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Chapter 1

Introduction

This thesis focus on the Bergman kernel, a reproducing kernel (determined by the complex
structure) of the space of L2 holomorphic top-degree forms on a complex manifold, and
consists mainly of the following two parts1. Part I is on the relations between Bergman
kernels and potentials (Arakelov-Green function, Evans-Selberg potential, etc.). Part II is
on the variation (in particular its asymptotic behaviors) of Bergman kernels at degeneration.
Asymptotic behaviors of the variation of Bergman kernels at the limiting case can imply
(by plurisubharmonicity and convexity) quantitative relations between Bergman kernels
and potentials, which is a direct link from Part II to Part I.

1.1 Background

On a connected complex manifold X, the Bergman kernel for a line bundle L equipped
with a Hermitian metric h is defined as

B :=
∑
j

|sj |2h, (1.1)

where {sj}j is a complete orthonormal basis of H0(X,L). Independent of choices of the
basis, the Bergman kernel plays big roles in the study of several complex variables and
complex geometry. In this thesis, we only consider the canonical bundle K, which is just
the cotangent bundle if X is a Riemann surface.

In 1972, Suita [Su] asked about precise relations between the Bergman kernel B and the
so-called logarithmic capacity c, and conjectured that πB ≥ c2 for potential-theoretically
hyperbolic Riemann surfaces. This conjecture has a geometric interpretation that the
Gaussian curvature of the metric c(z)|dz| (z being the local coordinate) is bounded from
above by −4. The relation between the Suita conjecture and the extension theorem was first

1It is organized as follows. Among the total five chapters, Chapter 1 and 2 are the introduction and the
preliminaries, respectively. Chapter 3 and Chapters 4 & 5 correspond to Part I and Part II, respectively.
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1.2. QUESTION AND ANSWER

observed by Ohsawa [Oh95], who proved that 750πB ≥ c2. Via tools form several complex
variables, many mathematicians contributed to this problem [Siu, B96, Ch, B l07, GZZ].
The optimal constant version of the Ohsawa-Takegoshi L2 extension theorem was obtained
in [B l13], which implies that the Suita conjecture holds for all bounded planar domains in C.
Moreover, this conjecture was shown to be true in [GZ15] for the Riemann surface setting,
i.e., open ones admitting Green functions. Thus, it might be interesting to generalize similar
results to potential-theoretically non-hyperbolic cases.

As the complex structure deforms, for pseudoconvex domains the variation of Bergman
kernels was initially studied by Maitani-Yamaguchi [MY] and generalized to higher di-
mensional cases by Berndtsson [B06]. For general results on arbitrary dimensional Stein
manifolds and complex projective algebraic manifolds, see [B09, T, BP, PT]. These impor-
tant results indicating semi-positivity properties of the relative canonical bundles recently
turn out to have close relations with the L2 extension theorem [OT, GZ15, Ca, BL, Oh15],
the space of Kähler metrics [B09b], etc. For simplicity, let us consider the one-dimensional
case, namely a holomorphic family of Riemann surfaces Xλ parametrized by one variable
λ ∈ C. The Bergman kernel on Xλ can be written as Bλ = kλ(z)dz ∧ dz̄ in some local
coordinate z for some local function kλ. Then, the above log-plurisubharmonic variation
results imply that log kλ(z) is plurisubharmonic in (λ, z) and particularly guarantee the
following semi-positivity:

Lλ,z :=
√
−1 ∂λ∂̄λ log kλ(z) ≥ 0, (1.2)

when the fiber Xλ is smooth (see also [Fu, Gr, LY]). (1.2) is a restricted version in the sense
that we look at the transversal direction. If some Xλ0 is singular, a possibly interesting
question is to characterize Lλ,z or log kλ(z), as λ approaches λ0.

1.2 Question and Answer

My PhD research goal is: on Riemann surfaces,

(A) to find relations between Bergman kernels and potentials (Arakelov-Green function,
Evans-Selberg potential, etc.), and

(B) to describe asymptotic behaviors of Bergman kernels near degenerate boundaries.

——States of the art—— —–My project—–
Hörmander’s L2-estimates/
Kodaira vanishing theorem

can prove ⇓ [Ch11, B l13], difficult!
Ohsawa-Takegoshi L2-extension =⇒ (hyperbolic) 99K (A) (non-hyperbolic cases)

(with optimal constant) Suita conjecture Suita conjecture
[BL] ⇑ can prove ⇓ [GZ15, Ca]
Berndtsson’s plurisubharmonic 99K (B) (at degeneration)
variations of Bergman kernels variations of Bergman kernels
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CHAPTER 1. INTRODUCTION

(A) Relations with potentials

It is interesting to generalize the Suita type results to compact Riemann surfaces, whose
Green functions in the usual sense do not exist. However, in arithmetic algebraic geometry
it is known that on a compact manifold the Arakelov-Green function and the Arakelov
metric play important roles (with applications to string theory), similarly as the Green
function and logarithmic capacity do for a bounded domain. We first dealt with a complex
torus Xτ := C/(Z+ τZ) (τ ∈ C, Im τ > 0), where explicit formulas for the Bergman kernel,
the Arakelov-Green function and the Arakelov metric are given by elliptic functions. In
[D14], we numerically found a universal constant independent of the complex structure.

Theorem 1.2.1. For any complex torus Xτ defined as above, it follows that

(i) απB ≥ c2, α ≈ 6.2034 (c being the Arakelov metric and B being the Bergman kernel);

(ii) “ = ” is attainable when Im τ ≈ 1.9192.

On the other hand, we also aim to generalize the Suita type results to the potential-
theoretically parabolic case. In [D], for a once-punctured complex torus Xτ,u := Xτ\{u}
and a once-punctured complex plane, we compared the Bergman kernel and the fundamental
metric by constructing explicitly the Evans-Selberg potential, deriving the fundamental
metric and discussing their asymptotic behaviors.

Theorem 1.2.2. Let Xτ,u be defined as above. Let Bτ,u and cτ,u be its Bergman kernel and
fundamental metric, respectively. In the local coordinate z induced from C, write Bτ,u =
kτ,u(z)dz ∧ dz̄ and cτ,u = cτ,u(z)dz ∧ dz̄. Then, as z → u, it follows that

πkτ,u(z)

c2
τ,u(z)

∼ π · |z − u|2

2 · Im τ
→ 0+.

Moreover, as Xτ,u degenerates to a singular curve, we obtained the following result.

