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ABSTRACT 

Precise spatiotemporal regulation of splicing is mediated by splicing cis-elements on 

pre-mRNA. Single nucleotide variations (SNVs) affecting intronic cis-elements possibly 

compromise splicing, but no efficient tool has been available to identify them. Following an 

effect-size analysis of each intronic nucleotide on annotated alternative splicing, we extracted 

105 parameters that could affect the strength of the splicing signals. However, we could not 

generate reliable support vector regression models to predict the percent-splice-in (PSI) scores 

for normal human tissues. Next, we generated support vector machine (SVM) models using 110 

parameters to directly differentiate pathogenic SNVs in the human gene mutation database 

(HGMD) and normal SNVs in the dbSNP database, and we obtained models with a sensitivity 

of 0.800 ± 0.041 (mean and SD) and a specificity of 0.849 ± 0.021. Our IntSplice models were 

more discriminating than SVM models that we generated with Shapiro-Senapathy score and 

MaxEntScan::score3ss. We applied IntSplice to a naturally occurring and nine artificial intronic 

mutations in RAPSN causing congenital myasthenic syndrome. IntSplice correctly predicted the 

splicing consequences for nine of the ten mutants. We created a web service program, IntSplice 

(http://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice) to predict splicing-affecting SNVs at 

intronic positions from -50 to -3. 
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INTRODUCTION 

Higher eukaryotes have evolved by acquiring tissue-specific and developmental 

stage-specific regulation of alternative splicing of pre-mRNA rather than by acquiring novel 

genes.1 Precisely regulated splicing process takes place in the spliceosome, which comprises 

five small nuclear ribonucleoproteins (U1, U2, U4, U5, and U6 snRNPs) and a large number of 

non-snRNP proteins.2 In the first step of the assembly of the spliceosome, U1 snRNP, SF1, 

U2AF65, and U2AF35 bind to the splicing cis-elements at the 5’ splice site (ss), the branch 

point sequence (BPS), the polypyrimidine tract (PPT), and the 3’ ss, respectively.3, 4 Single 

nucleotide variations (SNVs) disrupting these essential cis-elements lead to aberrant splicing 

and cause human diseases. At least 10% of inherited human diseases are caused by mutations 

affecting the essential splicing cis-elements at the 5’ and 3’ ss’s.5 In addition, intronic and exonic 

splicing cis-elements also confer precise spatiotemporal regulation of constitutive and 

alternative splicing, which are also frequently disrupted in human diseases.6 Development of 

high-throughput sequencing technologies has enabled us to obtain a large number of SNVs from 

a significant number of individuals. Prediction of the splicing consequences of intronic SNVs, 

however, remains difficult due to the lack of efficient prediction tools. 

Exonic SNVs often disrupt or de novo generate exonic splicing enhancers (ESEs) and 

silencers (ESSs). Several ESE/ESS search tools are available online: ESE finder 3.0,7 

ESRsearch,8 FAS-ESS,9 PESXs,10, 11 RESCUE-ESE,12 Human Splicing Finder,13 SpliceAid,14 

SpliceAid2,15 CRYP-SKIP,16 Spliceman,17 and RegRNA 2.0.18 These tools can be used to 

predict splicing consequences of exonic SNVs. In contrast to a variety of available tools for 

inspecting exonic SNVs, only two tools are available to our knowledge to score the 3’ ss. The 

Shapiro-Senapathy score is calculated using the position-specific scoring matrix (PSSM), 

representing the frequency of each nucleotide from intronic position −14 (Int-14) to exonic 

position +1 (Ex+1),19 which has long been used to predict the splicing effects of SNVs. The 

MaxEntScan::score3ss scores the 3’ ss from Int-20 to Ex+3.20 Shapiro-Senapathy score and 

MaxEntScan, however, were not specifically designed to predict the splicing consequences of 

intronic SNVs. 

We have previously reported that the consensus sequence of human BPS is yUnAy, 

where “y” represents pyrimidines and “n” represents any nucleotides.21 Similarly, extensive 

analyses of human branch points using RNA-seq show that the consensus BPS sequence is 

“UnAy”.22-24 The highly degenerative BPS motif, however, prevented us from developing a 

model to predict the position and the splicing effect of BPS. We also reported that a mutation at 

the first nucleotide of an exon causes aberrant splicing at the AG-dependent, 3’ ss, where a short 
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PPT cannot confer sufficient binding affinity for U2AF65 and additional binding of U2AF35 to 

the 3’ ss is required.25 Here, we present a support vector machine (SVM) model, IntSplice, to 

predict aberrant splicing due to intronic SNVs (Int-SNVs) at positions from Int-50 to Int-3 

(Int-50:Int-3). 

 

MATERIALS AND METHODS 

 

Ethics statement 

Studies on a patient with congenital myasthenic syndrome were approved by the 

ethical review committees of the Mayo Clinic and the Nagoya University Graduate School of 

Medicine. The studies were performed after an appropriate informed written consent was 

obtained. 

 

Databases 

Sequence motifs of the splicing trans-factors were obtained from the SpliceAid 

database.14 Exonic and intronic positions of these sequence motifs were not taken into account, 

because (i) Int-SNVs should not change any exonic motifs; (ii) we did not look into exonic 

nucleotides when we made our models; and (iii) exonic and intronic positions were not always 

available in the SpliceAid database. RNA-seq data on the brain, cerebral cortex, heart, liver, 

skeletal muscle, and lungs in normal humans were obtained from the GEO database (the 

accession number, GSE13652) in an SRA format.26 The number of individuals and their 

demographic features for each tissue were not available for GSE13652.26 RNA-seq data on the 

breasts, lymph nodes, testes, adipose tissue, colon, skeletal muscle, liver, and brain in normal 

humans were similarly obtained with the GEO accession number GSE12946 in an SRA 

format.27 For GSE12946, each tissue sample was obtained from a single unrelated individual.27 

The SRA files were converted to fastq files using an SRA toolkit 

(http://eutils.ncbi.nih.gov/Traces/sra/sra.cgi?view=software). Disease-causing mutations located 

at positions Int-50:Int-3 were obtained from the Human Gene Mutation Database (HGMD) 

Professional (Biobase). Some intronic mutations in the HGMD might not be splicing mutations 

and might affect a transcription enhancer/silencer, a pre-miRNA sequence, or a yet 

uncharacterized cis-element, but the functional consequences of intronic mutations were not 

always deeply dissected in original papers. We therefore included all intronic mutations at 

positions Int-50:Int-3, without filtering out non-splicing mutations. Normal SNVs were obtained 

from dbSNP134. SNVs included in the HGMD were excluded from our analysis. We also 
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excluded SNVs with a global minor allelic frequency (GMAF) of less than 0.01. 

 

Support vector regression (SVR) and support vector machine (SVM) modeling 

The RNA-seq data were mapped to the human genome GRCh37/hg19 with 

ENSEMBL release 64 using TopHat mapper with its default parameters.28 Splicing efficiency of 

each individual exon (percent-spliced-in score, PSI) was calculated with the MISO software.29 

For each RNA-seq dataset of the 14 human tissues, we randomly divided 3’ ss’s into five groups. 

