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Yuki Kawaguchi,1,* Yukio Tanaka,2 and Naoto Nagaosa1,3

1Department of Applied Physics, University of Tokyo, Tokyo 113-0033, Japan
2Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan

3RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
(Received 28 August 2015; revised manuscript received 4 December 2015; published 16 February 2016)

We consider magnetization configurations at chiral magnet (CM)/ferromagnet (FM) heterostructures. In the
CM, magnetic skyrmions and spin helices emerge due to the Dzyaloshinskii-Moriya interaction, which then
penetrate into the adjacent FM. However, because the nonuniform magnetization structures are energetically
unfavorable in the FM, the penetrated magnetization structures are deformed, resulting in exotic three-dimensional
configurations, such as skyrmion cones, sideways skyrmions, and twisted helices and skyrmions. We discuss the
stability of possible magnetization configurations at the CM/FM and CM/FM/CM hybrid structures within the
framework of the variational method, and find that various magnetization configurations appear in the ground
state, some of which cause nontrivial emergent magnetic field.
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I. INTRODUCTION

Magnetic skyrmions are topologically protected noncopla-
nar configurations of magnetization. In contrast to vortices
and monopoles, they can be embedded in a uniform magneti-
zation configuration and behave as particle-like objects [1].
Since their first observation in the metallic chiral magnet
(CM) MnSi by neutron scattering [2] and in (Fe, Co)Si by
Lorentz transmission electron microscopy [3], properties of
magnetic skyrmions have been extensively investigated [4].
The emergent electromagnetic field generated by skyrmionic
configurations changes the transport property of the conduc-
tion electrons, resulting in the topological Hall effect [5–10]
and the electromagnetic induction [11]. The coupling between
the magnetization and conduction electrons also enables us to
control the motion of skyrmions by an electric current [12–15]:
Due to the topological nature of skyrmions, they robustly
survive in dynamics, and the mobility is much higher than
that of magnetic domains and helical configurations.

Magnetic skyrmions are observed in CMs, such as
metallic MnSi [2,16,17], Fe1−xCoxSi [3,18], MnGe [19],
Fe1−xMnxGe [20], and insulating Cu2OSeO3 [21,22]. These
materials have noncentrosymmetric B20-type crystal struc-
tures, where the relativistic Dzyaloshinskii-Moriya (DM) in-
teraction [23,24] stabilizes a crystalline structure of skyrmions,
called a skyrmion crystal (SkX), under an external magnetic
field. Besides the CMs, a lattice of atomic-scale skyrmions
is observed in an Fe monolayer on Ir(111) using the spin-
polarized scanning tunneling microscopy [25], where the
four-spin interaction, as well as the DM interaction coming
from the strong spin-orbit coupling in the Ir substrate, plays
a crucial role to stabilize skyrmions. The enhancement of
the DM or the spin-orbit interactions at interfaces and,
thereby, the emergence of atomic-scale skyrmions have been
actively studied recently [26–38]. Frustrated spin-exchange
interactions [39] and nanopatterned magnetic thin film [40,41]
are also predicted to accommodate a stable SkX.

*Present address: Department of Applied Physics, Nagoya Univer-
sity, Nagoya 464-8603, Japan.

Mathematically, a magnetic skyrmion is a two-dimensional
(2D) configuration of a three-dimensional (3D) unit vector
field (whose manifold is isomorphic to the two-sphere S2),
which is classified by the second homotopy group π2(S2).
Hence, the skyrmions observed in bulk CMs are cylindrical
configurations of skyrmionic structures, which are not sta-
bilized in the ground state but appear in a small region in
the B-T phase diagram just below the ferromagnetic phase
transition temperature [2]. It was predicted that the SkX can
be the ground state of the two-dimensional CMs [42–44].
Correspondingly, the region of the SkX phase is greatly
enhanced down to T = 0 in thin films [3,19]. The SkX phase
is further stabilized in epitaxial thin films due to the magnetic
anisotropy [9,10]. As for 3D magnetization configurations,
multi-q configurations in the 3D reciprocal space and twisting
of the skyrmionic structure are theoretically discussed [45–51].
The experimental result in Ref. [52] suggests that one of the
3D configurations may be realized in the bulk MnGe. The
appearance of a monopole in the merging dynamics of two
skyrmions and the emergent electrodynamics associated with
the monopole are discussed in Refs. [53,54]. A combined
structure of skyrmion and monopole is predicted to exist as
a stable excitation in Ref. [55].

In this paper, we theoretically show that by creating a
hybrid system of a CM and a ferromagnet (FM), various
3D magnetization configurations appear in the ground state,
which then induce various nanoscale structures of emergent
magnetic field. Here, we consider a thin CM and assume
that the magnetization is uniform along the z direction (the
direction perpendicular to the CM/FM interface) within the
CM. As in the case of a 2D CM, helical or skyrmionic
structures appear in the CM at a low magnetic field. However,
the presence of the FM influences the CM as indicated by
the reduced critical magnetic field below which skyrmions
appear. The nonuniform structures appearing in the CM
penetrate into the adjacent FM at a short distance from the
interface. Hence, a simple helix and a skyrmion-cylinder
crystal (SCyX) appear when the FM is thin, which are the
uniform configurations along the z direction and essentially the
same as the spin helix and SkX in a 2D CM. As the thickness
of the FM increases, these structures become unstable and
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deform inside the FM. When a spin helix arises in the CM, the
helical structure is unwound in the FM by three-dimensionally
rotating the magnetization vector, forming a sideways half-
cylinder skyrmion per helical period, which we call a sideways-
skyrmion array (SSA). On the other hand, for the case when
a SkX appears in the CM, the skyrmionic structure shrinks as
one goes deep inside the FM, ending up with a singularity
of the magnetization, that is, a monopole [56]. We call a
crystalline structure of such configurations a skyrmion-cone
crystal (SCoX). We also consider the case when the FM
is sandwiched between two CMs with opposite signs of
the DM interactions. In this case, the helical or skyrmionic
structures with opposite helicities appearing in the two CMs
are continuously connected by twisting the magnetization
vector in the FM along the z direction, resulting in a twisted
helix (TH) or a twisted-skyrmion crystal (TSX).

By minimizing the total energy for each configuration
mentioned above, we obtain the ground-state phase diagrams
of the CM/FM and CM/FM/CM hybrid systems. Here, we
investigate within a framework of the variational method where
the skyrmion radius, the helical pitch, and the penetration
depth of the nonuniform structure are used as variational
parameters. We also calculate the emergent magnetic field
that effectively acts on conduction electrons in the strong-
coupling limit, and find that the emergent magnetic field
takes nontrivial configurations due to the z dependence of the
helical and skyrmionic structures. For example, the TH induces
a staggered emergent magnetic field, whereas the emergent
magnetic field for the SCoX points to or from the monopole
and diverges at the monopole. (Note that the divergence is
a consequence in the continuum model and in real systems
the lattice constant gives the cutoff for this divergence.) In
particular in the former case, and also in the case of SSA,
the emergent magnetic field arises in a combined system of
helix and ferromagnet, each of which solely has no emergent
magnetic field.

