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On the limit of spectral measures
associated to a test configuration of
a polarized Kéhler manifold

By Tomoyuki Hisamoto at Nagoya

Abstract. We apply our integral formula of volumes to the family of graded linear series
constructed from any test configuration. This solves the conjecture raised by Witt Nystrom to
the effect that the sequence of spectral measures for the induced C*-action on the central fiber
converges to the canonical measure defined by the associated weak geodesic ray in the space of
Kihler metrics. This limit measure coincides with the classical Duistermaat—-Heckmann mea-
sure if the test configuration is product. As a consequence, we show that the algebraic p-norm
of the test configuration is equal to the L?-norm of tangent vectors on the geodesic ray. Using
this result, we give a natural energy theoretic explanation for the lower bound estimate on the
Calabi functional by Donaldson, extending the statement to any p-norm (p = 1), and prove an
analogous result for Kdhler—Einstein metrics.

1. Introduction

Let X be an n-dimensional smooth projective variety and L an ample line bundle over X .
In the sequel we also fix a smooth Hermitian metric /4 on L, which has strictly positive curvature
over X . The curvature form defines a Kihler metric in the first Chern class ¢ (L). Conversely,
any Kdhler metric w in ¢q (L) has a Kéhler potential ¢ in each local trivialization neighborhood
such that the collection of e~% defines a Hermitian metric with the curvature form w = dd€g,
uniquely up to multiplication by a constant. We identify /& with the collection of weights ¢.
We denote by # the set of all 1 = ¢~?, endowed with the canonical Riemannian metric

ddpy"\?
s = ([Xw%)

which is defined for any tangent vector u at ¢. The space of Kihler metrics is the natural
quotient # /R. There is the canonical K-energy functional M : # — R such that any constant
scalar curvature Kéhler metric is characterized as a critical point of this energy. This K-energy
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130 Hisamoto, Test configuration and limit of spectral measures

is known to be convex along any smooth geodesic in # and it is important to investigate the
gradient of the energy at infinity along a given geodesic ray ¢; (¢ € [0, +00)).

As was first demonstrated by Phong—Sturm, it is possible to define geodesic ray (in a gen-
eralized sense) in J in terms of certain degenerations of (X, L), which are now called test
configurations. A C*-equivariant flat family of polarized schemes 7 : (X, £) — C with the
property that (X1, £1) = (X, L) is called a test configuration. We denote the data by 7. For
eachk > 1 let

H®(Xo, £8%) = P W
A

be the eigenspace decomposition of the induced C*-action p : C* — Aut(H (X, é‘ia@k )) on
the central fiber such that p(t)v = t*v holds for every r € C* and v € Vj. This A is just an
eigenvalue of A € End(H % (X, éﬁgz’k)) which is defined by p(e’) = exp tA. Then we have the
asymptotic expansion

= Fo+ Fik™ ' + 0(k™2).
Ky, dimV; o+ F1 + O0(k™)

We call the minus of the coefficient F; in the subleading term as the Donaldson—Futaki in-
variant of 7 and denote it by DF(7) := —F}. It was first established in [30] that any test
configuration 7 with fixed metric ¢ canonically defines a weak geodesic ray ¢; emanating
from ¢, in H (and therefore in the space of Kéhler metrics). Here for the proof of the main
theorem we adopt the construction of [33] so that ¢; — Fyp gives the geodesic ray in [30]. The
technical difficulty now arises from the fact that the constructed metric dd ¢, for each fixed ¢
degenerates in two senses, that is, it is neither smooth nor strictly positive. In fact ¢;(x) is
not even a C2-function, but only C'% (a < 1) with respect to the two variables ¢ and x so
that dd€¢; is defined as a closed semipositive current. Therefore, as opposed to the words
“geodesic in the space of Kihler metrics”, each dd €y is not a Kdhler metric, but a degener-
ate one. This is why we call ¢; weak geodesic ray. In this situation it is now conjectured that
the Donaldson—Futaki invariant corresponds to lim;— %M((p,) if the latter one is properly
defined for this non-smooth geodesic ray. In this paper we further relate the asymptotic distri-
bution of eigenvalues to ¢; and give some application to the estimate for the Donaldson—Futaki
invariant. Our main theorem claims that the associated sequence of spectral measures converges
to a certain canonical measure defined by ¢;, which coincides with the Duistermaat—-Heckman
measure of the C*-action on the central fiber when X is product. The Monge—Ampere
(or Liouville) measure MA(g;) is defined for each singular ¢; and equals (dd€p;)" if ¢
is smooth (see Section 2.1).

Theorem 1.1. Let T be a test configuration. Then the weak limit of the normalized dis-
tribution of eigenvalues is given by the push-forward of the Monge—Ampére measure MA (¢y)
to the real line by the tangent vector ¢;. That is, for any t = 0 we have

lim — Z §x dim Vy, = (@)« MA(g;).

k—oo k

Here § i denotes the delta function for % € R. In particular, the right hand side measure is
mdependent not only of t but also of ¢, and defines the canonical measure.
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Hisamoto, Test configuration and limit of spectral measures 131

Theorem 1.1 was first conjectured in [38] and proved for product test configurations in
the same paper. The analogous result for geodesic segments which are not necessarily associ-
ated to a specific test configuration was obtained by Berndtsson ([7]) in a different approach.
In that paper he starts from a geodesic segment ¢; (¢ € [0, #9]). The collection of Hermitian
inner products on the finite-dimensional vector space H°(X, L®¥) has natural structure of
finite-dimensional homogenous space and conceptually it provides a good approximation to the
space J if one lets k — oo. In fact the Bergman kernel construction shows that any geodesic
segment in J can be approximated by the sequence of finite-dimensional geodesics, which are
determined by the initial point and the corresponding Lie vector field Ay € End(H°(X, L®k)).
Then the result of [7] states that the spectral measure associated to the eigenvalues of A con-
verges to a canonical measure defined by the initial geodesic segment ¢;. In this paper we start
from a test configuration and investigate the situation f9 — oo relating it with the degeneration
of (X, L).