Theorem 1.2.3. Under the same assumptions as in Theorem 1.2.2, as Im τ → +∞, it
follows that

πKτ,u(z)

c2
τ,u(z)

→ 0+.

Either Theorem 1.2.2 or Theorem 1.2.3 implies that the Gaussian curvature the of
fundamental metric on Xτ,u can be arbitrarily close to 0−, which is different from the
potential-theoretically hyperbolic case (with an upper bound −4).

Corollary 1.2.1. The Gaussian curvature of the fundamental metric on a once-punctured
complex torus cannot be bounded from above by a negative constant.
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1.2. QUESTION AND ANSWER

(B) Variations and degenerations

A possibly more interesting question is to study the variation (in particular its asymp-
totic behaviors) of Bergman kernels at degeneration.2 It is known that the curvature’s
semi-positivities characterize a certain kind of convexity and are often associated with L2

estimates and extensions, and our research aims to relate to these abstract objects in a
quantitative way. The strict positivity of Lλ,z relates to the hyperellipticity and Weier-
strass points (cf. [B11]). In general, this study is much related to the variation of Hodge
structures, especially Schmid’s Nilpotent Orbit Theorem (see [De, GrSc, KK, Sc, Zu]), and
at least three approaches work for this problem: elliptic function, Taylor expansion

and pinching coordinate.

(Elliptic curves with nodes or cusps) In the affine coordinate (x, y) ∈ C2, the so-

called Legendre family of elliptic curves X
(1)
λ := {y2 = x(x−1)(x−λ)}∪{∞} gives a general

description of genus one compact Riemann surfaces, whose moduli space is C \ {0, 1}. As

λ tends to the moduli space boundary, i.e., {0, 1,∞}, X(1)
λ degenerates to a singular curve

with a node. By using the Weierstrass-℘ function’s coordinate parameterization and the
elliptic modular lambda function’s Taylor expansion, we obtained the four-term asymptotic

expansion of L
(1)
λ,z near 0 in [D15, D2]. We observed that L

(1)
λ,z coincides with the Poincaré

metric of C\{0, 1} and has hyperbolic growth near 0 (in comparison to the Poincaré metric
of a punctured disk). The case of other boundary points 1 and ∞ was studied in [D3].

Theorem 1.2.4. For λ ∈ C \ {0, 1}, in the local coordinate z induced from C, write

B
(1)
λ = k

(1)
λ (z)dz ∧ dz̄. Then, as λ→ 0, it follows that

L
(1)
λ,z =

√
−1dλ ∧ dλ̄

|λ|2(− log |λ|2)2

(
1 + 2

log 16

log |λ|
+ 3

(
log 16

log |λ|

)2

+ 4

(
log 16

log |λ|

)3

+ O

(
1

(log |λ|)4

))
.

Next, we answer the following question: how about the cases of other families of elliptic
curves (degenerating to a singular one with a node or a cusp at 0) where the special elliptic
function method could not apply? The answer is that we can determine accurately not only
the leading term but also the subleading terms by a method based on the Taylor expansions
of Abelian differentials (cf. [CMSP, D4]). As a conclusion, it seems that various boundary
behaviors of the Bergman kernels on elliptic curves are determined both by the type of
singularities and by the complex structure information.

On the one hand, using the above alternative approach we then dealt with another

nodal family of curves X
(2)
λ :=

{
y2 = (x− 1)(x2 − λ)

}
, where the leading term asymptotics

of L
(2)
λ,z turned out to be exactly the same as that of L

(1)
λ,z.

2From now on for fixed l ∈ Z+, we denote L
(l)
λ,z the curvature form (defined as similarly as in (1.2) for some

local coordinate z) of the relative Bergman kernel B
(l)
λ = k

(l)
λ (z)dz ∧ dz̄ on the curve X

(l)
λ , correspondingly.
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CHAPTER 1. INTRODUCTION

On the other hand, for the cusp degeneration case we further considered such family of

curves X
(3)
λ :=

{
y2 = x(x2 − λ)

}
with a constant period and thus derived that L

(3)
λ,z ≡ 0.

Moreover, we found that yet another family of curves X
(4)
λ :=

{
y2 = x(x− λ)(x− λ2)

}
with a non-constant period is reducible to the X

(1)
λ case, i.e.,

√
−1dλ ∧ dλ̄

|λ|2(− log |λ|2)2

becomes the leading term asymptotics of L
(4)
λ,z (also of L

(2)
λ,z). A possible explanation for the

appearance of hyperbolic growth might be that we can change coordinates (from x to λ ·x)
to make the reduction. This interesting connection between the cusp case and the node
case in some way strengthens the importance of a Legendre family.

(Hyperelliptic and general curves with nodes) For a family of genus two curves

X
(5)
λ :=

{
y2 = x(x− λ)(x− 1)(x− a)(x− b)

}
degenerating to a singular one with a non-

separating node, where a, b, λ are distinct numbers in C \ {0, 1} satisfying 1 < |a| < |b|, we
determine the precise coefficient as follows.

Theorem 1.2.5. In the local coordinate z =
√
x on X

(5)
λ , write its Bergman kernel as

B
(5)
λ = k

(5)
λ (z)dz ∧ dz̄. Then, as λ→ 0 for 0 6= |z| <

√
c1
|c2| , it follows that

log k
(5)
λ (z) = log

4π · |z|2

c1 |(z2 − 1)(z2 − a)(z2 − b)|
+

∣∣∣∣ 1

z2
− c2

c1

∣∣∣∣2 · c1

− log |λ|
+ O

(
1

(log |λ|)2

)
,

where c2 = Im

{∫ b
a

√
abdx

x
√

(x−1)(x−a)(x−b)

}
, c1 = π Im

{
τ
(

1−b
1−a

)}
and τ(·) is the inverse func-

tion of the modular lambda function.

For general curves near both separating and nonseparating nodes, Habermann-Jost
obtained the asymptotic results for the Bergman kernel and its induced L2 metric on the
Teichmuller space by using the pinching-coordinate method in [HJ] (see also [F, Ma, Y]).
Without caring precise coefficients our results can serve as alternative proofs to these known
works. Nevertheless, our results for hyperelliptic curves are based on a different method
and has an advantage that we can explicitly write down the coefficients (especially if one
wants to know how the given complex structures relate to them), which usually indicate
the geometry of the base varieties and their singularities.