The rest of this paper is organized as follows. In Sec. II,
we review the phase diagram of a 2D CM with defining
the characteristic energy and length scales. The variational
method used in the subsequent sections is also introduced in
this section. In Secs. III and IV, we discuss the ground-state
magnetization configurations, together with the emergent mag-
netic field, at CM/FM heterostructures and CM/FM/CM hybrid
structures, respectively, by comparing the energies of possible
magnetization configurations. Discussion and conclusions are
given in Sec. V.

II. GROUND-STATE PHASE DIAGRAM OF A 2D CM

We first review the ground-state phase diagram of a 2D
CM. We consider a thin film of CM with thickness a and
assume that the magnetization along the thickness direction
(the z direction) is uniform. We also assume that the emergent
structure in the xy plane is much larger than the atomic scale so
that the energy of the system is described using the continuum
model as [57]

E = a

∫∫
dxdy

[
J

2
(∇n)2 − Dn · (∇ × n) + B(1 − nz)

]
,

(1)

where n(x,y) is a unit vector describing the direction of
the local magnetization, J (>0) and D are the strengths of
the spin-exchange and DM interactions, respectively, and B is
the external magnetic field applied in the z direction. Here, the
origin of the energy is chosen so that the ferromagnetic state,
n = ẑ, has zero energy. The DM interaction favors a nonuni-
form magnetization configurations (∇ × n||n), whereas the
spin-exchange and Zeeman terms are minimized for a uniform
magnetization aligned in the z direction. The competition
between these terms results in the nontrivial magnetic structure
of SkX.

A. Spin helix

In low magnetic fields, a spin helix appears as a ground state,
where the magnetization n winds lying in the perpendicular
plane to the modulation vector k so that it satisfies ∇ × n||n.
Taking k = kx̂, the magnetization profile is given by

n(x,y) =
⎛
⎝ 0

− sin kx

− cos kx

⎞
⎠, (2)

whose energy is obtained as

Ehel2D(k) = aL2

(
J

2
k2 − Dk + B

)
, (3)

where L is the system size in the x and y directions. Here, the
phase of the helix in Eq. (2) is chosen so as to satisfy n(0,0) =
−ẑ for the sake of convenience in the latter discussions. By
minimizing Eq. (3) with respect to k, we obtain the optimized
wave number and energy as

khel2D = D

J
, (4)

E0
hel2D = aL2

(
−D2

2J
+ B

)
. (5)

B. Skyrmion crystal

Since the helical structure has no net magnetization, it
cannot survive under a large B and instead, skyrmions appear.
We first consider an isolated skyrmion. The magnetization
profile around a charge −1 skyrmion is described in the 2D
polar coordinates (r,ϕ) as

n(r,ϕ) =

⎛
⎜⎝

sin θ (r) cos(ϕ + φ)

sin θ (r) sin(ϕ + φ)

cos θ (r)

⎞
⎟⎠, (6)

where φ is a constant independent of r and ϕ, and θ (r) is
a monotonically decreasing function that satisfies θ (0) = π

and θ (r) = 0 for r � ξ with ξ being the radius of the
skyrmion. The magnetization profile described by Eq. (6)
is shown in Fig. 1(a). Here, we introduce a function
θ0(ρ) (0 � ρ � 1) such that θ (r) = θ0(r/ξ ) for 0 � r �
ξ ; θ0(ρ) monotonically decreases and satisfies θ0(0) = π

and θ0(1) = 0. In the following discussion, we fix θ0(ρ) =
π (1 − ρ) and take the skyrmion radius ξ as a variational
parameter.
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FIG. 1. (a) Magnetization profile of a single skyrmion projected
onto the xy plane, where the colors on the arrows indicate the values of
nz. The profile is given by Eq. (6) with φ = −π/2 and θ (r) = π (1 −
r/ξ ), which has a nonzero skyrmion charge, 1

4π

∫∫
dxdyn · (∂xn ×

∂yn) = −1. The solid circle shows the radius of the skyrmion, r =
ξ . (b) Emergent magnetic field for the magnetization configuration
shown in (a).

Substituting Eq. (6) in Eq. (1), the energy for a single
skyrmion is given by

ESk1(ξ ) = a

(AJ J

2
+ ADDξ sin φ + ABBξ 2

)
, (7)

where

AJ ≡ 2π

∫ 1

0
ρdρ

[(
dθ0

dρ

)2

+ sin2 θ0(ρ)

ρ2

]
, (8)

AD ≡ −2π

∫ 1

0
ρdρ

[
dθ0

dρ
+ sin 2θ0(ρ)

2ρ

]
, (9)

AB ≡ 2π

∫ 1

0
ρdρ[1 − cos θ0(ρ)]. (10)

Using θ0(ρ) = π (1 − ρ), these coefficients are given by AJ =
π [π2 + γ − Ci(2π ) + log(2π )] ∼ π (π2 + 2.44),AD = π2,
and AB = π (1 − 4/π2), with γ being the Euler’s constant
and Ci(z) the cosine integral function. From the second
term on the right-hand side of Eq. (7), we find φ = −π/2
(φ = π/2) for D > 0 (D < 0). In the following discussion,
we choose D > 0 without loss of generality.

When the energy for a single skyrmion becomes negative,
the system tends to create more skyrmions. Hence, skyrmions
in the ground state form a crystalline structure. The total

energy for the SkX is evaluated by multiplying the number
of skyrmions L2/(πξ 2) by Eq. (7):

ESkX(ξ ) = aL2

π

(AJ J

2ξ 2
− ADD

ξ
+ ABB

)
, (11)

where we used φ = −π/2. Minimizing Eq. (11) with respect
to ξ , the optimized skyrmion radius and the energy of the SkX
are respectively given by

ξSkX = AJ

AD

J

D
, (12)

E0
SkX = aL2

π

[
− A2

DD2

2AJ J
+ ABB

]
. (13)

For θ0(ρ) = π (1 − ρ), we obtain ξSkX � 3.9J/D. On the
other hand, a SkX is described with a superposition of three
helical spin textures with the modulation vectors satisfying
|ki=1,2,3| = khel2D and

∑
i=1,3 ki = 0 [2], which leads to a

skyrmion radius (a half of the triangular lattice constant)
ξ = 2π/(

√
3khel2D) � 3.6J/D. The small difference between

these values suggests that the actual profile of θ0(ρ) does not
so deviate from π (1 − ρ).

