα , we obtain

jα
i = ṽF

2e
εzαiρe. (58)

The index z denotes the out-of-plane direction and εzαi means
that the direction of the spin and that of the spin current are
both in the xy plane and perpendicular to each other. Note
that the direction of the flow and spin is perpendicular to
each other. This is the consequence of the spin-momentum
locking on the surface of the TI. We also note that the spin
current is proportional to the charge density, and from Eq. (39),
proportional to the divergence of the nonlocal electric field:

jα
i = − eṽFνeDτεzαi∇ · 〈E〉D. (59)

Hence, when we apply a spatially uniform electric field on
the surface, no spin current is induced. Besides, we find that
the spin current is an odd function of ṽF, which means the
spin current depends on the chirality on the surface of the TI.
Namely, the relative direction between flow and spin of jα

i on
the top side of the TI is opposite to that on the bottom side of
the TI.

In the conventional spin-orbit coupled systems, the spin
current is generated by an applied electric field [42–46],
which is called the spin Hall effect. Besides, the generated
spin current can be converted into the charge current via the
spin-orbit interaction [47]. These effects can be understood
from the coupling between the spin current and the charge
current: ji ∝ εijαjα

j [47]. On the surface of the TI, on the other
hand, we find from Eqs. (54) and (59) that the nonlocal charge
current is proportional to the gradient of the spin current [37]:

j (nl) = − e�εzαi∇jα
i . (60)

Again, this is the consequence of the spin-momentum locking
and Eq. (60) generally holds for the system of electrons on
a surface of TIs [37]. This property in the TI is distinct
from that in a conventional metal. The direction of the charge
current is parallel to the spatial gradient of jα

i . This relation is

plausible due to the following reasons. First, the charge density
ρe is proportional to the spin current. Second, a diffusive
particle current is generally proportional to a spatial gradient
of particles. We note that there is no relation between the spin
current and the local charge current j (l).

Finally, we comment on the property of the spin relaxation
torque. The relaxation torqueT α defined in Eq. (57) is obtained
within the linear response to the electric field as

T α = 1

2
eṽFνeτ (Ė × z)α −

(
�

2e
∂t + ṽF

2e

)
(z × ∇)αρe

= 1

2
eṽFνe[τ (Ė × z)α + 2Dτ (z × ∇)α(∇ · 〈E〉D)]

+ o[(z × ∇)α(∇ · 〈Ė〉D)]. (61)

Here, T α can be divided into the local and nonlocal terms,
which correspond to the first and second terms, respectively, in
the first square brackets in the most right-hand side of Eq. (61).
The local one is given by the time derivative of the applied
electric field, and its direction is perpendicular to both Ė and
z. The nonlocal one is proportional to the second derivative
of the nonlocal electric field 〈E〉D. These above results and
properties are the same as the spin density on the surface of
the TI with magnetism [37].

V. RESPONSES TO THE ELECTRIC FIELD OF A
TWISTED LIGHT BEAM

Using the results obtained in Sec. IV, we discuss the
properties of the spin and charge densities due to the electric
field of a twisted light beam with various orbital angular
momenta.

A. Electric field of a twisted light beam

First, we explain the property of the electric field of the
twisted light beam with the Laguerre-Gaussian modes [24,26].
We assume that the twisted light beam propagates along the
z axis and the electric field of the twisted light beam lies
in the xy plane at the top surface of the TI (z = z0). The
schematic of the system is illustrated in Fig. 3. The twisted light
beam satisfies the wave equation ∇2 E − 1

c2
0

∂2 E
∂t2 = 0, where

FIG. 3. Schematic illustration of the system. The optical twisted
light beam is applied to the surface of the topological insulator for
normal incidence.
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c0 is the velocity of light in a vacuum. Then, the electric
field E(x,t) = (Ex(r,ϕ,t),Ey(r,ϕ,t)) on the surface is written
by [24,26]

E = E
(

cos
(
�R + mz

Lϕ − �t
)
,

− σ z
L sin

(
�R + mz

Lϕ − �t
))

, (62)

where r =
√

x2 + y2 is the distance from the center of the
light on the top surface (z = z0) and ϕ = arctan (y/x) is the
azimuthal angle. The helicity σ z

L = +1(−1) denotes the right-
hand (left-hand) circularly polarized light and corresponds to
the spin angular momentum of light +1 (−1). The orbital
angular momentum of light mz

L = 0,±1, . . . determines the
whirling pattern of the electric field on the plane at z = z0,
which can be manipulated in experiments [26]. The phase
�R ≡ �R(r,z0) depends on r and the distance from the light
source z and is given by [28]

�R = −(1 + 2p + ∣∣mz
L

∣∣) tan−1

[
z0

zr

]
− qzr

2

2R(z0)
, (63)

where the first term denotes Guoy phase, R(z) ≡ z[1 +
(zr/z)2] is the radius of the beam curvature with taking the
origin of the z axis at the beam waist, zr = πd2

0/λ is the
Rayleigh range, d0 is the waist size of the mz

L = p = 0 mode,
λ is the wavelength, and qz is the wave vector of the light.
The integer p is one of the indices that specifies the Laguerre-
Gaussian mode and denotes the number of oscillations of the
electric field E in the radial direction. Here, E is given by

E(r,z0) = E0

√
2p!

π
(
p + ∣∣mz

L

∣∣)![1 + (z0/zr )2]

× (
√

2u)|m
z
L|Lp

|mz
L|(2u2) exp (−u2), (64)

where u = r/{d0[1 + (z0/zr )2]
1
2 }, E0 is a constant, and

L
p

|mz
L|(y) is the Laguerre polynomial defined by

L
p

|mz
L|(y) =

p∑
k=0

(−1)k
(∣∣mz

L

∣∣+ p
)
!

(p − k)!
(
k + ∣∣mz

L

∣∣)!k!
yk. (65)

In the following discussion, we consider only the p = 0 modes.
We also assume that the twisted light beam is focused at the
surface of the TI, i.e., z0 = 0. Then, the phase �R becomes
zero, and the magnitude E defined in Eq. (64) reduces to

E(r,0) = E0

√
2

π
∣∣mz

L

∣∣!
(√

2r

d0

)|mz
L|

exp

(
− r2

d2
0

)
. (66)

Figures 4(a)–4(d) show the snapshots of the electric field for
σ z

L = −1 and mz
L = 0,1,2, and −1. In both cases of mz

L = 0
and mz

L �= 0, the amplitude of the electric field exponentially
decays with r2. In addition to this, for the cases of nonzero mz

L,
the magnitude of the electric field vanishes at r = 0 because
of the phase singularity. This is a characteristic property of the
twisted light beam. Besides, the direction of the electric field
depends on the polar angle around the center of the incident
light: While the direction of the electric field is uniform for
(σ z

L,mz
L) = (−1,0) [Fig. 4(a)], the direction of the electric field

at (σ z
L,mz

L) = (−1,1) rotates by 2π in the counterclockwise
direction as one goes around the beam center from ϕ = 0 to

FIG. 4. (a)–(d) Snapshots of the electric field induced by the
twisted light beam with (a) (σ z

L,mz
L) = (−1,0), (b) (−1,1), (c) (−1,2),

and (d) (−1,−1), where σ z
L and mz

L denote the spin and orbital
angular momentum of light, respectively. Shown are density plots
of the magnitude of the electric field, and the black arrows show the
direction of the electric field. d0 is the waist size for the mz

L = 0 mode.
(e) Time evolution of the electric field with (σ z

L,mz
L) = (−1,1) (top)

and (−1,−1) (bottom), where T = 2π/� with � being the angular
frequency of the light.

