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We study relativistic stars in the simplest model of the de Rham-Gabadadze-Tolley massive gravity
which describes the massive graviton without a ghost propagating mode. We consider the hydrostatic
equilibrium and obtain the modified Tolman-Oppenheimer-Volkoff equation and the constraint equation
coming from the potential terms in the gravitational action. We give analytical and numerical results for
quark and neutron stars and discuss the deviations compared with general relativity and FðRÞ gravity. It is
shown that the theory under investigation leads to a small deviation from general relativity in terms of
density profiles and mass-radius relation. Nevertheless, such a deviation may be observable in future
astrophysical probes.
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I. INTRODUCTION

Late-time accelerated expansion of the Universe has been
confirmed by several independent observations [1–9]. In
order to explain the accelerated expansion, we need to
include new energy sources, which are known as dark energy
(DE). The simplest example of DE is the cosmological
constant Λ. Furthermore, by including cold dark matter
(CDM) alongside the Standard Model (SM) particles, we
obtain the well-known ΛCDM model, which successfully
describes the current epoch of the Universe. The ΛCDM
model is, however, merely one of the phenomenological
models, and from a theoretical point of view, it suffers
from several theoretical problems. For example, we need to
theoretically explain thevery large disagreement between the
theoretically estimated values of the cosmological constant
and the observational value, and the ratio of ordinary matter
and CDM with respect to DE in the current epoch.
Since one may regard that the inclusion of the cosmo-

logical constant could be a minimal extension of general
relativity, we can also consider the other extensions of
general relativity and investigate the possibility that these
extended theories could describe the real Universe. As
nonminimal extensions of general relativity to explain the
current expansion without a cosmological constant, modi-
fied gravitational theories have been proposed and inves-
tigated well (for a review, see, for instance, [10–14]). In
order to establish such a new gravitational theory, it is
important to study the cosmological models and compare
them with observational data. We should note that modified
gravitational theories could also be constrained by astro-
physical observations, for example, those of compact stars.

Recently, massive and compact neutron stars whose
masses areMNS ∼ 2M⊙ (M⊙ is the solar mass) were found
[15–18]. It could hardly be understood in the framework of
general relativity and hadron physics so far if one uses the
stellar matter equations of state, which are comfortable
within astrophysics and hadron physics. Thus, there could
be two points of view to explain massive neutron stars: one
is from the particle physics side, which requires a phe-
nomenological change of the equation of state that is not
well justified, and another is the gravitational physics side,
using the convenient equation of state for stellar matter. The
sizes of the compact objects are determined by the balance
between the degeneracy force and gravitational force. In
order to explain massive neutron stars, three approaches
seem to be reasonable: (i) the repulsive force is stronger
than that realized with the standard equations of state,
(ii) the attractive force is weaker than that predicted in
general relativity, or (iii) we accept both cases (i) and
(ii) simultaneously. From the point of view of (i) based on
hadron physics, it was suggested that equations of state
could be modified by introducing new interactions [19,20].
From the point of view of (ii) based on gravitational
physics, it has been suggested that some models of
FðRÞ gravity can explain massive and compact neutron
stars [21–23]. In this work, we take on the viewpoint of
case (ii) and study if compact objects, quark stars and
neutron stars, are realized and how the internal structure of
compact objects deviates from that in general relativity if
we assume massive gravity coupled with matter, which is
described by the standard equations of state.
The de Rham-Gabadadze-Tolley (dRGT) massive grav-

ity [24–26] (for a review, see [27]) is the ghost-free theory
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with interacting massive spin-2 field. The basic idea of the
massive spin-2 field theory was proposed by Fierz and
Pauli in Ref. [28], where the consistent free massive spin-2
theory was given by adding a tuned mass term to the free
massless spin-2 field theory on flat space-time. It was,
however, shown that the Fierz-Pauli theory cannot recover
general relativity in the massless limit, due to the so-called
van Dam-Veltman-Zakharov (vDVZ) discontinuity [29,30].
After the discovery of the vDVZ discontinuity, in order to
avoid this problem, the Fierz-Pauli theory was extended to
an interacting theory by replacing the kinetic terms with the
Ricci scalar. As a result, the vDVZ discontinuity can be
screened by a nonlinear effect called the Vainshtein
mechanism [31]. Nevertheless, the nonlinear terms gen-
erate a ghost called the Boulware-Deser (BD) ghost [32].
The problem of the BD ghost mode has been discussed for
a long time, and the problem has finally been solved in
dRGT massive gravity by introducing a new form of
mass terms.
dRGT massive gravity is considered to be able to avoid

the constraint from the Solar System and terrestrial experi-
ments thanks to the Vainshtein mechanism, where the
nonlinear effects hide the extra degree of freedom coupled
with the matter source. At the same time, the massive
graviton leads to the modification of long-range gravita-
tional force because the gravitational potential is modified
to be the Yukawa-type potential, where the scale of
modification is characterized by that of the graviton mass.
Thus, one may expect that the mass of a massive graviton
could be comparable to the cosmological constant, which
could explain the accelerated expansion of the Universe
without introducing the cosmological constant [33–37].
As we regard the dRGT massive gravity as an alternative

theory of gravity, it is interesting to apply this theory to
astrophysical phenomena as well as to the accelerated
expansion of the Universe. It is very difficult to construct
the general framework that quantifies the deviations from
the predictions of general relativity in a strong-gravity field
because the nonperturbative effects depend on the detail of
each theory and parametric treatment is not suitable [38].
Furthermore, it is significant if we could conclude that
astrophysical and cosmological applications are compatible
with observations in the specific theory of modified gravity.
For the above reasons, it is indispensable to study compact
objects in dRGT massive gravity in the same way as in
FðRÞ gravity, as an astrophysical test of massive gravity in
the strong-gravity regime.
This paper is organized as follows: in Sec. II, we give a

brief review of dRGT massive gravity and derive the
equations of motion. In Sec. III, we consider the spherically
symmetric stellar metric and derive the Tolman-
Oppenheimer-Volkoff (TOV) equations in the minimal
model of dRGT massive gravity. It is shown that one
constraint equation coming from the potential terms in the
gravitational action appears. It leads to an explicit

difference from the case of general relativity. In Sec. IV,
we present the numerical analysis for the quark star and
neutron star for some convenient equations of state. In
particular, the mass-central density and mass-radius rela-
tion are numerically analyzed. In Sec. V, we summarize the
obtained results for relativistic stars and discuss the
differences in massive gravity between general relativity
and FðRÞ gravity.