Four groups were arbitrarily chosen to generate an SVR model with the nu-SVR functionality of 

LIBSVM version 3.1730 to predict PSIs using 105 parameters. We then tested the validity of the 

generated SVR model using the remaining fifth group. We made five SVR models by changing 

the training and validation groups. We generated 100 different combinations of five groups for 

each RNA-seq dataset and ran the SVR modeling 500 times. 

SVM models to distinguish between pathogenic and normal Int-SNVs were generated 

with 110 parameters using the C-SVC functionality of LIBSVM.30 A total of 500 different SVM 

models were generated for 100 different datasets of 1,162 pathogenic and 1,162 normal 

Int-SNVs. Normal Int-SNVs in each dataset were randomly selected from 16,741 normal SNVs. 

For SVM modeling, we compared four kernels of “linear”, “polynomial”, “radial basis 

function”, and “sigmoid”. 

For both the SVR and the SVM models, scores of each parameter were normalized 

using the SVM-scale functionality of LIBSVM,30 so that each parameter was equally weighted. 

Perl scripts were run on the RPIMERGY CX400 UNIX server (Fujitsu). 

 

A patient with congenital myasthenic syndrome 

The patient, now 29 years old, was hypomotile in utero. After birth, he was floppy, 

had a poor cry, needed ventilatory support, and had arm and leg contractures. He improved 

gradually and walked at the age of 14 months. He showed a decremental EMG response in 

several muscles. His weakness was improved with a cholinesterase inhibitor, pyridostigmine. 

Sanger sequencing of genomic DNA revealed a homozygous T-to-A substitution at intron 5 

(c.913-5T>A) of the RAPSN gene. No muscle specimen was available from the patient. 

 

Minigene constructs 

To construct the human RAPSN minigene, we amplified a genomic segment spanning 

exons 5 to 7 of RAPSN by PCR with KOD Plus DNA polymerase (Toyobo) using genomic DNA 

isolated from HeLa cells. The 5’ ends of the forward and reverse primers carried the BamHI and 
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XhoI sites, respectively. The amplified fragment was cloned into the BamHI and XhoI sites of 

the pcDNA3.1(+) vector (Invitrogen) to generate the pcDNA-RAPSN minigene. The naturally 

occurring (patient) and artificial mutations were engineered into the pcDNA-RAPSN construct 

using the QuikChange Site-Directed Mutagenesis Kit (Stratagene). The presence of artifacts was 

excluded by sequencing the entire inserts. 

 

Cell culture, transfection, and RT-PCR for splicing analysis 

HeLa cells were cultured in DMEM (Sigma-Aldrich) with 10% fetal bovine serum 

(FBS, Sigma-Aldrich). The cells were plated 24 hrs before transfection in six-well culture plates 

(1.5 × 105 cells/well), and transfected using the FuGENE 6 transfection reagent (Roche) 

according to the manufacturer’s instructions. Total RNA was extracted 40 hrs following 

transfection using the TRIzol reagent (Invitrogen), followed by DNase I treatment. The cDNA 

was synthesized with an oligo-dT primer using the ReverTra Ace reverse transcriptase (Toyobo). 

PCR-amplification was performed using the GoTaq DNA polymerase (Promega) with the 

following primer pair: 5’-ATCATGACCGAGATCGGAAAC-3’ on exon 5 and 

5’-GTGGAACCTCACAACGTGC-3’ on exon 7. 

 

MS2-affinity purification of a spliceosomal complex 

To synthesize an RNA substrate for the MS2-affinity purification of a spliceosomal 

complex, we first amplified a genomic segment spanning RAPSN exons 5 and 6 from wild-type 

and mutant pcDNA-RAPSN minigenes, and then cloned them into the BamHI and XhoI sites of 

pcDNA3.1(+) to generate the pcDNA-RAPSN-E5-E6 minigenes. A segment spanning three 

copies of the MS2-binding sites was PCR-amplified from pSP64-MS2 that we previously 

reported,31 and was introduced downstream of exon 6 of the pcDNA-RAPSN-E5-E6 minigenes 

using the megaprimer method.32 The generated pcDNA-RAPSN-E5-E6-MS2 minigenes were 

used as templates to synthesize RNA-substrates using the RiboMAX System (Promega). 

An RNA probe (1 pmol) was incubated with 20-fold molar excess of the MS2-MBP 

fusion protein.33 Fifty microliters of HeLa nuclear extract (CilBiotech) was preincubated with 

10 μl (bead volume) of amylose resin (New England Biolabs) overnight at 4°C. The purified 

HeLa nuclear extract was then incubated at 37°C for 30 min, with a mixture of the RNA probe 

and the MS2-MBP fusion protein at final concentrations of 60 mM KCl and 25% HeLa nuclear 

extract. Ten microliters (bead volume) of amylose resin was added and mixed on a rotary shaker 

at 4°C for 30 min. After washing four times with washing buffer (20 mM HEPES at pH 8.0, 150 

mM KCl, and 0.05% Triton X-100), the resin-bound molecules were eluted with 10 mM 
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maltose solution. The purified proteins were subjected to SDS-PAGE and immunoblot analyses 

to detect the binding of U2AF65, U2AF35, and U1 snRNP (U1-70K), respectively. The 

antibodies used were U2AF65 (MC3, sc-53942, Santa Cruz Biotechnology), U2AF35 (N-16, 

sc-19961, Santa Cruz Biotechnology), and U1-70K (H111, kindly provided by Dr. Akila 

Mayeda at the Fujita Health University). 

 

RESULTS 

Estimation of the effects of individual intronic nucleotides on splicing annotated in the 

ENSEMBL release 64 database 

A diagram showing the flow of our analyses in this communication is shown in 

Supplementary Figure 1. We first inspected the alternative splicing events annotated in the 

ENSEMBL release 64 on the GRCh37/hg19 human genome. We restricted our analysis to 

introns with “AG” dinucleotides at the 3’ end, and not “AC”. We estimated the splicing 

efficiency of the 3’ ss by defining a new parameter, the transcription ratio (TR). When a gene 

gives rise to m different transcripts at a specific position, and n transcripts are spliced at the 3’ ss 

according to ENSEMBL release 64, we defined TR for that specific 3’ ss as n/m. An example of 

TRs is shown in Supplementary Figure 2. Assuming that the 3’ ss with a high TR carries a 

strong splicing signal, we plotted the average TR against individual nucleotides from positions 

Int-50 to Ex+5 at the 3’ ss. The plot revealed that nucleotides at positions Int-13:Int-5, Int-3, 

Ex+1, and Ex+2 were critical determinants of TR (Figure 1). 