By embedding each X
(5)
λ to its Jacobian, we observe that the curvature form of the

relative Bergman kernel metric on their Jacobians in the transversal direction has hyperbolic
growth again (see (5.4) in Chapter 5). This can be regarded as a higher dimensional
generalization of the leading term in Theorem 1.2.4.
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1.2. QUESTION AND ANSWER

(Hyperelliptic curves with cusps, Case I) Let p(x) be a polynomial of degree at
least 2 with roots of distinct absolute values different from |λ| and 0. For a family of

hyperelliptic curves X
(6)
λ :=

{
y2 = x(x2 − λ) · p(x)

}
, degenerating to a singular one with a

cusp as λ→ 0, our result on asymptotic behaviors of the Bergman kernel is as follows.

Theorem 1.2.6. In the local coordinate z =
√
x on X

(6)
λ , write its Bergman kernel as

B
(6)
λ = k

(6)
λ (z)dz ∧ dz̄. Then, as λ→ 0 for small |z| 6= 0, it holds that

log k
(6)
λ (z) = log

4 + O(z4)

|z4 · p(z2)|
+

O(λ
1
4 ) · Re

(∑g
j=2 z

2(j−1)
)

1 + O(z4)
.

We see that both the first two terms are harmonic in λ, and the coefficient of the second

term is not necessarily positive. Also, it turns out that the Jacobian varieties of X
(6)
λ remain

being manifolds (i.e., non-degenerate).

(Hyperelliptic curves with cusps, Case II) For a family of genus two curves X
(7)
λ :={

y2 = x(x− λ)(x− λ2)(x− a)(x− b)
}

, where a, b, λ are distinct complex numbers in C\{0}
satisfying |a| < |b|, we determine precise coefficients as follows.

Theorem 1.2.7. In the local coordinate z =
√
x on X

(7)
λ , write its Bergman kernel as

B
(7)
λ = k

(7)
λ (z)dz ∧ dz̄. Then, as λ→ 0 for small |z| 6= 0, it holds that

log k
(7)
λ (z) = log

4π

c |(z2 − a)(z2 − b)|
+

c

− log |λ| · |z|4
+ O

(
1

(log |λ|)2

)
,

where c := π Im
{
τ
(
b
a

)}
and τ(·) is the inverse function of the modular lambda function.

In particular, we found that the curvature form L
(7)
λ,z transversally induces an incomplete

metric on the parameter space. Also, both coefficients of the above first two terms depend

only on the information away from the cusp, which is not the case for X
(5)
λ . For a family

of hyperelliptic curves X
(8)
λ :=

{
y2 = x(x− λ2)(x− λ) · p(x)

}
(p same as above), the result

is more or less the same. For the Jacobian varieties of these curves, hyperbolic growth
appears again as λ→ 0 (see the details in Chapter 5).

(Motivation, again) The following question was raised by Tsuji in Hayama Symposium
2016: Can we recover the singularity information (of the base varieties) from the results on
boundary asymptotics (of the Bergman kernels)?

Notice that in its Bergman kernel asymptotic formula, X
(6)
λ possesses a harmonic second

term, which differs from X
(5)
λ and X

(7)
λ . In order to further distinguish the latter two (with

the same subharmonic growth in their positive second terms), we see that the coefficient of

the leading term in log k
(5)
λ (z) tends to 0, as z → 0, which is not the case for log k

(7)
λ (z).
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Chapter 2

Preliminaries

2.1 Bergman kernel’s variation and the L2 extension theorem

Let us first recall some basic notations and facts. The (negative) Green function for a
bounded domain D ⊂ C satisfies the following: 1{

∆GD(·, z) = 2πδz
GD(·, z) = 0 on ∂D.

Define the logarithmic capacity of C \D with respect to z as

cD(z) := exp lim
ζ→z

(GD(ζ, z)− log |ζ − z|).

The Bergman kernel is

KD(z) := sup {|f(z)|2 : f holomorphic in D,

∫
D
|f |2dλ ≤ 1}.

In 1972, Suita conjectured that: πKD ≥ c2
D, for all z ∈ D (more generally, on open

Riemann surfaces admitting Green functions), which is geometrically interpreted as

Curv cD|dz| ≤ −4,

due to the Bergman-Schiffer formula

KD =
1

π

∂2

∂z∂z̄
(log cD) .

For some cases, such as a simply connected domain, the “ = ” can be achieved; and
for an annulus, “ > ” always holds. However, for other cases, it seems difficult to give an
answer to this conjecture by direct computations and we may need a tool. In 2013, B locki
[B l13] obtained the following beautiful result, implying that Suita conjecture holds for any
bounded domain D ⊂ C. Guan-Zhou [GZ15] later showed that this conjecture, originally
stated for open Riemann surfaces admitting Green functions, is true.

1As a current, log |z| is related with the dirac function.
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2.2. ARAKELOV-GREEN FUNCTION AND EVANS-SELBERG POTENTIAL

Theorem 2.1.1 (Ohsawa-Takegoshi L2 extension theorem with optimal constant). Let Ω
be a pseudoconvex domain in Cn−1×D, where D is a bounded domain in C containing the
origin. Then for any holomorphic f in Ω′ := Ω

⋂
{zn = 0} and ϕ plurisubharmonic in Ω,

one can find a holomorphic extension F of f to Ω such that∫
Ω
|F |2e−ϕdλ ≤ π

(cD(0))2

∫
Ω′
|f |2e−ϕdλ′.

As the complex structure changes, the variation of the Bergman kernels was initially
studied by Maitani-Yamaguchi [MY], who started from the Bergman-Schiffer formula and
the Hopf lemma (regarding the Green function as a defining function), and proved the
plurisubharmonicity results concerning the Robin constants and logarithms of the Bergman
kernels by using differential geometrical computations.

Theorem 2.1.2 (Maitani-Yamaguchi). Let Ω be a pseudoconvex domain in Cz×Ct with a
smooth boundary. Let Bt(z) be the Bergman kernel function of Ωt := Ω∩ (Cz × {t}). Then
logBt(z) is a plurisubharmonic function on Ω.

After that, generalizations of [MY] to higher dimensional cases were made by Berndtsson
[B06] using L2 methods.

Theorem 2.1.3 (Berndtsson). Let D be a pseudoconvex domain in Cnz ×Ckt , and let Φ be a
plurisubharmonic function on D. For each t, set Dt := D∩ (Cnz × {t}) and Φt := Φ|Dt. Let

Bt(z) be the Bergman kernel of the space A2(Dt,Φt) :=
{
f ∈ O(Dt)|

∫
Dt
e−Φt |f |2 < +∞

}
.