C. Phase diagram

By comparing the energies for the spin helix [Eq. (5)], the
SkX [Eq. (13)], and the ferromagnetic state [Eferro = 0], the
magnetic structure in the ground state changes as

0 < B < Bcr1 : helix, (14)

Bcr1 < B < Bcr2 : SkX, (15)

Bcr2 < B : ferromagnet, (16)

where we have assumed that the system size is larger than the
area of a skyrmion (L2 > πξ 2

SkX), and the critical magnetic
fields are defined as

Bcr1 ≡ π − A2
D/AJ

π − AB

D2

2J
, (17)

Bcr2 ≡ A2
DD2

2ABAJ J
(>Bcr1). (18)

The schematic phase diagram is shown in Fig. 2. Although the
actual profile of θ0(ρ) depends on B, our variational function
with a fixed θ0(ρ) can capture the ground-state property
of the 2D CM. In particular, the critical values obtained
by using θ0(ρ) = π (1 − ρ) are Bcr1 = 0.24D2/J and Bcr2 =
0.67D2/J , which reasonably agree with the numerically ob-
tained ones Bcr1 = 0.23D2/J and Bcr2 = 0.78D2/J [14,58].

We should remark here that the above discussion is valid
only for a thin film as the SkX phase disappears from the
ground-state phase diagram when a � ξSkX. This is because
a conical structure, which is a spin helix along the z direction
with uniform longitudinal magnetization, has lower energy
than the SkX in a bulk CM. In experiments, the SkX phase is
observed in the ground state up to a ∼ 4ξSkX [22].
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Bcr1
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helix (H)

skyrmion crystal (SkX)

ferromagnetic (F)

0

2π/khel2D

2ξSkX

FIG. 2. Schematic phase diagram of a two-dimensional chiral
magnet and magnetization structure in each phase.

D. Emergent magnetic field

One of the striking effects of the appearance of the SkX is
that it causes the emergent electromagnetic field, which then
leads to the topological Hall effect and the electromagnetic
induction [4]. Suppose that the conduction electron spin
is coupled to, and forced to be parallel to, the localized
magnetization. In the strong-coupling limit, the electrons
behave as if there is an emergent electromagnetic field defined
by

(Bem)i = 1

2

∑
j,k=x,y,z

εijkn · (∂j n × ∂kn), (19)

(Eem)i = n · (∂in × ∂t n), (20)

where ∂i = ∂/∂xi and εijk is the totally antisymmetric tensor in
three dimensions. In the static magnetization configuration, we
have Eem = 0, whereas Bem is nonvanishing for noncoplanar
configurations. Indeed, we obtain Bem = 0 for the spin helix
[Eq. (2)] and

Bem = sin θ

r

dθ

dr
ẑ = −

(
π

ξ

)2 sin(πr/ξ )

πr/ξ
ẑ (21)

for the skyrmionic configuration [Eq. (6)], where in the
last equality in Eq. (21) we used θ (r) = π (1 − r/ξ ). The
distribution of the emergent magnetic field given by Eq. (21)
is shown in Fig. 1(b).

E. Dimensionless parameters

In the following sections, we scale the length in units
of ξSkX and the energy in units of AJ JL2/(2πξSkX). The

a

−l

0

z

CM (D>0)

FM (D=0)

x
y

FIG. 3. Schematic of the CM/FM heterostructure, where CM and
FM denote chiral magnet and ferromagnet, respectively, and D is
the coupling constant of the Dzyaloshinskii-Moriya interaction [see
Eq. (29)].

dimensionless variables are denoted with a tilde, e.g.,

ξ̃ = ξ

ξSkX
, (22)

k̃ = ξSkXk, (23)

Ẽ = 2πξSkXE

AJ JL2
. (24)

We also introduce a scaled magnetic field

b ≡ B

Bcr2
. (25)

Using these notations, Eqs. (3) and (11) are respectively
rewritten as

Ẽhel2D(k̃) = πã

(
k̃2

AJ

− 2k̃

AD

+ b

AB

)
, (26)

ẼSkX(ξ̃ ) = ã

(
1

ξ̃ 2
− 2

ξ̃
+ b

)
, (27)

and the scaled value for the critical field Bcr1 is given by

b1 ≡ Bcr1

Bcr2
= AJAB

A2
D

π − A2
D/AJ

π − AB

. (28)

III. CM/FM HETEROSTRUCTURE

We consider a heterostructure of a CM with thickness a on
a FM with thickness l (Fig. 3). For simplicity, we assume that
the ferromagnetic interaction is the same in the whole system.
The total energy of the system is given by

E =
∫ a

−l

dz

∫∫
dxdy

[
J

2
(∇n)2 + B(1 − nz)

]

−D

∫ a

0
dz

∫∫
dxdy n · (∇ × n). (29)

The 3D magnetization configurations that minimize
Eq. (29) and the resulting emergent magnetic fields are
summarized in Figs. 4 and 5, respectively. Here, we assume
that the magnetization profile in the CM is uniform along
the z direction. As we saw in the previous section, there are
two possible 2D configurations in the CM, i.e., the spin helix
and the SkX. For each configuration, there are two possible
configurations in the adjacent FM: When the thickness of
the FM is small, the magnetization configuration in the CM
uniformly penetrates into the FM [Figs. 4(a) and 4(b)]; on the
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(a) helix (H)

(c) sideways-skyrmion array (SSA)

(b) skyrmion-cylinder crystal (SCyX)

(d) skyrmion-cone crystal (SCoX)

x

y
z

A
B

B

FIG. 4. Possible three-dimensional magnetization structures in chiral magnet (CM)/ferromagnet (FM) heterostructures, where the
magnetization vectors in the FM are shown. The magnetization in the CM, which is shown with a gray cuboid, is assumed to be uniform
along the z direction and forms a spin helix [(a) and (c)] or a skyrmion crystal [(b) and (d)]. The magnetization configurations in (a) and (b)
are independent of z, whereas those in (c) and (d) deform as a function of z and become uniform at a distance from the CM/FM interface. In
(c), the rows indicated by A and B have opposite whirling patterns in the xz plane, whose magnetization profiles are given by n+(x,y,z) and
n−(x,y,z) defined in Eq. (38), respectively. The whirling direction is spontaneously chosen row by row.

other hand, when the FM is thick enough, the magnetization
configuration is deformed in the FM and disappears at a
finite depth from the CM/FM interface [Figs. 4(c) and 4(d)].
We calculate the energy and the emergent magnetic field for
the each configuration in Secs. III A–III D and discuss the
phase diagram in Sec. III E.