 

Prediction of PSIs of 14 tissue-specific RNA-seq data using SVR modeling 

The PSIs of individual 3’ ss’s in the RNA-seq data of 14 normal human tissues in 

GSE1365226 and GSE1294627 were calculated with MISO.29 We first tried to predict a PSI using 

the primary nucleotide sequence with a linear regression model and with an SVR model. If we 

can efficiently predict the PSI of a given 3’ ss, we should be able to make a model to identify an 

intronic splicing mutation. The primary nucleotide sequence alone at positions Int-50:Ex+5, 

however, was not sufficient to predict the PSI of a given 3’ ss (data not shown). We then 

extracted 105 parameters that possibly dictate the strength of the splicing signals 

(Supplementary Table 1). The 105 parameters included individual nucleotides at positions Int-3 

and Ex+1 according to Figure 1, the sequence motifs of all the splicing trans-factors in the 

SpliceAid database,14 the position weight matrix of the human branch point sequence21 

(Supplementary Table 2), variable definitions of PPT, ∆G of a predicted secondary RNA 

structure based on the mfold program,34 etc. We included ∆G of mfold, because the secondary 
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RNA structure is a critical determinant of the splicing consequences.35-37 The RNA-seq data of 

the 14 tissues, however, generated SVR models with correlation coefficients (R) ranging from 

0.239 to 0.274 (mean and SD, 0.253 ± 0.011) (Supplementary Figure 3). These SVR models 

thus failed to predict the PSIs with enough accuracy to estimate the splicing strength of a given 

3’ ss, and their sole application could not predict the splicing consequence of a given Int-SNV. 

 

Differentiation of pathogenic and normal Int-SNVs using SVM modeling 

Next, we tried to differentiate pathogenic SNVs registered in the HGMD and normal 

SNVs in the dbSNP database at positions Int-50:Int-3. In addition to 14 PSIs calculated with the 

14 SVR models stated above, we used the 105 parameters once again to make a prediction 

model. Among the 119 parameters, however, we excluded 10 parameters that represented the 

nucleotides at positions Int-2:Ex+5 and at the 5’ ss, where no SNV should exist in the current 

analysis. We also added a parameter indicating whether an “AG” dinucleotide is generated de 

novo by Int-SNVs. We thus used a total of 110 parameters (Supplementary Table 1) to make 

SVM models. The HGMD included 1,162 pathogenic SNVs at positions Int-50:Int-3, whereas 

the dbSNP database included 16,741 normal SNVs at positions Int-50:Int-3 with a global minor 

allelic frequency of greater than 0.01. To match the numbers of SNVs in HGMD and the dbSNP 

database, we randomly chose 1,162 SNVs from the 16,741 SNVs in the dbSNP database. A 

dataset of 2,324 pathogenic and normal SNVs was divided into five groups. The datasets of 

2,324 SNVs were generated 100 times in order to validate the models repeatedly. For each 

dataset, four groups were employed to generate an SVM model (IntSplice) with LIBSVM30 

using the 110 parameters to predict whether an SNV belongs to the HGMD or the dbSNP 

database. We then tested the validity of the SVM model generated using the remaining fifth 

group, and calculated the sensitivity and the specificity of each model. A total of 500 different 

SVM models were generated with four kernels of “linear”, “polynomial”, “radial basis function”, 

and “sigmoid”, respectively (Table 1). The sensitivity ranged from 0.710 to 0.769, and the 

specificity ranged from 0.896 to 0.936. Among the four kernels, the radial basis function 

generated the most efficient SVM models. 

The three best parameters in SVM modeling were the MaxEnt score at Int-20:Int-3 

(coefficient = -12.7), the Shapiro-Senapathy score at Int-50:Int-3 (coefficient = -11.2), and the 

ratio of A/G's at Int-20:Int-8 (coefficient = 10.8) (Supplementary Table 1). As the MaxEnt score 

and the Shapiro-Senapathy score are comprehensive parameters to dictate the strength of 

splicing signals, these two parameters were better than individual parameters. Among the 

individual parameters, the coefficient of the ratio of A/G’s at Int-20:Int-8 to SVM modeling was 
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as high as those of the comprehensive parameters. A similar and partly overlapping parameter 

was the number of G’s at Int-12:Int-3 (coefficient = 7.83). Contribution of these individual 

parameters in SVM modeling suggests that the presence of purines at PPT has a marked 

negative effect on splicing. 

Inclusion of SVR-based prediction of PSI may bias the SVM models in favor of 14 

tissues that were included in the SVR modeling. We thus made 500 SVM models without 

SVR-based prediction of PSI derived from 14 RNA-seq data, and compared the sensitivity and 

specificity to those with SVR-based prediction of PSI. We found that the sensitivities and 

specificities of the two SVM models with and without PSI parameters were essentially the same 

(Supplementary Table 3). As the sum of specificity and sensitivity at Int-50:Int-3 became 

marginally low by exclusion of PSI parameters, we included PSI parameters in the following 

analyses. 

We also made SVM models with 1,162 pathogenic Int-SNVs and 16,741 normal 

Int-SNVs at positions Int-50:Int-3 using the radial basis function (unmatched models). We 

generated 500 different datasets by randomly selecting four-fifth of pathogenic/normal 

Int-SNVs as a training dataset and the remaining one-fifth of pathogenic/normal Int-SNVs as a 

validation dataset. SVM models with unmatched datasets had a sensitivity of 0.762 ± 0.030 

(mean and SD) and a specificity of 0.905 ± 0.024 (mean and SD). As shown in Table 1, SVM 

models with matched datasets had a sensitivity of 0.899 ± 0.022 (mean and SD) and a 

specificity of 0.772 ± 0.027 (mean and SD). Although the sums of sensitivity and specificity 

were similar between the two datasets (1.671 for unmatched datasets and 1.667 for matched 

datasets), sensitivity was higher with the matched datasets and specificity was higher with the 

unmatched datasets. With unmatched datasets, the number of normal SNVs was 14 times 

(=16,741/1,162) higher than that of pathogenic SNVs. SVM models with unmatched datasets 

were thus in favor of predicting that Int-SNVs were negative, and specificity became high 

(0.905) at the cost of low sensitivity (0.762). We supposed that both unmatched and matched 

models could be used for different purposes. However, in order to detect pathogenic Int-SNVs 

identified in human diseases, we hoped to keep the sensitivity high as much as possible, and we 

used SVM models with matched datasets in the following analyses. 