2π [Fig. 4(b)]. Similarly for the cases of (σ z
L,mz

L) = (−1,2)
and (−1,−1), the direction of the electric field changes by
4π and −2π , respectively [Figs. 4(c) and 4(d)]. Note that
the configurations shown in Figs. 4(a)–4(d) are snapshots and
they evolve in time depending on σ z

L: σ z
L = −1 means that the

electric field at a fixed point rotates in the clockwise direction
as time evolves [Fig. 4(e)].

The topological properties of the twisted light beam
discussed above can be understood by introducing the winding
number of the electric field. In general, the winding number of
a 2D vector field n = (nx,ny) on a closed loop C is defined by

ωv[n] ≡ 1

2π

∮
C

δij ε
μνdxi

nμ

|n|
∂

∂xj

(
nν

|n|
)

, (67)

where εij is the 2D Levi-Civita symbol, and |n| is supposed
to be nonzero on C. The winding number corresponds to
the number of times the 2D unit vector n/|n| rotates about
the z axis as one traces the contour C. For the electric field
given by Eq. (62), the winding number wv(E) is defined on a
contour that encloses r = 0. Substituting Eq. (62) in (67),
we obtain wv(E) = −σ z

Lmz
L. For example, for the electric

field with (σ z
L,mz

L) = (−1,0),(−1,1),(−1,2), and (−1,−1),
we have wv(E) = 0,1,2, and −1, respectively, which are
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consistent with the configurations shown in Fig. 4. The result
wv(E) = −σ z

Lmz
L is also consistent with the fact that the

direction of the electric field with σ z
L = 0 is spatially uniform

even for mz
L �= 0 and that the whirling direction for σ z

L = 1 is
opposite to that for σ z

L = −1.

B. Charge density

We consider the charge density due to the electric field of
the twisted light beam on the disordered surface of the TI. The
setup we consider is schematically described in Fig. 3. The
induced charge density ρe is given by Eq. (39), which can be
rewritten as

ρe(x,t) = 1

τ

∫ ∞

−∞
dt ′
∫

dx′D(x′,t ′)ρ̄e(x − x′,t − t ′), (68)

ρ̄e(x,t) = −2e2νeDτ∇ · E(x,t). (69)

By using Eq. (62), ∇r = r/r = (cos ϕ, sin ϕ) and ∇ϕ = (z ×
r)/r2 = (− sin ϕ/r, cos ϕ/r), the divergence of the electric
field for σ z

L = ±1 is given by

∇ · E =
(

∂E
∂r

− σ z
Lmz

LE
r

)
cos

[(
mz

L + σ z
L

)
ϕ − �t

]
. (70)

Then, ρ̄e becomes

ρ̄e(x,t) = −2e2νeDτ
(

∂E
∂r

− σ z
Lmz

LE
r

)
cos

(
jz

Lϕ − �t
)
, (71)

where jz
L ≡ mz

L + σ z
L denotes the total angular momentum of

light.
We further simplify Eqs. (68) and (69). First of all, these

equations are valid only for �τ 	 1. This condition means
that the period of the oscillation of ρ̄e, which is the same
as that of the electric field T = 2π/�, is much slower than
the electron relaxation time τ . On the other hand, the length
scale of the spatial variation of ρ̄e is in the order of the beam
waist d0 [see Eq. (64) and Fig. 4], which is comparable to the
wavelength λ of the light. Since λ satisfies �/λ = 2π��/c0 =
(2πṽF/c0)�τ 	 1, the spatial variation of ρ̄e is much slower
than the mean-free path �, where c0 is the speed of light and
we have used 2πṽF 	 c0 for realistic TIs [29]. Then, since
τ and � determine the decay time and decay length of the
diffusion propagator D(x,t), respectively, ρ̄e(x − x′,t − t ′) in
the integrand of Eq. (68) can be approximated as ρ̄e(x,t), and
the convolution can be approximately described by

ρe(x,t) � αρ̄e(x,t), (72)

where α ≡ 1
τ

∫∫
dt dx D(x,t) is a constant coefficient and is

estimated by

α � 1

τ

∫ τ

0
dt

∫ 2π

0
dφ

∫ �

0
r dr D. (73)

Figure 5 represents the nonlocal charge density due to
the twisted light beam ρe for a σ z

L = −1 and mz
L = 0,1,2,

and −1. We find that the distribution of ρe depends on the
z component of the total angular momentum of light jz

L.
For jz

L = 0 [Fig. 5(b)], the charge density is isotropically
induced from the center and the sign of the induced charge
changes at r ∼ d0. On the other hand, the charge density
for nonzero jz

L distributes anisotropically. The symmetry of

FIG. 5. Snapshots of the charge density induced by the optical
twisted light beam with (a) (σ z

L,mz
L) = (−1,0), (b) (−1,1), (c) (−1,2),

and (d) (−1,−1). The dashed lines in (a), (c), and (d) indicate axes
of the inversion symmetry. (e) Time evolution of the charge density
with (σ z

L,mz
L) = (−1,1) (top) and (−1,−1) (bottom). In all figures,

we use d0 = 0.5 mm, εF = 100 meV, ṽF = 3 × 105 m/s, and τ =
1 × 10−13 s.

the distribution of ρe with |jz
L| = 1 [Figs. 5(a) and 5(c)] and

|jz
L| = 2 [Fig. 5(d)] are the same as that for the electron wave

functions with the px and dx2−y2 orbitals, respectively. The
dashed lines in Figs. 5(a), 5(c), and 5(d) indicate the axes of
the inversion symmetry of the charge density. As time evolves,
the distribution of the induced charge density rotates around
the beam center (jz

L �= 0) or oscillates around the zero value
(jz

L = 0) with the frequency of light � [see Fig. 5(e)]. The
time evolution of the charge density also depends on the total
angular momentum of light: When the sign of the total angular
momentum is minus (plus), the distribution of the charge
density rotates in the clockwise (counterclockwise) direction
around the phase singularity during the irradiation. When
we turn off the incident light, the charge density diffusively
propagates on the disordered surface of the TI with obeying
the diffusive equation of motion represented in Eq. (53).
Eventually, the induced charge vanishes.

C. Spin density

We turn to discuss the spin density induced by the
electric field of the twisted light beam in the same setup
as that considered in Sec. V B. As discussed in Sec. IV B,
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FIG. 6. Snapshots of the spin density induced by the electric field of the optical twisted light beam with (a1) and (a2) (σ z
L,mz

L) = (−1,0),
(b1) and (b2) (σ z

L,mz
L) = (−1,1), (c1) and (c2) (σ z

L,mz
L) = (−1,2), and (d1) and (d2) (σ z

L,mz
L) = (−1,−1). The left (right) panels show the local

(nonlocal) spin density. The color map and the direction of the arrow show the magnitude and direction of the spin density, respectively. The
parameters are the same as those in Fig. 5.

the induced spin density can be divided into the local and
nonlocal ones as s = s(l) + s(nl). The local spin density s(l)

is described in Eq. (52) and its snapshots for several mz
L are

shown in Figs. 6(a1)–6(d1). The direction of s(l) is perfectly
perpendicular to the electric field. We find that the dynamical
vortexlike spin structure is generated by the twisted light beam
and the winding number of the local spin density, which is
defined by Eq. (67) with n = s(l), is identical to that of the
electric field

ωv[s(l)] = ωv[E] = −σ z
Lmz

L (74)

[see Figs. 6(a1)–6(d1) and Figs. 4(a)–4(d)]. On the other hand,
the nonlocal spin density s(nl) is proportional to the spatial
gradient of the charge density [see the second term of Eq. (46)],
and can be estimated by using Eq. (72) as s(nl) � α�

2e
(z × ∇)ρ̄e.

