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In this paper we investigate how to realize various quite well-known cosmological bouncing models in
the context of the recently developed unimodular FðRÞ gravity. Particularly, we shall study the matter
bounce scenario, the singular bounce, the superbounce and a symmetric bounce scenario. We present the
behavior of the Hubble radius for each of the bouncing models we shall take into account, and we
investigate which era of the bouncing model is responsible for the cosmological perturbations. As we shall
demonstrate, the various bouncing models do not behave in the same way, so the cosmological
perturbations for each model may correspond to a different era, in comparison to other models. Also
we present which unimodular FðRÞ gravity realizes each model. We also show that Newton’s law is not
modified in the unimodular FðRÞ gravity, which also is proven to be a ghost-free theory, and in addition we
discuss the matter stability issue. Finally, we demonstrate how it is possible to solve a cosmological
constant problem in the context of unimodular FðRÞ gravity.
DOI: 10.1103/PhysRevD.93.084050

I. INTRODUCTION

The big bounce alternative to the standard big bang theory
is a quite appealing scenario, since the initial singularity
problem is consistently remedied. In the context of the
bouncing cosmology, the Universe contracts until a minimal
radius is reached, at which point the Universe bounces off
and starts to expand. Since aminimal radius is reached, there
is no initial singularity, as in the standard inflationary
cosmologies, and this is a quite appealing feature. Apart
from the absence of the initial singularity, it has been shown
in the literature that the big bounce cosmologies [1–28] can
provide a viable and consistent alternative scenario to the
standard inflationary paradigm (for reviews see for instance
[29–33]). In principle, someone could claim that the infla-
tionary paradigm is more likely to have occurred in the past,
but this is not so, since the latest observations from the
Planck collaboration [34,35] strongly indicate that the
resulting power spectrum of the primordial curvature per-
turbations is almost scale invariant, which cannot be
necessarily connected to an inflationary era. Of course,
many inflationary models can result to a nearly scale

invariant power spectrum, but this is not a proof that inflation
ever existed. In fact, it is possible that bouncing cosmologies
can generate a nearly scale invariant power spectrum too, as
in the case of the matter bounce scenario [19–28]. In view of
the cosmological viability of the bouncing cosmologies, and
also due to the appealing feature of not having the initial
singularity problem, in this paper we shall investigate how
bouncing cosmologies can be realized by the recently
developed unimodular FðRÞ gravity theory [36].
Initially, the unimodular Einstein-Hilbert gravity [37–62]

theory was developed in order to provide a solution to the
cosmological constant problem [62,63], in which case
the cosmological constant arises from the trace-free part
of the Einstein equations, and effectively the cosmological
constant is not added by hand in the theory. In the standard
unimodular Einstein-Hilbert gravity, the technique for
obtaining a trace-free part of the Einstein equations is
to fix the determinant of the metric

ffiffiffiffiffiffi−gp
to be a fixed

number, or some function of the space-time coordinates
used. An interesting feature of the resulting theory is that
the cosmological perturbations are the same with the
Einstein-Hilbert gravity, at least at the linear perturbation
theory approach [58,59]. Nevertheless, it is possible to spot
some differences on the microwave temperature anisotro-
pies and gravitational potential Sachs-Wolfe relation, since

*nojiri@gravity.phys.nagoya‑u.ac.jp
†odintsov@ieec.uab.es
‡v.k.oikonomou1979@gmail.com

PHYSICAL REVIEW D 93, 084050 (2016)

2470-0010=2016=93(8)=084050(14) 084050-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.93.084050
http://dx.doi.org/10.1103/PhysRevD.93.084050
http://dx.doi.org/10.1103/PhysRevD.93.084050
http://dx.doi.org/10.1103/PhysRevD.93.084050


in the unimodular gravity, the shift variable cannot be equal
to zero, as was demonstrated in Ref. [59].
In a recent study [36] we extended the unimodular

gravity formalism in the case of FðRÞ gravity [for reviews
on FðRÞ gravity, see [64–69]], in which case, in order for
the unimodular constraint to be satisfied, we modified the
metric accordingly. Also we introduced a Lagrange multi-
plier, which by varying the metric with respect to it,
resulted to the unimodular constraint. Our motivation
was the fact that in the context of the standard FðRÞ
gravity, many exotic scenarios which was not possible to
realize in the standard Einstein-Hilbert gravity, can be
consistently realized in the FðRÞ gravity theory, for
example the unified description of early and late-time
acceleration [70]. For more viable examples of FðRÞ
gravity unifying inflation with dark energy, see
Refs. [71–79]. As a result of our work, we provided a
reconstruction method which enabled us to realize various
cosmological scenarios. In this paper we shall use the
formalism we developed in [36], in order to investigate how
to realize certain bouncing cosmologies. Particularly, we
shall investigate how the matter bounce scenario [19–28],
the superbounce [16–18], the singular bounce [80–83] and
the symmetric bounce can be realized in the context of a
vacuum unimodular FðRÞ gravity theory, and with vacuum
we mean that no matter fluids are present. After providing
some essential features for the aforementioned cosmolo-
gies, we proceed by using the reconstruction method [36],
and we present which unimodular FðRÞ gravity can realize
the aforementioned cosmologies.
Another issue that we will address is related to the

cosmological constant in the context of the unimodular
FðRÞ gravity. Using some simple considerations, we
demonstrate how a cosmological constant can naturally
arise in the context of the unimodular FðRÞ gravity, as in
the case of the unimodular Einstein-Hilbert gravity.
Finally, in all the studies which we present in the next

sections, we assumed that the bounce occurs in the
cosmological time t-variable. The unimodular FðRÞ gravity
is related to another coordinate τ, related to the cosmo-
logical time t. We shall call the metric containing the
variable τ, as the τ-variable. Then, in addition to the
t-variable studies we shall perform, in principle the same
calculations can be done in the τ-variable, that is, by
assuming that the cosmological bounce occurs in the
τ-variable. It can be easily shown that in general, the
results in the two aforementioned cases are different, except
for the cases in which the τ and t variables are trivially
related, that is, the variable τ depends linearly on the
variable t.
As a general remark, the resulting picture of the unim-