 

Comparison of IntSplice with SVM models generated based on the Shapiro-Senapathy 

score and MaxEntScan::score3ss 

 Although Shapiro-Senapathy score19 and MaxEntScan::score3ss20 are not designed to 

predict aberrant splicing due to Int-SNVs, we exploited these scores to predict the splicing 
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consequences of Int-SNVs by setting an automatic cutoff value with SVM. For each of the 100 

datasets comprising the 2,324 Int-SNVs at positions Int-50:Int-3 that we used for the IntSplice 

modeling, we analyzed all the 2,324 Int-SNVs at positions Int-50:Int-3 with Shapiro-Senapathy 

score and 2,064 Int-SNVs at positions Int-20:Int-3 with MaxEntScan. Shapiro-Senapathy score 

was originally designed to score the 3’ ss up to Int-14, and the scoring matrix was based on the 

nucleotide sequences available in the year 1987.19 We thus made a new scoring matrix covering 

up to Int-50 by analyzing ENSEMBL release 64 (Supplementary Table 2). MaxEntScan was 

designed to score 3’ ss up to Int-20, and was unable to score Int-SNVs at positions 

Int-50:Int-21.20 We randomly divided the datasets comprised of 2,324 and 2,064 Int-SNVs into 

five groups. We made 500 SVM models using either the Shapiro-Senapathy score or the 

MaxEntScan with the four kernels of “linear”, “polynomial”, “radial basis function”, and 

“sigmoid” (Table 1), as we did with IntSplice. Again, the radial basis function generated the 

most efficient models with both the Shapiro-Senapathy score and MaxEntScan. The plots of the 

sensitivity and the specificity of the radial basis function models generated by IntSplice, 

Shapiro-Senapathy score, and MaxEntScan, respectively, revealed that the sum of the sensitivity 

and the specificity of IntSplice was higher than those of the Shapiro-Senapathy score and 

MaxEntScan for the Int-SNVs at positions Int-50:Int-3 (Figure 2A, Table 1), Int-20:Int-3 

(Figure 2B, Table 1), and Int-50:Int-21 (Table 1). 

 

IntSplice: a web service program to predict the pathogenic and normal Int-SNVs using 

SVM modeling 

The aforementioned analyses of the validation datasets indicate that SVM modeling 

with the radial basis function was able to distinguish between pathogenic and normal Int-SNVs 

with a sensitivity of 0.772 ± 0.027 (mean and SD) and a specificity of 0.101 ± 0.022 (Table 1). 

Thus, we generated a global SVM model by including 2,324 SNVs and made a web service 

program, IntSplice, at http://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice. This program 

accepts a file in a VCF format with multiple SNVs and predicts whether each SNV affects 

splicing or not. A given SNV is mapped to all the annotated coding transcripts in ENSEMBL 64, 

and the program analyzes all the transcripts. If an SNV affects splicing of one or more 

transcript(s), our program predicts that the SNV is pathogenic and shows the affected ENST 

transcript numbers. Representative results are shown in Figure 3. 

 

Application of the IntSplice program to intronic mutations of RAPSN 

 We applied our IntSplice program to the naturally occurring and artificial mutations in 
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RAPSN encoding rapsyn, which makes a scaffold for the muscle nicotinic acetylcholine receptor 

at the neuromuscular junction.38, 39 A homozygous RAPSN c.913-5T>A mutation was identified 

in a patient with congenital myasthenic syndrome. Introduction of a minigene spanning RAPSN 

exons 5 to 7 into HeLa cells showed that the RAPSN c.913-5T>A mutation caused partial 

skipping of exon 5 (Figure 4A), and compromised binding of U2AF65 (Figure 4B). In order to 

investigate which pyrimidine nucleotide in the PPT is essential for splicing of RAPSN exon 5, 

we first substituted “T” for “A” at position Int-9 to make a complete stretch of ten pyrimidines 

at positions Int-12:Int-3 (“Opt” in Figure 4C). We then serially introduced a mutant “A” from 

positions Int-11 to Int-3. Introduction of the nine artificial mutants into HeLa cells showed that 

three mutants at positions Int-6, Int-5, and Int-3 led to skipping of exon 5 (Figure 4C). We also 

found that the binding of U2AF65 to the Int-6 and Int-5 mutants was compromised, but not that 

to the Int-3 mutant (Figure 4D). In contrast, the binding of U2AF35 or U1-70K was not affected 

in any mutant. 

 The IntSplice, the MaxEntScan-based model, and the Shapiro-Senapathy score-based 

model correctly predicted aberrant splicing in the patient’s mutation, RAPSN c.913-5T>A 

(Figure 4A). Next, we made the “Opt” construct as a normal reference sequence, and applied 

these three models to the nine artificial mutants (Figure 4C). The IntSplice, the 

MaxEntScan-based model, and the Shapiro-Senapathy score-based model erroneously predicted 

the splicing consequences in one, two, and five mutants, respectively (asterisks in Figure 4C). 

 

DISCUSSION 

In an effort to make a model to predict splicing consequences of Int-SNVs, we first 

analyzed the position-specific effects of the intronic nucleotides on splicing (Figure 1), and 

extracted parameters that possibly affect the splicing strength (Supplementary Table 1). We 

calculated the PSIs of 14 RNA-seq data of normal human tissues, and then tried to predict PSIs 

using SVR models with the 105 extracted parameters. However, the correlation coefficients 

between the calculated and predicted PSIs were less than 0.3 (Supplementary Figure 3). Next, 

we generated SVM models to directly differentiate pathogenic SNVs in the HGMD and normal 

SNVs in the dbSNP database, with 1-specificity (a false positive rate) of ~0.10 and a sensitivity 

(a true positive rate) of ~0.77, and named it IntSplice. Inefficient prediction with the 

RNA-seq-based SVR models suggests that prediction of PSI scores is much more difficult than 

differentiation between normal and pathogenic Int-SNVs. Although SVM models to 

differentiate normal and pathogenic Int-SNVs with SVM were better than SVR models to 

predict PSIs, accurate prediction of splicing consequences of Int-SNVs was not available even 
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with SVM modeling. This was likely due to inadequacy of the training datasets and also to lack 

of parameters that were essential for splicing regulation in living cells. First, our training dataset 

was comprised of pathogenic Int-SNVs causing Mendelian disorders (HGMD) and normal 

Int-SNVs in dbSNP with a minor allelic frequency > 0.01. Neither HGMD nor dbSNP database 

was comprehensive, and the effects of Int-SNVs that were not present in HGMD or dbSNP 

could not be estimated. Second, among various parameters that enable precise spatiotemporal 

regulation of splicing in vivo, the following parameters could not be taken into account in our 

SVM modeling. i) Splicing is coupled to transcription, which is regulated by RNA polymerase 

II, other transcription factors, and chromatin structure.40 ii) Splicing cis-elements that are 

functional in specific tissue(s) at specific developmental stage(s) have not been fully 

characterized.41 iii) The exact mechanisms underlying recognition of degenerative cis-elements 

by a specific RNA-biding protein remain to be elucidated.42 iv) RNA editing plays a pivotal role 

in spicing, but RNA editing has not been comprehensively characterized.43 v) Spatiotemporal 

regulations of expression and activation of splicing trans-factors (RNA-binding proteins) have 

not been extensively identified.41 

We compared the prediction efficiency of IntSplice with those of Shapiro-Senapathy 

score- and MaxEntScan-based SVM models that we generated by applying the same training 

and validation datasets that were used for IntSplice. Although the sensitivity as well as the sum 

of the sensitivity and the specificity of IntSplice were better than those of Shapiro-Senapathy 

score-based and MaxEntScan-based models, the specificity of IntSplice was not as good as that 

of MaxEntScan-based model for Int-SNVs at positions Int-20:Int-3 (Table 1). A high specificity 

of MaxEntScan was indeed observed in RAPSN mutants. In contrast to IntSplice and 

Shapiro-Senapathy score-baesd model, MaxEntScan-based model erroneously predicted that the 

Int-6 and Int-5 mutants were normally spliced, although these caused exon skipping (Figure 4C). 