A. Spin helix

We first consider the case when a spin helix appearing in the
CM uniformly penetrates into the FM. When the magnetization
vector is given by Eq. (2) for all −l � z � a, the total energy
is given by

Ehel3D(k) = L2

[
(a + l)

J

2
k2 − aDk + (a + l)B

]
, (30)

or, equivalently,

Ẽhel3D(k̃) = π (ã + l̃)

(
k̃2

AJ

− ã

ã + l̃

2k̃

AD

+ b

AB

)
. (31)

By minimizing Ẽhel3D(k̃) with respect to k̃, we obtain the
optimized wave number and energy as

k̃hel3D = ã

ã + l̃

AJ

AD

= ã

ã + l̃
k̃hel2D, (32)

Ẽ0
hel3D = π (ã + l̃)

[
b

AB

−
(

ã

ã + l̃

)2 AJ

A2
D

]
. (33)

As one can see from the comparison between Eqs. (3) and (30),
the effective DM interaction relative to the ferromagnetic
and Zeeman interactions in the CM/FM heterostructure is
decreased by a factor ã/(ã + l̃), resulting in the reduction of
the optimized wave number as shown in Eq. (32). As in the
case of the 2D CM, there is no emergent magnetic field for the
spin helix [Fig. 5(a)].

B. Skyrmion-cylinder crystal

Similarly to Sec. III A, when a skyrmion appears in the
CM and uniformly penetrates into the FM, the magnetization
vector is given by Eq. (6) for all −l � z � a. A possible
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x

y
z

−1 10

(Bem)x,y,z

−1 10

(Bem)y /[π2/(ξd)]

−∞ ∞0 1−1

(Bem
.e)/(π/ξ)2^

−1 10

(Bem)z /(π/ξ)2

(a) H (b) SCyX

(c) SSA (d) SCoX

A
B

B

FIG. 5. Emergent magnetic field Bem for the magnetization configurations shown in Fig. 4, where H, SCyX, SSA, SCoX stand for
helix, skyrmion-cylinder crystal, sideways-skyrmion array, and skyrmion-cone crystal, respectively. Bem for (b), (c), and (d) are given by
Eqs. (21), (44), and (52), respectively. In each panel, the color scale for the emergent magnetic field is scaled by its maximum, where ξ and d

are the skyrmion radius (or the half of the helical pitch) and the penetration depth of the nonuniform structure, respectively. The direction of
the emergent magnetic field is schematically shown with white arrows. (a) There is no emergent magnetic field in any direction for the spin
helix. (b) For the SCyX, the emergent magnetic field in the −z direction arises at around the center of the skyrmion. (c) For the SSA, the
emergent magnetic field arises in the y direction and its sign depends on the whirling direction in the xz plane. The rows indicated by A and B
in (c) correspond to those in Fig. 4(c), which have opposite whirling patterns in the xz plane, and hence, the direction of the emergent magnetic
field is opposite. (d) The emergent magnetic field for the SCoX is noncollinear and parallel to ê, a unit vector along r − rm with rm being the
position of the nearest monopole. The amplitude of the emergent magnetic field shown in (d) diverges at the monopoles.

candidate for the ground state is the crystalline structure of
such configurations, i.e., the SCyX. The energy for the SCyX
is calculated in the same manner as Eq. (11). In the present
case, the system size along the z direction is elongated by a
factor (a + l)/a and the effective DM interaction relative to
the other interactions is reduced by a factor a/(a + l). As a
result, we obtain

ESCyX(ξ ) = (a + l)L2

π

(AJ J

2ξ 2
− a

a + l

ADD

ξ
+ ABB

)
,

(34)

which reduces to

ẼSCyX(ξ̃ ) = (ã + l̃)

(
1

ξ̃ 2
− ã

ã + l̃

2

ξ̃
+ b

)
. (35)

By minimizing ẼSCyX(ξ̃ ) with respect to ξ̃ , we obtain the
optimized skyrmion radius and energy as

ξ̃SCyX = ã + l̃

ã
, (36)

Ẽ0
SCyX = (ã + l̃)

[
b −

(
ã

ã + l̃

)2]
. (37)

The emergent magnetic field for a single skyrmion cylinder
is the same as that for a skyrmion in a 2D CM and given by
Eq. (21). Figure 5(b) shows the configurations of Bem for the
SCyX.
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C. Sideways-skyrmion array

When the FM is thick enough, it is not energetically
favorable to keep the nonuniform magnetization configuration
in the whole FM. The nonuniform configuration appearing
in the CM penetrates only into a finite depth of the FM. For
the case when a spin helix appears in the CM, the helical
structure is unwound by three-dimensionally rotating the
magnetization vector as shown in Fig. 4(c). This is nothing but
a one-dimensional array of sideways half-cylinder skyrmions.
We pick up one of the sideways skyrmions at y = 0 and
consider the following ansatz:

n±(x,y,z)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 0

−sgn(x) sin ϑ(|x|)
cos ϑ(|x|)

⎞
⎠ (0 � z � a),

⎛
⎝sin ϑ(η) cos(±χ + φ)

sin ϑ(η) sin(±χ + φ)
cos ϑ(η)

⎞
⎠ (−l � z � 0),

(38)

where η =
√

x2 + (ξz/d)2, χ = arg(x + iξz/d), φ = −π/2,
and ϑ(η) = θ0(η/ξ ). Here, we consider an elliptically de-
formed skyrmion and ξ and d are the radius in the x and z

directions, respectively. We choose θ0(ρ) = π (1 − ρ). Then,
Eq. (38) at z � 0 coincides with Eq. (2) with k = π/ξ .
In Fig. 6, we plot the magnetization vector field given by
n+(x,y,z) in Eq. (38), from which one can see that the
helical structure is continuously deformed to a uniform one
and that this is indeed a half of a skyrmion. Note that though
similar configurations have been considered in Refs. [59,60],
the present configuration is distinct from them as the axis
of the skyrmion and, thereby, the emergent magnetic field
are perpendicular to the external magnetic field in the SSA,
whereas in Refs. [59,60] the axis of the skyrmions is parallel
to the external magnetic field.

The topological charge for a sideways skyrmion is defined
by the integral of the skyrmion density in the xz plane as

1

4π

∫ a

−l

dz

∫ ξ

−ξ

dxn± · (∂zn± × ∂xn±) = ±1

2
. (39)

As we shall see below, within the framework of the variational
method, the energies for the configurations n+ and n− are de-
generate. Hence, which configuration appears is spontaneously
determined row by row [see Fig. 4(c)]. We also comment here
that there is no constraint that makes the topological charge
quantized (in units of 1/2). Going beyond the variational
method, the magnetization configuration in the CM is also
deformed due to the presence of the FM. In such a case, the
topological charge becomes ±1/2 only when a complete spin
helix arises on the surface of the CM (z = a), and otherwise,
it deviates from ±1/2 (but is close to ±1/2).