Recall that the above definition of DF(J") was motivated by the equivariant Riemann—
Roch formula of [1], which can be applied to the product test configuration, and in that case
one has the Duistermaat—Heckman measure on the central fiber in the usual way. In terms of
geodesic the central fiber corresponds to ¢ = 0o and our canonical measure which is indepen-
dent of 7 gives the right generalization to any test configuration. Then Theorem 1.1 can be seen
as a part of the ideal index theorem for an equivariant family which admits a very singular
fiber over the fixed point 0 € C. Taking the p-th moment of the above measure, we may extend
the definition of algebraic norm in [16] to any p > 1 and relate it to the L?-norm of tangent
vectors on the weak geodesic ray.

Theorem 1.2. Let us define the trace-free part of each eigenvalue A as
_ dim V,
L= A — M
> dimV),

and for each p = 1 define the p-norm ||T |, by

1
Tlp:=1{ lim — E
171 (kl i

A
— |k

P »
dim VA) .

Then the limit exists and

N =

_ . MA(¢:)
171 = ([ 6. rarr 282 )
X n:

holds.

Using Theorem 1.2, we may give an energy theoretic explanation for the lower bound
estimate in [16] on the Calabi functional, extending the result to any p-norm (p = 1). In
particular in the Fano case we may justify the idea to obtain the following. Note that when
L = —Kx, any metric & = e~% can be identified with the positive measure which is described
ase % /\?=1 */T:dzi A dz; in each local coordinate. A metric e~ ¥ is called a Kihler—Einstein
metric if it satisfies the following identity of the measures:

(dd€p)" =nle™®.
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132 Hisamoto, Test configuration and limit of spectral measures

Theorem 1.3. Letr X be a Fano manifold and let T be a test configuration of (X, —Kx).
Then for any smooth Hermitian metric h = ¢~ % on —Kyx and exponents 1 < p,q < 400
with 1/p + 1/q = 1 we have
- _DF(J )

= .
q 171

nle ¢
' (ddcp)"

In other word, the deviation from being Kdhler—Einstein metric is bounded from below by the
Donaldson—Futaki invariant.

Let us briefly explain the outline of our proof of Theorem 1.1. The proof is based on the
analytic study for graded linear series, which was exploited in [18]. We apply it to [38]’s family
of graded subalgebras

o0 o0
Wy =P Wax < P HO(X. LEF),
k=0 k=0
which is parameterized by A € R and constructed from 7 as follows. For a given section
s € HO(X, L®), let us denote its unique invariant extension which is at least meromorphic
over X by 5. We define W), i as the set of sections s whose invariant extensions s have poles
along the central fiber X9 = {t = 0} with order at most —[Ak] (here [ - ] denotes the smallest
integer which is greater than - ). In other words,

Wi g i= {s e HO(X, L®) | ~1*¥15 ¢ Ho(x,z)}.

Then it can be proved algebraically that the limit of spectral measures is given by the Lebesgue—
Stieltjes measure of the volume function vol(W),) in A. The main theorem of [18] interprets
each volume into the Monge—Ampere measure of associated equilibrium metric Py, ¢. The
Legendre transformation of this family of equilibrium metrics is nothing but the weak geodesic
ray ¢; so that we may complete the proof by the recently developed techniques of pluripotential
theory. This new approach via the family of graded linear series seems itself interesting and
we hope it should be studied more in the future.

2. Analytic description of the volume

2.1. Monge-Ampere operator. In this subsection, we briefly review the definition and
basic properties of the Monge—Ampere operator. Let L be a holomorphic line bundle on a pro-
jective manifold X. We usually fix a family of local trivialization patches U, which cover X.
A singular Hermitian metric / on L is by definition a family of functions i, = e~ %~ which are
defined on corresponding Uy and satisfy the transition rule pg = ¢y — l0g|gqg |Zon Uy NU, 8-
Here g,p are the transition functions of L with respect to the indices o and B. The weight
functions ¢, are assumed to be locally integrable. If the functions ¢, are smooth, then {¢ ™%« }
defines a smooth Hermitian metric on L. We usually denote the family {¢4}o by ¢ and omit
the indices of local trivializations. Notice that each ¢ = ¢, is only a local function and not
globally defined, but the curvature current ®;, = dd€y is globally defined and is semiposi-
tive if and only if each function ¢ is plurisubharmonic (psh for short). Here we denote by d ¢
the real differential operator 0=0_ We call such a weight a psh weight. The most important

4m/—1"
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Hisamoto, Test configuration and limit of spectral measures 133

example is those of the form k~!log(|s;|?> + --- + |sn|?), defined by some holomorphic
sections s1,...,sy € HO(X, L®k). Here |s;| (1 <£i < N) denotes the absolute value of the
corresponding function of each s; on Uy. We call such weights (globally) algebraic singular.
More generally, a psh weight ¢ is said to have a small unbounded locus if the pluripolar set
¢~ 1(—00) is contained in some closed complete pluripolar subset S C X (e.g. a proper alge-
braic subset).