MaxEntScan-based model may make the specificity high at the cost of lowering the sensitivity. 

As we have incorporated both the Shapiro-Senapathy score and MaxEntScan scores in our 110 

parameters, we expected that the sensitivity and the specificity of IntSplice were superior to 

those of Shapiro-Senapathy score-based and MaxEntScan-based models. The better specificity 

of MaxEntScan compared to IntSplice is possibly accounted for due to the difference in the 

positions of the Int-SNVs used to produce their respective models: IntSplice was trained with 

Int-SNVs up to position Int-50, whereas MaxEntScan covered up to position Int-20. 

Alternatively, the MaxEntScan scores were underestimated among the 110 parameters in the 

SVM modeling of IntSplice for the sake of an improved sensitivity. Another possibility is that 

the higher specificity of MaxEntScan was lowered by the lower specificities of the other 
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parameters used in the IntSplice modeling. We hope that our web service program, IntSplice, 

will reveal yet unidentified splicing mutations at positions Int-50:Int-3, and unveil aberrant 

splicing in human diseases. 
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Figure legends 

 

Figure 1. Annotation-based analysis of the effects of intronic nucleotides on splicing. (a) 

The effect of each intronic nucleotide at positions Int-50:Int-3 and Ex+1:Ex+5 on the average 

TR (see Supplementary Figure 2) according to the ENSEMBL annotation 64. For example, G at 

position Int-3 is frequently observed in alternatively spliced 3’ ss, yielding a markedly reduced 

TR. (b) Schematic of the consensus nucleotide compositions of the BPS (arrow) and PPT.21 

 

Figure 2. Sensitivities and specificities of IntSplice, the Shapiro-Senapathy score-based 

model, and the MaxEntScan-based model. (a) An SVM model generated by four-fifths of the 

2324 normal and pathogenic Int-SNVs in the HGMD and dbSNP databases is applied to the 

remaining one-fifth of the Int-SNVs. The models are generated five times for 100 different 

datasets. Bars indicate mean and SD. As MaxEntScan is unable to score positions Int-50:Int-21, 

the MaxEntScan-based models in this region are not indicated. (b) IntSplice, the 

Shapiro-Senapathy score-based model, and the MaxEntScan-based model are generated with 

2064 normal and pathogenic Int-SNVs at positions Int-20:Int-3. Mean and SD of the sensitivity 

and the specificity of 500 SVM models are plotted. Oblique lines indicate where the sums of the 

sensitivity and the specificity are identical. Note that the oblique lines are not ROC curves, and 

are auxiliary lines for comparing the sensitivity and the specificity of three models. 

 

Figure 3. Representative results of the IntSplice web service program 

(http://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice). Predicted results are shown in the 

“RESULT” column. The rightmost “NOTE” column indicates which exon in which ENSEMBL 

transcript is predicted to lead to abnormal or normal splicing. The information from the columns 

“CHROM” to “FILTER” is included in the submitted VCF file, and is not edited by IntSplice. 

For example, a G-to-A transition at position 73,550,880 of chromosome 10, which is registered 

in HGMD, is predicted to cause aberrant splicing. 

 

Figure 4. Characterization of the RAPSN c.913-5T>A mutation identified in a patient with 

congenital myasthenic syndrome and of nine artificial mutations. (a) Schematic of 

pcDNA-RAPSN minigene harboring wild-type (wt) and mutant c.913-5T>A (mut) sequences. 

RT-PCR of the minigenes introduced into HeLa cells are shown. “A”, aberrant splicing; “-“, 

normal splicing. IntSplice, the Shapiro-Senapathy score-based model, and the 

MaxEntScan-based model correctly predict aberrant splicing. (b) Schematic of MS2-attached 
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wild-type (wt) and mutant (mut) RNA substrates that originated from 

pcDNA-RAPSN-E5-E6-MS2 minigene. An RNA-affinity-purified spliceosomal complex is 

immunoblotted with the indicated antibodies. U2AF65 and U2AF35 bind to the PPT and the 3’ 

ss, respectively. U1-70K is a component of U1 snRNP that binds to the 5’ ss. A β-globin-MS2 

pre-mRNA substrate is employed as a control.31 NE, nuclear extract (5%). (c) “T” (double 

underlined) is substituted for wild-type “A” at position Int-9 to make an optimized PPT (Opt) 

carrying an uninterrupted stretch of ten pyrimidines. A mutant “A” nucleotide (shown in red) is 

serially introduced at positions Int-11:Int-3. RT-PCR of the minigenes introduced into HeLa 

cells are shown. The splicing consequences predicted by IntSplice, the Shapiro-Senapathy 

score-based model, and the MaxEntScan-based model are indicated. Incorrectly predicted 

consequences are marked by an asterisk. “A”, aberrant splicing; “-“, normal splicing. (d) A 

spliceosome complex is purified and immunoblotted as in (b). 
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Table 1. Comparison of the SVM kernels 

 

Positions Tool SVM kernel Specificity Sensitivity 

Int-50 to Int-3 PSSM Linear 0.890 ± 0.020 0.560 ± 0.029 

↓ ↓ Polynomial 0.971 ± 0.010 0.394 ± 0.028 

↓ ↓ Radial basis function 0.889 ± 0.0201 0.561 ± 0.0291 

↓ ↓ Sigmoid 0.700 ± 0.139 0.587 ± 0.056 

↓ IntSplice Linear 0.934 ± 0.018 0.715 ± 0.029 

↓ ↓ Polynomial 0.896 ± 0.022 0.769 ± 0.028 

↓ ↓ Radial basis function 0.899 ± 0.0221 0.772 ± 0.0271 

↓ ↓ Sigmoid 0.936 ± 0.019 0.710 ± 0.030 

Int-20 to Int-3 PSSM Linear 0.704 ± 0.052 0.623 ± 0.033 

↓ ↓ Polynomial 0.833 ± 0.041 0.544 ± 0.031 

↓ ↓ Radial basis function 0.831 ± 0.0441 0.545 ± 0.0321 

↓ ↓ Sigmoid 0.703 ± 0.052 0.624 ± 0.032 

↓ IntSplice Linear 0.909 ± 0.045 0.756 ± 0.034 

↓ ↓ Polynomial 0.841 ± 0.052 0.808 ± 0.028 

↓ ↓ Radial basis function 0.821 ± 0.0551 0.817 ± 0.0301 

↓ ↓ Sigmoid 0.910 ± 0.054 0.751 ± 0.034 

↓ MaxEntScan Linear 0.937 ± 0.017 0.663 ± 0.031 

↓ ↓ Polynomial 0.539 ± 0.497 0.471 ± 0.492 

↓ ↓ Radial basis function 0.924 ± 0.0191 0.687 ± 0.0331 

↓ ↓ Sigmoid 0.567 ± 0.174 0.551 ± 0.170 

Int-50 to Int-21 PSSM Linear 0.989 ± 0.008 0.056 ± 0.039 

↓ ↓ Polynomial 0.998 ± 0.003 0.009 ± 0.018 

↓ ↓ Radial basis function 0.998 ± 0.0041 0.010 ± 0.0191 

↓ ↓ Sigmoid 0.989 ± 0.008 0.056 ± 0.039 

↓ IntSplice Linear 0.950 ± 0.018 0.347 ± 0.086 

↓ ↓ Polynomial 0.951 ± 0.018 0.343 ± 0.083 

↓ ↓ Radial basis function 0.949 ± 0.0181 0.352 ± 0.0861 

↓ ↓ Sigmoid 0.951 ± 0.018 0.343 ± 0.084 
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Mean and SD are indicated. MaxEntScan can be applied to SNVs at positions Int-20 to Int-3. 
1SVM modeling with the radial basis function leads to the most discriminating models on 

average. The sensitivity and the specificity of the radial basis function-based SVM models at 

positions Int-50:Int-3 and Int-20:Int-3 are plotted in Figure 2. 
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Figure 1. Annotation-based analysis of the effects of intronic nucleotides on splicing. (a) 