The snapshots of s(nl) are shown in Figs. 6(a2)–6(d2). We find
that dynamical vortexlike spin structures appear and the spin
density becomes zero at the center of the vortex. Here, we
note that s(nl) and ∇ρe share the same winding number as they
are perfectly perpendicular to each other. Since the winding
number wv(∇ρe) is 1 (−1) around the maxima and minima
(the saddle points) of ρe, the centers of the spin vortices locate

FIG. 7. Snapshots of the charge current density induced by the electric field of the optical twisted light beam with (a1) and (a2) (σ z
L,mz

L) =
(−1,0), (b1) and (b2) (σ z

L,mz
L) = (−1,1), (c1) and (c2) (σ z

L,mz
L) = (−1,2), and (d1) and (d2) (σ z

L,mz
L) = (−1,−1). The left (right) panels show

the local (nonlocal) charge current density. The color map and the direction of the arrow show the magnitude and direction of the charge current
density, respectively. The parameters are the same as those in Fig. 5.
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at the extrema (minima, maxima, and saddle points) of ρe, and
therefore, they align on the symmetry axis of the distribution
of ρe (the dotted lines in Fig. 5). For the cases shown in
Figs. 6(a2)–6(d2), all spin vortices have the winding number
wv(s(nl)) = 1 except for the one at the center of Fig. 6(d2),
which corresponds to the saddle point of ρe and has the winding
number −1. Since s(nl) is related to ∇ · E rather than E, the
configuration of the spin vortices depends on the total angular
momentum jz

L. Note, however, that with the parameters for a
realistic system, |s(nl)|/|s(l)| is in the order of �2/d2

0 ∼ 10−7

and s(nl) is negligibly small as compared with s(l). When we
turn off the beam, s(nl) becomes prominent and diffusively
propagates. We expect that the photoinduced spin texture can
be observed by pump probe technique with the twisted light
beam and circularly polarized light beam [4].

D. Charge and spin currents

The profile of the charge current is similar to that of the spin
because of the spin momentum locking on the surface of the
TI. In Fig. 7, we show the snapshots of the charge current for
various angular momenta of light, where the left (right) four
panels depict the local (nonlocal) components. Reflecting the
relation j ‖ z × s, the magnitude of j (l,nl) has the same profile
as that of |s(l,nl)|, while the direction of j (l,nl) is obtained by
rotating s(l,nl) by −π/2 about the z axis. As in the case of the
spin density, the local (nonlocal) part of the charge current
is related to E (∇ · E) and hence its configuration is mainly
determined by mz

L (jz
L).

Figure 8 shows the light-induced spin current. As one can
see from Eq. (58), the magnitude of the spin current is propor-
tional to |ρe| and the direction of the spin and its current per-
fectly perpendicular to each other. These properties also come
from the spin-momentum locking on the surface of the TI.

We find that the spatial profile of the spin current is different
from that of the (spin-polarized) charge current, which are
shown in Figs. 8 and 7, respectively. In fact, they are related to
each other via Eq. (60), and only the nonlocal charge current
couples to the spin current.

VI. CONCLUSION

We study the charge density, the spin density, the charge
current density, and the spin current density induced by a
twisted light beam irradiated on a disordered surface of a
doped TI by using the Keldysh-Green’s function method.
We have discussed the responses of charge and spin to the
space-time-dependent electric field. The obtained results are
summarized in Table I. The effect of the electric field on
the electric charge is twofold. First, it induces a charge
current along the direction of the electric field. Second, the
inhomogeneity of the electric field causes a gradient of the
charge density, which then leads to a diffusive charge current.
We call the former the local charge current and the latter the
nonlocal charge current, based on whether the charge current
depends only on the local electric field or is affected by the
nonlocal one. Since the spin and momentum of electrons on a
surface of a TI are locked to be perpendicular to each other, the
emergence of the charge current implies that the spin density
is induced in the perpendicular direction to the charge current.
Our calculation based on the linear response theory gives the
analytic description for the local and nonlocal spin densities
as well as the local and nonlocal charge current densities. We
also find that the induced charge density also gives rise to a
spin current, which is related to the nonlocal part of the charge
current via Eq. (60).

By taking into account the spatial and temporal config-
urations of the electric field associated with a twisted light
beam, we have shown that various types of spin vortices arise.

FIG. 8. Snapshots of the spin current density induced by the optical twisted light beam with (a1) and (a2) (σ z
L,mz

L) = (−1,0), (b1) and (b2)
(σ z

L,mz
L) = (−1,1), (c1) and (c2) (σ z

L,mz
L) = (−1,2), and (d1) and (d2) (σ z

L,mz
L) = (−1,−1). The left (right) panels show current of the x (y)

component of spin. The color map shows the magnitude of the spin current density. The blue and green arrows show the direction of the flow
of the spin. As in the case of the charge density, the distribution of the spin current depends on the total angular momentum of the twisted light
beam. The parameters are the same as those in Fig. 5.
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TABLE II. In the distribution of the nonlocal part of s and j ,
several vortices appear, each of which has the winding number +1
or −1. The configuration of the vortices is determined by the total
angular momentum of light j z

L = σ z
L + mz

L.

s j Winding
number ωv[s],ωv[ j ]

Local z × E E −σ z
Lmz

L

Nonlocal (z × ∇)∇ · 〈E〉D ∇(∇ · 〈E〉D) ±1

Since the local spin density is perpendicular to the electric
field, their winding numbers are identical and determined by
the product of the spin and orbital angular momentum of the
twisted light beam (Table II). In this paper, we have assumed
that the time (length) scale of the diffusion of electrons is much
faster (shorter) than those of incident light. In such a situation,
we can approximate the nonlocal electric field with the bare

electric field, and the nonlocal quantities are described using
the divergence of the electric field. Thus, the configurations of
the nonlocal densities and currents are determined by the total
angular momentum of the twisted light beam.
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APPENDIX A: MODIFICATION OF vF

The Fermi velocity of the Hamiltonian on the surface of the TI is modified from the contributions of the impurity scatterings
in the absence of electromagnetic fields [30,31,36,37]. Following, we will demonstrate the modification of vF in the presence of
electromagnetic fields.

The Green’s function including the electromagnetic fields with considering impurity scatterings is given by

ĝr
k,ω(Aem) = [�ω + εF − �vFσ̂ · (k × z) + evFσ̂ · (Aem × z) − 
̂k,ω(Aem)]−1. (A1)

Here, the self-energy 
̂k,ω(Aem) is given by


̂r
k,ω(Aem) = ni

∑
k′

|uk−k′ |2ĝr
k′,ω(Aem) = ni

∑
q

|uq |2ĝr
k+q,ω(Aem). (A2)

We assume that the Green’s function can be expanded with k and Aem as


̂r
k,ω(Aem) = ni

∑
q

|uq |2
[
ĝr

q,ω(0) + k · ∂

∂k
ĝr

k+q,ω(Aem)

∣∣∣∣
Aem=k=0

+ Aem · ∂

∂ Aem
ĝr

k+q,ω(Aem)

∣∣∣∣
Aem=k=0

]
+ O

(
k2,A2

em,kAem
)
.