Let n be the dimension of X. The Monge—Ampere operator is defined by

@ = (dd p)"

when ¢ is smooth. On the other hand it does not make sense for general ¢. The celebrated result
of Bedford-Taylor [2] tells us that the right hand side can be defined as a current if ¢ is at least
in the class L.°° N PSH(Uy). Specifically, by induction on the exponent g = 1,2,...,n, it can
be defined as

/U (dd°p)? A= /U o(dd°p)T" A dd®y

for each test form 7. Here [ denotes the canonical pairing of currents and test forms. This
is indeed well-defined and defines a closed positive current, because ¢ is a bounded Borel
function and (dd°¢)9~! has measure coefficients by the induction hypothesis. Notice the fact
that any closed positive current has measure coefficients.

It is also necessary to consider unbounded psh weights. On the other hand, for our
purpose, it is enough to deal with weights with small unbounded loci.

Definition 2.1. Let ¢ be a psh weight of a singular metric on L. If ¢ has a small
unbounded locus, we define a positive measure MA(¢) on X by

MA (@) := the zero extension of (dd€¢)".

Note that the coefficient of (dd€¢)”" is well-defined as a measure on X \ S.

Actually (dd€¢)" has a finite mass so that MA(¢) defines a closed positive current on X .
For a proof, see [11, Section 1].

Remark 2.1. 1In [11], the non-pluripolar Monge—Ampere product was defined in fact
for general psh weights on a compact Kéhler manifold. Note that this definition of the Monge—
Ampere operator makes the measure MA(¢) to have no mass on any pluripolar set. In other
words, MA(¢) ignores the mass which comes from the singularities of ¢. For this reason, as
a measure-valued function in ¢, MA(¢) no longer has the continuous property which holds for
bounded psh functions ([21, Theorem 1.11, Proposition 1.12, Theorem 1.15]). For example,
if L is ample, it is always possible to find a non-increasing sequence ¢y of smooth psh weights
on L with g — ¢, but MA(gr) — MA(p) fails as soon as [ MA(g) < [ MA(gg) = L".

We recall a fundamental fact established in [11] which states that the less singular psh
weight has the larger Monge—Ampere mass. Recall that given two psh weights ¢ and ¢’ on L,
@ is said to be less singular than ¢’ if there exists a constant C > 0 such that ¢’ < ¢ + C holds
on X. We say that a psh weight has minimal singularities if it is minimal with respect to this
partial order. When ¢ is less singular than ¢’ and ¢’ is less singular than ¢, we say that the two
functions have equivalent singularities. This defines an equivalence relation.
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134 Hisamoto, Test configuration and limit of spectral measures

Theorem 2.1 ([11, Theorem 1.16]). Let ¢ and ¢’ be psh weights with small unbounded
loci such that ¢ is less singular than ¢'. Then

/ MA(¢) < / MA(p)
X X
holds.

2.2. Analytic representation of volume. Let X be an n-dimensional smooth complex
projective variety and let L be a holomorphic line bundle on X. Graded linear series is by
definition a graded C-subalgebra of the section ring

o0 o0
W= wi c P H(x.L®F).
k=0 k=0

They appear in many geometric situations. In fact in the present paper we give an application
of the analysis of such proper subalgebras to the problem of constant scalar curvature Kéhler
metric. The volume of graded linear series is the nonnegative real number which measures the
size of the graded linear series as follows:
i dim W,
vol(W) := lim sup o k.

k—o00 uT

This is finite and in fact the limit of supremum is limit provided W}, # 0 for sufficiently large k,
by the result of [20]. The main result of [18] gives an analytic description of the volume.
The analytic counterpart of the volume is the following generalized equilibrium metric, which
originates from [3].

Definition 2.2. Let W be a graded linear series of a line bundle L. Fix a smooth Hermit-
ian metric of L and denote it by 1 = e™%, where ¢ is the weight function defined on a fixed
local trivialization neighborhood. We define the equilibrium weight associated to W and ¢ by

1
Pwo = sup*{ %log|s|2 k =1, s € Wy such that |s|>¢ ¢ < 1}.
Here * denotes taking the upper semicontinuous regularization of the function. The equilibrium
weight Py ¢ on each local trivialization neighborhood patches together and defines a singular
Hermitian metric on L. We call it the equilibrium metric.

As in Section 2.1, we define the Monge—Ampere measure MA( Py ¢) on X .

Theorem 2.2 ([18, Main Theorem]). Let W be a graded linear series of a line bundle L
such that the natural map X --> PWk* is birational onto its image for any sufficiently large k.
Then for any fixed smooth Hermitian metric h = e~% we have

vol(W) =/XMA(PW<,0).

Note that Theorem 2.2 is valid for general big line bundle which is possibly not ample.
We will apply this general formula to the special graded linear series associated to a test con-
figuration of a polarized manifold.
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Hisamoto, Test configuration and limit of spectral measures 135

Remark 2.2. With no change of the proof in [18], Theorem 2.2 can also be proved
under the assumption Wy is birational onto its image for any sufficiently divisible k. For non-
complete linear series, the condition vol(W) > 0 only implies that X --> PW,* is generically
finite (but not birational in general) onto its image for sufficiently divisible k. For example,
when W is defined as the pull-back of H%(Y,©(k)) by a finite morphism X — ¥ < PV,
vol(W) > 0 holds but W}, never defines a birational map onto its image for any k. For this
reason, neither does Theorem 2.2 hold for general W with vol(W) > 0. To be precise, taking
a resolution py of the base ideal of W and denoting the fixed component of /,L;: Wy by Fg,
the right hand side in Theorem 2.2 is given by the limit of self-intersection number of line
bundles My := uj L®* ® O(—F).

3. Test configuration and associated family of graded linear series

In this section we explain the construction of the family of graded linear series W)
parametrized by A € R from fixed test configuration (X, &£), following the recipe of Witt Nys-
trom’s paper [38]. First we introduce the notion of K-stability.