II. THE ACTION AND EQUATION OF MOTION
IN DRGT MASSIVE GRAVITY

In this section, we give a brief review of the dRGT
massive gravity and derive the equation of motion. The
action of the dRGT massive gravity [26] is given by

SdRGT ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p

×

�
R − 2m2

0

X4
n¼0

βnen

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q ��
þ Smatter: ð1Þ

Here, gμν and fμν are dynamical and reference metrics,
respectively, and κ is the gravitational coupling given in
terms of the Newton constant of gravitation G, κ2 ¼ 8πG.
In (1), the coefficients βn and m0 are free parameters. The
matrix

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
is defined as the square root of gμρfρν,

that is, � ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
μ

ρ

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
ρ

ν

¼ gμρfρν: ð2Þ

For general matrix X, enðXÞ’s are defined as polynomials
of the eigenvalues of X:

e0ðXÞ ¼ 1; e1ðXÞ ¼ ½X�;

e2ðXÞ ¼ 1

2
ð½X�2 − ½X2�Þ;

e3ðXÞ ¼ 1

6
ð½X�3 − 3½X�½X2� þ 2½X3�Þ;

e4ðXÞ ¼ 1

24
ð½X�4 − 6½X�2½X2� þ 3½X2�2

þ 8½X�½X3� − 6½X4�Þ ¼ detðXÞ;
ekðXÞ ¼ 0 for k > 4; ð3Þ

where the square brackets denote traces of the matrices, that
is, ½X� ¼ Xμ

μ. For conventional notations in this paper,
hereafter, we denote the determinant of a matrix A as
detðAÞ, and ffiffiffiffi

A
p

represents a matrix that is the square root
of A.
We should note that a nondynamical tensor is required in

order to describe the massive spin-2 field because we
cannot construct the potential terms without derivatives
only by using gμν. We may consider the invariants that
consist of gμν, for example, g2μν or g

μ
μ, but they are constants
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that correspond to the cosmological constant. We should
also note that e4ð

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þ can be ignored when we study the

dynamics because

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p
e4

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðfÞ

p
; ð4Þ

which is nondynamical since fμν is a nondynamical tensor
and does not appear in the equation of motion. By the
variation of gμν in Eq. (1), we obtain the following equation
of motion:

0 ¼ RμνðgÞ −
1

2
RðgÞgμν þ

1

2
m2

0

X3
n¼0

ð−1Þnβn

×
h
gμλYλ

ðnÞν
� ffiffiffiffiffiffiffiffiffiffi

g−1f
q �

þ gνλYλ
ðnÞμ

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �i
− κ2Tμν:

ð5Þ
Here, for a matrix X, YnðXÞ’s are defined by

Yλ
ðnÞνðXÞ ¼

Xn
r¼0

ð−1ÞrðXn−rÞλνerðXÞ; ð6Þ

or explicitly,

Y0ðXÞ ¼ 1; Y1ðXÞ ¼ X − 1½X�;

Y2ðXÞ ¼ X2 −X½X� þ 1

2
1ð½X�2 − ½X2�Þ;

Y3ðXÞ ¼ X3 −X2½X� þ 1

2
Xð½X�2 − ½X2�Þ

−
1

6
1ð½X�3 − 3½X�½X2� þ 2½X3�Þ: ð7Þ

Note that since the en’s are written in terms of the trace of
g−1f, the following formula about the variation of the trace
could be useful,

δtr

�� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
n
�

¼ n
2
tr

�
g

� ffiffiffiffiffiffiffi
g−1

q
f

�
n
δg−1

�
: ð8Þ

Then, we obtain

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðgÞp δg

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðgÞ

p
en
� ffiffiffiffiffiffiffiffiffiffi

g−1f
q ��

¼
Xn
r¼0

ð−1Þrþ1tr
�
g
� ffiffiffiffiffiffiffiffiffiffi

g−1f
q �

r
δg−1

�
en−r

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
; ð9Þ

and the third term in Eq. (5) is symmetrized with respect to
the indices μ and ν. If the metrics g and f are diagonal, the
matrix

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
is symmetric and the equation of motion is

written as

Gμν þm2
0Iμν ¼ κ2Tμν; ð10Þ

where Gμν is the Einstein tensor, and we define the sum of
interaction terms Iμν as follows:

Iμν ¼
X3
n¼0

ð−1ÞnβngμλYλ
ðnÞν

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
: ð11Þ

In Eq. (10), Tμν is the energy-momentum tensor, and we
assume that matter is minimally coupled to gravity in order
to avoid the ghost problem due to nonminimal matter
couplings [39,40].