By substituting Eq. (38) into Eq. (29), the energy for a
sideways skyrmion is given by

ESS1(d,ξ ) = 2aLξ

[
J

2

(
π

ξ

)2

− D

(
π

ξ

)
+ B

]

+L

[AJ J

8

(
d

ξ
+ ξ

d

)
+ ABB

2
ξd

]
. (40)

x

z

d

ξ

x

z

CM

FM

(a)

(b)

FIG. 6. (a) Magnetization profile of a sideways half-cylinder
skyrmion given by n+(x,y,z) in Eq. (38). Shown are the magne-
tization vectors projected onto the xz plane. (b) The same as (a)
but the magnetization configuration at z > 0 is replaced so as to
form a full skyrmion on the xz plane. Namely, n in z > 0 is defined
as nx(x,y,z) = −nx(x,y, − z) and ny,z(x,y,z) = ny,z(x,y, − z). The
solid circle shows the region of the skyrmion, (x/ξ )2 + (z/d)2 = 1.
The skyrmion charge for the configuration in (b) is given by

1
4π

∫∫
dxdzn · (∂zn × ∂xn) = 1.

Here, the first term on the right-hand side of Eq. (40) is the
energy of the CM, which is given by Eq. (3) with replacing
the system size L2 to 2ξL, whereas the second term comes
from the FM. The total energy for the SSA is obtained by
multiplying the number of half-cylinder skyrmions L/(2ξ )
and its dimensionless value is given by

ẼSSA(d̃,ξ̃ ) = π

(
ãπ2

AJ ξ̃ 2
− 2ãπ

ADξ̃
+ ãb

AB

+ d̃

8ξ̃
+ ξ̃

8d̃
+ d̃b

4

)
.

(41)

Equation (41) has a minimum with respect to d̃ at

d̃SSA = ξ̃√
1 + 2bξ̃ 2

, (42)

and the total energy as a function of ξ̃ is given by

ẼSSA(d̃SSA,ξ̃ )

= π

(
ãπ2

AJ ξ̃ 2
− 2ãπ

ADξ̃
+ ãb

AB

+
√

1 + 2bξ̃ 2

4ξ̃

)
. (43)

Equation (42) shows that d̃ is in the same order as ξ̃ and
decreases as b increases, which means that the sideways
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d

ξ

monopole

FIG. 7. Magnetization profile in a skyrmion cone. The skyrmion
radius shrinks as one goes inside the FM. At the top of the cone, a
monopole emerges [56].

skyrmions are compressed to the interface so as to reduce the
Zeeman energy. In order to compare with other configurations,
we numerically minimize Eq. (43) with respect to ξ̃ and obtain
the energy of the SSA.

Since a sideways skyrmion is a skyrmion in the xz plane,
it induces the emergent magnetic field in the y direction. By
substituting Eq. (38) in Eq. (19), we obtain

Bem,± = n± · (∂zn± × ∂xn±)

= ±π2

dξ

sin πη/ξ

πη/ξ
ŷ, (44)

where η =
√

x2 + (ξz/d)2. The emergent magnetic field for
the magnetization configuration in Fig. 4(c) is shown in
Fig. 5(c), where the rows indicated by A and B in Figs. 4(c)
and 5(c) correspond to each other.

D. Skyrmion-cone crystal

Similarly to Sec. III C, when a SkX appears in the CM
and the adjacent FM is thick enough, the skyrmionic structure
cannot penetrate into the whole FM [Fig. 4(d)]. In Fig. 7, we
show the 3D structure developed below a skyrmion. We call
the structure shown in Fig. 7 a skyrmion cone. When we see
the 2D structure of the skyrmion cone perpendicular to the z

axis, the skyrmionic structure shrinks as one goes deep inside
the FM and eventually disappears at a finite depth d. Note
that because a skyrmion is a topologically nontrivial structure,
it cannot disappear under a continuous deformation. Hence,
the skyrmionic configuration ends up with a defect of the
magnetization, that is, a monopole. The same configuration is
predicted to appear as the lowest-energy metastable state in
the conical phase [55].

To give a concrete profile of the magnetization, we consider
a skyrmion with radius ξ in the region of 0 � z � a, whose
magnetization vector is given by Eq. (6), and assume that the
skyrmion shrinks as a function of z and disappears at z =
−d < 0. The magnetization profile for −d < z < 0 is given

by Eq. (6) with replacing θ (r) with the following z-dependent
function:

θ (r,z) = θ0

(
r

ξf (|z|/d)

)
, (45)

where f (ζ ) is a monotonically decreasing function satisfying
f (0) = 1 and f (1) = 0, and ξf (|z|/d) describes the skyrmion
radius at depth |z|. Substituting Eqs. (6) and (45) in Eq. (29),
the total energy for a skyrmion cone is given by

ESCo1(d,ξ ) = a

(AJ J

2
− ADDξ + ABBξ 2

)

+ dAJ J

2
+ ξ 2BJ J

2d
+ dξ 2BBB, (46)

where the first and second lines of the right-hand side of
Eq. (46) correspond to the energies for the CM and the FM,
respectively, and we have defined

BJ ≡ 2π

∫ 1

0
dζ

(
df

dζ

)2 ∫ 1

0

(
dθ0

dρ

)2

ρ3dρ, (47)

BB ≡ AB

∫ 1

0
dζf 2(ζ ). (48)

Here, we approximate f (ζ ) = 1 − ζ and θ0(ρ) = π (1 − ρ).
Then, the above coefficients are given byBJ = π3/2 andBB =
π/3(1 − 4/π2).

The total energy for a SCoX is obtained by multiplying
the number of the skyrmion cones L2/(πξ 2) to Eq. (46). The
dimensionless value is given by

ẼSCoX(d̃,ξ̃ ) = ã

ξ̃ 2
− 2ã

ξ̃
+ ãb + d̃

ξ̃ 2
+ βJ

d̃
+ βBd̃b, (49)

where βJ ≡ BJ /AJ � 0.40 and βB ≡ BB/AB = 1/3. Equa-
tion (49) has a minimum with respect to d̃ at

d̃SCoX =
√

βJ ξ̃√
1 + βBbξ̃ 2

. (50)

Similarly to Eq. (42), d̃SCoX is in the same order as ξ̃ and
decreases as b increases, which means that the penetration
depth of skyrmions becomes smaller for larger b. At d̃ =
d̃SCoX, the total energy is given by

ẼSCoX(ξ̃ ) = ã

ξ̃ 2
− 2ã

ξ̃
+ ãb + 2

√
βJ (1 + βBbξ̃ 2)

ξ̃
. (51)

In order to compare with other configurations, we numerically
minimize Eq. (51) with respect to ξ̃ and obtain the energy of
the SCoX.