3.1. K-stability. We start with the following definition.

Definition 3.1 (Definition of test configuration by [15]). Let (X, L) be a polarized man-
ifold. We call the following data a fest configuration (resp. semi-test configuration) for (X, L):

(1) a flat family of schemes with relatively ample (resp. semiample and big) Q-line bundle
7w (X,£) — C such that (X1, £1) >~ (X, L) holds (the relatively bigness automati-
cally follows from this assumption),

(2) a C*-action on (X, £) which makes 7 equivariant, with respect to the canonical action
of C* on the target space C.

Remark 3.1. As was pointed out in [23], the above original definition by Donaldson
should be a bit modified. For example, if one further assumes X is normal, then the pathological
example in [23] can be removed. On the other hand, the recent paper [36] proposed to con-
sider the class of test configurations whose norms |7 || are non-zero and this condition seems
more natural and appropriate from our viewpoint. In fact Theorem 1.2 gives one evidence. See
also [33]. At any rate we do not assume the normality of X in proving Theorems 1.1 and 1.2.

By the flatness of s, the Hilbert polynomials of (X, £;) are independent of ¢ € C.
The C*-equivariance yields an isomorphism (X;, £;) >~ (X, L) forany ¢ € C \ {0}. Note that
the central fiber (Xo, £o) can be very singular. It is even not reduced in general. A test con-
figuration is said to be product if X ~ X x C and trivial if further the action of C* on X x C
is trivial. A test configuration (X, £) induces the C*-action on H° (X, éﬁ(?k) foreach k > 1.
This action p : C* — Aut(H (X, ig@k )) decomposes the vector space as

H(Xo.25%) =P
A

such that p(t)v = t*v holds for any v € V; and t € C*. By the equivariant Riemann—Roch
Theorem, the total weight w(k) = >_; A dim V), is a polynomial of degree n + 1. Let us denote
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136 Hisamoto, Test configuration and limit of spectral measures

the coefficients by
(3.1 w(k) = bok" ! 4+ bik™ + O™ ).
We also write the Hilbert polynomial of (X, L) by
Ng :=dim HO(X, L®%) = aok™ + a1 k"1 + O(k"72).

The Donaldson—Futaki invariant of a given test configuration is defined to be the minus of the
subleading term in the expansion

w (k) -1 -2
3.2 —= = F Fik O(k™).
(3.2) A o+ Fik™ + O(k™)
In other word,
a0b1 —a1b0
3.3) DE(T) :=—-F = -
)

Definition 3.2. A polarization (X, L) is K-stable (resp. K-semistable) if DF(7) > 0
(resp. DF(77) = 0) holds for any non-trivial test configuration. We say (X, L) is K-polystable
if it is K-semistable and DF(7") = 0 holds only for product test configurations.

This notion of K-stability was first introduced in [37]. The above algebraic definition
was given in [15]. Note that K-stability is unchanged if one replaces L to L®k since Fj is so.
The equivalence of certain GIT-stability and existence of special metric originate from the
Kobayashi—Hitchin correspondence for vector bundles. In the polarized manifolds case, we
have the following conjecture.

Conjecture 3.1 (Yau-Tian-Donaldson). A polarized manifold (X, L) admits a cscK
metric if and only if it is K-polystable.

One direction of the above conjecture was proved in [16,24,25,35]. That is, the existence
of cscK metric implies K-polystability of the polarized manifold. See also [5] for the detail
study in the Kdhler—Einstein case.

The stability of a vector bundle is defined in terms of the slope of subbundles and to
pursue the analogy to the vector bundle case, [32] studied the special type of test configurations
which are defined by subschemes of X, and introduced the slope of a subscheme.

Example 3.1. A pair of an ideal sheaf § € Ox and an appropriate ¢ € QQ define a test
configuration as follows. Such a test configuration is called deformation to the normal cone
with respect to (¢, ¢): Let X be the blow-up of X x C along § and let P be the exceptional
divisor. The action of C* on X xC fixes V(¢) so that it induces actions on X and P. We denote
the composition of the blow-down X — X x C and the projection to X by p : X — X. Let
us define the Q-line bundle £, on X by £, := p*L ® O(—cP). When V = V(¢) is smooth,
then P is a compactification of the normal bundle Ny, x. Let us denote the blow-up along ¢
by i : X’ — X and the exceptional divisor by E. The Seshadri constant of L along ¢ is defined
by

e(L,d) :=sup{c | u*L ® O(—cE) is ample}.

Then we have the following lemma so that (X, £.) actually defines a test configuration for any
sufficiently small c.
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Hisamoto, Test configuration and limit of spectral measures 137

Lemma 3.1 ([32, Lemma 4.19]). Forany 0 <c < e(L, ), £ is a w-ample Q-line
bundle.

The slope theory of [32] was further developed in [26]. Consider a flag of ideal
sheaves Jo € $1 € --- € $n—1 € Oy and fix ¢ € Q~¢. Let us take the blow up X of X x C
along the C*-invariant ideal sheaf

Ji=dJo+tdi 4+ g1 + ()

and denote the exceptional divisor by P. Let us denote the projection map by p : X — X.
Then X naturally admits a line bundle £ := p*L ® @ (—cP). In the paper [26], Odaka derived
the intersection number formula of the Donaldson—Futaki invariant for this type of semi-test
configuration defined by flag ideals. The point is that any test configuration whose total space X
is normal can be dominated by the above type of semi-test configuration.

Proposition 3.1 ([26, Proposition 3.10]).  For an arbitrary normal test configuration T,
there exist a flag of ideal sheaves $o C $1 C--- C $n—1 C Ox and a rational number ¢ € Q=g
such that T' = (X', £') defined by the flag is a semi-test configuration which dominates T by
a morphism f : X' — X with &' = f*&£. Moreover, DF(T') = DF(T) holds.