III. MODIFIED TOV EQUATIONS

A. Ansatz

In this section, we study the static and spherical
equations of motion with the perfect fluid in hydrostatic
equilibrium. It is called the TOV equation in general
relativity. At first, we calculate the curvature and the
interaction terms for the spherically symmetric case and
check how the TOVequation is modified in dRGT massive
gravity.
For the dynamical metric gμν and reference metric fμν,

we assume the static and spherically symmetric ansatz in a
polar coordinate system,

gμνdxμdxν¼−e2ϕdt2þe2λdρ2þD2ðρÞðdθ2þsin2θdφ2Þ;
ð12Þ

fμνdxμdxν¼−hðρÞdt2þh−1ðρÞdρ2þρ2ðdθ2þsin2θdφ2Þ;
ð13Þ

where ρ is the radial coordinate and ϕ and λ are functions of
ρ, ϕ ¼ ϕðρÞ and λ ¼ λðρÞ. We note that we do not consider
the general class of the reference metric but a specific one
that is inspired by the static and spherically symmetric
solution in general relativity. hðρÞ is a function of ρ; for
example, hðrÞ ¼ 1 − 2M

r for the Schwarzschild-type metric.
We also assume that the center of the space-time described
by fμν locates at the center of physical space-time described
by gμν for simplicity.
In order to compare the difference between general

relativity and dRGT massive gravity, we change the form
of the above ansatz as follows: we define the new variable r
so that DðρÞ ¼ r2, which can be solved with respect to ρ,
ρ ¼ χðrÞ, and we find

gμνdxμdxν ¼ −e2ϕdt2 þ e2λdr2 þ r2ðdθ2 þ sin2θdφ2Þ;
ð14Þ

fμνdxμdxν ¼ −hðrÞdt2 þ h−1ðrÞðχ0ðrÞÞ2dr2
þ χ2ðrÞðdθ2 þ sin2 θdφ2Þ: ð15Þ

We note that the scalar function χðrÞ corresponds to the
degree of freedom of the Stukelberg field. The general
coordinate transformation invariance is broken in the
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massive gravity, but it can be restored by changing the
Stukelberg field. In our case, the radial coordinate is chosen
so that the dynamical metric identified with physical space-
time is treated in the same procedure as the TOV equation.
For the above ansatz, we obtain the nonvanishing

components of the Ricci tensor and the Ricci scalar as
follows,

Rtt ¼
�
ϕ00 þ ðϕ0Þ2 − ϕ0λ0 þ 2ϕ0

r

�
e2ðϕ−λÞ; ð16Þ

Rrr ¼ −ϕ00 − ðϕ0Þ2 þ ϕ0λ0 þ 2λ0

r
; ð17Þ

Rθθ ¼ −ð1 − λ0rþ ϕ0rÞe−2λ þ 1; ð18Þ

Rφφ ¼ sin2 θRθθ; ð19Þ

R ¼ 2

�
−ϕ00 − ðϕ0Þ2 þ ϕ0λ0 þ 2λ0

r
−
2ϕ0

r
−

1

r2

�
e−2λ þ 2

r2
;

ð20Þ

and the nonvanishing components of the Einstein tensor as
follows,

Gtt ¼
1

r2
e2ϕ −

1 − 2λ0r
r2

e2ϕ−2λ; ð21Þ

Grr ¼ −
1

r2
e2λ þ 1þ 2ϕ0r

r2
; ð22Þ

Gθθ ¼ r2
�
ϕ00 þ ðϕ0Þ2 − ϕ0λ0 −

λ0

r
þ ϕ0

r

�
e−2λ; ð23Þ

Gϕϕ ¼ r2sin2θ

�
ϕ00 þ ðϕ0Þ2 − ϕ0λ0 −

λ0

r
þ ϕ0

r

�
e−2λ: ð24Þ

B. The minimal model with flat reference metric

Next, we calculate the interaction terms in Eq. (10) to
obtain the modified TOVequation in massive gravity. It is,
however, not so easy to study all the cases with different
parameters and different reference metrics because it is
impossible to obtain the general solution for all models in
dRGT massive gravity. In this subsection, thus, we specify
the parameters βn and reference metric and study the
modified TOV equation.
First, we introduce a minimal model of the dRGT

massive gravity where the parameters βn are chosen as
follows:

β0 ¼ 3; β1 ¼ −1; β2 ¼ 0; β3 ¼ 0: ð25Þ

Here, we should note that the interaction terms in (1) can be
expressed in terms of another variable K ¼

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
− 1,

X3
n¼0

βnen

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
¼

X3
n¼0

αnenðKÞ: ð26Þ

The parameters αn are related to βn by the following
relation,

βi ¼ ð4 − iÞ!
X4
n¼i

ð−1Þnþi

ð4 − nÞ!ðn − iÞ! αn: ð27Þ

Then, if we require the flat solution and the recovery of the
covariant Fierz-Pauli action in the limit where the gravi-
tational coupling vanishes, the general action of massive
gravity with parameters βn are reduced to a two-parameter
family with parameters α3 and α4, where the minimal
model corresponds to ðα3; α4Þ ¼ ð1; 1Þ.
So, we find that the interaction terms in the minimal

model are given as follows:

Itt ¼ gttðβ0Yt
ð0Þt − β1Yt

ð1Þt þ β2Yt
ð2Þt − β3Yt

ð3ÞtÞ

¼ −e2ϕðrÞ
�
3 −

2χðrÞ
r

−
χ0ðrÞffiffiffiffiffiffiffiffiffi
hðrÞp e−λðrÞ

�
; ð28Þ

Irr ¼ grrðβ0Yr
ð0Þr − β1Yr

ð1Þr þ β2Yr
ð2Þr − β3Yr

ð3ÞrÞ

¼ e2λðrÞ
�
3 −

2χðrÞ
r

−
ffiffiffiffiffiffiffiffiffi
hðrÞ

p
e−ϕðrÞ

�
; ð29Þ

Iθθ ¼ gθθðβ0Yθ
ð0Þθ − β1Yθ

ð1Þθ þ β2Yθ
ð2Þθ − β3Yθ

ð3ÞθÞ

¼ r2
�
3 −

χðrÞ
r

−
χ0ðrÞffiffiffiffiffiffiffiffiffi
hðrÞp e−λðrÞ −

ffiffiffiffiffiffiffiffiffi
hðrÞ

p
e−ϕðrÞ

�
; ð30Þ

Iϕϕ ¼ gϕϕðβ0Yϕ
ð0Þϕ − β1Y

ϕ
ð1Þϕ þ β2Y

ϕ
ð2Þϕ − β3Y

ϕ
ð3ÞϕÞ

¼ r2sin2θ

�
3 −

χðrÞ
r

−
χ0ðrÞffiffiffiffiffiffiffiffiffi
hðrÞp e−λðrÞ −

ffiffiffiffiffiffiffiffiffi
hðrÞ

p
e−ϕðrÞ

�
:

ð31Þ

Now, we derive the equation of motion (10) in the minimal
model. For the matter field, we consider a perfect fluid with
the following energy-momentum tensor,

Tμν ¼ diagðe2ϕρ; e2λP; r2P; r2sin2θPÞ: ð32Þ

Then, one obtains ðt; tÞ, ðr; rÞ, and ðθ; θÞ; ðφ;φÞ compo-
nents as follows:

−8πGρðrÞ ¼ −
1

r2
þ 1 − 2λ0ðrÞr

r2
e−2λðrÞ

þm2
0

�
3 −

2χðrÞ
r

−
χ0ðrÞffiffiffiffiffiffiffiffiffi
hðrÞp e−λðrÞ

�
; ð33Þ
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8πGPðrÞ ¼ −
1

r2
þ 1þ 2ϕ0ðrÞr

r2
e−2λðrÞ

þm2
0

�
3 −

2χðrÞ
r

−
ffiffiffiffiffiffiffiffiffi
hðrÞ

p
e−ϕðrÞ

�
; ð34Þ

8πGPðrÞ ¼ e−2λðrÞ
�
ϕ00 þ ðϕ0Þ2 − ϕ0λ0 −

λ0

r
þ ϕ0

r

�

þm2
0

�
3 −

χðrÞ
r

−
χ0ðrÞffiffiffiffiffiffiffiffiffi
hðrÞp e−λðrÞ

−
ffiffiffiffiffiffiffiffiffi
hðrÞ

p
e−ϕðrÞ

�
: ð35Þ

We should note that the ðθ; θÞ or ðφ;φÞ component of the
field equation plays a crucial role in contrast to general
relativity. In the static and spherically symmetric case, the
Einstein equation leads to two nontrivial equations, ðt; tÞ
and ðr; rÞ components. However, in massive gravity, we
need to take the ðθ; θÞ or ðφ;φÞ component into account
because the degrees of freedom increase by introducing the
second metric fμν.
Next, we fix the reference metric fμν. For simplicity, we

assume that hðrÞ ¼ 1 in the reference metric fμν, that is, we
consider the Minkowski metric as the reference one with an
extra arbitrary function χðrÞ:

fμνdxμdxν ¼ −dt2 þ ðχ0ðrÞÞ2dr2 þ χ2ðrÞðdθ2 þ sin2dφ2Þ;
hðrÞ ¼ 1: ð36Þ

Note that the choice of reference metric requires special
attention for cosmological applications. If one considers the
simple Friedmann-Robertson-Walker (FRW) ansatz for gμν
with the Minkowski metric for fμν, one cannot obtain
nontrivial flat FRW cosmology [33,34]. However, in this
case we choose the flat reference metric because it is better
to limit the number of free parameters for the numerical
calculation later. As a result, in our model, the free
parameter is only the graviton mass. Furthermore, we fix
the graviton mass by choosing the mass to be the cosmo-
logical scale.
In this case, the ðt; tÞ, ðr; rÞ, and ðθ; θÞ; ðφ;φÞ compo-

nents of the equation of motion are given by

−8πGρðrÞ ¼ −
1

r2
þ 1 − 2λ0ðrÞr

r2
e−2λðrÞ

þm2
0

�
3 −

2χðrÞ
r

− χ0ðrÞe−λðrÞ
�
: ð37Þ

8πGPðrÞ ¼ −
1

r2
þ 1þ 2ϕ0ðrÞr

r2
e−2λðrÞ

þm2
0

�
3 −

2χðrÞ
r

− e−ϕðrÞ
�
; ð38Þ

8πGPðrÞ ¼ e−2λðrÞ
�
ϕ00 þ ðϕ0Þ2 − ϕ0λ0 −

λ0

r
þ ϕ0

r

�

þm2
0

�
3 −

χðrÞ
r

− χ0ðrÞe−λðrÞ − e−ϕðrÞ
�
: ð39Þ

Finally, we change the variables and rewrite the field
equations (37) and (38). Let us define the variable MðrÞ,
which is called the mass parameter, as follows:

e−2λðrÞ ¼ 1 −
2GMðrÞ

r
; ð40Þ

because we expect that external space-time is described by
the asymptotically Schwarzschild metric. Differentiating
the above relation (40) with respect to r, we obtain the
following equation,

−
2G
r2

M0ðrÞ ¼ −
1

r2
þ e−2λð1 − 2rλ0Þ 1

r2
: ð41Þ

Equation (37) can be rewritten in terms of the mass
parameter MðrÞ as

2G
r2

M0ðrÞ¼8πGρðrÞ

þm2
0

�
3−

2χðrÞ
r

−χ0ðrÞ
�
1−

2GMðrÞ
r

�
1=2

�

GM0ðrÞ¼4πGρðrÞr2

þ1

2
m2

0r
2

�
3−

2χðrÞ
r

−χ0ðrÞ
�
1−

2GMðrÞ
r

�
1=2

�
:

ð42Þ

On the other hand, when we operate the covariant
derivative on Eq. (10), we find that