(A3)

The above functions are given by using limq→∞ uq = 0 [30,31] as

∂

∂k
ĝr

k+q,ω(Aem)

∣∣∣∣
Aem=k=0

= ĝr
q,ω(0)

[
�vF(z × σ̂ ) + ∂
̂r

q,ω(0)

∂q

]
ĝr

q,ω(0), (A4)

∂

∂ Aem
ĝr

k+q,ω(Aem)

∣∣∣∣
Aem=k=0

= ĝr
q,ω(0)

[
−evF(z × σ̂ ) + ∂
̂r

q,ω(Aem)

∂ Aem

∣∣∣∣
Aem=0

]
ĝr

q,ω(0), (A5)

and the self-energy becomes


̂r
k,ω(Aem) = 
̂0,k,ω(0) + 
̂⊥,k,ω(0) + 
̂⊥,0,ω(Aem) + O

(
k2,A2

em,kAem
)
, (A6)

with


̂r
0,k,ω(0) = ni

∑
q

|uq |2ĝr
q,ω(0), (A7)


̂r
⊥,k,ω(0) = ni

∑
q

|uq |2ĝr
q,ω(0)k ·

[
�vF(z × σ̂ ) + ∂
̂r

q,ω(0)

∂q

]
ĝr

q,ω(0), (A8)


̂r
⊥,0,ω(Aem) = ni

∑
q

|uq |2ĝr
q,ω(0)Aem ·

[
−evF(z × σ̂ ) + ∂
̂r

q,ω(Aem)

∂ Aem

∣∣∣∣
Aem=0

]
ĝr

q,ω(0). (A9)

195415-12



SPIN AND CHARGE TRANSPORT INDUCED BY A . . . PHYSICAL REVIEW B 93, 195415 (2016)


̂r
0,k,ω(0) and 
̂r

⊥,k,ω(0) have been calculated in the previous works [30,31]. We calculate 
̂r
⊥,0,ω(Aem) within the same

formalism of these works [30,31]. We suppose that 
̂r
⊥,0,ω(Aem) is obtained by the following form: 
̂r

⊥,0,ω(Aem) = −evFdijAem,i σ̂j

with a second rank tensor dij . Substituting 
̂r
⊥,0,ω(Aem) = −evFdijAem,i σ̂j into the above equation, we can calculate as


̂r
⊥,0,ω(Aem) = ni

∑
q

|uq |2ĝr
q,ω(0)

∑
�,j=x,y

Aem,�[−evF(z × σ̂ )� − evFd�j σ̂j ]ĝr
q,ω(0) = ni

∑
�,j=x,y

Aem,�

u2
0evF

4π�2v2
F

σ̂j [ε�zj + d�j ].

(A10)

Therefore, we obtain

d�j = − niu
2
0

4π�2v2
F

[ε�zj + d�j ]

and d�j = ξ/(1 + ξ )ε�jz. As a result, the self-energy becomes


̂r
⊥,0,ω(Aem) = −ξ

1 + ξ
ε�jzevFAem,i σ̂j .

From the result, Eq. (A1) is modified within O(k2,A2
em,kAem) as

ĝr
k,ω(Aem) = [�ω + εF − �ṽFσ̂ · (k × z) + eṽFσ̂ · (Aem × z) + iη]−1. (A11)

From the above equation, we see that the Fermi velocity in Eq. (4) is also replaced by ṽF.

APPENDIX B: DERIVATION OF Îμ

We estimate Îμ in Eq. (26) by expanding with respect to q and � within q� 	 1 and �τ 	 1 and by using the Green’s
function

ĝr
k± q

2 ,± �
2

=ĝr
k ± 1

2

⎡
⎣ ∑

ξ=x,y

qξ

∂ĝr
k

∂kξ

+ �
∂ĝr

k,ω

∂ω

∣∣∣∣∣∣
ω→0

⎤
⎦+ 1

8

∑
ξ,ξ ′=x,y

qξqξ ′
∂2ĝr

k

∂kξ ∂kξ ′
+ O(q3,q�,�2),

where we use the shorthand notation ĝr
k ≡ ĝr

k,ω=0. Îμ is decomposed into four terms as

Îμ ≡ Î (0)
μ + �Î (1)

μ +
∑

ξ=x,y

qξ Î
(2)
μξ +

∑
ξ,ξ ′=x,y

qξqξ ′ Î
(3)
μξξ ′ , (B1)

Î (0)
μ =

∑
k

ĝr
kσ̂μĝa

k, (B2)

Î (1)
μ = 1

2

∑
k

(
ĝr

kσ̂μ

∂ĝa
k,ω

∂ω

∣∣∣∣
ω→0

− H.c

)
, (B3)

Î
(2)
μξ = 1

2

∑
k

(
ĝr

kσ̂μ

∂ĝa
k

∂kξ

− H.c

)
, (B4)

Î
(3)
μξξ ′ = 1

8

∑
k

(
ĝr

kσ̂μ

∂2ĝa
k

∂kξ ∂kξ ′
+ ∂2ĝr

k

∂kξ∂kξ ′
σ̂μĝa

k − 2
∂ĝr

k

∂kξ

σ̂μ

∂ĝa
k

∂kξ ′

)
. (B5)

In Appendix F, we list useful formulas for the integral of the Green’s functions, which are used in the following calculations.

1. Calculation of Î (0)
μ=x, y,z

First, to calculate Î (0)
μ=x,y,z in Eq. (B2), we divide ĝr

kσ̂μĝa
k into the even and odd functions of k:

ĝr
kσ̂μĝa

k = DrDaQ̂σ̂μQ̂†, (B6)

where Dr, Da = [Dr]∗, Q̂, Q̂†, h, and h∗ are defined by

Dr ≡ (
h2 − �

2ṽ2
Fk

2
)−1

, (B7)

Q̂ ≡ h + �ṽFk · (z × σ̂ ), (B8)

Q̂† ≡ h∗ + �ṽFk · (z × σ̂ ), (B9)
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h ≡ εF + iη, (B10)

h∗ ≡ εF − iη. (B11)

Dr and Da are the even functions of k. Q̂σ̂μQ̂† is represented by

Q̂σ̂μQ̂† =
[
|h|2σ̂μ + �

2ṽ2
F

∑
�,�′=x,y

k�k�′(z × σ̂ )�σ̂μ(z × σ̂ )�′

]
+ �ṽF

∑
�=x,y

[hk�σ̂μ(z × σ̂ )� + h∗k�(z × σ̂ )�σ̂μ]. (B12)

The first and second terms are corresponding to the even and odd functions of k, respectively. In the following calculation, we
simply assume that the surface of the TI is isotropic as a function of k: k2

x = k2
y = k2/2. By taking an average over the direction

of k, 〈. . .〉k , in Eq. (B12) and using 〈k�〉k = 0 and 〈k�k�′ 〉k = 1
2k2δ��′ , we obtain

〈Q̂σ̂μQ̂†〉k = |h|2σ̂μ + 1

2
�

2ṽ2
Fk

2
∑

�=x,y

(z × σ̂ )�σ̂μ(z × σ̂ )�. (B13)

The second term in the above equation becomes∑
�=x,y

(z × σ̂ )�σ̂μ(z × σ̂ )� =
∑

�=x,y

(2δ�μσ̂� − δ��σ̂μ) (B14)

= −2δμzσ̂z. (B15)

Thus, we obtain Î (0)
μ as

Î (0)
μ=x,y = |h|2

∑
k

|Dr|2σ̂μ, (B16)

Î (0)
z =

∑
k

(|h|2 − �
2ṽ2

Fk
2
)|Dr|2σ̂z. (B17)

The integral of Eq. (B16) is obtained by

∑
k

|Dr|2 = 1

2π

∫ ∞

0

k dk[
h2 − �2ṽ2

Fk
2
][

(h∗)2 − �2ṽ2
Fk

2
] = νe

2εF

∫ ∞

0

dx

[h2 − x][(h∗)2 − x]

= νe

2εF[h2 − (h∗)2]

∫ ∞

0
dx

[
1

x − h2
− 1

x − (h∗)2

]
, (B18)

where νe = εF

2π�2ṽ2
F

is the density of states on the surface. Here, the above integral is given by

∫ ∞

0
dx

[
1

x − h2
− 1

x − (h∗)2

]
= log

x − h2

x − (h∗)2

∣∣∣∣
x→∞

x→0

= i[arg (x − h2) − arg [x − (h∗)2]]x→∞
x→0 . (B19)

In the above equation, we have used log z = log|z| + i arg z, where z = a + ib = |z|eiθ , a,b ∈ R. Here, θ = arg z is

θ =
⎧⎨
⎩

tan−1(b/a) (a > 0 and b > 0),
π + tan−1(b/a) (a < 0),
2π + tan−1(b/a) (a > 0 and b < 0).