odular FðRÞ gravity, is different from the ordinary FðRÞ
gravity description, owing to the existence of the Lagrange
multiplier, and as we demonstrate, this can be seen at a

quantitative level, by computing corrections to Newton’s
law, and when we discuss the stability conditions.
This paper is organized as follows: In Sec. II we present

the fundamental features of the unimodular FðRÞ formal-
ism and of the corresponding reconstruction mechanism, in
order to render the article self-contained. In Sec. III, by
using some simple theoretical arguments, we investigate
how a cosmological constant can arise in the context of the
unimodular FðRÞ gravity. In Sec. IV we study some
implications of the unimodular FðRÞ gravity to Newton’s
law and to the matter stability issue and also we discuss
which are the propagating modes and the possibility that a
ghost mode exists. As we demonstrate, the Newtonian
potential is not affected in the context of the unimodular
FðRÞ gravity, in contrast to the ordinary FðRÞ gravity
approach, where new terms appear. Also the only propa-
gating mode is the graviton and no ghost appears. However,
the matter stability issue cannot be addressed by using the
standard approach used in ordinary FðRÞ gravity. In Sec. V,
we briefly discuss the qualitative features of some well-
known bouncing models, and also we present which
unimodular FðRÞ gravity can realize these cosmologies.
Finally, the Conclusions follow in the end of the paper.

II. THE UNIMODULAR FðRÞ
GRAVITY FORMALISM

In order to render the article self-contained, in this
section we briefly review the fundamental features of
unimodular FðRÞ gravity, but a more detailed presentation
can be found in [36]. The unimodular FðRÞ gravity
approach is based on the assumption that the metric
satisfies the following constraint:ffiffiffiffiffiffi

−g
p ¼ 1; ð1Þ

to which we shall refer to as the unimodular constraint
hereafter, for simplicity. In addition, we assume that the
metric expressed in terms of the cosmological time t is a flat
Friedman-Robertson-Walker (FRW) of the form,

ds2 ¼ −dt2 þ aðtÞ2
X3
i¼1

ðdxiÞ2: ð2Þ

The metric (2) does not satisfy the unimodular constraint
(2), and in [36] in order to tackle with this problem, we
redefined the cosmological time t, to a new variable τ, as
follows:

dτ ¼ aðtÞ3dt; ð3Þ
in which case, the metric of Eq. (2), becomes the
“unimodular metric”,

ds2 ¼ −aðtðτÞÞ−6dτ2 þ aðtðτÞÞ2
X3
i¼1

ðdxiÞ2; ð4Þ
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and hence the unimodular constraint is satisfied. Assuming
the unimodular metric of Eq. (4), by making use of the
Lagrange multiplier method [84–86], the vacuum Jordan
frame unimodular FðRÞ gravity action is

S ¼
Z

d4xf ffiffiffiffiffiffi
−g

p ðFðRÞ − λÞ þ λg; ð5Þ

with FðRÞ being a suitably differentiable function of the
Ricci scalar R, and λ stands for the Lagrange multiplier
function. Note that we assumed that no matter fluids are
present and also if we vary the action (5) with respect to
the function λ, we obtain the unimodular constraint (1). In
the metric formalism, the action is varied with respect to the
metric, so by doing the variation, we obtain the following
equations of motion:

0 ¼ 1

2
gμνðFðRÞ − λÞ − RμνF0ðRÞ

þ∇μ∇νF0ðRÞ − gμν∇2F0ðRÞ: ð6Þ
By using the metric of Eq. (4), the nonvanishing compo-
nents of the Levi-Civita connection in terms of the scale
factor aðτÞ and of the generalized Hubble rate KðτÞ ¼ 1

a
da
dτ,

are given below,

Γτ
ττ ¼ −3K; Γt

ij ¼ a8Kδij; Γi
jt ¼ Γi

τj ¼ Kδj
i: ð7Þ

The nonzero components of the Ricci tensor are

Rττ ¼ −3 _K − 12K2; Rij ¼ a8ð _K þ 6K2Þδij; ð8Þ

while the Ricci scalar R is the following:

R ¼ a6ð6 _K þ 30K2Þ: ð9Þ
The corresponding equations of motion become

0 ¼−
a−6

2
ðFðRÞ− λÞ þ ð3 _K þ 12K2ÞF0ðRÞ − 3K

dF0ðRÞ
dτ

;

ð10Þ

0 ¼ a−6

2
ðFðRÞ − λÞ − ð _K þ 6K2ÞF0ðRÞ

þ 5K
dF0ðRÞ
dτ

þ d2F0ðRÞ
dτ2

; ð11Þ

with the “prime” and “dot” denoting as usual differentiation
with respect to the Ricci scalar and τ, respectively.
Equations (10) and (11) can be further combined to yield
the following equation:

0 ¼ ð2 _K þ 6K2ÞF0ðRÞ þ 2K
dF0ðRÞ
dτ

þ d2F0ðRÞ
dτ2

þ a−6

2
:

ð12Þ

Basically, the reconstruction method for the vacuum
unimodular FðRÞ gravity, which we proposed in [36] is
based on Eq. (12), which when it is solved it yields the
function F0 ¼ F0ðτÞ. Correspondingly, by using Eq. (9), we
can obtain the function R ¼ RðτÞ, when this is possible so
by substituting back to F0 ¼ F0ðτÞ we obtain the function
F0ðRÞ ¼ F0ðτðRÞÞ. Finally, the function λðτÞ can be found
by using Eq. (10), and substituting the solution of the
differential equation (12). Based on the reconstruction
method we just presented, we demonstrate how some
important bouncing cosmologies can be realized. Note
that the bouncing cosmologies shall be assumed to be
functions of the cosmological time t, so effectively this
means that the bounce occurs in the t-dependent FRW
metric of Eq. (2). In a later section we study the scenario in
which the bounce occurs in the τ-variable of the metric (4).