∇μðGμν þm2
0I

μνÞ ¼ ∇μTμν: ð43Þ

In general relativity with Iμν ¼ 0, ∇μTμν ¼ 0 is automati-
cally derived from the Bianchi identity ∇μGμν ¼ 0.
Therefore, it is reasonable that Tμν is assumed to be
separately conserved, and the conservation law ∇μTμν ¼ 0

gives

ϕ0 ¼ −ðPþ ρÞ−1P0; ϕ ¼ −
Z

ðPþ ρÞ−1P0dr: ð44Þ

Equation (38) can be rewritten in terms of the energy-
density ρ and the pressure P as
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8πGPðrÞ ¼ −
1

r2
þ 1

r2
½1 − 2ðPþ ρÞ−1P0r�

�
1 −

2GMðrÞ
r

�
þm2

0

�
3 −

2χðrÞ
r

− e
R

ðPþρÞ−1P0dr
�
: ð45Þ

Furthermore, Eq. (39) is given by

8πGPðrÞ ¼
�
−ððPþ ρÞ−1P0Þ0 þ ððPþ ρÞ−1P0Þ2 − 1

r
ðPþ ρÞ−1P0

��
1 −

2GMðrÞ
r

�

−
1

2

�
ðPþ ρÞ−1P0 −

1

r

��
1 −

2GMðrÞ
r

�0
þm2

0

�
3 −

χðrÞ
r

− χ0ðrÞ
�
1 −

2GMðrÞ
r

�
1=2

− e
R

ðPþρÞ−1P0dr
�
: ð46Þ

Additionally, the interaction term Iμν has to be separately conserved, ∇μIμν ¼ 0, because ∇μGμν ¼ 0 and ∇μTμν ¼ 0.
Note that we can express the interaction terms as Iμν ¼ Xμ

λg
λν, where Xμ

λ is defined as

Xμ
λ ¼ diag

�
3 −

2χðrÞ
r

− χ0ðrÞe−λðrÞ; 3 − 2χðrÞ
r

− e−ϕðrÞ;3 −
χðrÞ
r

− χ0ðrÞe−λðrÞ − e−ϕðrÞ; 3 −
χðrÞ
r

− χ0ðrÞe−λðrÞ − e−ϕðrÞ
�
:

ð47Þ
Thus, the constraint is written as ∇μX

μ
λ ¼ 0, and a nontrivial relation is given by ∇μX

μ
r ¼ 0 as

0 ¼
�
2

r
þ ϕ0ðrÞ

�
χ0ðrÞe−λ − 2χ0ðrÞ

r
¼

�
2

r
− ðPþ ρÞ−1P0

��
1 −

2GMðrÞ
r

�
1=2

−
2

r
: ð48Þ

Now, we introduce the dimensionless variables defined by

M → mM⊙; r → rgr; ρ → ~ρM⊙=r3g; P → pM⊙=r3g; m0 → αM⊙: ð49Þ
Here M⊙ is the solar mass and rg ¼ GM⊙. After the short calculation, Eqs. (42), (45), and (46) are rewritten as

m0ðrÞ ¼ 4π ~ρðrÞr2 þ 1

2
α2ðrgM⊙Þ2r2

�
3 −

2χðrÞ
r

− χ0ðrÞ
�
1 −

2mðrÞ
r

�
1=2

�
; ð50Þ

8πpðrÞ ¼ −
1

r2
þ 1

r2
½1 − 2ðpþ ~ρÞ−1p0r�

�
1 −

2mðrÞ
r

�
þ α2ðrgM⊙Þ2

�
3 −

2χðrÞ
r

− e
R

ðpþ~ρÞ−1p0dr
�
; ð51Þ

8πpðrÞ ¼
�
−ððpþ ~ρÞ−1p0Þ0 þ ððpþ ~ρÞ−1p0Þ2 − 1

r
ðpþ ~ρÞ−1p0

��
1 −

2mðrÞ
r

�
−
1

2

�
ðpþ ~ρÞ−1p0 −

1

r

��
1 −

2mðrÞ
r

�0

þ α2ðrgM⊙Þ2
�
3 −

χðrÞ
r

− χ0ðrÞ
�
1 −

2mðrÞ
r

�
1=2

− e
R

ðpþ~ρÞ−1p0dr
�
: ð52Þ

And, the constraint (48) is rewritten as

0 ¼
�
−ðpþ ~ρÞ−1p0 þ 2

r

��
1 −

2mðrÞ
r

�
1=2

−
2

r
: ð53Þ

For m0 ¼ 0, Eqs. (50) and (51) reduce to ordinary TOV
equations consistently,

m0ðrÞ ¼ 4π ~ρðrÞr2;

p0ðrÞ ¼ 4πpðrÞr3 þmðrÞ
rðr − 2mðrÞÞ ðpðrÞ þ ~ρðrÞÞ: ð54Þ

We should note that the constraint equation (53) does not
appear in the above equations because the interaction terms
do not appear in the action (1). We also note that, in

Eq. (38), e−ϕ appears from the mass term, which is a unique
property in massive gravity. Since ϕ0 can be expressed as a
function of ρ and P in Eq. (44), the integrations of ρ and P
appear in the modified TOVequation. As we will see in the
next subsection, the TOV equation in massive gravity
becomes a second-order differential equation because of
the integration.