(B20)

Thus, arg (x − h2)|x→∞
x→0 = π + O(�/εFτ ), arg [x − (h∗)2]|x→∞

x→0 = −π + O(�/εFτ ), and

log
x − h2

x − (h∗)2

∣∣∣∣
x→∞

x→0

� 2iπ (B21)

are satisfied. We have
∑

k |Dr|2 = πνe

4ηε2
F

+ O(�/εFτ ) and

Î (0)
μ=x,y = πνe

4η
σ̂μ. (B22)

Equation (B17) can be estimated around the Fermi energy k → kF ≡ εF/(�ṽF) as

Î (0)
z ∼ (|h|2 − �

2ṽ2
Fk

2
F

)∑
k

|Dr|2σ̂z = O

(
�

εFτ

)
. (B23)
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2. Calculation of Î (1)
μ=x, y,z

To calculate Î (1)
μ=x,y,z in Eq. (B3), we divide ĝr

kσ̂μ
∂ĝa

k,ω

∂ω
|ω→0 = −�ĝr

kσ̂μ(ĝa
k)2 = −�Dr(Da)2Q̂σ̂μ(Q̂†)2 into the even and odd

functions of k. Here, (Q̂†)2 and Q̂σ̂μ(Q̂†)2 become

(Q̂†)2 = [
(h∗)2 + �

2ṽ2
Fk

2]+ 2h∗
�ṽFk�(z × σ̂ )�, (B24)

Q̂σ̂μ(Q̂†)2 = [h{(h∗)2 + �
2ṽ2

Fk
2}σ̂μ + 2h∗

�
2ṽ2

Fk�k�′(z × σ̂ )�σ̂μ(z × σ̂ )�′
]

+ [
2|h|2�ṽFk�(z × σ̂ )�σ̂μσ̂μ + {

(h∗)2 + �
2ṽ2

Fk
2
}
�ṽFk�(z × σ̂ )�σ̂μ

]
. (B25)

The first and second terms of the above equations are the even and odd functions of k. Then, we have

〈Q̂σ̂μ(Q̂†)2〉k = h
{
(h∗)2 + �

2ṽ2
Fk

2
}
σ̂μ (μ = x,y), (B26)

〈Q̂σ̂z(Q̂†)2〉k = h
{
(h∗)2 + �

2ṽ2
Fk

2
}
σ̂z − 2h∗

�
2ṽ2

Fk
2σ̂z (μ = z), (B27)

from which Î (1)
μ = −�

2

∑
k[ĝr

kσ̂μ(ĝa
k)2 − H.c.] is obtained by

Î (1)
μ=x,y = −�

2

{
h
∑

k

Dr(Da)2
[
(h∗)2 + �

2ṽ2
Fk

2
]
σ̂μ − H.c.

}

= −�

2

[
νe

8η2

(
iπ − 2η2

ε2
F

)(
1 + i

η

εF

)
− c.c.

]
σ̂μ + O

(
�

εFτ

)
= −i�πνe

8η2
σ̂μ + O

(
�

εFτ

)
, (B28)

Î (1)
z = −�

2

{∑
k

Dr(Da)2
[
h(h∗)2 + (h − 2h∗)�2ṽ2

Fk
2
]
σ̂μ − H.c.

}

= −�

2

[−iπνe

4ε2
F

(
1 + i

η

εF

)
− c.c.

]
σ̂z + O

(
�

εFτ

)
= i�πνe

4ε2
F

σ̂μ + O

(
�

εFτ

)
. (B29)

3. Calculation of Î (2)
μ(=x, y,z)ξ

∂ĝr
k

∂kξ
is given by

∂ĝr
k

∂kξ

= �ṽF(z × σ̂ )ξD
r + 2�

2ṽ2
Fkξ Q̂(Dr)2. (B30)

By using Eq. (B30), 〈 ∂ĝr
k

∂kξ
σ̂μĝa

k〉k becomes〈
∂ĝr

k

∂kξ

σ̂μĝa
k

〉
k

= 〈[�ṽF(z × σ̂ )ξD
r + 2�

2ṽ2
Fkξ Q̂(Dr)2

]
σ̂μDaQ̂†〉

k
= 〈

�ṽF(z × σ̂ )ξ σ̂μ〈Q̂†〉k|Dr|2 + 2�
2ṽ2

F〈kξ Q̂σ̂μQ̂†〉k(Dr)2Da
〉
k
.

(B31)

Here, 〈Q̂†〉k and 〈kξ Q̂σ̂μQ̂†〉k are given by

〈Q̂†〉k = h∗, (B32)

〈kξ Q̂σ̂μQ̂†〉k = �ṽF〈kξ k�〉k{hσ̂μ(z × σ̂ )� + h∗(z × σ̂ )�σ̂μ} = �ṽF

2
k2εξzu(hσ̂μσ̂u + h∗σ̂uσ̂μ). (B33)

Î
(2)
μξ in Eq. (B4) is given by

Î
(2)
μξ =�ṽF

2
εξzu

∑
k

[|Dr|2(hσ̂μσ̂u − h∗σ̂uσ̂μ) + �
2ṽ2

Fk
2|Dr|(Da − Dr)(hσ̂μσ̂u + h∗σ̂uσ̂μ)

]
. (B34)

Here, hσ̂μσ̂u ± h∗σ̂uσ̂μ can be transformed as

hσ̂μσ̂u − h∗σ̂uσ̂μ = 2iηδμu + 2iεFεμuνσ̂ν, (B35)

hσ̂μσ̂u + h∗σ̂uσ̂μ = 2εFδμu − 2ηεμuνσ̂ν . (B36)
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As a result, Î
(2)
μξ is obtained by

Î
(2)
μ(=x,y)ξ = �ṽFiπνe

8η2
εξzu

[(
1 + 2

η2

ε2
F

)
δμu + η

εF
εμuνσ̂ν

]
+ O

(
�

εFτ

)
= iπνe

8η2
�ṽFεμξz + O

(
�

εFτ

)
, (B37)

Î
(2)
zξ = �ṽFiπνe

8η2
εξzu

[(
1 + 2

η2

ε2
F

)
δzu + η

εF
εzuνσ̂ν

]
+ O

(
�

εFτ

)
= iπνe

8εFη
�ξ̃F + O

(
�

εFτ

)
. (B38)

4. Calculation of Î (3)
μ(=x, y,z)ξξ ′

Î
(3)
μξξ ′ in Eq. (B5) is represented by using the partial integral as

Î
(3)
μξξ ′ = 1

4

∑
k

[
∂2ĝr

k

∂kξ∂kξ ′
σ̂μĝa

k + H.c.

]
. (B39)

In order to consider 〈 ∂2ĝr
k

∂kξ ∂kξ ′ σ̂μĝa
k〉k , we use the following equations:

∂Dr

∂kξ ′
= 2�

2ṽ2
Fk

′
ξ (Dr)2, (B40)

∂Q̂(Dr)2

∂kξ ′
= �ṽF(z × σ̂ )ξ ′(Dr)2 + 4�

2ṽ2
Fkξ ′Q̂(Dr)3, (B41)

∂2ĝr
k

∂kξ ∂kξ ′
= 2�

2ṽ2
F

{
δξξ ′Q̂(Dr)2 + 4�

2ṽ2
Fkξkξ ′Q̂(Dr)3 + �ṽF[kξ (z × σ̂ )ξ ′ + kξ ′(z × σ̂ )ξ ](Dr)2

}
, (B42)

∂2ĝr
k

∂kξ∂kξ ′
σ̂μĝa

k = 2�
2ṽ2

F

{
δξξ ′Q̂(Dr)2σ̂μQ̂†Da + 4�

2ṽ2
Fkξkξ ′Q̂(Dr)3σ̂μQ̂†Da + �ṽF[kξ (z × σ̂ )ξ ′ + kξ ′(z × σ̂ )ξ ](Dr)2σ̂μQ̂†Da

}
.