Then logBt(z) is a plurisubharmonic function on D.

Moreover, Guan-Zhou [GZ15] provided an alternative proof of the log-plurisubharmonic
variation of Bergman kernels in a general setting by using the optimal constant version of
the Ohsawa-Takegoshi L2 extension theorem, regarded as a sub-mean-value property of
the fiber-wise Bergman kernels. Conversely, Berndtsson-Lempert [BL] showed that the log-
plurisubharmonic variation of Bergman kernels can give a proof of rather general versions
of the Ohsawa-Takegoshi theorem.

2.2 Arakelov-Green function and Evans-Selberg potential

Let Y be a connected compact Riemann surface of genus g ≥ 1, whose Bergman kernel in
the local coordinate z is written as K = k(z)dz ∧ dz̄. The Green function (in the usual
sense) does not exist on Y . However, the Arakelov-Green function gw(z) on Y with a pole
w does exist and satisfies the equation [Fa]

∂2gw(z)

∂z∂̄z
=
π

2

(
δ(z − w)− k(z)

g

)
.
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CHAPTER 2. PRELIMINARIES

Definition 2.2.1. With the above notations, the Arakelov metric on Y under the local
coordinate w is defined as

c(w)|dw|2 := exp lim
z→w

(gw(z)− log |z − w|) |dw|2.

The Arakelov metric has a characterizing property that its Gaussian curvature form is
proportional to the Bergman kernel [Ar, J]. Most strikingly, the Arakelov-Green function
has a clear meaning in physics, pointed out by Ooguri in his recent famous lecture notes
[Oo]. We remark that the Arakelov-Green function is identical to the usual Green function
for compact Riemannian manifolds in Riemannian geometry.

In the potential-theoretical sense, all open Riemann surfaces can be classified into two
types, namely hyperbolic ones and parabolic ones. The latter case happens if and only if
there exists no Green function, or equivalently there exists no non-constant subharmonic
function bounded from above. On a potentially-parabolic Riemann surface R, there exist
a function ϕ called an Evans-Selberg potential. Also, it is known that the parabolicity
condition is equivalent to the existence of the so-called Evans-Selberg potential, which is a
harmonic function with one negative logarithmic pole such that this function tends to +∞
near the boundary [Ev, Se, Ku, Na62] and plays similar roles as a Green function does on
a potentially-hyperbolic Riemann surface. Typical examples of parabolic planar domains
are the whole complex plane C, finitely-punctured complex planes, and C \Z. Let us start
with the definition of an Evans-Selberg potential [SN, p.351], [SNo, p.114].

Definition 2.2.2. On an open Riemann surface Σ, an Evans-Selberg potential Eq(p) with
a pole q ∈ Σ is a real-valued function satisfying the following conditions:

(i) For all p ∈ Σ \ {q}, Eq(p) is harmonic with respect to p,

(ii) Eq(p)− log |ϕ(p)− ϕ(q)| is bounded near q, with ϕ being the local coordinate,

(iii) Eq(p)→ +∞, as p→ a∞, the Alexandroff ideal boundary point of Σ.

Moreover, if this potential is symmetric in (p, q) and regarded as a function on Σ× Σ,
then E(p, q) := Eq(p) is called an Evans kernel, whose existence is due to Nakai. Two Evans
kernels with the same prescribed singularities at the boundary are up to an additive constant
by the maximum principle of subharmonic functions. Importance properties of an Evans
kernel are its joint continuity and uniform convergence, implying that it is approximable
by Green kernels [Na67].

Proposition 2.2.1 (Nakai). Let E(p, q) be an Evans kernel on Σ, and Gt(p, q) the negative
Green kernel on Σt := {p ∈ Σ |E(p, q0) < logNt} with a fixed q0 ∈ Σ. Then

E(p, q) = lim
t→+∞

(Gt(p, q) + logNt) (2.1)

uniformly on each compact subset of Σ×Σ, where Nt = N(t, q0) is increasing in t > 0 and
Nt ↗ +∞, as t→ +∞.
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2.2. ARAKELOV-GREEN FUNCTION AND EVANS-SELBERG POTENTIAL

This is useful for computing some explicit formulas of Evans-Selberg potentials. Thus,
it seems desirable to determine the Evans kernel by (2.1) as long as explicit formulas
of Green kernels are known. Meanwhile, the above Σt and Nt are attainable in some
special cases. Next, we recall the definition of the so-called fundamental metric, which is a
non-compact counterpart of the Arakelov metric. For a potential-theoretically hyperbolic
Riemann surface, the fundamental metric is just the Suita metric.

Definition 2.2.3. On a potential-theoretically parabolic Riemann surface X, the funda-
mental metric under the local coordinate z is defined as

c(z)|dz|2 := exp lim
w→z

(Ew(z)− log |z − w|) |dz|2,

where Ew(z) is an Evans-Selberg potential on X with a pole w.

For general potential-theoretically parabolic Riemann surfaces, it is known [McV] that
the Gaussian curvature form of the fundamental metric is

−4
∂2

∂w∂w̄
log c(z) = −4πk(z)(≤ 0), (2.2)

where k(z) is the coefficient of the Bergman kernel (1, 1)-form under the local coordinate
z. In the case of C \ {0}, it holds that k(z) ≡ 0 and then the Gaussian curvature of the
fundamental metric is identically equal to 0. Let’s then recall some properties on isolated
singularities (cf. [B, Ro]).

Proposition 2.2.2 (Removable Singularity Theorem for a harmonic function). If u is
harmonic and bounded on the punctured disc {z ∈ C : 0 < |z| < 1}, then it extends to a
harmonic function on the disc.

Proof. Without loss of generality, we may assume that u is harmonic on the closed disc.
According to Poisson Integral Formula, the function defined by

v(z) :=

∫
|ζ|=1

u(ζ)
1− |z|2

|ζ − z|2
dζ

2π
√
−1ζ

, |z| < 1

and v(z) := u(z) for |z| = 1 is a continuous solution of the Dirichlet Problem{
∆v = 0, |z| < 1
v = u, |z| = 1.

Therefore, for any ε > 0, we consider a new harmonic function V (z) := v(z) − u(z) +
ε · log |z| defined on 0 < |z| < 1. Obviously V (z) = 0 when |z| = 1. And since u is bounded
near 0, we have V (z) → −∞ as |z| → 0. By Maximum Principle, we know V ≤ 0 when
0 < |z| < 1, which means v(z)−u(z)+ε · log |z| ≤ 0. Then letting ε→ 0, we get v(z) ≤ u(z),
when 0 < |z| < 1. By interchanging the roles of u and v, we will get u ≤ v. Therefore,
u(z) = v(z) when 0 < |z| < 1 and thus v is an extension of u to the disc.