Taking into account the z dependence of θ and substituting
Eq. (6) in Eq. (19), the emergent magnetic field is calculated
as

Bem = −
[

π

ξ (z)

]2 sin[πr/ξ (z)]

πr/ξ (z)

r − rm

z + d
, (52)

where ξ (z) ≡ ξf (|z|/d) = ξ (1 + z/d) is the z-dependent
skyrmion radius, r = (x,y,z), and rm = (0,0, − d) is the
position of the monopole. The emergent magnetic field is
nonvanishing inside the skyrmion cone. It points to the
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0.0

0.2

0.4

0.6

0.8

1.0
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H
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(a) l = 0.5
~

(b) l = 1.1
~

(c) l = 1.5
~

SSA

SCoX
SCyX

H

FIG. 8. Phase diagram of a CM/FM heterostructure for (a) l̃ =
0.5, (b) l̃ = 1.1, and (c) l̃ = 1.5. Here, b is the external magnetic
field normalized by the critical field Bcr2 [Eq. (18)] in a 2D CM, and
ã and l̃ are the thicknesses of the CM and FM, respectively, scaled
by the skrymion radius ξSkX [Eq. (12)] in a 2D CM. F, SCyX, H,
SCoX, and SSA stand for ferromagnetic, skyrmion-cylinder crystal,
helix, skyrmion-cone crystal, and sideways-skyrmion array phases,
respectively. The F-SCyX and SCyX-H phase boundaries are given
by Eqs. (53) and (54), respectively. The other phase boundaries are
numerically calculated. The dashed curve in (c) indicates the F-SSA
phase boundary for l̃ � 1.

monopole, and the amplitude diverges at the monopole.
However, this divergence is apparent in the continuum model
and in real systems there is a cutoff given by the lattice
constant. In this sense, the monopole of the magnetization is
distinct from the magnetic monopole in the electromagnetism,
at which the magnetic field truly diverges. The configuration of
Bem for the SCoX shown in Fig. 4(d) is depicted in Fig. 5(d).

E. Phase diagram

By comparing the energy for each configuration, the phase
diagram of the CM/FM heterostructure is obtained in the (ã,b)
space as shown in Fig. 8. Here, we calculate for (a) l̃ = 0.5, (b)
l̃ = 1.1, and (c) l̃ = 1.5. As expected, for a small l̃ [Fig. 8(a)],
only the helix (H) and SCyX phases appear. In this case, the

a

−l
−l−a

0

z

CM (D>0)

CM (D<0)

FM (D=0)

x
y

FIG. 9. Schematic of the CM/FM/CM hybrid structure, where
CM and FM denote chiral magnet and ferromagnet, respectively.
The signs of the coupling constant D of the Dzyaloshinskii-Moriya
interaction are opposite for two CMs [see Eq. (55)].

phase boundaries are analytically obtained by comparing the
energies in Eqs. (33) and (37) and EF = 0, and given by

bF−SCyX =
(

ã

ã + l̃

)2

, (53)

bSCyX−H =
(

ã

ã + l̃

)2

b1, (54)

where b1 is the critical magnetic field at l̃ = 0 and defined in
Eq. (28). Compared with the case for 2D CMs, the critical
magnetic fields are suppressed by a factor [ã/(ã + l̃)]2 due
to the reduction of the effective DM interaction. The phase
diagram rapidly changes at around l̃ = 1, where the SCoX
phase and the SSA phase arise between the ferromagnetic
(F) and SCyX phases and between the SCyX and F phases,
respectively [Fig. 8(b)]. As l̃ increases further, the regions of
the SCyX and H phases shrink and eventually disappear for
l̃ � 1. The phase boundaries among the F, SCoX, and SSA
phases do not depend on l̃. The dashed curve in Fig. 8(c) shows
the F-SSA phase boundary for l̃ � 1.

IV. CM/FM/CM HYBRID STRUCTURE

Next, we put another CM on the other side of the FM as
shown in Fig. 9. We consider the case when the signs of the
DM interaction in two CMs are opposite. The total energy for
this hybrid structure is given by

E =
∫ a

−(a+l)
dz

∫∫
dxdy

[
J

2
(∇n)2 + B(1 − nz)

]

−D

∫ a

0
dzn · (∇ × n) + D

∫ −l

−(a+l)
dzn · (∇ × n). (55)

The possible magnetic structures and the resulting emergent
magnetic field are summarized in Figs. 10 and 11, respectively.
Since the sings of the DM interactions are opposite in the
two CMs, the helical and skyrmionic structures appearing
on the top and bottom CMs have opposite helicities, which
are continuously transformed with each other by rotating the
transverse magnetization by ±π about the z axis. Hence,
a TH [Fig. 10(a)] and a TSX [Fig. 10(b)] are the possible
candidates for the configuration in FM with small l, which
we discuss in Secs. IV A and IV B, respectively. When l

becomes larger, as in the cases of the CM/FM heterostructure,
the sideways half-cylinder skyrmions and the skyrmion cones
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(a) twisted helix (TH) (b) twisted-skyrmion crystal (TSX)

(c) sideways-skyrmion array (SSA)

(e)

(d) skyrmion-cone crystal (SCoX)

(f) 

x

y
z

A
B

B

B
A

B

P
Q

FIG. 10. Possible three-dimensional magnetization configurations in a CM/FM/CM hybrid structure, where CM and FM denote chiral
magnet and ferromagnet, respectively. In (a)–(d), the magnetization vectors in the FM are shown. The magnetization in the CMs, which
are shown with gray cuboids, are assumed to be uniform along the z direction and form spin helices [(a) and (c)] or skyrmion crystals [(b)
and (d)]. The helicities of the magnetization configurations in the top and bottom CMs are opposite. Panel (e) [(f)] shows the magnetization
configuration in the bottom CM for (a) and (c) [(b) and (d)]. In (a), the helical structure is twisted by −π about the z axis as one goes from
z = 0 to −l and forms a twisted helix. Twisting by π about the z axis is also possible. In (b), the skyrmionic structures are twisted by π (P)
or −π (Q) about the z axis as one goes from z = 0 to −l. The direction of the twist is spontaneously chosen for each skyrmion. (c) and (d)
are similar structures to those of Figs. 4(c) and 4(d), respectively, where the nonuniform structures (sideways skyrmion and skyrmion cone)
come in the FM from the both interfaces. In (c), the sideways skyrmions with opposite skyrmion charges (i.e., opposite whirling patterns in
the xz plane) are degenerate and randomly chosen row by row. For the case of (c), the rows indicated by A (B) have the skyrmion charge
1/2 (−1/2).
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(a) TH (b) TSX

(c) SSA (d) SCoX

x

y
z

(a) TH

x

y

SSA (

−1 10

(Bem)y/(kπ/l)

0 −π−π/2

θB

A
B

B

B
A

B

P
Q

−1 10

(Bem)y /[π2/(ξd)]