3.2. The associated family of graded linear series. Let us denote the C*-action on
the test configuration (X, £) by p : C* — Aut(X, £). For any s € H(X, L®¥), it naturally
defines an invariant section 5 € H(X 140> £®k) by

S(p(r)x) == p()s(x) (v € C¥, x € Xyzo).

If we set ¢ as the parameter of underlying space C, forany A € Z, t~*5 defines a meromorphic
section of £k over X. We then introduce the following filtration to measure the order of these
meromorphic sections along the central fiber.

Definition 3.3. Fix a test configuration (X, &£). For each A € R, we define the subspace
of HO(X, L®k) by

(3.4) FaHO (X, L®) = {s € HO(X, L®) | ™5 e HO(X, £)).

By definition, we have (p(7)s)(x) = p(t)s(p~1(r)(x)) so it holds
(p(2)3)(x) = p()5(p~ (1)) (x) = 5(x),

i.e. § is invariant under the C*-action. On the other hand, regarding ¢ as the section of O,
we have

(p(D)1)(x) = p()t(p~ ' (1)x) = p(0)(r "1 (x)) = T 1 (x).
Therefore +~1*15 is an eigenvector of weight [A] with respect to the C*-action. Note that the
filtration is multiplicative, i.e.

FaHOX, L®%) . 7, HO(X, L¥) ¢ F)45  HO(X, LFHF)

holds for any A, A" € R and k,k’ = 0. The relation to the weight of the action on the central
fiber is given by the following proposition.
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138 Hisamoto, Test configuration and limit of spectral measures

Proposition 3.2. Let us denote the weight decomposition of the C*-action by
HO(Xo. £x,) = P V.-

A
Then, for any A € R, we have
(3.5) dim 3 HO(X, L®%) = )" dim V.
A=A

Note that every weight is actually an integer so that each side of (3.5) is unchanged if
one replaces A by [A]. A fundamental fact established in [30] is that this filtration is actually
linearly bounded in the following sense.

Lemma 3.2 ([30, Lemma 4]). For any test configuration (X, £) there exists a con-
stant C > 0 such that for any k = 1 and A with dim V) > 0, one has |A| < Ck.

In other words, there exists a constant C > 0 such that
For HO(X, L®) = HO(X, L®%) and FcrHO(X,L®*) = {0}
hold for every k > 1.

Definition 3.4. We set
Ao :=sup{A | Fax HO(X. L®*) = HO(X, L®¥) forany k = 1},
Ae = inf{A | Fup HO(X, L®%) = {0} for any k = 1}.

By Lemma 3.2, 1¢ and A, are both finite. Lemma 3.2 indicates us to consider the graded
linear series

o0 o0
(3.6) Wy, = P Wik = P Fax HO(X. L¥).
k=0 k=0
For each A € R. It was shown in [36] that this family contains enough information about the
original test configuration. A result of [38] in fact gives the explicit formula for bg.

Theorem 3.1 (Reformulation of [38, Corollary 6.6]). Let (X, £) be a test configura-
tion. Then the quantity by is obtained by the Lebesgue—Stieltjes integral of A with respect
to vol(W)). That is,

nlby = _/00 Ad(vol(W))).

Theorem 3.1 actually follows from [38, Corollary 6.6] by change of variables in integra-
tion. See also the proof of [10, Theorem 1.10]. Note that the concave function G [T ] on the
Okounkov body A(L) in [38] is determined by the property

GITT™([A. 00)) = AWy).

where A(W,) C R” is the Okounkov body of W) in the sense of [22, Definition 1.15] and
that n! times the Euclidean volume vol(A(W))) equals vol(W),). Here, however, we give a self-
contained proof of the above theorem, for the reader’s convenience. The proof is essentially the
same but we do not use Okounkov body as in [38] or [10].
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Hisamoto, Test configuration and limit of spectral measures 139

Set the counting function of weights as

(3.7) ) = fir(A) = Z dim V), = dim %3 H°(X, L®F).
A=A

It is easy to show that fi (1) is actually a left-continuous and non-increasing function. Hence
the Lebesgue—Stieltjes integral makes sense and

w(k) ==Y Adim V) = bok" ' +bik" + O(k"") = —/oo Adf(L) = —/Oo kAdf (kL)
2 —00 —00

hold for any k. For any small & > 0, integration by parts yields

o0 o
—/ kAdf (kL) = —[kkf(k)\)]i‘(’)_g + / kf(kA)dA.
—00 Ao—¢
By the definition of the volume we have
kA
lim sup fsc" ) = vol(Wy).
k—o00

n?

If vol(W)) > 0, the limit of supremum is in fact limit for k sufficiently divisible, by [20, Theo-
rem 4] (or by the proofs of [14, Theorem 3.10, Corollary 3.11 and Lemma 3.2]). Therefore the
Dominated Convergence Theorem concludes
o0
n'bg = (Ao —e)L" + / vol(Wy)d A.
Ao—¢

Thus we obtain Theorem 3.1.

We remark that one advantage to consider such graded linear series is to avoid the diffi-
culty coming from the singularity of the central fiber Xg. On the other hand, we have to treat
with the difficulty coming from the non-completeness of linear series in this setting.