12
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A generalized version of the above proposition, for a subharmonic function, can be
described as follows (cf. [Ra, thm 3.6.1]).

Proposition 2.2.3 (Removable Singularity Theorem for a subharmonic function). Let U
be an open subset of C, let E be a closed polar set, and let u be a subharmonic function on
U −E. Suppose that each point of U ∩E has a neighborhood N such that u is bounded from
above on N − E. Then u has a unique subharmonic extension to the whole of U .

Now let’s go back to a harmonic function, and the following proposition (which can
imply Proposition 2.2.2) describes its behavior near each singularity (cf. [ABR, p. 50]).

Proposition 2.2.4 (Bôchner’s Theorem). Let D be a domain in C, let w ∈ D, and let h be
a positive harmonic function on D − {w}. Then −h extends to be a subharmonic function
on D, and there exists a harmonic function k on D and a constant b ≥ 0, such that

h(z) = k(z)− b log |z − w|, z ∈ D − {w}.

2.3 Existence of holomorphic and harmonic objects on Rie-
mann surfaces

It is known that there exists no non-constant subharmonic function which is bounded from
above on C, on a finitely-punctured complex plane, or on C \ Z. For the existence of
nontrivial L2 harmonic and holomorphic 1-forms on an open Riemann surface, see [Dod,
Oh87].

Base point freeness

Here we recall a basic and known fact saying that on a compact connected Riemann surface
of genus g ≥ 1 the Bergman kernel never vanishes (for the case of a complex torus Xτ :=
C/
(
Z+ τZ

)
, a global coordinate can be induced from the complex plane and the Bergman

kernel can be locally written as 1
Im τ dz∧dz̄, which is positive since 1

Im τ > 0.), which is true
because the canonical bundle is base point free (see the following proposition). Without
using the Riemann-Roch theorem, we present a simple proof, since it plays a key role in
the construction of the Jacobian embeddings.

Proposition 2.3.1. Let X be a compact connected Riemann surface of genus g ≥ 1. Then,
for each p ∈ X, there exists a holomorphic 1-form s on X, such that s(p) 6= 0.

Proof. Let us assume that g > 1. For any p ∈ X, denote mp the sheaf of germs of
holomorphic functions on X vanishing at p. Denote O the sheaf of germs of holomorphic
functions on X. Then it holds that O/mp

∼= Cp, where Cp is the skyscraper sheaf. Taking
the canonical bundle K on X, one can get the following short exact sequence of sheaves,

0→ K ⊗mp
ι−→ K ⊗O r−→ K ⊗ Cp → 0,

13
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where ι and r are inclusion and restriction maps, respectively. And a long exact sequence
of cohomology groups can be induced, namely

0→ H0(X,K ⊗mp)
ι1−→ H0(X,K ⊗O)

r1−→ H0(X,K ⊗ Cp)
ς−→

ς−→ H1(X,K ⊗mp)
ι2−→ H1(X,K ⊗O)

r2−→ H1(X,K ⊗ Cp)→ 0.

Firstly, we know that H1(X,K ⊗ Cp) = 0 and H0(X,K ⊗ Cp) ∼= C, since Cp is the
skyscraper sheaf. Secondly, since every holomorphic function on X is a constant func-
tion, we know that H1(X,K ⊗ O) ∼= H0(X,O)? ∼= C by Serre Duality theorem (here ?

denoting the dual of a given space). Again by the Duality theorem, H1(X,K ⊗ mp) ∼=
H0(X, (mp)

?)? = H0(X,O(−p)?)? = H0(X,O(p))?, where O(−p) ∼= (mp) is the sheaf asso-
ciated to the divisor −p (taking value −1 at p and 0 otherwise). Therefore, the long exact
sequence can be re-written as

0→ H0(X,K ⊗mp)
ι1−→ H0(X,K)

r1−→ C ς−→ H0(X,O(p))?
ι2−→ C r2−→ 0.

By definition, all constant functions (having non-negative orders everywhere) are con-
tained inO(p). So it holds that dimH0(X,O(p)) ≥ 1.Next, we claim that dimH0(X,O(p)) >
1 is impossible.2 If not, then there exists a meromorphic function f with a simple pole at p
and no other poles. However, a non-constant holomorphic map from X to P1 must have de-
gree > 1, since g > 1. This is a contradiction. Finally, we know that dimH0(X,O(p)) = 1
and therefore H0(X,O(p))? ∼= C. Now, the long exact sequence can be re-written as

0→ H0(X,K ⊗mp)
ι1−→ H0(X,K)

r1−→ C ς−→ C ι2−→ C r2−→ 0.

By the exactness, C = ker(r2) = Image(ι2), so ι2 is surjective. By the fundamental
homomorphism theorem, one gets that ker(ι2) = {0}. By the exactness once more, it holds
that Image(ς) = {0}. In particular, for 1 ∈ C, ς maps 1 to 0. So, 1 ∈ ker(ς) = Image(r1).
Therefore, there exists a s ∈ H0(X,K) ∼= Ω1(X), such that s(p) = r1(s) = 1.

An even simpler proof by using Riemann-Roch theorem can be found in [Bo]. Sim-
ply by removing finite points from the above compact Riemann surface, we will obtain a
potentially-parabolic (open) Riemann surface, whose Bergman kernel is the same as the
original compact one, since every L2−holomorphic function can be extended over those fi-
nite points. Sometimes, the non-compact version of this classical result is named “Virtanen
theorem” [Alh-Sar]. Therefore, it makes sense to take the logarithm of the Bergman kernel
(since it is positive) and further consider its variations. The Hodge star operator does not
depends on the choice of the basis. Serre duality has a version for non-compact manifolds.
The Hausdorffness and the closed-range properties are in some sense equivalent.

2The author thanks Prof. R. Kobayashi for clarifying this point.
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Parabolicity (potential-theoretical)

Proposition 2.3.2 (Parabolicity of C). There exists no non-constant subharmonic function
which is bounded from above on C.