−∞ ∞0 1−1

(Bem
.e)/(π/ξ)2^

−1.2 1.20

Bem /(π/ξ)2

FIG. 11. Emergent magnetic field Bem for the magnetization configurations shown in Figs. 10(a)–10(d), where TH, TSX, SSA, SCoX
stand for twisted helix, twisted-skyrmion crystal, sideways-skyrmion array, and skyrmion-cone crystal, respectively. Bem for (a), (b), (c), and
(d) are given by Eqs. (60), (65), (44), and (52), respectively. In each panel, the color coding for the emergent magnetic field is scaled by its
maximum, where k, ξ , and d are the wave number of the helix, the skyrmion radius (or half of the helical pitch), and the penetration depth
of the nonuniform structure, respectively. The direction of the emergent magnetic field is schematically shown with white arrows in (a), (c),
and (d), whereas that for (b) is depicted in the insets. (a) In the TH, because of the twisting along the z direction, the staggered magnetic
field arises in the y direction. (b) In the TSX, the z component of Bem is the same as that for the SCyX shown in Fig. 5(b), but the x and y

components, which are absent for the SCyX, arise due to the twisting. The red (blue) color means that the whirling of the x and y components
is clockwise (anticlockwise) as depicted in the left (right) inset, whereas the saturation of the color shows the amplitude |Bem|. The insets show
the configuration of the emergent magnetic field in the xy plane, where the colors on the arrows indicate θB ≡ arccos[(Bem)z/|Bem|]. Shown
are the configuration for l̃ = 1. The skyrmions indicated by P and Q correspond to those in Fig. 10(b). (c) The same as Fig. 5(c). The rows
indicated by A and B correspond to those in Fig. 10(c). (d) The same as Fig. 5(d). The red (blue) color means that the emergent magnetic field
is pointing from (to) the monopole.
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come in the FM from the CM/FM interfaces as shown in
Figs. 10(c) and 10(d), respectively, which we discuss in
Sec. IV C. The phase diagram is discussed in Sec. IV D.

A. Twisted helix

We consider the following magnetic configuration:

n(x,y,z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 0

− sin kx

− cos kx

⎞
⎠ (0 � z � a),

⎛
⎝± sin kx sin(πz/l)

− sin kx cos(πz/l)
− cos kx

⎞
⎠ (−l � z � 0),

⎛
⎝ 0

sin kx

− cos kx

⎞
⎠ (−a − l � z � −l).

(56)

In this magnetic profile, as we go along the z direction from
z = 0 to z = −l, the helical texture is rotated by ±π about
the z axis so as to continuously connect the spin helices with
wave vector kx̂ (0 � z � a) and −kx̂ (−a − l � z � −l). The
total energy for the TH is obtained by substituting Eq. (56) in
Eq. (55) as

ẼTH(k̃) = 2Ẽhel2D(k̃) + πl̃

[
k̃2

AJ

+ 1

2AJ

(
π

l̃

)2

+ b

AB

]

= π (2ã + l̃)

[
k̃2

AJ

− 2ã

2ã + l̃

2k̃

AD

+ b

AB

]
+ π3

2AJ l̃
.

(57)

Comparing this with Eq. (26), one can immediately see that
the effective DM interaction relative to the ferromagnetic and
Zeeman interactions is decreased by a factor 2ã/(2ã + l̃), and
the optimized wave number and energy are respectively given
by

k̃TH = 2ã

2ã + l̃
k̃hel2D, (58)

Ẽ0
TH = π (2ã + l̃)

[
b

AB

−
(

2ã

2ã + l̃

)2 AJ

A2
D

]
+ π3

2AJ l̃
. (59)

The last term on the right-hand side of Eq. (59) represents the
additional ferromagnetic interaction energy associated with
the z dependence of the magnetization profile.

The emergent magnetic field for the TH is calculated from
Eqs. (56) and (19) as

Bem = ±kπ

l
sin kxŷ, (60)

where the double sign corresponds to that in Eq. (56). In
contrast to a simple helix, which has no emergent magnetic
field, the staggered magnetic field arises for the TH as shown
in Fig. 11(a) due to the z dependence of the magnetization
configuration.

B. Twisted-skyrmion crystal

In the case when SkX’s appear in the CMs, the skyrmions
in the top and bottom CMs have opposite helicities; i.e., φ in

l

ξ

FIG. 12. Magnetization profile in a twisted skyrmion. The mag-
netization vectors rotate by −π about the z axis as z changes from
0 to −l. The green thick curves trace the positions of the same
magnetization directions.

Eq. (6) is φ = −π/2 (φ = π/2) for 0 < z < a (−a − l < z <

−l). These structures are topologically equivalent and can be
transformed to each other by a continuous transformation. A
possible structure is given by Eq. (6) with taking into account
the z dependence of φ as shown in Fig. 12.

Rewriting φ(z) = g(|z|/l) where g(ζ ) is a monotonically
increasing or decreasing function satisfying g(0) = −π/2 or
3π/2 and g(1) = π/2, the total energy for the crystalline
structure of twisted skyrmions is given by

ẼTSX(ξ̃ ) = 2ẼSkX(ξ ) + l̃

(
1

ξ̃ 2
+ γJ

l̃2
+ b

)

= (2ã + l̃)

[
1

ξ̃ 2
− 2ã

2ã + l̃

2

ξ̃
+ b

]
+ γJ

l̃
, (61)

where

γJ ≡ 2π

AJ

∫ 1

0
dζ

(
dg

dζ

)2 ∫ 1

0
ρdρ sin θ2

0 (ρ), (62)

and the last term of the right-hand-most side of Eq. (61)
comes from the z derivative of the magnetization. We
choose g(ζ ) = g+(ζ ) ≡ π (ζ − 1/2) or g−(ζ ) ≡ π (2/3 − ζ )
and θ0(ρ) = π (1 − ρ), obtaining γJ = π3/(2AJ ) ∼ 0.40.
Minimizing Eq. (61) with respect to ξ̃ , the optimized ξ̃ and the
minimum energy are obtained as

ξ̃ = 2ã + l̃

2ã
, (63)

Ẽ0
TSX = (2ã + l̃)

[
b −

(
2ã

2ã + l̃

)2]
+ γJ

l̃
. (64)

As in the case of the previous sections, the DM interaction
energy relative to the other interaction energies is reduced by
a factor 2ã/(2ã + l̃), and hence, the skyrmion radius becomes
larger as l̃ increases. For our choice of g(ζ ) and θ0(ρ), the last
term in Eq. (64) coincides with that in Eq. (59).
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The emergent magnetic field for the TSX is given by

Bem = −
(

π

ξ

)2 sin(πr/ξ )

πr/ξ

(
∓ πy

l
x̂ ± πx

l
ŷ + ẑ

)
, (65)

where the double sign corresponds to that of g±(z). Here,
the longitudinal component is the same as that of the SCyX
shown in Fig. 5(b). However, the emergent magnetic field of
the TSX also has the x and y components, which are whirling
in the clockwise or anticlockwise direction depending on the
direction of the twisting in the FM [see the insets of Fig. 11(b)].
Since the energies for the configurations with opposite twisting
are degenerate, the direction of the twisting is randomly chosen
in each skyrmion within the framework of the variational
method, as in the case of the SSA.