(B43)

The averages of k in Q̂σ̂μQ̂†, kξ (z × σ̂ )ξ ′ σ̂μQ̂†, and kξkξ ′Q̂σ̂μQ̂† become

〈Q̂σ̂μQ̂†〉k = |h|2σ̂μ − �
2ṽ2

Fk
2δμzσ̂z, (B44)

〈kξ (z × σ̂ )ξ ′ σ̂μQ̂†〉k = 1
2 �ṽFk

2(z × σ̂ )ξ ′ σ̂μ(z × σ̂ )ξ , (B45)

〈kξ kξ ′Q̂σ̂μQ̂†〉k = |h|2〈kξkξ ′ 〉kσ̂μ + �
2ṽ2

F〈kξkξ ′k�k�′ 〉k(z × σ̂ )�σ̂μ(z × σ̂ )�′ . (B46)

Here, we have used 〈kξkξ ′k�k�′ 〉k = k4

8 (δξξ ′δ��′ + δξ�δξ ′�′ + δξ�′δξ ′�). Then, Î
(3)
μξξ ′ is given by

Î
(3)
μ(=x,y)ξξ ′ = �

2ṽ2
F

2

∑
k

{[
δξξ ′ σ̂μ|h|2(Dr)2Da + 1

2
�

2ṽ2
Fk

2(Dr)2Da[(z × σ̂ )ξ ′ σ̂μ(z × σ̂ )ξ + (ξ ↔ξ ′)] + 2|h|2�2ṽ2
Fk

2δξξ ′ σ̂μ(Dr)3Da

+ 1

2
�

4ṽ4
Fk

4(Dr)3Da[(z × σ̂ )ξ σ̂μ(z × σ̂ )ξ ′ + (ξ ↔ ξ ′)]
]

+ H.c.

}
(B47)

= �
2ṽ2

F

2

∑
k

[|h|2δξξ ′ σ̂μ

(|Dr|2(Dr + Da) + 2�
2ṽ2

Fk
2|Dr|2{(Dr)2 + (Da)2})

+ [�2ṽ2
Fk

2|Dr|2(Dr + Da) + �
4ṽ4

Fk
4|Dr|2{(Dr)2 + (Da)2}][εξzμ(z × σ̂ )ξ ′ + εξ ′zμ(z × σ̂ )ξ − δξξ ′ σ̂μ]

]
, (B48)

Î
(3)
zξξ ′ = �

2ṽ2
F

2
δξξ ′

∑
k

{[
(|h|2 − 2�

2ṽ2
Fk

2)σ̂z(D
r)2Da + 2(|h|2�2ṽ2

Fk
2 − �

4ṽ4
Fk

4)(Dr)3Da

]
+ H.c.

}
,

Here, we have used

(z × σ̂ )ξ σ̂μ(z × σ̂ )ξ ′ + (ξ ↔ ξ ′) = 2[εξzμ(z × σ̂ )ξ ′ + εξ ′zμ(z × σ̂ )ξ − δξξ ′ σ̂μ].

Î
(3)
μξξ ′ is given by using equations in Appendix F as

Î
(3)
μ(=x,y)ξξ ′ = − �

2ṽ2
F

πνe

64η3
[εξzμεξ ′zν + εξ ′zμεξzν + δξξ ′δνμ]σ̂ν + O

(
�

εFτ

)
, (B49)

Î
(3)
zξξ ′ = �

2ṽ2
F

πνe

8ε2
Fη

+ O

(
�

εFτ

)
. (B50)

195415-16



SPIN AND CHARGE TRANSPORT INDUCED BY A . . . PHYSICAL REVIEW B 93, 195415 (2016)

Using qαqβ[εαzμεβzν + εβzμεαzν + δαβδνμ] = qαqβ[3δαβδνμ − 2δανδβμ], we obtain

qαqβ Î
(3)
μαβ = −�

2ṽ2
F

πνe

64η3
qαqβ[3δαβδνμ − 2δανδβμ]σ̂ν . (B51)

Thus, Îμ = Î (0)
μ + �Î (1)

μ + qξ Î
(2)
μξ + qξqξ ′ Î

(3)
μξξ ′ is obtained by

Îμ=x,y � πνe

4η

[(
1 − i�τ − 3

2
Dτq2

)
σ̂μ + iqα�εμαz + Dτqμqνσ̂ν

]
, Îμ=z � O

(
�

εFτ

)
, (B52)

where D = 1
2 ṽ2

Fτ and � = ṽFτ are the diffusion constant and the mean-free path of the surface electrons, respectively.

APPENDIX C: CALCULATION OF Î0

We will calculate Î0 using the same formalism in the Appendix B. Here, Î0 = ∑
k ĝr

k− q
2 ,− �

2
ĝa

k+ q
2 , �

2
can be expanded with

respect to q and � within q� 	 1 and �τ 	 1 as

Î0 ≡ Î
(0)
0 + �Î

(1)
0 +

∑
ξ=x,y

qξ Î
(2)
0ξ +

∑
ξ,ξ ′=x,y

qξqξ ′ Î
(3)
0ξξ ′ , (C1)

Î
(0)
0 =

∑
k

ĝr
kĝ

a
k, (C2)

Î
(1)
0 = 1

2

∑
k

(
ĝr

k

∂ĝa
k,ω

∂ω

∣∣∣∣
ω→0

− H.c.

)
, (C3)

Î
(2)
0ξ = 1

2

∑
k

(
ĝr

k
∂ĝa

k

∂kξ

− H.c.

)
, (C4)

Î
(3)
0ξξ ′ = 1

8

∑
k

(
ĝr

k
∂2ĝa

k

∂kξ ∂kξ ′
+ ∂2ĝr

k

∂kξ∂kξ ′
ĝa

k − 2
∂ĝr

k

∂kξ

∂ĝa
k

∂kξ ′

)
. (C5)

1. Calculation of Î (0)
0

We will calculate Î
(0)
0 in Eq. (C2). By using ĝr

kĝ
a
k = DrDa|Q̂|2 and 〈Q̂Q̂†〉k = [|h|2 + �

2ṽ2
Fk

2], Î
(0)
0 becomes

Î
(0)
0 =

∑
k

|Dr|2[|h|2 + �
2ṽ2

Fk
2
]
. (C6)

The above equation can be estimated around the Fermi energy k → kF ≡ εF/(�ṽF) as

Î
(0)
0 ∼ [|h|2 + �

2ṽ2
Fk

2
F

]∑
k

|Dr|2 = πνe

2η
. (C7)

2. Calculation of Î (1)
0

Î
(1)
0 in Eq. (C3) is calculated by using

ĝr
k

∂ĝa
k,ω

∂ω

∣∣∣∣
ω→0

= −�Dr(Da)2Q̂(Q̂†)2, (C8)

|Q|2 = {|h|2 + �
2ṽ2

Fk
2
}+ (h + h∗)�ṽFk · (z × σ̂ ), (C9)

〈Q̂(Q̂†)2〉k = |h|2h∗ + (h + 2h∗)�2ṽ2
Fk

2, (C10)