Proof. Its proof can be more or less similar to that of Proposition 2.2.2. Suppose there
exists a subharmonic function u, which is bounded from above and defined on the whole
complex plane C. We are able to show that it must be a constant function. The idea is
to define a new function v := u − ε log |z|, outside the unit disc. Finally, taking a limit
as ε tending to 0, one will prove that the maximum is attainable inside C. By maximum
principle, one concludes that u is constant.

Theorem 2.3.2 and Proposition 2.2.2 naturally yield the following Proposition.

Proposition 2.3.3 (Parabolicity of C \ Z). There exists no non-constant subharmonic
function which is bounded from above on C \ Z.

Proposition 2.3.4. For planar domains D ⊂ C, the following conditions are equivalent:
(i) D admits no Green function,
(ii) D admits an Evans-Selberg potential,
(iii) D = C \ E, for some polar set E,
(iv) The logarithmic capacity of C \D is 0.

Definition 2.3.1. A once-punctured complex torus Xτ,u := Xτ\{u} is an open Riemann
surface obtained by removing one single point u from a compact complex torus Xτ .

Proposition 2.3.5. There exists no non-constant subharmonic function which is bounded

from above on X
(1)
λ \ {∞}, for λ ∈ C \ {0, 1}.

On the one hand, the above theorem on the parabolicity of an once-punctured torus can
be easily generalized to arbitrary once-punctured compact Riemann surfaces (since certain
harmonic functions can always be constructed), and by Removable Singularity Theorem it
can be even generalized to arbitrary finitely-punctured compact Riemann surfaces. On the
other hand, the parabolicity could follow straightforwardly from the Removable Singularity
Theorem, but the proof (by using Maximum Principle and finding a harmonic function)
works for an open Riemann surface X of infinitely many genus, as we will see below.
Equivalently, we could say that X admits an Evans-Selberg potential.

Proposition 2.3.6. There exists no non-constant subharmonic function which is bounded
from above on the algebraic curve X :=

{
(y, x) ∈ C2

∣∣ y2 = x
∏∞
n=1

(
1− x2/n2

)}
.

Sketch of proof. The idea is by contradiction and suppose there exists a subharmonic func-
tion u which is bounded from above on X. On X, we define a harmonic function

f(y, x) :=

{
0, |x| ≤ 1
log |x|, |x| > 1,

and consider v := u−εf . Taking a limit as ε tends to 0, one will prove that the maximum is
attainable at the “lift” of the unit circle (away from the boundary). By Maximum Principle,
one concludes that u is constant, similar as the proof of Proposition 2.3.2.
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2.4 Bergman kernel by Riemann period matrices

It is known that for an elliptic curve E := {y2 = pλ(x)}, pλ(x) being a polynomial of x
depending on λ of degree 3 or 4, there exists a globally defined basis ω := dx/y for the
Hilbert space of L2 holomorphic 1-forms. Locally, ω (which depends on λ, x and y) may
be locally written under some u-coordinate as ω = fλ(u)du, where fλ(u) is a holomorphic
function in u ∈ C. After normalizing by the L2 inner product ω0 := C−0.5

λ ω will then
become an orthonormal basis of that Hilbert space, where

Cλ :=

√
−1

2

∫
E
ω ∧ ω > 0 (2.3)

is a positive real number depending only on λ. By definition, the Bergman kernel of the
canonical bundle on E is just

Kλ := ω0 ∧ ω0 = C−1
λ · ω ∧ ω

locally
====== C−1

λ · |fλ(u)|2du ∧ dū,

a (1, 1)-form with coefficients depending on both λ and the local coordinates. If one makes
a change of holomorphic coordinates for the Bergman kernel, then the determinant of the
Jacobian (a harmonic term) is multiplied but killed by the ∂λ∂̄λ operator. In other words,

∂λ∂̄λ logC−1
λ = ∂λ∂̄λ log kλ(·), (2.4)

for any local coefficient kλ(·) of the Bergman kernel. (2.4) shows that only Cλ matters for
the curvature form, and thus from now on we will focus on the asymptotic behaviors of Cλ
as λ→ 0. The following figure illustrates the degeneration of an elliptic curve.

Figure 2.1: Degeneration of a torus (figure from [GJKK])

A Legendre family of elliptic curves

Particularly, if pλ(x) := x(x− 1)(x− λ), λ ∈ C \ {0, 1}, we get a Legendre family of elliptic
curves Xλ. For small λ → 0, a double covering of the Riemann sphere can be made by
cutting itself from 0 to λ, and from 1 to ∞. Then, we get two cycles δ and γ forming a
homologous basis of the elliptic curve, and containing {0, λ} and {λ, 1}, respectively. It is
known that

Cλ = Im

(∫
γ
ω ·
∫
δ
ω

)
= Im

(∫
γ ω∫
δ ω

)
·
∣∣∣∣∫
δ
ω

∣∣∣∣2 > 0. (2.5)
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Proof of (2.5). Firstly, consider the path integral p(·) :=
∫ ·
z0
ω defined on a parallelogram

Xλ,cut with two sides A and B, which are identified in order to obtain Xλ (regarded as
a complex torus). Notice that p is well-defined (independent of paths) and holomorphic,
since ω is a holomorphic 1-form and Xλ,cut is simply connected. Also, (by Cauchy Integral
Theorem) p(·+A)−p(·) =

∫
δ ω and p(·+B)−p(·) =

∫
γ ω, implying p is not doubly periodic

on Xλ. Moreover, ∂p
∂u = fλ(u), for some local u-coordinate and thus ∂p = ω. Secondly, we

make the following computation

d(p · ω) = ∂p ∧ ω + p · ∂(fλ(u)du) = ω ∧ ω,

and apply the Stokes formula to it on Xλ,cut. Thirdly, it follows that∫
∂Xλ,cut

p · ω =

∫
Xλ,cut

d(p · ω) =

∫
Xλ,cut

ω ∧ ω =

∫
Xλ

ω ∧ ω,

which implies that

0 < Cλ =

√
−1

2

∫
∂Xλ,cut

p · ω

=

√
−1

2

(∫
δ
p(u)fλ(u)du−

∫
δ
p(u+B)fλ(u+B)du

+

∫
γ
p(u+A)fλ(u+A)du−

∫
γ
p(u)fλ(u)du

)
=

√
−1

2

(∫
δ

(p(u)− p(u+B)) fλ(u)du+

∫
γ

(p(u+A)− p(u)) fλ(u)du

)
=

√
−1

2

(∫
δ

(
−
∫
γ
ω

)
fλ(u)du+

∫
γ

(∫
δ
ω

)
fλ(u)du

)
=

√
−1

2

(
−
∫
γ
ω ·
∫
δ
ω +

∫
γ
ω ·
∫
δ
ω

)
= Im

(∫
γ
ω ·
∫
δ
ω

)
.