III. COSMOLOGICAL CONSTANT SOLUTION
FROM UNIMODULAR FðRÞ GRAVITY

Current observational data indicate that the Universe is
expanding in an accelerating way, and the expansion is
generated by the energy density, whose magnitude is about
ð10−3 eVÞ4. On the other hand, we know that in the
quantum field theory description, the quantum correction
to the energy density, which is called the vacuum energy
ρvacuum, corresponding to matter fields, diverges, and we
need to introduce a cutoff scale Λcutoff , so that the energy
density is equal to

ρvacuum ¼ 1

ð2πÞ3
Z

d3k
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
∼ Λ4

cutoff : ð13Þ

The energy density appearing in Eq. (13), is much larger
than the observed value ð10−3 eVÞ4, even if supersymmetry
is restored in the high energy regime, in which case the
quantum corrected vacuum energy is equal to

∼Λcutoff2Λ
2
SUSY; ð14Þ

where with ΛSUSY we denoted the mass scale of the
supersymmetry breaking. In fact, it holds true that the
energy density is equal to

ρvacuum ¼ 1

ð2πÞ3
Z

d3k
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

boson

q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

fermion

q �
∼ Λ2

cutoffΛ
2
SUSY; ð15Þ

where we have assumed that the scale of supersymmetry
breaking is given by the difference between the masses of
bosons and fermions, Λ2

SUSY ¼ m2
boson −m2

fermion. If we
make use of a counterterm in order to obtain a very small
vacuum energy of the order, ð10−3 eVÞ4, we need to fine-
tune this counterterm to a great extent, and this is extremely
unnatural. These considerations strongly indicate our lack
of understanding the quantum theory of gravity, the lack of
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a consistent quantum theory of gravity. Recently an
interesting mechanism to make the magnitude of the
vacuum energy much smaller and consistent with the
observations, was proposed, see Refs. [87–89], which
may be called as sequestering models. In the first paper
[87], the proposed action has the following form:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

− Λþ e2σLmatterðeσgμν;φÞ
�

− F

�
Λe−2σ

μ4

�
: ð16Þ

In Eq. (16), the term F is an adequate function and μ is a
parameter with the dimension of mass, while Lmatter is the
Lagrangian density of the matter fields present. We should
note that Λ and φ are dynamical variables which do not
depend on the spacetime coordinates. In Ref. [87], the
functions e

σ
2 and F are denoted by λ and σ. The variation of

the action of Eq. (16) with respect to Λ yields

μ4F0ðμ4Λe−2σÞ ¼ −e2σ
Z

d4x
ffiffiffiffiffiffi
−g

p
: ð17Þ

On the other hand, by varying the action of Eq. (16) with
respect to σ, we obtain

Z
d4x

ffiffiffiffiffiffi
−g

p
e−σgμνTðeσgμν;φÞμν ¼ −4μ4Λe−2σF0ðΛe−2σÞ:

ð18Þ

Note that Tðeσgμν;φÞμν is the energy-momentum tensor
coming from the matter fluids present, including the
quantum corrections. By combining Eqs. (17) and (18),
we find

he−σgμνTðeσgμν;φÞμνi ¼ 4Λ: ð19Þ

Note that he−σgμνTðeσgμν;φÞμνi expresses the average of
e−σgμνTðeσgμν;φÞμν with respect to the spacetime metric,

he−σgρσTðeσgμν;φÞρσi≡
R
d4x

ffiffiffiffiffiffi−gp
e−σgμνTðeσgμν;φÞμνR
d4x

ffiffiffiffiffiffi−gp :

ð20Þ

By varying with respect to the metric we get

0 ¼ −
1

2κ2

�
Rμν −

1

2
Rgμν

�
−
1

2
Λgμν þ

1

2
Tðeσgμν;φÞμν:

ð21Þ

By using the condition of Eq. (19), we may rewrite Eq. (21)
as follows:

0 ¼ −
1

2κ2

�
Rμν −

1

2
Rgμν

�
−
1

8
he−σgρσTðeσgμν;φÞρσigμν

þ 1

2
Tðeσgμν;φÞμν: ð22Þ

In the combination − 1
8
he−σgρσTðeσgμν;φÞρσigμνþ

1
2
Tðeσgμν;φÞμν, the large quantum correction to the vacuum

energy is canceled. After the work of Ref. [87] appeared,
several extensions of the model have been considered
[88,89]. In Ref. [89], instead of the global variables Λ
and σ, four-form fields were introduced, and the model can
be written in a totally local form. Even in the model of
Ref. [89], the constraint corresponding to (20) is global,
and there is a problem related to the causality. On the other
hand, unimodular gravity models, which have properties
similar to the sequestering models, have been considered
since a long time ago [37–61]. In the unimodular gravity,
the determinant of the metric is constrained to be unity, like
in Eq. (1), which we called unimodular constraint. As we
demonstrated in the previous section, in the Lagrangian
formalism, the constraint can be realized by using the
Lagrange multiplier field λ as follows:

S ¼
Z

d4xf ffiffiffiffiffiffi
−g

p ðLgravity − λÞ þ λg þ Smatter: ð23Þ

In Eq. (23), the term Smatter is the action of matter fluids
present, and Lgravity denotes all the Lagrangian densities of
arbitrary gravity models. Upon variation of action (23) with
respect to the Lagrange multiplier λ, we obtain the unim-
odular constraint of Eq. (1). We may write the gravity
Lagrangian density Lgravity in the way that it appears as the
sum of the cosmological constant Λ and of another part

Lð0Þ
gravity, as follows:

Lgravity ¼ Lð0Þ
gravity − Λ: ð24Þ

In addition, we can also redefine the Lagrange multiplier
field λ to be λ → λ − Λ. Consequently, the action (23) can
be rewritten as follows:

S ¼
Z

d4xf ffiffiffiffiffiffi
−g

p ðLð0Þ
gravity − λÞ þ λg þ Smatter þ Λ

Z
d4x:

ð25Þ

Due to the fact that the last term Λ
R
d4x does not depend

on any dynamical variable, we may drop the last term. This
indicates that the cosmological constant Λ does not affect
the dynamics. We should note that the cosmological
constant may include the large quantum corrections from
matter fields to the vacuum energy. Since the cosmological
constant Λ does not affect the dynamics, the large quantum
corrections can be chosen to vanish. For a relevant study to
the one presented in this section, see also [62].
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IV. ANALYSIS OF THE UNIMODULAR FðRÞ
GRAVITY FORMALISM IMPLICATIONS