The effect of each intronic nucleotide at positions Int-50:Int-3 and Ex+1:Ex+5 on the average 

TR (see Supplementary Figure 2) according to the ENSEMBL annotation 64. For example, G at 

position Int-3 is frequently observed in alternatively spliced 3’ ss, yielding a markedly reduced 

TR. (b) Schematic of the consensus nucleotide compositions of the BPS (arrow) and PPT.21 
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Figure 2. Sensitivities and specificities of IntSplice, the Shapiro-Senapathy score-based 

model, and the MaxEntScan-based model. (a) An SVM model generated by four-fifths of the 

2324 normal and pathogenic Int-SNVs in the HGMD and dbSNP databases is applied to the 

remaining one-fifth of the Int-SNVs. The models are generated five times for 100 different 

datasets. Bars indicate mean and SD. As MaxEntScan is unable to score positions Int-50:Int-21, 

the MaxEntScan-based models in this region are not indicated. (b) IntSplice, the 

Shapiro-Senapathy score-based model, and the MaxEntScan-based model are generated with 

2064 normal and pathogenic Int-SNVs at positions Int-20:Int-3. Mean and SD of the sensitivity 

and the specificity of 500 SVM models are plotted. Oblique lines indicate where the sums of the 

sensitivity and the specificity are identical. Note that the oblique lines are not ROC curves, and 

are auxiliary lines for comparing the sensitivity and the specificity of three models. 
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Figure 3. Representative results of the IntSplice web service program 

(http://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice). Predicted results are shown in the 

“RESULT” column. The rightmost “NOTE” column indicates which exon in which ENSEMBL 

transcript is predicted to lead to abnormal or normal splicing. The information from the columns 

“CHROM” to “FILTER” is included in the submitted VCF file, and is not edited by IntSplice. 

For example, a G-to-A transition at position 73,550,880 of chromosome 10, which is registered 

in HGMD, is predicted to cause aberrant splicing. 
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Figure 4. Characterization of the RAPSN c.913-5T>A mutation identified in a patient with 
congenital myasthenic syndrome and of nine artificial mutations. (a) Schematic of 
pcDNA-RAPSN minigene harboring wild-type (wt) and mutant c.913-5T>A (mut) sequences. 
RT-PCR of the minigenes introduced into HeLa cells are shown. “A”, aberrant splicing; “-“, 
normal splicing. IntSplice, the Shapiro-Senapathy score-based model, and the 
MaxEntScan-based model correctly predict aberrant splicing. (b) Schematic of MS2-attached 
wild-type (wt) and mutant (mut) RNA substrates that originated from 
pcDNA-RAPSN-E5-E6-MS2 minigene. An RNA-affinity-purified spliceosomal complex is 
immunoblotted with the indicated antibodies. U2AF65 and U2AF35 bind to the PPT and the 3’ 
ss, respectively. U1-70K is a component of U1 snRNP that binds to the 5’ ss. A β-globin-MS2 
pre-mRNA substrate is employed as a control.31 NE, nuclear extract (5%). (c) “T” (double 
underlined) is substituted for wild-type “A” at position Int-9 to make an optimized PPT (Opt) 
carrying an uninterrupted stretch of ten pyrimidines. A mutant “A” nucleotide (shown in red) is 
serially introduced at positions Int-11:Int-3. RT-PCR of the minigenes introduced into HeLa 
cells are shown. The splicing consequences predicted by IntSplice, the Shapiro-Senapathy 
score-based model, and the MaxEntScan-based model are indicated. Incorrectly predicted 
consequences are marked by an asterisk. “A”, aberrant splicing; “-“, normal splicing. (d) A 
spliceosome complex is purified and immunoblotted as in (b). 
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Supplementary Figure S1. A diagram showing the flow of analyses in this communication. 
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Supplementary Figure S2. Examples of TR values of exons 4 and 5 of the NRG1 gene on 

chromosome 8. TR values are calculated according the ENSEMBL annotation. 
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Supplementary Figure S3. Correlation coefficients of the SVR models applied to the 

validation dataset of each tissue-specific RNA-seq data. Each set of RNA-seq data is randomly 

divided into five groups, and each group is used as a validation dataset. A correlation coefficient 

between the MISO-generated actual PSIs and the SVR-predicted PSIs is calculated for each 

validation dataset. Five hundred different SVR models are generated from 100 different 

combinations of the five groups for each RNA-seq dataset, and the mean and SD are plotted. 
a,bThe RNA-seq data are obtained from the GEO database with the accession numbers of 

GSE13652a and GSE12946b, respectively. 
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Supplementary Table S1. Parameters to generate SVR and SVM models 

 

 
Parameter 3’/5’ Positiona SVRb SVMc 

Best-BPSd 
 

  

 
Number of nucleotides from best-BPS to Int-3 3' -50 to -3 0.692  - 

 
Number of G's from best-BPS to Int-3 3' -50 to -3 -1.730  6.022  

 
Best-BPS at Int-50:-3 3' -50 to -3 -1.230  -7.720  

PPT 
 

  

 
Longest stretch of C/T's with 0 break at Int-50:-3 3' -50 to -3 2.705  -1.990  

 
Longest stretch of C/T's with 1 break at Int-50:-3 3' -50 to -3 -0.640  1.317  

 
Longest stretch of C/T's with 2 breaks at Int-50:-3 3' -50 to -3 0.944  -1.510  

 
Longest stretch of C/T's with 3 breaks at Int-50:-3 3' -50 to -3 -2.690  0.872  

 
Longest stretch of C/T's with 4 breaks at Int-50:-3 3' -50 to -3 -0.900  -0.600  

 
Length of a T stretch allowing 0 break 3' -50 to -3 1.603  -1.160  

 
Length of a T stretch allowing 1 break 3' -50 to -3 -2.490  0.919  

 
Length of a T stretch allowing 2 breaks 3' -50 to -3 1.366  -2.460  

 
Length of a T stretch allowing 3 breaks 3' -50 to -3 -1.260  -1.850  

 
Length of a T stretch allowing 4 breaks 3' -50 to -3 -2.810  1.025  

Best-BPS-PPTe 
 

  