C. Constraint and field equations

In the previous subsection, we saw that one constraint
equation comes from the conservation law for the inter-
action terms. In this subsection, we substitute the constraint
into two field equations and complete their further defor-
mation into a form suitable for numerical calculation.
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At first, the field equations are written as

m0ðrÞ ¼ 4π ~ρðrÞr2 þ 1

2
α2ðrgM⊙Þ2r2

�
3 −

2χðrÞ
r

− χ0ðrÞ
�
1 −

2mðrÞ
r

�
1=2

�
; ð55Þ

8πpðrÞ ¼ −
1

r2
þ 1

r2
ð1 − 2qrÞ

�
1 −

2mðrÞ
r

�
þ α2ðrgM⊙Þ2

�
3 −

2χðrÞ
r

− e
R

qdr
�
; ð56Þ

8πpðrÞ ¼
�
q

�
q −

1

r

�
− q0

��
1 −

2mðrÞ
r

�
−
1

2

�
q −

1

r

��
1 −

2mðrÞ
r

�0

þ α2ðrgM⊙Þ2
�
3 −

χðrÞ
r

− χ0ðrÞ
�
1 −

2mðrÞ
r

�
1=2

− e
R

qdr
�
; ð57Þ

and the constraint is

0 ¼
�
2

r
− q

��
1 −

2mðrÞ
r

�
1=2

−
2

r
: ð58Þ

Here, we define a new variable q as

q≡ ðpþ ~ρÞ−1p0; ~ρ ¼ p0

q
− p: ð59Þ

Equation (58) is the constraint for ∇μIμν ¼ 0 and can be rewritten as

�
1 −

2mðrÞ
r

�
1=2

¼
�
1 −

1

2
qr

�
−1
; ð60Þ

mðrÞ ¼ 1

2
r −

1

2
r

�
1 −

1

2
qðrÞr

�
−2
; ð61Þ

m0ðrÞ ¼ 1

2
−
1

2

�
1 −

1

2
qðrÞr

�
−2

−
1

2
r

�
1 −

1

2
qðrÞr

�
−3
ðq0rþ qÞ: ð62Þ

Thus, by substituting Eq. (58) into Eqs. (55), (56), and (57), we obtain

1

2
−
1

2

�
1 −

1

2
qr

�
−2

−
1

2
r

�
1 −

1

2
qr

�
−3
ðq0rþ qÞ

¼ 4π

�
p0

q
− p

�
r2 þ 1

2
α2ðrgM⊙Þ2r2

�
3 −

2χðrÞ
r

− χ0ðrÞ
�
1 −

1

2
qr

�
−1
�

8πpðrÞ ¼ 8π
p0

q
−

1

r2
þ 1

r2

�
1 −

1

2
qðrÞr

�
−2

þ 1

r

�
1 −

1

2
qðrÞr

�
−3
ðq0rþ qÞ

þ α2ðrgM⊙Þ2
�
3 −

2χðrÞ
r

− χ0ðrÞ
�
1 −

1

2
qr

�
−1
�
; ð63Þ

8πpðrÞ ¼ −
1

r2
þ 1

r2
ð1 − 2qrÞ

�
1 −

1

2
qr

�
−2

þ α2ðrgM⊙Þ2
�
3 −

2χðrÞ
r

− e
R

qdr
�
; ð64Þ

8πpðrÞ ¼
�
q

�
q −

1

r

�
− q0

��
1 −

1

2
qr

�
−2

−
1

2

�
q −

1

r

�
ðq0rþ qÞ

�
1 −

1

2
qr

�
−3

þ α2ðrgM⊙Þ2
�
3 −

χðrÞ
r

− χ0ðrÞ
�
1 −

1

2
qr

�
−1

− e
R

qdr
�
: ð65Þ
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D. Consistency check

In the last section, we derived the three field equa-
tions where the mass parameter mðrÞ is eliminated by
substituting the constraint. Here, we have three arbitrary
functions; χ, p, and ~ρ. On the other hand, we have three

field equations and use one equation of state later. So,
the system appears overconstrained, and we need to
check that the two equations are identical.
From Eq. (63) and Eq. (65), we can eliminate χ0 and

obtain

−8π
p0

q
¼ −

1

r2
þ
�
1

r2
− q

�
q −

1

r

�
þ q0

��
1 −

1

2
qr

�
−2

þ 1

2

�
qþ 1

r

�
ðq0rþ qÞ

�
1 −

1

2
qr

�
−3

þ α2ðrgM⊙Þ2
�
−
χðrÞ
r

þ e
R

qdr
�
: ð66Þ

Furthermore, we use Eq. (64) and eliminate χ:

8πpðrÞ þ 16π
p0

q
¼ 1

r2
−

1

r2
ð2q0r2 − 2q2r2 þ 4qrþ 1Þ

�
1 −

1

2
qr

�
−2

−
1

r
ð1þ qrÞðq0rþ qÞ

�
1 −

1

2
qr

�
−3

þ 3α2ðrgM⊙Þ2
h
1 − e

R
qdr

i
: ð67Þ

On the other hand, from Eq. (64), we obtain

α2ðrgM⊙Þ2χ0 ¼ −4πp0r − 4πp −
1

2r2

�
1 −

1

2
qr

�
−2
ð1 − 2qrÞ

þ 1

2r

�
1 −

1

2
qr

�
−3
ðq0rþ qÞð1 − 2qrÞ − 1

r

�
1 −

1

2
qr

�
−2
ðq0rþ qÞ

þ 1

2r2
þ 1

2
α2ðrgM⊙Þ2

h
3 − ð1þ qrÞe

R
qdr

i
; ð68Þ

and substitute it into Eq. (63)