Example 3.2. Let (X, £) be the test configuration defined by an ideal sheaf § C Oy
and ¢ € QQ as in Example 3.1. Then the associated W) are computed to be

HO(X, L®F), 1< —c,
Wk,k — HO(X,L®k ® g[kk1+ck)’ ¢ <A <0,
{0}, A >0,

for any k. As a result, we have

c
nlby = —cL" +/ (WL ® O(=AE))"dA.
0

4. Study of weak geodesic rays

In this section we apply Theorem 2.2 to each W), constructed from the test configuration
to study the associated weak geodesic ray.
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140 Hisamoto, Test configuration and limit of spectral measures

4.1. Construction of weak geodesic. One of the guiding principles to the existence
problem of constant scalar curvature Kéhler metrics is to study the Riemannian geometry on
the space of Kihler metrics in the first Chern class of L. A result of Phong and Sturm (in [30])
gives a milestone in this direction. They showed that a test configuration canonically defines
a weak geodesic ray emanating from any fixed point ¢ in the space of Kihler metrics. This
builds a bridge between the algebraic definition of K-stability and the analytic setting where the
cscK metrics live. Later it was shown by [33] that one can also define the same weak geodesic
via the associated family of graded linear series {W, }. Let us now recall their construction.
Throughout this subsection we fix a smooth strictly psh weight ¢. It will be shown that ¢
and the family of graded linear series {W,} canonically define the weak geodesic emanating
from ¢.

Recall that a family of psh weights ¥; (a < t < b) is called a weak geodesic (resp. weak
sub-geodesic) if

W(X,T) 1= Yo joge () (T €C, e <|t| <e™)
is locally bounded plurisubharmonic and satisfies the Monge—Ampere equation
MA(W) =0 (resp. = 0).

Here we consider W (x, 7) as the function of (n + 1) variables and the Monge—Ampere operator
is defined in the manner of Bedford-Taylor. (The product space is not compact but Bedford—
Taylor’s Monge—Ampere operator is well-defined for those plurisubharmonic weights just as
was explained in Section 2.) Note also that MA(W) > 0 is automatically satisfied since W
is plurisubharmonic. When each dd€¢; is a smooth Kihler metric, there is the canonical
Riemannian metric which is defined for a tangent vector u at ¢; by
ul? := uzw.

n!
By [34], it is known that MA(W¥) = 0 if and only if the geodesic curvature for this metric
is zero.

First note that given a test configuration (X, £), the associated family {W, } defines the
family of equilibrium weights Py, ¢. From now on let us set

Vi = Pw, .

The first easy observation is that ¥, is decreasing with respect to A. As a consequence of
Demailly’s Bergman approximation argument and Lemma 3.2, we have

Y =¢ ifA<ldyp and A, =inf{}A | ) = —o0}.

Further by the multiplicativity of %3 H?(X, L®¥) one can see that ¥, is concave with re-
spect to A. The main result of [33] states that the Legendre transform of ) defines a weak
geodesic ray.

Theorem 4.1 ([33, Theorems 1.1, 1.2 and 9.2]). Set the Legendre transform of V) by
4.1) @ i=sup™{yY +tA | A eR} fort €0, +00).

Then ¢; defines a weak geodesic ray emanating from ¢. Moreover, ¢; — Fy coincides with
the weak geodesic ray constructed in [30], which is known to have CY%-regularity (for an
arbitrary 0 < a < 1) in two variables t and x by the main result of [31].

- 10.1515/crelle-2014-0021
Downloaded from De Gruyter Online at 09/28/2016 08:20:40AM
via Nagoya University



Hisamoto, Test configuration and limit of spectral measures 141

It is immediate to show that ¢; is a bounded psh weight emanating from ¢ and that it is
convex with respect to 7. The geodecity is derived from the maximality of Py, ¢:

4.2) Yy = ¢ a.e. with respect to MA(v)).

One of the technical points in [33] is to show (4.2). Such a property is due to the fact that vy
is defined as the upper envelopes of sufficiently many algebraic weights.
Note that the inverse Legendre transform maps ¢; to ¥, by

4.3) Vo = infle; — 1A}

which holds for every point of X. This is a consequence of Kiselman’s minimum principle
for plurisubharmonic functions (see [33, Remark 6.4]). Therefore the two curves contain an
equivalent information. Moreover, by the C !**-regularity in ¢ and x, the above infimum is
always achieved and therefore 1, is a continuous function in x and A. The time derivative ¢ (x)
is defined for every x € X. We identify this derivative with the tangent vector of the weak
geodesic. Then the gradient map relation

(4.4) — V(X)) + ¢ (x) =14

holds everywhere if one sets A := ¢ (x).

4.2. Proof of Theorem 1.1. We prove Theorem 1.1. It was shown in [38] that the push-
forward of the Lebesgue measure by the concave function G[7] on the Okounkov body A(L)
gives the weak limit, namely,

|
(4.5) lim = > 8k dim Vs = nGITLu(dAlacw)):
A

k—o0 k't

Recall that G[T7] is characterized by the property
GIT] (A, 00)) = A(Wy),

where A(W)) € R” is the Okounkov body of W} in the sense of [22, Definition 1.15] and !
times the Euclidean volume vol(A (W} )) gives vol(W}). Therefore it is easy to observe that the
right hand side of (4.5) equals —d (vol(W))).

Next we apply Theorem 2.2 to W),. This is possible thanks to the lemma of Boucksom—
Chen ([10]). They in fact proved that the linear series W}, contains an ample series for A < A,
in their terminology and as a corollary we have:

Lemma 4.1 (Corollary of [10, Lemma 1.6]). IfA < A, the natural map X --> PWA*k
is birational onto its image for any k sufficiently divisible.

Now we may reduce the proof of Theorem 1.1 to showing
*.6) —d [ MAW) = G0- MAG).

By the main result of [31], ¢; has the C "*-regularity so that we can apply the following.
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Proposition 4.1 ([7, Proposition 2.2]). Let ¢; be a weak geodesic ray in the space of
Kdihler metrics and assume that ¢;(x) is of C-class in two variables t and x. Then for any
compactly supported C ' -function f, the value of the integral

f £(60) MA(pr)
X

is independent of t.