〈Q̂2Q̂†〉k = |h|2h + (2h + h∗)�2ṽ2
Fk

2, (C11)

h + h∗ = 2εF, and h∗Da − hDr = εF(Da − Dr) − iη(Da + Dr) as

Î
(1)
0 = − �

2

∑
k

[
εF
(|h|2 + �

2ṽ2
Fk

2
)|Dr|2(Da − Dr) − iη

(|h|2 + �
2ṽ2

Fk
2
)|Dr|2(Da + Dr) + 2εF�

2ṽ2
Fk

2|Dr|2(Da − Dr)
]

= − iπνe

4η2
� + O

(
�

εFτ

)
. (C12)
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3. Calculation of Î (2)
0ξ

Î
(2)
0ξ in Eq. (C4) is obtained by

Î
(2)
0ξ =�ṽF

2

∑
k

εξz�σ̂�

[
(h − h∗) + 2εF�

2ṽ2
Fk

2(Da − Dr)
]|Dr|2 � πνe

2η

iṽFτ

2
εξz�σ̂�. (C13)

Here, we have used the following equations:

〈kξ |Q̂|2〉k = 1
2 �ṽF(h + h∗)k2(z × σ̂ )ξ = εF�ṽFk

2εξzασ̂α, (C14)〈
∂ĝr

k

∂kξ

ĝa
k

〉
k

= �ṽFεξz�σ̂�

[
h∗ + 2�

2ṽ2
Fk

2εFD
r
]|Dr|2. (C15)

4. Calculation of Î (3)
0ξξ ′

∂ĝr

∂kα

∂ĝa

∂kβ
becomes

1

�2ṽ2
F

∂ĝr

∂kα

∂ĝa

∂kβ

= εαz�εβz�′ σ̂�σ̂�′ |Dr|2 + 4�
2ṽ2

Fkαkβ |Q̂|2|Dr|4 + 2�ṽFεαz�{σ̂�kβQ̂†}|Dr|2Da + 2�ṽFεβz�′ {kαQ̂σ̂�′ }|Dr|2Dr. (C16)

The average 〈 ∂ĝr

∂kα

∂ĝa

∂kβ
〉k is reduced to be

1

�2ṽ2
F

〈
∂ĝr

∂kα

∂ĝa

∂kβ

〉
k

= εαz�εβz�′ σ̂�σ̂�′ |Dr|2 + 2δαβ |h|2(�ṽFk)2|Dr|4 + 2δαβ (�ṽFk)4|Dr|4

+ εαz�εβuzσ̂�σ̂u(�ṽFk)2|Dr|2Da + εβz�εαu′zσ̂u′ σ̂�(�ṽFk)2|Dr|2Dr. (C17)

After we integrate the above equation as a function of k, we obtain

qαqβ

�2ṽ2
F

∑
k

∂ĝr

∂kα

∂ĝa

∂kβ

= δαβ

∑
k

{|Dr|2 + 2[|h|2(�ṽFk)2 + (�ṽFk)4]|Dr|4] − (�ṽFk)2|Dr|2(Da + Dr)}qαqβ = πνe

8η3
q2 + O

(
�

εFτ

)
.

(C18)

Here, we have used

qαqβεαz�δβ� = 0, (C19)

qαqβεαz�εβz�′ σ̂�σ̂�′ = qαqβδαβ, (C20)

qαqβεα�zεβuzε�uξ = qαqβ(δαβδ�u − δαuδβ�)ε�uξ = 0, (C21)

qαqβεαz�εβuz(σ̂�σ̂uD
a + σ̂uσ̂�D

r) = −qαqβδαβ(Da + Dr). (C22)

Thus, qξqξ ′I
(3)
0ξξ ′ becomes

qξqξ ′I
(3)
0ξξ ′ = −�

2ṽ2
F

πνe

16η3
q2 + O

(
�

εFτ

)
. (C23)

APPENDIX D: CALCULATION OF �̂rr
ν

We estimate �̂rr
ν = niu

2
i

∑
k ĝr

k− q
2 ,ω− �

2
σ̂μĝr

k+ q
2 ,ω+ �

2
by using the same formalism in Appendixes B and C. Here, �̂rr

ν =
niu

2
i

∑
k ĝr

k− q
2 ,ω− �

2
σ̂μĝr

k+ q
2 ,ω+ �

2
can be expanded as

niu
2
i

∑
k

ĝr
k− q

2 ,ω− �
2
σ̂μĝr

k+ q
2 ,ω+ �

2
= Ĉrr(0)

μ + �Ĉrr(1)
μ +

∑
ξ=x,y

qξ Ĉ
rr(2)
μξ +

∑
ξ,ξ ′=x,y

qξqξ ′Ĉ
rr(3)
μξξ ′ + O(q3,q�,�2), (D1)

where coefficients in the above equation are given by

Ĉrr(0)
μ = niu

2
i

∑
k

[ĝrσ̂μĝr] =

⎧⎪⎪⎨
⎪⎪⎩

− niu
2
i νe

2εF
σ̂μ (μ = x,y),

− iniu
2
i πνe

2εF
arg(−�ω − εF + iη)σ̂z (μ = z),

− niu
2
i νe

εF
+ iniu

2
i πνe

2εF
arg(−�ω − εF + iη) (μ = 0),

(D2)

195415-18



SPIN AND CHARGE TRANSPORT INDUCED BY A . . . PHYSICAL REVIEW B 93, 195415 (2016)

Ĉrr(1)
μ = niu

2
i

2

∑
k

[
ĝrσ̂μ

∂ĝr

∂ω
− ∂ĝr

∂ω
σ̂μĝr

]
= 0, (D3)

Ĉ
rr(2)
μξ = niu

2
i

2

∑
k

[
ĝrσ̂μ

∂ĝr

∂kξ

− ∂ĝr

∂kξ

σ̂μĝr

]
=

⎧⎪⎨
⎪⎩

niu
2
i �vF νe

2εF [(�ω+εF)2+η2] [i(�ω + εF) + η]δξμσ̂z (μ = x,y),

− niu
2
i �vF νe

2εF [(�ω+εF)2+η2] [i(�ω + εF) + η]σ̂ξ (μ = z),

0 (μ = 0),

(D4)

Ĉ
rr(3)
μξξ ′ = niu

2
i

4

∑
k

[
ĝrσ̂μ

∂2ĝr

∂kξ ∂kξ ′
+ ∂2ĝr

∂kξ∂kξ ′
σ̂μĝr

]

=

⎧⎪⎪⎨
⎪⎪⎩

niu
2
i �

2v2
F νe

12εF [(�ω+εF)2+η2]2 [(�ω + εF)2 − η2 − 2iη(�ω + εF)][εξzμ(z × σ̂ )ξ ′ + εξ ′zμ(z × σ̂ )ξ − 2δξξ ′ σ̂μ] (μ = x,y),

− niu
2
i �

2v2
F νe

4εF [(�ω+εF)2+η2]2 [(�ω + εF)2 − η2 − 2iη(�ω + εF)]δξξ ′ σ̂z (μ = z),
niu

2
i �

2v2
F νe

12εF [(�ω+εF)2+η2]2 [(�ω + εF)2 − η2 − 2iη(�ω + εF)]δξξ ′ (μ = 0).

(D5)

From Eqs. (D2)–(D5) and niu
2
i πνe/η = 2, the elements of �̂rr

ν are negligibly small as compared with those of �̂ra
ν since �

εFτ
	 1

is satisfied.