8πp ¼ 8π
p0

q
−

1

r2
þ 1

r2

�
1 −

1

2
qðrÞr

�
−2

þ 1

r

�
1 −

1

2
qðrÞr

�
−3
ðq0rþ qÞ þ 3α2ðrgM⊙Þ2

þ8πp −
1

r2

�
1 −

1

2
qr

�
−2
ð1 − 2qrÞ þ 1

r2
− α2ðrgM⊙Þ2

h
3 − e

R
qdr

i
þ
�
4πp0rþ 4πpþ 1

2r2

�
1 −

1

2
qr

�
−2
ð1 − 2qrÞ

−
1

2r

�
1 −

1

2
qr

�
−3
ðq0rþ qÞð1 − 2qrÞ þ 1

r

�
1 −

1

2
qr

�
−2
ðq0rþ qÞ

−
1

2r2
−
1

2
α2ðrgM⊙Þ2

h
3 − ð1þ qrÞe

R
qdr

i��
1 −

1

2
qr

�−1
: ð69Þ

After tedious calculation, we obtain the following equation,

8πpþ 16π
p0

q
¼ 1

r2
−

1

r2
ð2q0r2 − 2q2r2 þ 4qrþ 1Þ

�
1 −

1

2
qr

�
−2

−
1

r

�
1 −

1

2
qr

�
−3
ðq0rþ qÞð1þ qrÞ þ 3α2ðrgM⊙Þ2

h
1 − e

R
qdr

i
: ð70Þ

Equations (67) and (70) are degenerate, and the number of functions and that of equations are identical.
Finally, we find that we need to solve the following equation,

8πpqþ 16πp0 ¼ q
r2

−
1

r2
ð2qq0r2 − 2q3r2 þ 4q2rþ qÞ

�
1 −

1

2
qr

�
−2

−
q
r

�
1 −

1

2
qr

�
−3
ðq0rþ qÞð1þ qrÞ þ 3α2ðrgM⊙Þ2

h
q − qe

R
qdr

i
: ð71Þ
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For the equation of state that relates the energy density ρðrÞ
with the pressure pðrÞ, Eq. (71) is expressed as the
differential equation with respect to pðrÞ. By solving
the differential equation, we can find the r-dependence
of the pressure pðrÞ.

IV. NUMERICAL ANALYSIS FOR
RELATIVISTIC STARS

A. Quark stars

In the last section, the fundamental equations and the
dynamical variables have been formulated to investigate a
relativistic star in dRGT massive gravity. In this section, we
study the quark star and neutron star by numerical
simulations. Such stars have been studied in FðRÞ gravity
[21–23,41,42]. We compare our results in massive gravity
with those in FðRÞ gravity as well as in general relativity.
The methodology in our numerical simulations is dis-

cussed below. In our study, we solve the third order
ordinary differential equation with three boundary con-
ditions. We set the first conditions as a value of central
density by hand because we need relations of some
parameters for a certain central density region. Also, we
set the second condition as p0ðr ¼ 0Þ ¼ 0. Finally, we set
the third condition to be that the radius of the star becomes
identical with that in general relativity for the choice of
central density. The radius of the star r ¼ r0 is defined by
the condition pðr0Þ ¼ 0.
For solving the equation numerically, we treat the

problem as an initial-value problem at the center r ¼ 0.
We set two of the initial conditions as a value of central
density and p0ðr ¼ 0Þ ¼ 0 as before. But we should choose
the value of p00ðr ¼ 0Þ such that the last boundary con-
dition is satisfied. So we optimize the value of p00ðr ¼ 0Þ
(shooting method).
We should note that the only free parameter in our model

is the graviton mass, and we assume m0 ¼
ffiffiffiffi
Λ

p
because we

use dRGT massive gravity. Also, the graviton mass is
constrained by observation in the Solar System and should
be small [43–48].
At first, we study the quark star, using the equation of

state called the MIT bag model [42]. The equation of state
is given by

p ¼ cðρ − 4BÞ: ð72Þ

Here, c depends on the mass of strange quark ms, and c ¼
0.28 if we choose ms ¼ 250 ½MeV�. B is called a bag
constant, which we fix as B ¼ 60 MeV=fm3. Then, we
search ρðrÞ, which satisfies pðrÞ ¼ 0. Note that the
equation of state is linear; thus, we stop the calculation
if pðrÞ gets negative and define r ¼ r0 as the point between
pðrÞ > 0 and pðrÞ < 0.
We plot the m − ~ρ, m − rmax relations in general

relativity (blue line) and massive gravity (orange line)

(see Figs. 1 and 2). The total mass of the quark star is
smaller than that in general relativity.

B. Neutron stars

Next, we study the neutron stars, using the equation of
state called the SLy model [49]. The equation of state is
given by

ξ ¼ logðρ=g cm−3Þ;
ζ ¼ logðP=dyn cm−2Þ;

f0ðxÞ ¼
1

ex þ 1
; ð73Þ

ζ ¼ 6.22þ 6.121ξþ 0.006004ξ3

1þ 0.16345ξ
f0ð6.50ðξ − 11.8440ÞÞ

þ ð17.24þ 1.065ξÞf0ð6.54ð11.8421 − ξÞÞ
þ ð−22.003þ 1.5552ξÞf0ð9.3ð14.19 − ξÞÞ
þ ð23.73 − 1.508ξÞf0ð1.79ð15.13 − ξÞÞ: ð74Þ

In this case, we utilize a function fitted to numerical
points in the SLy model (see Fig. 3), which is valid if
ρ ≥ 105 ½g=cm3�. We should note that the equation of state

14.6 14.8 15.0 15.2 15.4 15.6 15.8
log( /g cm–3)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
m(rmax)

GR
MG

FIG. 1. This figure shows the mass-central density relations for
quark star in general relativity and massive gravity.

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5
rmax[km]0.0

0.5

1.0

1.5

2.0
m(rmax)

GR
MG

FIG. 2. This figure shows the mass-radius relations for quark
star in general relativity and massive gravity.
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includes a logarithmic function, and the radius is ill defined
if pðrÞ < 0. Therefore, in this case, we define the radius
r ¼ r0 as pðr0Þ < 10−11 and remove the ill-defined points.
We plot them − ~ρ,m − rmax relations (see Figs. 4 and 5),

where we interpolate lines between plotted points after we
remove the ill-behaved points. The region of total mass is
narrow compared with the case in general relativity; that is,
a massive neutron star cannot be realized.