In the previous sections we described in some detail the
unimodular FðRÞ gravity formalism, and we derived the
general equations of motion; however, we did not discuss
any fundamental physical implications of the unimodular
FðRÞ formalism. Particularly there are three fundamental
questions which should be carefully addressed in the
context of every new theoretical framework, with the fist
question being related to Newton’s law modification.
Particularly, the question is how the Newtonian potential
is affected by unimodular gravity. Closely related to this
question, is the behavior of the graviton field. The second
question is related to the existence of ghost propagating
modes, do these exist and if yes, what are the implications
of these modes? The third question is related to the matter
stability of the theory, and particularly the question is
whether the matter stability conditions of the usual FðRÞ
gravity theory suffice to describe the unimodular FðRÞ
gravity. In this section we shall try to address in some detail
these questions.
We start our analysis with the Newton law question. The

unimodular constraint (1) can be realized by using the
Lagrange multiplier field λ, as we already discussed, and by
also taking into account the presence of matter fluids, the
total unimodular FðRÞ gravity with matter fluids can be
written

S ¼
Z

d4x

� ffiffiffiffiffiffi
−g

p �
FðRÞ
2κ2

− λ

�
þ λ

�
þ Smatterðgμν;ΨÞ;

ð26Þ

where the action Smatter denotes the action for all matter
fluids present, while Ψ expresses the matter fluids. As in
the usual FðRÞ gravity case, we may rewrite the action in
the scalar-tensor form as follows:

S ¼
Z

d4x

� ffiffiffiffiffiffi
−g

p �
1

2κ2

�
R −

3

2
gμν∂μϕ∂νϕ − VðϕÞ

�

− λe2ϕ
�
þ λ

�
þ Smatterðeϕgμν;ΨÞ; ð27Þ

where the potential VðϕÞ is equal to

VðϕÞ ¼ AðϕÞ
F0ðAðϕÞÞ −

FðAðϕÞÞ
F0ðAðϕÞÞ2 ; ð28Þ

and the function AðϕÞ is defined by solving the following
algebraic equation,

ϕ ¼ − lnF0ðAÞ: ð29Þ

The unimodular constraint (1), which is realized given by
the Lagrange multiplier λ, is now modified to be

e2ϕ
ffiffiffiffiffiffi
−g

p ¼ 1: ð30Þ

Then by deleting the scalar field ϕ using (30), the action
(27) can be recast as follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2

�
R −

3

32g2
gμν∂μg∂νg

− V

�
1

4
ln ð−gÞ

���
þ Smatter

�
ð−gÞ14gμν;Ψ

�
: ð31Þ

At this point it is easy to find the Newtonian limit of the
unimodular FðRÞ scalar-tensor theory, and to this end we
consider the following perturbation of the metric gμν around
the background metric gð0Þμν :

gμν ¼ gð0Þμν þ hμν: ð32Þ

In the small background curvature regime, the background

metric can be assumed to be flat, that is, gð0Þμν ¼ ημν. By
making this assumption, we obtain the following expres-
sion of the scalar curvature:

ffiffiffiffiffiffi
−g

p
R ∼ −

1

2
∂λhμν∂λhμν þ ∂λhλμ∂νhμν

− ∂μhμν∂νhþ 1

2
∂λh∂λh; ð33Þ

where h denotes the trace of the perturbation hμν,
h≡ ηρσhρσ. By assuming a nearly flat background, we
easily find that

Vð0Þ ¼ V 0ð0Þ ¼ 0; ð34Þ

and the potential V is approximately equal to

V ∼
1

2
m2h2: ð35Þ

Then the linearized action has the following form:

S ¼ 1

2κ2

Z
d4x

�
−
1

2
∂λhμν∂λhμν þ ∂λhλμ∂νhμν

− ∂μhμν∂νhþ 1

2
∂λh∂λh −

3

32
∂μh∂μh −

1

2
m2h2

�

þ Smatter

�
ημν þ hμν −

1

4
ημνh;Ψ

�
: ð36Þ

By varying the action (36) with respect to the metric
perturbation hμν, we obtain the following equations of
motion:
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∂λ∂λhμν − ∂μ∂λhλν − ∂ν∂λhλμ þ ∂μ∂νhþ ημν∂ρ∂σhρσ

−
13

16
ημν∂λ∂λh −m2ημνh ¼ κ2

�
Tμν −

1

4
ημνT

�
: ð37Þ

Note that in the equations of motion (37), Tμν is the
energy-momentum tensor of the matter and T is the trace of
Tμν, with T ≡ ηρσTρσ. Multiplying Eq. (37) by ημν, we
obtain

0 ¼ −
5

4
∂λ∂λh − 4m2hþ 2∂μ∂νhμν: ð38Þ

In order to investigate how Newton’s law behaves, we
consider the pointlike source at the origin, with the
components of the corresponding energy-momentum ten-
sor being equal to

T00 ¼ MδðrÞ; Tij ¼ 0ði; j ¼ 1; 2; 3Þ: ð39Þ

In the following we consider only static solutions of (37),
with the (0, 0), ði; jÞ, and ð0; iÞ components of Eq. (37) and
Eq. (56) having the following form:

∂i∂ih00 − ∂i∂jhij þ
13

16
∂i∂ihþm2h ¼ 3κ2

4
MδðrÞ; ð40Þ

∂k∂khij − ∂i∂khkj − ∂j∂khki þ ∂i∂jhþ δij∂k∂lhkl

−
13

16
δij∂k∂kh −m2δijh

¼ κ2

4
MδðrÞ; ð41Þ

∂j∂jh0i − ∂i∂khk0 ¼ 0; ð42Þ

−
5

4
∂k∂kh − 4m2hþ 2∂i∂jhij ¼ 0: ð43Þ

In the usual Einstein-Hilbert gravity, there exist four gauge
degrees of the freedom, but in the case of unimodular FðRÞ
gravity, there only three gauge degrees of freedom exist,
due to the unimodular constraint (1). Then we now impose
the following three gauge conditions:

∂ihij ¼ 0: ð44Þ

In effect, Eq. (43) becomes equal to

−
5

4
∂k∂kh − 4m2h ¼ 0; ð45Þ

and by using an appropriate boundary condition we
obtain

h ¼ 0: ð46Þ

Therefore, by using Eqs. (44) and (46), we can rewrite
Eqs. (40), (41), and (42) in the following way:

∂i∂ih00 ¼
3κ2

4
MδðrÞ; ð47Þ

∂k∂khij ¼
κ2

4
MδðrÞ; ð48Þ

∂j∂jh0i − ∂i∂khk0 ¼ 0: ð49Þ

By also using an appropriate boundary condition, the above
equations combined with Eq. (46) yield

h0i ¼ 0; hij ¼
1

3
δijh00: ð50Þ

We define the Newtonian gravitational potential Φ by
h00 ¼ 2Φ, so Eq. (47) gives the Poisson equation for the
Newtonian potential Φ, that is,

∂i∂iΦ ¼ 3κ2

8
MδðrÞ: ð51Þ

Then, if we redefine the gravitational constant κ by

3κ2

4
→ κ2 ¼ 8πG; ð52Þ

we obtain the standard Poisson equation for the Newtonian
potential U,

∂i∂iΦ ¼ 4πGMδðrÞ; ð53Þ
whose solution is given by

Φ ¼ −
GM
r

: ð54Þ

Hence what we actually demonstrated is that the
Newtonian limit of the unimodular FðRÞ gravity is quite
different from the usual FðRÞ gravity, in which case, the
propagation of the scalar mode ϕ in (29) gives a
correction to Newton’s law. In the case of unimodular
FðRÞ gravity, because the unimodular condition (1) can
be rewritten as in Eq. (30), the degree of the freedom of
the scalar mode ϕ is eliminated, and the scalar mode ϕ
does not propagate. In effect, there is no correction to the
Newtonian potential, so this is the first difference
between unimodular and ordinary FðRÞ gravity.
Having discussed the Newtonian approximation and

the corrections to Newton’s law, now what remains is to
discuss the propagating modes in the unimodular FðRÞ
gravity, focusing to the graviton and also to ghost modes
(if any). We shall address this question by assuming that
no matter fluids are present. Then, by putting Tμν ¼ 0 in
(37), we obtain the following linearized equation:
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0 ¼ ∂λ∂λhμν − ∂μ∂λhλν − ∂ν∂λhλμ þ ∂μ∂νh

þ ημν∂ρ∂σhρσ −
13

16
ημν∂λ∂λh −m2ημνh: ð55Þ

Multiplying Eq. (55) by ημν, we obtain

0 ¼ −
5

4
∂λ∂λh − 4m2hþ 2∂μ∂νhμν: ð56Þ

We also impose the gauge condition (44), and we
decompose the metric hμν in the following way:

hij ¼ ĥij þ
1

3
δijAþ ∂iBj þ ∂jBi þ ∂i∂jC −

1

3
δij∂k∂kC;

h0i ¼ Di þ ∂iE;

h00 ¼ F; ð57Þ

where the tensor ĥij describes the massless graviton, and
Ĥij, Bi, and Di satisfy the following conditions:

∂iĥij ¼ 0; ĥ≡ ĥii ¼ 0; ∂iBi ¼ ∂iDi ¼ 0: ð58Þ

Then, the gauge condition (44) takes the following form:

0 ¼ 1

3
∂jAþ ∂i∂iBj þ

2

3
∂j∂i∂iC; ð59Þ

and by differentiating we obtain

0 ¼ ∂j∂j

�
1

3
Aþ 2

3
∂i∂iC

�
: ð60Þ

In effect, by using an appropriate boundary condition, we
find

0 ¼ 1

3
Aþ 2

3
∂i∂iC; ð61Þ

and by substituting (61) into (59), we obtain

0 ¼ ∂i∂iBj: ð62Þ

By using a proper boundary condition, we find get

Bj ¼ 0; ð63Þ

and consequently, the graviton tensor field ĥij receives
the following form:

hij ¼ ĥij þ ∂i∂jC − δij∂k∂kC: ð64Þ

and therefore the following holds true:

0 ¼ ð∂2
0 þ ∂j∂jÞC; ð65Þ

We should note the þ sign in Eq. (65), indicates that the
mode C does not propagate, but also it indicates that a
growing unstable mode exists. Then, we impose by hand
the following constraint:

C ¼ 0; ð66Þ
and also, Eq. (57) also indicates that

E ¼ 0: ð67Þ
By substituting (66) into (58), we obtain

0 ¼
�
∂λ∂λ −

16

3
m2

�
F: ð68Þ

Therefore, F seems to be the propagating scalar mode
with mass m2

F ¼ 16
3
m2. By using Eqs. (58), (65), (66),

(67), and (68) and multiplying the resulting equation by
δij, we finally find

0 ¼ ∂k∂kF; ð69Þ
and therefore F does not correspond to the propagating
mode but we get

F ¼ 0: ð70Þ
and consequently we find

0 ¼ ∂λ∂λĥij; ð71Þ
which tells that the tensor field ĥij describes for sure a
massless graviton, and it is the only propagating mode. In
effect, this means that only the graviton corresponds to a
propagating mode and also no propagating ghost degree
of freedom exists. In addition, the only source of
instability in the system is the mode C.
Finally, let us discuss in brief the matter stability issue,

which for the case of ordinary FðRÞ gravity it is discussed
in Refs. [64,65]. By varying the unimodular FðRÞ gravity
action with matter fluids appearing in Eq. (26) with respect
to the metric gμν, we obtain the following equations of
motion:

0 ¼ 1

2
gμνðFðRÞ − λÞ − RμνF0ðRÞ þ∇μ∇νF0ðRÞ

− gμν∇2F0ðRÞ þ κ2

2
Tμν: ð72Þ

By multiplying (72) with gμν, we obtain

0 ¼ 2ðFðRÞ − λÞ − RF0ðRÞ − 3∇2F0ðRÞ þ κ2

2
: ð73Þ

In case of the ordinary FðRÞ gravity, which corresponds to
the case of λ ¼ 0, it has been shown in the literature
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[64,65,90], that if the matter density is large enough, as on
the earth, a strong instability occurs. However, in the case
of unimodular FðRÞ gravity, the role of Eq. (73) is to
determine λ. Therefore, by using (72) and (73), and by
eliminating λ, we obtain