APPENDIX E: CALCULATION OF �̂rr
ν + �̂aa

ν (ν = x, y)

We estimate the response function composed of only the retarded (advanced) Green’s functions �̂rr
ν (q,�) [�̂aa

ν (q,�)] using
the same formalism in Appendixes B, C, and D. From Eqs. (22) and (23), �̂rr

ν (q,�) + �̂aa
ν (q,�) are written as

�̂rr
ν (q,�) + �̂aa

ν (q,�) = −
∑
k,ω

{
fω

[
ĝr

k− q
2 ,ω− �

2
σ̂ν ĝ

r
k+ q

2 ,ω+ �
2

−
(
ĝr

k+ q
2 ,ω+ �

2
σ̂ν ĝ

r
k− q

2 ,ω− �
2

)†]

+ 1

2
�f ′

ω

[
ĝr

k− q
2 ,ω− �

2
σ̂ν ĝ

r
k+ q

2 ,ω+ �
2

+
(
ĝr

k+ q
2 ,ω+ �

2
σ̂ν ĝ

r
k− q

2 ,ω− �
2

)†]}
. (E1)

The magnitude of second term of the above equation is smaller than that of �̂ra
ν [see Eqs. (21) and Appendixes B, C, and D]. The

first term is expanded as

−
∑
k,ω

fω

[
ĝr

k− q
2 ,ω− �

2
σ̂ν ĝ

r
k+ q

2 ,ω+ �
2

−
(
ĝr

k+ q
2 ,ω+ �

2
σ̂ν ĝ

r
k− q

2 ,ω− �
2

)†]
= D̂(0)

ν + �D̂(1)
ν +

∑
ξ=x,y

qξ D̂
(2)
νξ + O(q2,q�,�2), (E2)

where D̂(0)
ν , D̂(1)

ν , and D̂
(2)
νξ in the above equation are given by

D̂(0)
ν = −

∑
k,ω

fω

[
ĝr

k,ωσ̂ν ĝ
r
k,ω − H.c.

] = 0, (E3)

D̂(1)
ν = − 1

2

∑
k,ω

fω

[(
ĝr

k,ωσ̂μ

∂ĝr
k,ω

∂ω
− ∂ĝr

k,ω

∂ω
σ̂μĝr

k,ω

)
+ H.c.

]
= 0, (E4)

D̂
(2)
νξ = − 1

2

∑
k,ω

fω

[(
ĝr

k,ωσ̂μ

∂ĝr
k,ω

∂kξ

− ∂ĝr
k,ω

∂kξ

σ̂μĝr
k,ω

)
+ H.c.

]
= −πṽFνe

2εF
σ̂z + O

(
�

εFτ

)
. (E5)

Here, we have used fω = θ (−ω) in the above equation, where θ (x) is a step function. From Eqs. (9), (14), (47), and (E5), there
are spin density and charge current induced by the magnetic field (iq × Aem). Since we consider only the electric field, we ignore
the densities induced by the magnetic field.

We find that the order of (�̂rr
ν + �̂aa

ν )/�̂ra
ν is �/εFτ and �̂rr

ν + �̂aa
ν is negligibly small as compared with �̂ra

ν .

APPENDIX F: CALCULATION OF INTEGRAL

We will show the following integrals as a functions of k. The integrals are obtained by

∑
k

Dr(Da)2 � νe

16η2ε3
F

(
iπ − 4η2

ε2
F

)
, (F1)

∑
k

�
2ṽ2

Fk
2Dr(Da)2 � iπνe

16η2εF

(
1 + i

2η

εF

)
, (F2)

∑
k

[
(h∗)2 + �

2ṽ2
Fk

2
]
Dr(Da)2 � νe

8η2εF

[
iπ − 2η2

ε2
F

]
, (F3)
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∑
k

[
h(h∗)2 + (h − 2h∗)�2ṽ2

Fk
2
]
Dr(Da)2 � −iπνe

4ε2
F

(
1 + i

η

εF

)
, (F4)

∑
k

�
2ṽ2

Fk
2|Dr|2(Da − Dr) � iπνe

8η2εF
, (F5)

∑
k

|Dr|2 � πνe

4ηε2
F

, (F6)

∑
k

[(Dr)2Da + (Da)2Dr] � − νe

2ε5
F

, (F7)

∑
k

(�ṽFk)2[(Dr)2Da + (Da)2Dr] � − πνe

4ηε2
F

, (F8)

∑
k

(�ṽFk)2(Dr)3Da � − πνe

64ε2
Fη

3

(
1 − i

2η

εF

)
, (F9)

∑
k

(�ṽFk)2{(Dr)3Da + (Da)3Dr} � − πνe

32ε2
Fη

3
, (F10)

∑
k

(�ṽFk)4(Dr)3Da � − πνe

32η3
, (F11)

∑
k

(�vF k)2(Dr)n � − 1

n − 1

∑
k

(Dr)n−1 (n � 3), (F12)

∑
k

(�vF k)4(Dr)n = 2

(n − 1)(n − 2)

∑
k

(Dr)n−2 (n � 4), (F13)

∑
k

(�vF k)2(Dr)3 � −1

2

∑
k

(Dr)2, (F14)

∑
k

(�vF k)2(Dr)4 � −1

3

∑
k

(Dr)3 = πνe

32ε2
Fη

3
, (F15)

∑
k

(�vF k)4(Dr)4 � 1

3

∑
k

(Dr)2 = πνe

32η3
, (F16)

where
∑

k is defined by

∑
k

≡ 1

(2π )2

∫ 2π

0
dθ

∫ ∞

0
k dk = νe

2πεF

∫ 2π

0
dθ

∫ ∞

0
ε dε = νe

4πεF

∫ 2π

0
dθ

∫ ∞

0
dx. (F17)

Here, we have used (Dr)n = 1
2(n−1)�2v2

Fkξ

∂(Dr)n−1

∂kξ
in the above equation.

APPENDIX G: CHARGE CONSERVATION

To check the validity of our results, we substitute the charge current and charge density in Eqs. (48) and (39) into the charge
conservation law ρ̇e + ∇ · j = 0. From Eq. (38), ρ̇e becomes

ρ̇e = e2ṽ2
F�νe

L2

∑
q,�

ei[�t−q·x] i�2qν

q2�2 + i�τ
Aem,ν . (G1)

From Eqs. (36), (37), and j = 2eṽF(z × s), ∇ · j becomes

∇xjx = e2ṽ2
Fνeτ

L2

∑
q,�

ei[�t−q·x]

[
−�qxAem,x +

{
�q2

xqy�
2

q2�2 + i�τ
Aem,y + �q3

x�
2

q2�2 + i�τ
Aem,x

}]
, (G2)

∇yjy = e2ṽ2
Fνeτ

L2

∑
q,�

ei[�t−q·x]

[
−�qyAem,y +

{
�qxq

2
y�

2

q2�2 + i�τ
Aem,x + �q3

y�
2

q2�2 + i�τ
Aem,y

}]
, (G3)

∇xjx + ∇yjy = −e2ṽ2
F�νe

L2

∑
q,�

ei[�t−q·x] i�2qν

q2�2 + i�τ
Aem,ν . (G4)

Therefore, ρe and j follow the charge conservation law ρ̇e + ∇ · j = 0.
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APPENDIX H: DIFFUSIVE GREEN’S FUNCTION D

The diffusive Green’s function on the disordered surface of the TI can be integrated as follows:

∑
�

ei(�t−q·x)

i� + 2Dq2
∼ 1

2πi

∫ ∞

−∞

d�

� − i2Dq2
= θ (t) exp [−2Dtq2 − iq · x], (H1)

∑
qx

e−(2Dtq2
x +iqxx) ∼ 1

2π

∫ ∞

−∞
dqxe

−(2Dtq2
x +iqxx) =

√
π

2π
√

2Dt
exp

(
−2x2

Dt

)
. (H2)

Thus, from the above equations, D in the coordinate space is obtained by

D(x,t) ∼ θ (t)

8πDt
exp

[
− 1

8Dt
(x2 + y2)

]
. (H3)
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