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    The Bergman kernel on each complex manifold is a 
canonical volume-form determined by the complex structure. 
This thesis studies the Bergman kernel and consists mainly of 
the following two parts. Part I is on the relations between 
Bergman kernels and potentials (Arakelov-Green function, 
Evans-Selberg potential, etc.). Part II is on the variation (in 
particular its asymptotic behaviors) of Bergman kernels at 
degeneration. After the introduction and the preliminaries 
among the total five chapters, Chapter 3 and Chapters 4 & 5 
correspond to Part I and Part II, respectively. Asymptotic 
behaviors of the Bergman kernel's variation at the limiting 
case can imply (by convexity and plurisubharmonicity) 
quantitative relations between Bergman kernels and potentials, 
which is a direct link from Part II to Part I. 

 
Part I 
 

    It is interesting to generalize the Suita type results to 
compact Riemann surfaces, whose Green functions in the 
usual sense do not exist. However, in arithmetic algebraic 
geometry it is known that on a compact manifold the 
Arakelov-Green function and the Arakelov metric play 
important roles (with applications to string theory), similarly 
as the Green function and the logarithmic capacity do for a 
bounded domain. We first dealt with a complex torus, whose 
Bergman kernel, Arakelov-Green function and Arakelov 



metric are given by elliptic functions. We numerically found a 
universal constant independent of the complex structure. On 
the other hand, we aim to generalize the Suita type results to 
the potential-theoretically parabolic case. For a once-
punctured complex torus, we compared the Bergman kernel 
and the fundamental metric by constructing the Evans-Selberg 
potential, deriving the fundamental metric, and discussing 
their asymptotic behaviors. Moreover, as the torus 
degenerates to a singular complex algebraic curve, we know 
that the Gaussian curvature of the fundamental metric can be 
arbitrarily close to 0, i.e., cannot be bounded from above by a 
negative constant, which is different from the potential-
theoretically hyperbolic case (with an upper bound -4). We 
provided explicit formulas for Evans-Selberg potentials on 
unbounded planar domains and discussed their growth orders 
near boundaries. 
       

Part II 
 

     A possibly more interesting question is to study the 
variations (in particular their asymptotic behaviors) of 
Bergman kernels at degeneration. Such study is much related 
to the variation of Hodge structures, especially the nilpotent 
orbit theorem. In general, the curvature semi-positivities 
characterize certain convexities and are associated with L^2 
estimates and extensions. Our research aims to relate to these 
abstract objects in a quantitative way and at least three 
approaches work for this problem: elliptic function, Taylor 
expansion and pinching coordinate. 
 

    0. The so-called Legendre family of elliptic curves gives a 
general description of genus one compact Riemann surfaces, 
whose moduli space is C-{0, 1}. We found that the Poincar\'e 
metric there has hyperbolic growth at 0 where the curve 
degenerates to a singular one with a node. For the case of other 



boundary points, 1 and ∞, the asymptotics are also achieved. 
The proofs highly depend on special properties of the 
Weierstrass-$\wp$ function and the elliptic modular lambda 
function. For other families of elliptic curves (degenerating to a 
singular one at 0 with a node or a cusp) that the special elliptic 
function method cannot be applied to, we can accurately 
determine the leading and subleading terms by a method based 
on the Taylor expansions of Abelian differentials. Information 
on both the singularity and the complex structure contributes to 
the determination of various boundary behaviors of Bergman 
kernels. We also found an interesting example, namely a 
cuspidal family of elliptic curves with non-constant periods, 
which is reducible to the case of a Legendre family. Such a 
connection between the nodal and cuspidal cases strengthens 
the importance of a Legendre family, since we can change 
coordinates holomorphically to make the reduction. Finally, 
(probably due to the uniformization theorem) the situations for 
higher genus curves are quite different. 
 

    1. Hyperelliptic & general curves with nodes. For a (non-
separating) nodal family of genus two curves {y^2=x(x-t)(x-
1)(x-a)(x-b)}, with distinct a, b, t in C-{0, 1}, we can determine 
asymptotic behaviors of Bergman kernels with precise 
coefficients. Previously by Habermann & Jost, the pinching-
coordinate method was used to study the Bergman kernels and 
their induced L^2 metrics on Teichmuller spaces of general 
curves with separating or non-separating nodes. Nevertheless, 
our different approach to hyperelliptic curves has an advantage 
(especially if we want to know what role the given complex 
structure plays) that we can explicitly write down the 
coefficients, which usually indicate the geometry of the base 
varieties and their singularities.  
 

    2. Hyperelliptic curves with cusps, Case I. Let p(x) be a 



polynomial of degree at least 2 with roots of distinct absolute 
values different from |t| and 0. In the local coordinate 
z=\sqrt{x}(non-zero) on a cuspidal family of hyperelliptic 
curves {y^2=x(x^2-t)p(x)}, write its Bergman kernel as k_t(z) 
dz\wedge d\bar z. Then, as t tends to 0,  log 
k_t(z)=constant+O(t^{1/4}). Also, the second term is harmonic 
in t and doesn't necessarily possess a positive coefficient. 
Moreover, the Jacobian varieties remain being manifolds (i.e., 
non-degenerate), as t tends to 0.  
 

    3. Hyperelliptic curves with cusps, Case II. For distinct a, b, t 
in C-{0}, we consider another family of genus two curves 
{y^2=x(x-t)(x-t^2)(x-a)(x-b)}. Then, as t tends to 0, both 
coefficients of the first two terms depend only on the 
information away from the cusp, which is not the case for Case 
I. For the Jacobian varieties, the curvature form of the relative 
Bergman kernel has hyperbolic growth again. 