0 ¼ −RμνF0ðRÞ þ∇μ∇νF0ðRÞ

−
1

4
gμνðRF0ðRÞ −∇2F0ðRÞÞ þ κ2

2

�
Tμν −

1

4
TgμμT

�
:

ð74Þ
The trace of Eq. (74) trivially vanishes and therefore in
order to discuss about the matter instability issue, we need
another formalism, since the standard approach of the
ordinary FðRÞ gravity does not suffice. Hence the matter
stability problem in unimodular FðRÞ gravity cannot be
done by using the usual ordinary FðRÞ gravity techniques,
and a new approach is needed. This, however, exceeds the
purposes of this paper, since this is a completely new study
which should be done separately.

V. GENERAL FEATURES OF BOUNCING
COSMOLOGIES AND REALIZATION FROM

UNIMODULAR FðRÞ GRAVITY

As we previously discussed, the bouncing cosmologies
stand as a quite appealing alternative scenario to the
standard inflationary scenario [29–33], with the attractive
feature of not having an initial singularity, being the most
appealing feature of the big bounce scenario. We use four
paradigms of bouncing cosmologies, and specifically, the
matter bounce scenario [19–28], the singular bounce
[80–83] and also the superbounce scenario [16] and the
symmetric bounce. For these we discuss in detail how the
Hubble horizon evolves during the bounce evolution, and
we also discuss the cosmological perturbations issue
[91–94], in order to extract enough information on how
to connect early-time phenomena with present time obser-
vations. But the bouncing cosmologies in general should
also address consistently all the theoretical problems that
the standard inflationary scenario solved in the first place. It
is worth to discuss these issues in the context of the
standard inflationary paradigm, and we immediately com-
pare the bouncing cosmologies with the inflationary picture
[29–33,91–94]. For reviews and important papers on
cosmological perturbations we refer the reader to
[29–33,91–94], and for an insightful recent study that it
is worth mentioning, see [95].
Our ability to make predictions on early-time physics

is owing to the linear cosmological perturbation theory
[91–94], and in the context of the inflationary paradigm, the
primordial quantum fluctuations of the comoving curvature
were at subhorizon scales during inflation. It is exactly
these fluctuations which are relevant for present time
observations, and during inflation, the wavelength of these

fluctuations were at subhorizon scales, meaning that it was
much more smaller in comparison to the Hubble radius,
which is defined to be RH ¼ 1

aðtÞHðtÞ, with aðtÞ and HðtÞ
being the scale factor and Hubble rate respectively.
Quantitatively, before the inflationary era and after the
initial singularity, the Hubble radius was very large and the
primordial quantum fluctuating modes were at subhorizon
scales, since the corresponding comoving wave number
satisfied

k ≫ HðtÞaðtÞ: ð75Þ

or equivalently, λ ≪ ðHðtÞaðtÞÞ−1, with λ being the corre-
sponding wavelength. During the inflationary era, the
Hubble radius decreased very much, so eventually the
primordial modes exit the horizon when k ¼ aðtHÞHðtHÞ.
After the horizon crossing, the primordial modes become
superhorizon modes and will satisfy

k ≪ aðtÞHðtÞ; ð76Þ

until the horizon reentry. All the aforementioned features
are properly addressed by the inflationary paradigm, so we
may conclude that the vital features of a viable cosmo-
logical evolution are two: First, the Hubble horizon should
contract at early times and second, the Hubble horizon
should eventually reexpand. Let us now discuss these
issues in the context of the bouncing cosmologies.
The matter bounce cosmological scenario [19–28]

results from loop quantum cosmology (LQC) [96–100]
and is a viable alternative scenario to inflation, with the
interesting feature of compatibility with the Planck [34,35]
observational data. The scale factor and the corresponding
Hubble rate of the matter bounce scenario are

aðtÞ ¼
�
3

2
ρct2 þ 1

�1
3

; HðtÞ ¼ 2tρc
2þ 3t2ρc

; ð77Þ

with ρc being a critical energy density determined by the
LQC underlying theory. In Fig. 1, we have plotted the scale
factor, the Hubble rate and the Hubble radius, as functions
of the cosmological time, and it can be seen, the bounce
cosmology conditions are satisfied, and also the scale factor
decreases for t < 0 and increases for t > 0. Let us study
now discuss the evolution of the Hubble horizon, which
determines the cosmological perturbation behavior and
especially determines the exact time that corresponds to
the generation of the cosmological perturbations. In Fig. 1,
right plot, we plotted the Hubble radius RHðtÞ as a function
of the cosmological time t, for ρc ¼ 106 sec−2, and as it can
be seen, before the bouncing point, which is at t ¼ 0, the
Hubble radius starts from an infinite size at t → −∞, and
gradually decreases until the bouncing point and after the
bounce the Hubble radius increases again.
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The realization of the matter bounce scenario from
unimodular FðRÞ gravity is straightforward and can be
done in two limiting cases, for times near the bounce
and for large cosmic times values. In Table I later on in
this section, we have gathered the results for the FðRÞ
gravity, and the Lagrange multiplier can easily be found
by using the formalism we presented earlier. The
resulting form of the unimodular FðRÞ gravity in the
limit t → 0 is a complex function of the Ricci scalar. Let
us recall from the existing literature what does a
complex FðRÞ gravity implies. As was demonstrated
in Ref. [101], a complex FðRÞ gravity is related to a
phantom scalar-tensor theory, since these two theories
are mathematically equivalent. Also as was proved in
the same work [101], even in the case that the scalar
potential is even, and the corresponding FðRÞ gravity is
real, the region where the original scalar tensor theory
develops a big rip singularity, corresponds to a complex
FðRÞ gravity. Finally, as it can be seen in Table I, by
comparing the resulting forms of the unimodular FðRÞ
gravity for both the limits t → 0 and t → ∞, these are
different from the corresponding ordinary FðRÞ gravity
which was found in Ref. [102].
Another scenario with interesting phenomenology is the