To get asymptotic behaviors of the Bergman kernel as λ→ 0, we may change variables
by setting t = 1

λ and let t (the inverse of λ) tend to ∞. For large t, denote δ̃ a circle

containing points {t,∞} (on a Riemann sphere this is equivalent to say that −δ̃ contains
points {0, 1}). Similarly, we denote γ̃ a circle containing points {1, t}.

Other families of elliptic curves

Firstly, if p(x) = (x− 1)(x2 − λ), on the elliptic curve X ′λ (λ ∈ C \ {0, 1}), δ is a big circle
centered at the origin containing −

√
λ and

√
λ, and γ contains

√
λ and 1. Secondly, if

p(x) = x(x2 − λ), on the elliptic curve Yλ (λ ∈ C \ {0}), δ contains −
√
λ and 0, and γ

contains 0 and
√
λ. Thirdly, if p(x) = x(x+λ)(x−λ2), on the elliptic curve Y ′λ (λ ∈ C\{0}),

δ contains −λ and 0, and γ contains 0 and λ2. Lastly, the Hodge-Riemann bilinear relations
(2.5) hold for all these above cases.
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Higher-genus curves

It is known that for the genus g ≥ 2 hyperelliptic curve Xλ := {y2 = Pλ(x)}, where
Pλ(x) has distinct roots λ, aj , and λ ∈ C \ {0,∪jaj}. There exists a globally defined basis
ω1 := dx/y, ω2 := xdx/y, ... , ωg := xg−1dx/y for the Hilbert space of L2 holomorphic
1-forms. By definition, the Bergman kernel is the sum of orthogonal base wedging their
conjugates. In this case, one needs to orthonormalize the base ωl by L2 inner products using
the Gram-Schmidt process. There is an equivalent definition of the Bergman kernel (also
called canonical kernel), which uses the Riemann period matrix. Any hyperelliptic curve
can be obtained as a double covering of the Riemann sphere, cutting itself at the intervals
[0, 1], [a, b], ... , [λ,∞]. We get two types of cycles δi and γj which forms a homologous
basis of the curve, and their intersection number is δi · γj = 1, for i = j. Each δi is a circle
containing the interval [0, 1], [a, b], ... , and [λ,∞] respectively. Each γj switches from one
sheet to another. Then there are two g × g matrices defined by

A(λ) ∼


∫
δ1
ω1

∫
δ2
ω1 . . .

∫
δg
ω1∫

δ1
ω2

∫
δ2
ω2 . . .

∫
δg
ω2

...
...

. . .
...∫

δ1
ωg

∫
δ2
ωg . . .

∫
δg
ωg

 =: {ai,j}

and

B(λ) ∼


∫
γ1
ω1

∫
γ2
ω1 . . .

∫
γg
ω1∫

γ1
ω2

∫
γ2
ω2 . . .

∫
γg
ω2

...
...

. . .
...∫

γ1
ωg

∫
γ2
ωg . . .

∫
γg
ωg

 =: {bi,j} .

The matrix A is invertible. If one defines a new matrix

Z := A−1B,

then it can be checked due to the Hodge-Riemann bilinear relation and the Stokes formula
that Z is symmetric and has a positive imaginary part, i.e., ImZ > 0. Thus, the Bergman
kernel is equivalently defined as

Kλ :=

g∑
i,j=1

((ImZ)−1)ij ωi ∧ ωj .

For fixed a, b, ..., it is true that ωl depends on x, y and λ. Under some s−coordinate
we may write ω = fλ(s)ds, where fλ(s) is a holomorphic function in s ∈ C. Also, fλ(s)
is a holomorphic function in λ since {Xλ}λ is a holomorphic family of curves. Thus,
the Bergman kernel is a (1, 1)−form with coefficients depending on both λ and the local
coordinates. And after changing coordinates, the coefficients of the Bergman kernel are
up to additive harmonic functions with respect to both the parameter λ and the local
coordinate. In other words, ∂λ∂̄λ log kλ(·) is well-defined. The following figure illustrates
one possible degeneration (with a non-separating node) of a genus two curve.
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Figure 2.2: Degeneration of a genus two curve (figure from [GJKK])

2.5 General steps and approaches to solve our problems

To solve the problems in Chapter 1, we start from simpler examples such as a family of
complex torus or genus-two compact Riemann surface, and then going to higher genus or
dimensional cases based on previously obtained results.

Step 1. Genus-one (elliptic function)

From [Ah, p.264], we know that the elliptic modular lambda function λ = λ(τ) gives a
one-to-one conformal mapping of the region

Ω :=

{
τ ∈ C

∣∣∣∣ 0 < Re τ < 1, |τ − 1

2
| > 1

2
, Im τ > 0

}
onto the upper half plane H. Also, this mapping extends continuously to the boundary
in such a way that τ = ∞ corresponds to λ = 0. Let Ω′ be the reflection of Ω with
respect to the imaginary axis, then Ω and Ω′ together correspond to C \ {0, 1} . In other
words, Im τ → +∞ corresponds to λ → 0. Since λ is conformal, so is its inverse function
τ = λ−1 : C \ {0, 1} → Ω ∪ Ω′. Thus, for any fixed λ ∈ C \ {0, 1}, there exists a complex
number τ ∈ Ω ∪ Ω′ ⊂ H. Using 1 and this τ (τ ∈ C, Im τ > 0) as a lattice one can get a
complex torus, denoted by Tτ := C/

(
Z + τZ

)
.

The Weierstrass-℘ function with respect to the lattice (1, τ) is defined to be

℘(z) =
1

z2
+
∑
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
,

where the sum ranges over all ω = n1 + n2τ except 0, and n1, n2 ∈ Z. Letting e1 := ℘
(

1
2

)
,

e2 := ℘
(
τ
2

)
, e3 := ℘

(
1+τ

2

)
, then according to [Ah, p.277], we know that the Weierstrass-℘

function satisfies

℘′(z)2 = 4 (℘(z)− e1) (℘(z)− e2) (℘(z)− e3) .