In other words the right hand side of (4.6) is independent of ¢ and the proof is reduced to
the case ¢ = 0. Then by basic measure theory we conclude Theorem 1.1 if for any A € R

47 [ Maw = [ maw)
X {go=A}
holds. It is sufficient to show
(48) | wag < [ Maw) < [ Maw)
{go>A} X {po=A}

for any A € R. Indeed from Theorem 2.1 the first inequality of (4.8) yields

[ wag < [ MA@ < [ MA@
{¢o>A+e} X X

for any ¢ > 0 so that letting ¢ — 0 we have

/{ RCCE /X MA(Y).

Combining with the second inequality of (4.8), we obtain (4.7).
The following lemma is directly deduced from the definition of ¢;.

Lemma 4.2. For every pointin X, ¢o = A holds if and only if V), = ¢. In particular,

/ MA() = / MA(¢)
{@o=A} {¥r=0}
holds.

Proof. Let x be a point of X. If 4, (x) = ¢(x), then

$1() —p(x)  a) +d =)
t t
On the other hand, for any fixed x € X the convexity of ¢; with respect to ¢ yields

Vi(x) = tigg{wt (x) —tA} = tigg{tcp'o(X) + o(x) — 1A}

@o(x) := inf
>0

Then by the Legendre relation (4.3), the assumption ¢p(x) = A implies
inf{tgio(x) + p(x) = 14} = (). o
In the case of Example 3.1, the result of [3] yields much stronger conclusion that ¥,

has C!-regularity on the bounded locus and

MA®Y2) = l{y,=¢) MA(p)
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holds. We need to give a proof of (4.8) without such a regularity of ;. Our argument is
essentially the same as the proof the comparison principle for the Monge—Ampere operator
(see e.g. [21, Theorem 1.16]). First note that the set {¢o > A} is open (thanks to the regularity
result of [31]) and contained in {¥); = ¢}. Therefore by the locality of the Monge—Ampere

product we have
[ magn=[ MA@
{9o>A} {@o>A}

Then we obtain the one side inequality of (4.8),

/X MA(f) = /{ MG,

Let us take any € > 0 to prove the converse inequality. Thanks to the maximality (4.2)

we have
/ MA(;) = / MA(Y,).
D.¢ {¥r>p—¢}

Since ), is continuous, the set {;, > ¢ — &} is open. For this reason we use again the locality
of the Monge—Ampere product to obtain

/ MA(Y;) = / MA(max{y;. ¢ — }).
{Yr>p—¢} {Yr>p—¢}

The right hand side equals
L" — / MA (max{y,, ¢ — &})
{vr<p—e}

by Theorem 2.1. Therefore we obtain

/ MA(y3) < L — / MA(max{y.¢ —e}) = L — / MA(@).
X {Yr<p—e} {Yr<p—e}

If ¢ > 0 tends to 0, then the set {{; < ¢ — ¢} converges to {¢9 < A} hence

/X MA(Y,) < /{ L MAw),

This ends the proof.

Remark 4.1. It is well known that the classical Duistermaat—-Heckmann measure for
a Hamiltonian action has piecewise polynomial density. One can show that in our singular
setting the canonical measure has at least piecewise continuous density in A < A.. That is,
there is a piecewise continuous function f(4) such that

—dvol(Wy) = f(A)dA

holds for A < A.. In fact, as Example 3.2, one can compute vol(W}) for a general test configu-
ration using Proposition 3.1 so that vol(W}) = vol(u*L ® O(—E})) holds for some effective
divisor £, . By [22] or by [12], the left hand side has continuous derivative which is expressed
by certain restricted volumes. By the same argument one can use Proposition 3.1 to prove
Lemma 4.1 provided X is normal but we omit the detail since using [10, Lemma 1.6] is rather
simple and valid for arbitrary test configurations.
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4.3. Norms on the weak geodesic ray. We conclude this paper by discussing some
consequences of Theorem 1.1, which are concerned with the p-norm of test configuration.

Definition 4.1. Fix any test configuration (X, £) of a polarized manifold L. Let
HO(Xo. 28%) = P W
A

be the weight decomposition of the induced C*-action. Define the trace-free part of each
eigenvalue A as

_ 1 '
A= A_N_k§udlmvﬂ
and introduce the p-norms (p € Zzx¢) of the test configuration by
.1 MY
0= Jim 5 2. () amv,

and
1

. N
Ny = klinéok_";(E) dim V.

Especially in the case p = 2 we denote O, and N, by Q and ||T|? = ||T||%. Note that the
limits exist since the summations on the right hand side can be described by the appropriate
Hilbert polynomial.

It is easy to see that Q1 = bg, Ny = 0, N, = O — 2%, and
1 A bo
— — — Fy = —.
Nk N k ao

These norms are introduced by [16] and played the important role in their result for the lower
bound of the Calabi functional. We can obtain the geometric meanings of these norms in word
of weak geodesic ray.

Theorem 4.2. Let (X, £) be a test configuration and let ¢; be the weak geodesic asso-
ciated to (X, £). Then we have

MA(¢;)

%=Lmv

and MA
Np —/(% Fo)P ———= ((pt)

Proof. By the same argument in the proof of Theorem 3.1, we obtain

(e e]
n'Q, = —/ AP dvol(Wy).
—00

This can also be obtained from the result of [38] if one notes the volume characterization of the
concave function G[7] in [38]. Taking the p-th moment of the two measures in Theorem 1.1,
we deduce the claim. The formulas for N, can be proved in the same way. o
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Let us examine Theorem 4.2. In the case p = 0 it only states that nlag = fX MA(¢;)
and this can be easily seen from the definition of Bedford—Taylor’s Monge—Ampere product.
The case p = 1 yields

nlby = / Gt MA(¢r).
X

In other words, the Aubin—Mabuchi energy functional along the weak geodesic is given by

1
E(pt, 9) ::/o df/Xsét MA(¢;) = nlbot.

(For the definition of the Aubin—Mabuchi energy of a singular Hermitian metric, see [11].)
This is a result well known to the experts. For example, the proof of [5] in the Fano case
works exactly the same way to yield that along the weak geodesic bg gives the gradient of the
Aubin—Mabuchi energy. We have reproved it in the viewpoint of the associated family of graded
linear series. It is conjectured that the gradient of the K-energy at infinity corresponds to the
Donaldson—Futaki invariant. This supports the variational approach to the existence problem.
The most interesting case is p = 2. This might be a new result and yields a part of Theorem 1.2.
In particular, we obtain the following.