superbounce scenario [16–18], which was firstly studied in
the context of some ekpyrotic scenarios [16]. The scale
factor and the Hubble rate for the superbounce are given
below,

aðtÞ ¼ ð−tþ tsÞ
2

c2 ; HðtÞ ¼ −
2

c2ð−tþ tsÞ
; ð78Þ

with c being an arbitrary parameter of the theory while the
bounce in this case occurs at t ¼ ts. In Fig. 2, we have
plotted the time dependence of the scale factor, the Hubble
rate and the Hubble radius, for the superbounce case. It can
be seen that in this case too, the bounce cosmology
conditions are satisfied, and in addition, the scale factor
decreases for t < 0 and increases for t > 0, as in every
bounce cosmology, so contraction and expansion occurs. In
addition, the physics of the cosmological perturbations are
the same to the matter bounce case, since the Hubble radius
decreases for t < 0 and increases for t > 0, so the correct
description for the superbounce is the following: Initially,
the Universe starts with an infinite Hubble radius, at
t → −∞, so the primordial modes are at subhorizon scales
at that time. Gradually, the Hubble horizon decreases and
consequently the modes exit the horizon and possibly
freeze. Eventually, after the bouncing point, the Hubble
horizon increases again, so it is possible for the primordial
modes to reenter the horizon. Hence this model can harbor
a conceptually complete phenomenology. The behavior of
the Hubble horizon as a function of the cosmological time
can be found in Fig. 2, right plot.
In Table I we present the unimodular FðRÞ gravity which

can realize the superbounce scenario, and the unimodular
Lagrange multiplier can easily be found in a similar way.
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FIG. 1. The scale factor aðtÞ (left plot), the Hubble rate (middle plot) and the Hubble radius RHðtÞ (right plot) as functions of the
cosmological time t, for the matter bounce scenario aðtÞ ¼ ð3
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TABLE I. The unimodular FðRÞ gravities realizing the various bouncing cosmologies. The various parameters can
be found in the Appendix.

Bounce type Form of the unimodular FðRÞ gravity
Matter bounce for t → 0 FðRÞ ¼ A3Rþ 4A4ðR−3ρcÞ3=2

3
ffiffiffiffi
39

p
ρc

Matter bounce for t → ∞ FðRÞ ¼ A1R−3
2
ð23
18
−
ffiffiffi
73

p
18

Þ þA2R−3
2
ð23
18
þ
ffiffiffi
73

p
18

Þ

Superbounce FðRÞ ¼ Ω1R
3
4
− 1

2c2
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ20c2þc4

p
4c2 þ Ω2R

3
4
− 1

2c2
−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ20c2þc4

p
4c2

Singular bounce for t → 0 F0ðRÞ≃ ðC2 −
2
− 1
1þαC1ð− f0

1þαÞ
− 1
1þαΓð 1

1þα;0Þ
1þα Þe−

2f0ð6
− 1
−1þαð1þαÞð 1

f0α
Þ

1
−1þαÞ

1þα
R

1
−1þα

1þα

Symmetric bounce for t → ∞ F0ðRÞ ¼ C2Rþ 2
− 1
10

ið−5iþ ffiffi5p ÞC1

ffiffi
π

p
R

Γð3
4
þ i

4
ffiffi
5

p Þ þ ð 1
15
− i
15
Þ2−2−

i
2
ffiffi
5

p ð−5iþ ffiffi
5

p ÞC1

ffiffi
π
3

p
ð−12f0þRÞ3=2

51=4
ffiffiffiffi
f0

p
Γð5

4
þ i

4
ffiffi
5

p Þ
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As it can be verified, the resulting expression for the
unimodular FðRÞ gravity is different from the ordinary
FðRÞ result found in Refs. [17,18].
The singular bounce is a peculiar case of a bounce as it

proves, which was extensively studied in a recent series of
papers [80–83]. This bounce cosmology avoids the initial
singularity, which is a crushing singularity, but a Type IV
singularity occurs at the bouncing point, see [80–83] for
details. In this case, the phenomenology is rich, as was
demonstrated in [80–83], and the cosmological scenarios
can vary. As was proven in [80–83], the singular bounce
leads to a nonscale invariant spectrum, if the perturbations
originate near the bouncing point, so the singular bounce
scenario has to be combined with another scenario in order
it leads to a viable cosmology. But let us see in detail the
behavior of the bounce, since another interesting scenario is
revealed from this study, which however we shall develop
in detail in a future work. But in order to reveal this
alternative scenario, let us recall the essential information
of the singular bounce. The singular bounce scale factor
and Hubble rate are equal to

aðtÞ ¼ e
f0
αþ1

ðt−tsÞαþ1

; HðtÞ ¼ f0ðt − tsÞα; ð79Þ

with f0 an arbitrary positive real number, and ts is the time
instance at which the bounce occurs and also coincides with
the time that the singularity occurs. In order for a Type IV
singularity to occur, the parameter α has to satisfy α > 1. In
addition, in order for the singular bounce to obey the

bounce cosmology conditions, the parameter α has to be
chosen in the following way:

α ¼ 2nþ 1

2mþ 1
; ð80Þ

with n andm integers chosen so that α > 1. For example, for
α ¼ 5

3
, the time dependence of the scale factor, the Hubble

rate and of theHubble radius, are given in Fig. 3, and as it can
be seen, the bounce conditions are satisfied, and in this case,
contraction and expansion occurs. The singular bounce
however, in contrast to the previous two cases, generates
a peculiar Hubble radius behavior. In order to make this
clear, in Fig. 3 right plot, we plotted the Hubble radius as a
function of time. As it can be seen, the behavior of the
Hubble radius is different in comparison to the previous two
cases. Particularly, at t → −∞, the Hubble radius is infinite,
and gradually decreases until a minimal size, but near the
bouncing point it increases and blows up at exactly the
bouncing point. Eventually, after the bouncing point it
decreases gradually. This is different in comparison to other
bouncing cosmologies, and this can be seen by comparing
directly the behavior of the Hubble radius.
In Table I we present the unimodular FðRÞ gravity that