 
PWM score of BPS of best-BPS-PPT 3' -50 to -3 2.199  -0.710  

 
Invariant A of best-BPS-PPT is at Int-34:-21 3' -50 to -3 -0.280  -8.030  

 
Ratio of C/T's in PPT of best-BPS-PPT 3' -50 to -3 5.131  -2.800  

 
Ratio of T's in PPT of best-BPS-PPT 3' -50 to -3 0.454  -7.260  

 
Ratio of G's in PPT of best-BPS-PPT 3' -50 to -3 4.206  7.562  

 
Length of PPT of best-BPS-PPT 3' -50 to -3 0.304  -6.310  

Individual nucleotides 
 

  

 
A at Int-3 3' -3 -0.580  2.494  

 
C at Int-3 3' -3 -3.320  -4.340  

 
G at Int-3 3' -3 0.421  0.846  

 
T at Int-3 3' -3 3.495  1.001  

 
A at Ex+1 3' +1 0.350  - 

 
C at Ex+1 3' +1 -0.580  - 

 
G at Ex+1 3' +1 0.603  - 

 
T at Ex+1 3' +1 -0.360  - 



30 
 

 
A/G’s at Int-7 to Int-5 (Int-7:-5) 3' -7 to -5 0.813  -1.190  

 
Ratio of A/G's at Int-20:-8 3' -20 to -8 1.330  10.800  

 
Number of G's at Int-12:-3 3' -12 to -3 0.760  7.834  

Other parameters 
 

  

 
SD_score 5' -3 to +6 3.889  - 

 
SD_this_intron 5' -3 to +6 1.717  - 

 
Exon length - - 22.350  - 

 
1/(exon length) - - -12.900  - 

 
Presence of 'GGG' at Int-12:-3 3' -12 to -3 -1.010  0.431  

 
MaxEnt score of Int-20:+31 3' -20 to +3 5.336  -12.700  

 
MaxEnt score of Int-3:+61 5' -3 to +6 9.065  - 

 
MaxEnt score of Int-3:+61 5' -3 to +6 -4.890  - 

 
Shapiro-Senapathy score2 3' -50 to -3 -5.660  -11.200  

 Generation of de novo AG by an SNV 3' -50 to -3 - 6.814  

 ∆G of predicted secondary structure by mfold3 3' -50 to +5 -3.900  -1.070  

SpliceAid scores of RNA-binding proteinf 
 

  

 
9G8 3' -50 to +5 1.887  2.805  

 
CUG-BP1 3' -50 to +5 -0.490  -0.300  

 
DAZAP1 3' -50 to +5 -0.150  1.209  

 
ESRP1 3' -50 to +5 0.914  -1.000  

 
ETR-3 3' -50 to +5 5.352  0.977  

 
FMRP 3' -50 to +5 -0.340  0.582  

 
Fox-1 3' -50 to +5 1.692  2.556  

 
Fox-2 3' -50 to +5 1.575  1.082  

 
HTra2alpha 3' -50 to +5 0.936  -0.940  

 
HTra2beta1 3' -50 to +5 -1.000  -1.080  

 
HuB 3' -50 to +5 -3.030  4.727  

 
HuC 3' -50 to +5 0.080  0.101  

 
HuD 3' -50 to +5 -0.760  -1.760  

 
HuR 3' -50 to +5 -10.600  1.199  

 
KSRP 3' -50 to +5 0.278  2.042  

 
MBNL1 3' -50 to +5 3.243  -0.090  

 
Nova-1 3' -50 to +5 -4.280  -0.160  

 
Nova-2 3' -50 to +5 -2.700  0.173  
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PSF 3' -50 to +5 -0.240  0.348  

 
RBM25 3' -50 to +5 1.172  0.996  

 
RBM4 3' -50 to +5 1.278  -0.600  

 
RBM5 3' -50 to +5 0.924  2.504  

 
SC35 3' -50 to +5 0.023  -3.970  

 
SF1 3' -50 to +5 -1.340  1.926  

 
SF2/ASF 3' -50 to +5 -0.180  -0.930  

 
SLM-1 3' -50 to +5 -0.080  -0.100  

 
SLM-2 3' -50 to +5 -0.400  0.292  

 
SRp20 3' -50 to +5 -3.250  3.508  

 
SRp30c 3' -50 to +5 -0.060  -0.920  

 
SRp38 3' -50 to +5 1.793  1.734  

 
SRp40 3' -50 to +5 -1.350  4.633  

 
SRp54 3' -50 to +5 -0.950  -0.350  

 
SRp55 3' -50 to +5 1.420  2.564  

 
SRp75 3' -50 to +5 -2.100  0.064  

 
Sam68 3' -50 to +5 -3.050  -2.000  

 
TDP43 3' -50 to +5 -0.470  -2.590  

 
TIA-1 3' -50 to +5 -4.970  -5.690  

 
TIAL1 3' -50 to +5 1.941  -7.110  

 
YB-1 3' -50 to +5 0.624  -2.720  

 
ZRANB2 3' -50 to +5 2.611  -0.490  

 
hnRNP A0 3' -50 to +5 -0.780  3.318  

 
hnRNP A1 3' -50 to +5 7.275  2.996  

 
hnRNP A2/B1 3' -50 to +5 -0.700  1.194  

 
hnRNP C 3' -50 to +5 -1.810  0.374  

 
hnRNP C1 3' -50 to +5 -0.660  -1.010  

 
hnRNP C2 3' -50 to +5 0.120  0.424  

 
hnRNP D 3' -50 to +5 -0.480  0.015  

 
hnRNP D0 3' -50 to +5 1.064  -1.000  

 
hnRNP DL 3' -50 to +5 0.851  1.025  

 
hnRNP E1 3' -50 to +5 1.266  1.196  

 
hnRNP E2 3' -50 to +5 1.700  3.600  

 
hnRNP F 3' -50 to +5 1.509  -3.920  
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aPostions to which the indicated parameter is applied. 
b“SVR” indicates a mean of coefficients for each parameter generated by 500 repetitions of 