Corollary 4.1. For any test configuration, the norm ||T || is zero if and only if the asso-
ciated weak geodesic ray ¢; is ¢ + Fyt.

Only the case where the exponent p is even was treated in [16] to assure the positivity
of the norm, but now we may define the positive norm for odd p integrating the function |A|?,
in place of A?, by each measure. In particular, we can see that the limit

|72 := lim LZ Al pdimV
P koo km =\ k A

which cannot necessarily be described by a Hilbert polynomial, exists and coincides with
the LP-norm of the tangent vector. Thus Theorem 1.2 was proved. Letting p — +00, we
obtain

(4.9) 1T Nloo := lim |17, = S;plf/')t — Fol.

In particular, the right hand side is independent of ¢ and ¢.

Let us remark some relation with [16] and prove Theorem 1.3. Let us denote the scalar
curvature of the Kéhler metric dd“¢p by S, and its mean value by S. The main result of [16]
states that .

(0p)7 [1Spllze = by

and
(4.10) 1T Nl 1Sp — SliLa = —DE(T)

hold for any even p and the conjugate ¢ which satisfies 1/p + 1/g = 1. As a result one can
see that the existence of a constant scalar curvature Kdhler metric implies K-semistability.
In view of (4.10), [36] suggested the stronger notion of K-stability which implies

4.11) DFE(T) = 8[| T|p

- 10.1515/crelle-2014-0021
Downloaded from De Gruyter Online at 09/28/2016 08:20:40AM
via Nagoya University



146 Hisamoto, Test configuration and limit of spectral measures

for some uniform constant § > 0. One of the motivation of this definition is to show the ex-
istence of constant scalar curvature Kéhler metrics. At the same time, the above condition
excludes the pathological example raised in [23]. Corollary 4.1 supports the validity of [36]’s
suggestion since the gradient of the K-energy along the trivial ray ¢ + Fypt is zero.

Let us give an energy theoretic explanation for (4.10). Thanks to Theorem 1.2, we can
apply the Holder inequality to obtain

(4.12) (/ |§00—F0|pMA((p)) (/IS —SIqMA((p))
[ (G0 — Fo)(Sp — S)MA(‘”)

for any pair (p, g) with 1/p 4+ 1/g = 1. Then the right hand side is the minus of the gradient
of K-energy along the weak geodesic ray. The definition of the gradient for singular ¢; is not
so clear but if it was well-defined, it should be increasing with respect to ¢. Moreover the
limit gradient should be smaller just as much as the multiplicity of the central fiber than the
Donaldson—Futaki invariant. (See also [27-29].) Assuming these points we have

4.13) f (90 — Fo)(Sp — S)MA(@

Notice that (4.13) implies (4.10) for any 1 < p < +00. One of the proof of (4.13) following
the above line will be given in our preparing note in collaboration with Robert Berman and
David Witt Nystrom. In the present paper we may give a complete proof of the analogous
result for the Kidhler—FEinstein metrics of Fano manifolds. The point is that in the Fano case
we may replace the K-energy to the Ding functional

@1 > —log/ e ¥
X

to obtain the corresponding result. Here we assume L = — Ky so that the singular Hermitian
metric e~ %" can be identified with the positive measure e %" A\['_; T_ld z; A dzi. Convexity
of the Ding functional along any weak geodesic ray was established in [8] and the relation
between the gradient of the Ding functional and DF(J") was shown in [5].

— DE(T).

Theorem 4.3 ([8, Theorem 1.1]). Assume L = —Kx. For any weak sub-geodesic Vs in
the space of Kdhler metrics, the function —log f 0% e Vi is convex int.

Theorem 4.4 (Direct consequence of [5, Theorem 1.3]). Let X be a Fano manifold and
let (X, L) be a test configuration of the polarization (X, —Ky). Denote the associated weak
geodesic ray emanating from smooth ¢ by ¢;. Then along the geodesic, the gradient of the Ding
functional at infinity is bounded from above by the Donaldson—Futaki invariant. Precisely,

d
— (— log/ e~ 0r=Foh) _g(gp, — th)) < DF(7)
di |1~ X

holds.

Note that our normalization of ¢; following [33] makes ¢; — Fopt to be the corresponding
geodesic ray in [30] and [5]. As a corollary of these results we obtain

(4.14) /X (9o — Fo) (e_“’ — %!(‘0)) < DF(T)
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with some appropriate normalization for ¢, and then the same argument as (4.12) yields

(4.15) |71 > —DF(7)

L4

forany 1 < p < +4o00. Thus we proved Theorem 1.3 strictly. This can be seen as the analogue
of the Donaldson’s result in the Fano case.

Finally we remark that the strong K-stability condition (4.11) follows from the analytic
condition

(4.16) fX (90 — Fo)(Sp, — S)

MA
A < S0~ Fol.

in case Sy, is well-defined. It is interesting to ask whether this condition implies the properness
of the K-energy.
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