produces the singular bounce near the bouncing point. As it
can be seen from Table I the resulting FðRÞ gravity is not
the same in comparison to the usual nonunimodular FðRÞ
gravity generating the singular bounce, see for example
Refs. [80–83].
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The symmetric bounce case is another interesting and
simple bouncing cosmology, which was studied in the
context of modified gravity in Ref [27]. In this case, the
scale factor and the Hubble rate are equal to

aðtÞ ¼ ef0t
2

; HðtÞ ¼ 2f0t; ð81Þ

with the parameter f0 being a real positive number. In
Fig. 4 we plotted the scale factor, the Hubble rate and the
Hubble radius, for the symmetric bounce case, and it can be
seen that the bounce cosmology conditions are satisfied and
also that contraction and expansion around the bouncing
point t ¼ 0 occurs. However, in this case the Hubble
horizon evolves in a peculiar way as it can be seen in
Fig. 4, right plot. Particularly, the Hubble horizon is almost
zero at t → −∞ and as t → 0, the Hubble horizon rapidly
grows, and it blows up at t ¼ 0. After the bouncing point,
the Hubble radius decreases rapidly again, and continues to
decrease. It is obvious that this scenario is physically
incomplete for two reasons. Firstly, the Hubble horizon
from t → −∞ never decreases, but increases, so the
primordial modes cannot be considered that originate from
a time before the bounce. Then the only possibility is that
the primordial modes correspond to a time near the
bouncing point. Secondly, even in this case, the horizon
after t > 0 decreases, so there is no possibility for horizon
reentry of the modes. This means that, this cosmological
bounce model should be combined with another cosmo-
logical scenario, as was performed for example in
Ref. [103]. However, in this paper our focus is not to
exactly study the bounces, but to see how the bounces can
be realized in the context of unimodular FðRÞ gravity, so
for completeness we shall be interested in the realization of
the symmetric bounce of Eq. (81).
In Table I we present the unimodular FðRÞ gravity which

can realize the symmetric bounce scenario near the bounc-
ing point. As it can be seen, the unimodular FðRÞ gravity is
a complex function so the same study we discussed in the
matter bounce case, about having complex FðRÞ gravity,
should be done in this case too (see Ref. [101] for details).
Finally a remark is in order. A question that can be

naturally asked is whether there exist a mapping enabling to

relate the models studied in unimodular and ordinary FðRÞ
gravity frameworks. The answer seems to be no, since no
obvious transformation exists between the two frameworks,
and it happens in some cases that the resulting ordinary
FðRÞ and unimodular FðRÞ descriptions is identical. This
behavior happens when the t − τ relation is trivial, that is
when t ∼ τ þ constants. In general however, at least to our
knowledge, there is no direct correspondence between the
two frameworks via a transformation. Indeed, the fact that
these theories are just two different models is most easily
seen from scalar-tensor presentation which has totally
different structure in both cases.

VI. CONCLUSIONS

In this article we investigated how several quite well-
known bouncing cosmologies can be realized in the context
of the unimodular FðRÞ gravity. After presenting in brief
the unimodular FðRÞ gravity formalism [36], we inves-
tigated how the following bouncing cosmologies can be
realized: the matter bounce scenario [19–28], the super-
bounce scenario [16], the singular bounce [80–83] and the
symmetric bounce [27]. For all these cosmologies, we
examined the behavior of the Hubble radius, also known as
the Hubble horizon, in order to reveal the cosmological era
at which the cosmological perturbations are generated.
Also we investigated how to realize the aforementioned
bouncing cosmologies with unimodular FðRÞ gravity.
In addition, we discussed how Newton’s law is modified

in the context of unimodular FðRÞ gravity. As we dem-
onstrated, the Newtonian potential is not affected in the
case of unimodular FðRÞ gravity, in contrast to the ordinary
FðRÞ gravity approach. Also we discussed which modes
propagate in vacuum and the possibility a ghost mode
appears. As we showed, the only propagating mode in
vacuum is the graviton, and no ghost appears. Finally, the
matter stability issue cannot be addressed by the usual
technique used in ordinary FðRÞ gravity, and we defer this
study to a future publication.
As we demonstrated in this paper, the unimodular FðRÞ

gravity formalism offers the possibility of realizing various
bouncing cosmological scenarios which were exotic for the
standard Einstein-Hilbert general relativity. Also an
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interesting extension of the unimodular gravity formalism
to other modified gravity theories would be if we apply the
formalism to theories with Lagrangian densities of the form
L ¼ ffiffiffiffiffiffi−gp ðFðR;RμνRμν; RμναβRμναβÞ − λÞ þ λ, or even sim-
pler unimodular Gauss-Bonnet gravity with Lagrangian
density of the form L ¼ ffiffiffiffiffiffi−gp ðFðGÞ − λÞ þ λ. In addition,
the same formalism could be applied to non-local gravity
models with Lagrangian density of the form L ¼ffiffiðp −gÞðFðR;R□mR;□dRÞ − λÞ þ λ, with m, n positive
or negative integers. Furthermore, since every modified
gravity theory is eventually tested by the potentiality of the
theory to consistently describe relativistic objects, it is
compelling to investigate if there are any relativistic star
or black holes solutions of unimodular FðRÞ gravity.
Finally, the unimodular FðRÞ gravity formalism should
be investigated in the context of quantum vacuum correc-
tions, or alternatively, to be embedded in the context of
loop quantum gravity [96–100], or any other potentially

appealing quantum gravity theory. We hope to address
some of these issues in a future work.
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APPENDIX: EXPLICIT FORM OF
SOME PARAMETERS

In this Appendix we present the explicit form of various
parameters appearing in Table I. We start off with the
parameters A1 and A2 the detailed form of which is
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where C1 and C2 are arbitrary integration parameters. In addition, the parameters n1 and m1 are equal to
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with C1 and C2 being arbitrary integration parameters. In addition, the parameters A5 and A6 are equal to
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with C1 and C2 being again arbitrary integration parameters. Finally, the parameters Ω1 and Ω2 are
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