SVR modeling using colon RNA-seq to predict PSIs. “-“ indicates that the parameter was not 

used for SVR modeling. 
c"SVM" indicates a mean of coefficients for each parameter generated by SVM modeling (radial 

 
hnRNP H1 3' -50 to +5 -0.620  -0.020  

 
hnRNP H2 3' -50 to +5 -0.620  -0.020  

 
hnRNP H3 3' -50 to +5 -0.310  0.579  

 
hnRNP I (PTB) 3' -50 to +5 -0.010  3.175  

 
hnRNP J 3' -50 to +5 -0.550  2.858  

 
hnRNP K 3' -50 to +5 0.893  3.552  

 
hnRNP Lg 3' -50 to +5 0.000  - 

 
hnRNP LLg 3' -50 to +5 0.000  - 

 
hnRNP M 3' -50 to +5 1.634  -0.860  

 
hnRNP P (TLS) 3' -50 to +5 -0.550  1.363  

 
hnRNP Q 3' -50 to +5 -0.280  0.717  

 
hnRNP U 3' -50 to +5 -0.020  1.446  

 
nPTB 3' -50 to +5 0.845  2.641  

SVR-based prediction of PSI    

 Predicted PSI (skeletal muscle RNA-seq)4 n.a. n.a. - -2.980  

 Predicted PSI (lung RNA-seq)4 n.a. n.a. - -3.580  

 Predicted PSI (liver RNA-seq)4 n.a. n.a. - -4.070  

 Predicted PSI (heart RNA-seq)4 n.a. n.a. - -3.260  

 Predicted PSI (cerebral cortex RNA-seq)4 n.a. n.a. - -6.550  

 Predicted PSI (brain RNA-seq)4 n.a. n.a. - -8.170  

 Predicted PSI (testis RNA-seq)5 n.a. n.a. - -4.490  

 Predicted PSI (breast RNA-seq)5 n.a. n.a. - 3.559  

 Predicted PSI (skeletal muscle RNA-seq)5 n.a. n.a. - -3.270  

 Predicted PSI (lymph node RNA-seq)5 n.a. n.a. - -3.060  

 Predicted PSI (liver RNA-seq)5 n.a. n.a. - -4.540  

 Predicted PSI (colon RNA-seq)5 n.a. n.a. - -7.280  

 Predicted PSI (brain RNA-seq)5 n.a. n.a. - -5.900  

 Predicted PSI (adipose RNA-seq)5 n.a. n.a. - -2.230  
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basis function) using 100 different datasets to predict HGMD and dbSNP. “-“ indicates that the 

parameter was not used for SVM modeling. 
dBest-BPS, BPS with the highest PWM (position weight matrix) according to Gao et al.6 
eBest-BPS-PPT, the best pair of BPS and PPT according to the following algorithm. First, 

‘nYnAn’ motif is looked for with an invariant ‘A’ at Int-50:Int-3 and set to be BPS i (i ⊆ N). 

Second, the ratio of T/C’s at positions +4 to +24 from the invariant ‘A’ of BPSi is calculated, 

while BPSi downstream of Int-9 is excluded because the length of putative PPT i becomes less 

than 7 nucleotides. This gives rise to multiple candidate BPSi-PPT i pairs. The sum of the PWM 

of BPS i and the T/C ratio in PPT i is then calculated and a pair with the best sum score is 

selected. 
fThe exact motif for an RNA-binding protein is searched for at Int-50:Ex+5 and scored 

according to SpliceAid. The sum of SpliceAid scores is used as a parameter for each 

RNA-binding protein after the sum is normalized using the SVM-scale functionality of 

LIBSVM7. 
gOnly hnRNPs L and LL give a primal variable of 0.000 and do not contribute to SVR modeling. 

This is likely because 166 binding sites for hnRNPs L and LL in SpliceAid are all long motifs 

comprised of nine or more nucleotides. 

Methods to calculate individual parameters are available upon request. 
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Supplementary Table S2. Nucleotide frequencies at positions Int-50:Ex+5 of major introns 

annotated in ENSEMBL 64 to calculate Shapiro-Senapathy scores 

 

Position A T G C 

Int-50 0.252 0.300 0.238 0.210 

Int-49 0.250 0.301 0.234 0.215 

Int-48 0.249 0.301 0.235 0.214 

Int-47 0.250 0.304 0.230 0.216 

Int-46 0.249 0.303 0.230 0.217 

Int-45 0.250 0.306 0.229 0.216 

Int-44 0.250 0.304 0.227 0.220 

Int-43 0.248 0.307 0.224 0.221 

Int-42 0.249 0.304 0.227 0.220 

Int-41 0.250 0.306 0.223 0.221 

Int-40 0.249 0.307 0.223 0.221 

Int-39 0.249 0.310 0.218 0.223 

Int-38 0.247 0.309 0.218 0.226 

Int-37 0.249 0.309 0.214 0.228 

Int-36 0.248 0.308 0.212 0.232 

Int-35 0.249 0.311 0.206 0.234 

Int-34 0.249 0.314 0.201 0.236 

Int-33 0.249 0.319 0.198 0.235 

Int-32 0.249 0.321 0.196 0.234 

Int-31 0.251 0.322 0.191 0.236 

Int-30 0.250 0.328 0.186 0.236 

Int-29 0.251 0.332 0.180 0.237 

Int-28 0.252 0.336 0.175 0.237 

Int-27 0.252 0.338 0.170 0.240 

Int-26 0.250 0.346 0.164 0.240 

Int-25 0.249 0.350 0.161 0.240 

Int-24 0.243 0.355 0.156 0.245 

Int-23 0.238 0.359 0.155 0.247 

Int-22 0.229 0.372 0.153 0.246 

Int-21 0.217 0.381 0.152 0.250 
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Int-20 0.205 0.397 0.148 0.251 

Int-19 0.185 0.409 0.148 0.258 

Int-18 0.169 0.426 0.143 0.262 

Int-17 0.153 0.444 0.138 0.265 

Int-16 0.141 0.454 0.137 0.268 

Int-15 0.131 0.464 0.129 0.277 

Int-14 0.122 0.482 0.123 0.272 

Int-13 0.111 0.499 0.119 0.271 

Int-12 0.103 0.514 0.109 0.274 

Int-11 0.097 0.542 0.104 0.256 

Int-10 0.097 0.515 0.111 0.277 

Int-9 0.109 0.488 0.118 0.286 

Int-8 0.118 0.466 0.106 0.309 

Int-7 0.123 0.459 0.098 0.321 

Int-6 0.099 0.502 0.071 0.328 

Int-5 0.102 0.538 0.073 0.287 

Int-4 0.245 0.280 0.205 0.270 

Int-3 0.068 0.281 0.013 0.638 

Int-2 1.000 0.000 0.000 0.000 

Int-1 0.000 0.000 1.000 0.000 

Ex+1 0.265 0.118 0.469 0.148 

Ex+2 0.252 0.359 0.195 0.194 

Ex+3 0.261 0.274 0.236 0.230 

Ex+4 0.248 0.264 0.224 0.264 

Ex+5 0.267 0.276 0.212 0.245 
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Table S3. Comparison of SVM models with or without SVR-based prediction of PSI of 14 

tissues 

 

Positions 

SVR-based 

prediction 

of PSI 

Specificity Sensitivity 

Int-50 to Int-3 with 0.899 ± 0.022 0.772 ± 0.027 

↓ without 0.905 ± 0.024 0.762 ± 0.030 

↓ difference 0.006  -0.010  

Int-20 to Int-3 with 0.821 ± 0.055 0.817 ± 0.030 

↓ without 0.829 ± 0.060 0.814 ± 0.030 

↓ difference 0.008  -0.004  

Int-50 to Int-21 with 0.949 ± 0.018 0.352 ± 0.086 

↓ without 0.949 ± 0.018 0.348 ± 0.087 

↓ difference 0.000  -0.004  

 

Mean and SD are indicated. The SVM kernel was the radial basis function. SVM models with 

SVR-based prediction of PSI are identical to those shown in Table 1. 
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