V. SUMMARY AND DISCUSSION

We have investigated the relativistic stars in the dRGT
massive gravity, which is a nonlinear theory of massive
gravitons. We assumed the perfect fluid in hydrostatic
equilibrium with the standard equation of state, and after
we specified the parameters and reference metric and
assumed that the graviton mass is comparable with the
cosmological constant, we derived the mass-central density
and mass-radius profile for quark stars and neutron stars
numerically.
We have concluded that the TOVequation is corrected by

the term that is proportional to the graviton mass, which
results from the potential term of massive gravitons in the
action, and one constraint equation appears if we assume
conservation of the energy-momentum tensor. The correc-
tion is very small if we consider the light graviton mass
against a massive object. The mass-radius relation is more
constrained than that in general relativity, and we have
shown that the maximal mass gets smaller for quark stars
and neutron stars. Therefore, the compact massive neutron
star cannot be explained in this specific version of dRGT
massive gravity, which is different from FðRÞ gravity
[21,22,41]. However, the results of our work do not indicate
that dRGT massive gravity should be excluded by obser-
vation. Indeed, we have assumed the standard equations of
state to study the maximal mass as well as a particular
minimal version of massive gravity. It could be that the
massive neutron star could be possible if we choose
different equations of state or consider a more complicated
version of massive gravity with more parameters.
Although the massive neutron star cannot be realized, we

can distinguish dRGT massive gravity from general rela-
tivity. The mass-central density and mass-radius relation for
the quark star show that the deviation from general
relativity is very small. However, for the neutron star,
quite an important difference appears between the cases of
a small radius and a large one. This may be evidence to
quantify the difference from general relativity in the strong-
gravity regime. This deviation is considered to be derived
from the constraint equation (58), which relates the energy
density and pressure inside the neutron star. At the same
time, the effect of the mass term is very small, and it is
given by the ratio between the graviton mass and neutron
star mass ∼Oðα2Þ. The mass term affects the geometry
outside the star and causes the accelerated expansion of the
Universe at large scales. Note that the constraint does not
depend on the mass of the graviton.
On the other hand, neutron stars in FðRÞ gravity have

been studied in order to test it in astrophysical phenom-
enology. In previous studies, the gravitational action was
assumed to be FðRÞ ¼ Rþ hðRÞ, where the function fðRÞ
corresponds to the deviation from general relativity. The
mass-central density and mass-radius relation were studied
as well in our work, and it has been shown that, for a

6 8 10 12 14 16 18
rmax

0.5

1.0

1.5

2.0

m(rmax)
mass–radius relation

GR
MG

FIG. 5. This figure shows the mass-radius relations for neutron
star in general relativity and massive gravity.

FIG. 3. SLy equation of state.

14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8
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FIG. 4. This figure shows the mass-central density relations for
neutron star in general relativity and massive gravity.
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specific function of fðRÞ, the massive neutron star whose
mass M ∼ 2M⊙ is realized.
In this work, we did not study all models of dRGT

massive gravity because we fixed the free parameters βn
and the reference metric fμν. Thus, we have two simple
ways to generalize our work. First, one can change the
parameters α3 and α4 in the two-parameter family of dRGT
massive gravity. It means that the potential of the massive
graviton is changed and it would lead to a different mass-
radius relation. Second, we can change the reference metric
from Minkowski to other ones. As we mentioned, we have
considered the specific class of the reference metric and
formulated the modified TOV equation. A flat reference
metric brings a simple but nontrivial modification to the
TOV equation. The reference metric may be chosen in a
more general form, so that it may not be the solution of
equations of motion in general relativity. Regarding the
choice of reference metric, we can also generalize our study
to the massive bigravity theory, which describes the
interaction between the massless spin-2 field, correspond-
ing to usual massless graviton, and massive spin-2 field
[50–52] [for the FðRÞ gravity extension of massive gravity,
see [53–55]]. In bigravity, the reference metric is dynamical
and determined by the equation of motion; thus, we need
not fix the reference metric by hand.
Finally, we make some remarks about compact stars in

dRGT massive gravity. The compact stars usually have a
maximal mass, and then gravitational collapse to a black
hole is inevitable. If the horizon is formed, the interaction
terms diverge at the horizon because of

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
. This

singularity is not removable; therefore, the naked singu-
larity appears. However, we do not know what happens
after gravitational collapse, precisely.
In massive gravity, the basic equation forms as

Gμν þm2
0Iμν ¼ κ2Tμν. For example, in the case of the

Schwarzschild metric, the Einstein tensor is equal to zero,
Gμν ¼ 0. If the energy-momentum tensor Tμν ¼ 0, the

interaction terms Iμν should be zero although these

terms include a nontrivial effect caused by
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
, except

for the case that fμν is proportional to the Schwarzschild
metric. For general space-time with a horizon, if the
interaction terms diverge at the horizon, Gμν and/or Tμν

should diverge, although the strength of the gravitational
force, curvature, is finite at the horizon; thus, the energy-
density and pressure are also finite. From the viewpoint of
analogy to classical mechanics, the mass term is a potential
of the metric, and the solution cannot arrive at the horizon if
the potential goes to positive infinity at the horizon. For the
above reasons, the metric with a horizon may not be a
solution.
dRGT massive gravity has the cutoff scale Λ3, where the

ghost mode caused by the higher derivatives is suppressed.
Λ3 depends on the graviton massm0, and the cutoff scale is
low if the graviton mass is small. In this work, we have
assumed m0 ¼

ffiffiffiffi
Λ

p
; then, Λ3 ∼ 1000 ½km�, which is larger

than the scale of compact stars. Heavier massive gravitons
make the cutoff scale higher, but it spoils the motivation to
explain the late-time acceleration as modified gravity. If we
accept the cosmological constant and heavy graviton mass,
we can explain relativistic stars, and our numerical results
do not change drastically because the correction is propor-
tional to the ratio between the graviton mass and the
massive star, and it is still small.
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