C. Sideways-skyrmion array and skyrmion-cone crystal

As in the case of the CM/FM heterostructure, the sideways
skyrmions and the skyrmion cones may appear at the CM/FM
interfaces. The resulting structures are shown in Figs. 10(c)
and 10(d). The energies for these structures are twice those
obtained in Secs. III C and III D.

Since the Bem for a single sideways skyrmion is given by
Eq. (44), the emergent magnetic field for the SSA [Fig. 10(c)]
is as shown in Fig. 11(c). For the case of the CM/FM/CM
hybrid system, the sideways skyrmions also appear from the
bottom of the FM. The emergent magnetic field arises in the
+ŷ or −ŷ direction depending on the whirling direction of
the magnetization vector on the xz plane, which is randomly
chosen row by row.

The emergent magnetic field for the SCoX [Fig. 10(d)] is
shown in Fig. 11(d). As in the case of Fig. 5(d), the emergent
magnetic field diverges as one approaches the monopole. The
crucial difference from Fig. 5(d) is, however, that the direction
of the emergent magnetic field is dependent on which interface
the skyrmion cone comes out from: For the skyrmion cone
coming out from the top (bottom) CM/FM interface, the
emergent magnetic field points to (from) the monopole on
the top of the cone.

D. Phase diagram

By comparing the energy for each configuration, we obtain
the phase diagram of the CM/FM/CM hybrid system as shown
in Fig. 13, where we calculate for (a) l̃ < 1.0, (b) l̃ = 2.0, and
(c) l̃ = 2.2. When l̃ < 1.0, only the TSX, TH, and F phases
appear. The F-TH, F-TSX, and TH-TSX phase boundaries are
given by

bF−TH = ABAJ

A2
D

(
2ã

2ã + l̃

)2

− γJAB

πl̃(2ã + l̃)
, (66)

bF−TSX =
(

2ã

2ã + l̃

)2

− γJ

l̃(2ã + l̃)
, (67)

bTH−TSX =
(

2ã

2ã + l̃

)2

b1, (68)

respectively, where we have used γJ = π3/(2AJ ), and b1 is
defined in Eq. (28). In contrast to the case of Fig. 8(a), where
the H and SCyX phases start from ã = 0, there is a lower
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FIG. 13. Phase diagram of the magnetization structures shown
in Fig. 10 in a CM/FM/CM hybrid structure with (a) l̃ = 1.0,
(b) l̃ = 2.0, and (c) l̃ = 2.2, where b is the external magnetic
field normalized by the critical field Bcr2 [Eq. (18)] in a 2D CM,
and ã and l̃ are the thicknesses of the CM and FM, respectively,
scaled by the skrymion radius ξSkX [Eq. (12)] in a 2D CM. F,
TSX, TH, SCoX, SSA stand for ferromagnetic, twisted-skyrmion
crystal, twisted helix, skyrmion-cone crystal, and sideways-skyrmion
array phases, respectively. The F-TH, F-TSX, and TH-TSX phase
boundaries are given by Eqs. (66), (67), and (68), respectively,
whereas the other phase boundaries are numerically calculated. The
F-SCoX, F-SSA, and SCoX-SSA phase boundaries are the same as
those for the CM/FM system and independent of l̃. The dashed curve
in (c) indicates the F-SSA phase boundary for l̃ � 1.

bound of ã for the appearance of the TH and TSX phases. For
example, From Eq. (66), the F-TH phase boundary at b = 0 is
given by

ã = πA2
D

4AJ l̃

(
π

2AJ

+
√

π2

4A2
J

+ 2l̃2

A2
D

)
, (69)
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which behaves as

ã ∼
(

πAD

2AJ

)2 1

l̃
(l̃ → 0), (70)

ã ∼ πAD

2
√

2AJ

∼ 0.28 (l̃ → ∞). (71)

This is because the ferromagnetic interaction energy associated
with the z dependence of the magnetization structure prevents
the system from creating nonuniform structure. In order to
overcome the energy cost in the FM, the thickness of the CMs,
which have the negative DM interaction energy, should be
large enough.

As l̃ increases [Fig. 13(b)], the SCoX and SSA phases arise
between the F and TSX phases and between the TH and TSX
phases, respectively, and the regions of the TH and TSX phases
rapidly shrink [Fig. 13(c)].

V. DISCUSSION AND CONCLUSION

We have discussed possible magnetization configurations
in ground states at CM/FM and CM/FM/CM hybrid structures.
The energy of the system is calculated by using a variational
method, where we assume a certain magnetization structure
and take its length scales, i.e., the skyrmion radius and the
penetration depth, as variational parameters. By comparing the
obtained energies, the ground-state phase diagrams of CM/FM
and CM/FM/CM hybrid structures are obtained as shown in
Figs. 8 and 13, respectively, where 3D exotic configurations,
such as SSA, SCoX, TH, and TSX, appear in low magnetic
fields.

In particular, the interface introduces a sort of frustration
and hence can produce nontrivial magnetization textures
absent in each constitute alone. For example, both helix

and ferromagnet are not topological, while the SSA which
emerges at the interface between these two is topological
characterized by the emergent magnetic field. The phase
diagrams in Figs. 8 and 13 will provide a basis to design these
nontrivial magnetization structures in the interface systems.
Note, however, that the phase diagrams (Figs. 8 and 13) based
on the variational scheme capture only the qualitative aspects
of the system and detailed numerical calculations are required
for quantitative discussions.

Transport properties of conduction electrons coupled to the
magnetization are greatly influenced by the emergent electro-
magnetic field. The distribution of the emergent magnetic field
Bem shown in Figs. 5 and 11 will produce various topological
Hall effects depending on the direction of Bem. Especially,
the diverging Bem at the monopole is expected to affect the
electron motion strongly. (Note that the lattice constant gives
the cutoff for this divergence in real systems.) Furthermore,
the current-driven motion of the magnetization textures via the
spin transfer torque is determined by the gyrovector G, i.e., the
integral of Bem over the space. G enters into Thiele’s equation
and the finite G enhances the spin transfer torque effect [14].
Once the current-driven motion of Bem occurs, the emergent
electric field Eem is induced, i.e., emergent electromagnetic
induction. The design of these varieties of phenomena in the
heterostructures will open a rich physics of magnetic textures.
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