Now change the variables, by settingx = ℘(z)−e2
e1−e2

y = ℘′(z)

2(e1−e2)
3
2

.
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We can check that y2 = x (x− 1)
(
x− e3−e2

e1−e2

)
. Then the elliptic modular lambda func-

tion λ(τ) := e3−e2
e1−e2 , which is conformal, can identify Xλ with a complex torus Tτ . Since

the area of the parallelogram obtained from the lattice (1, τ) is Im τ , the normalized holo-
morphic 1-form is just 1√

Im τ
dz. By definition, the Bergman kernel Bτ on Tτ is written as

1
Im τ dz ∧ dz̄, which means that kλ(z) = 1

Im τ . Taking derivatives, one gets that

lλ,z :=
∂2(log kλ(z))

∂λ∂λ̄
=
∂2(− log Im τ)

∂λ∂λ̄

= −
∂2(log( τ−τ̄

2
√
−1

))

∂λ∂λ̄
= −

∂(2
√
−1

τ−τ̄
∂
∂λ̄

( τ−τ̄
2
√
−1

))

∂λ
.

Since τ := λ−1 is holomorphic, implying that ∂τ
∂λ̄

= 0, it holds that

lλ,z = −
∂(2
√
−1

τ−τ̄
∂
∂λ̄

( −τ̄
2
√
−1

))

∂λ
=
∂( τ̄ ′

τ−τ̄ )

∂λ
=

∂τ̄ ′

∂λ · (τ − τ̄)− τ̄ ′ ∂(τ−τ̄)
∂λ

(τ − τ̄)2

=
0 · (τ − τ̄)− τ̄ ′ ∂(τ)

∂λ

(τ − τ̄)2
=
−|τ ′|2

(τ − τ̄)2
=

|τ ′|2

4(Im τ)2
.

Notice that (τ − τ̄)2 = −4(Im τ)2 ≤ 0. Next, by the inverse function theorem, it holds
that τ ′(b) = (λ−1)

′
(b) = 1

λ′(a) , for any b = λ(a) (here λ′ being the derivative of λ with

respect to τ). Therefore, we have

lλ,z =
|τ ′|2

4(Im τ)2
=

1

4(Im τ · |λ′(τ)|)2
> 0. (2.6)

The above inequality holds due to the fact that the derivative of the elliptic modular
lambda function is nowhere vanishing in the domain of definition. Thus Lλ,z =

√
−1 lλ,z dλ∧

dλ̄ is a true metric on the moduli space, i.e., Lλ,z > 0, for every λ ∈ C \ {0, 1}. Moreover,
it holds that

−4
∂2

∂λ∂λ̄
log

(
|τ ′|

2 · Im τ

)
= − |τ ′|2

(Im τ)2
.

Next, we introduce two more parameters α := − 1
τ and β := τ − 1, both of which have

positive imaginary parts as long as Im τ > 0. As τ → 0 or equivalently as λ(τ) → 1, it
follows that Imα→ +∞ and λ(α)→ 0. By the definition of α, it holds that

Im τ = Im

(
−1

Reα+
√
−1 Imα

)
= Im

(√
−1 Imα− Reα

|α|2

)
= Imα · |τ |2. (2.7)

Similarly, as τ → 1 or equivalently as λ(τ)→∞, it follows that β → 0. Since Imβ = Im τ ,
we know that Imβ → +∞ implies λ(τ)→ 0.

Alternatively, one can also use the Taylor expansion of the Abelian differential dx/y to
study elliptic curves.
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Step 2. Genus-two

Let us consider Xa,b,c := {y2 = x(x − 1)(x − a)(x − b)(x − c)}, which usually represents a
genus-two compact Riemann surface (nonsingular), parametrized by three distinct complex
numbers a, b, c ∈ C \ {0, 1}. However, as a, b, c tend to 0 or 1 or ∞, or towards each other,
Xa,b,c will become singular. dx/y and xdx/y forms an orthogonal basis for the space of
square-integrable holomorphic 1-forms, and after the Gram-Schmidt process we are able to
get the Bergman kernel Ka,b,c. For the Arakelov metric, formulas for genus-two compact
Riemann surfaces are known due to Bost, Mestr and Moret-Bailly.

Step 3. Hyperelliptic

As a natural generalization of the genus-two case, a genus g (≥ 2) hyperelliptic compact
Riemann surface X may be written as {y2 = P (x)}, with P being a polynomial of degree
> 4. The moduli space of X are of dimension 3g− 3. We can use the Taylor expansions of
the Abelian differential for this case.

(Local coordinates near a node) For X
(10)
λ :=

{
y2 = x(x− λ) · p(x)

}
, which is a

family of hyperelliptic curves degenerating to a singular one X
(10)
0 with a non-separating

node, as λ → 0, the local coordinate near x = 0 can be given by z =
√
x. Thus, it holds

that x = z2 and dx = 2zdz, which gives that

ωj =
2z2(j−1)dz√

(z2 − λ) · p(z2)
.

Therefore, in coordinate z the Bergman kernel can be written as

g∑
i,j=1

(Im−1 Z)ij
4z2(i−1) · z2(j−1)

|(z2 − λ) · p(z2)|
dz ∧ dz̄ =: k

(10)
λ (z)dz ∧ dz̄.

In particular, any genus two compact Riemann surfaces is hyperelliptic, and its Bergman
kernel near the node (0, 0) in coordinate z is written as

4 · (Im−1 Z)11 + (Im−1 Z)12z
2 + (Im−1 Z)21 · z2 + (Im−1 Z)22|z|4

|(z2 − 1)(z2 − a)(z2 − b)(z2 − λ)|
dz ∧ dz̄. (2.8)

(Local coordinates near a cusp, Case I) For X
(6)
λ , similarly, it holds that

ωj =
2z2(j−1)dz√

(z4 − λ) · p(z2)
.

Therefore, in the coordinate z near the cusp (0, 0) the Bergman kernel is

g∑
i,j=1

(Im−1 Z)ij
4z2(i−1) · z2(j−1)

|(z4 − λ) · p(z2)|
dz ∧ dz̄ =: k

(6)
λ (z)dz ∧ dz̄.
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In the genus two case, the Bergman kernel can be written as

4 · (Im−1 Z)11 + (Im−1 Z)12z
2 + (Im−1 Z)21 · z2 + (Im−1 Z)22|z|4

|(z4 − λ)(z2 − a)(z2 − b)|
dz ∧ dz̄. (2.9)

(Local coordinates near a cusp, Case II) For X
(8)
λ , similarly, it holds that

ωj =
2z2(j−1)dz√

(z2 − λ)(z2 − λ2) · p(z2)
.

Therefore, in the coordinate z near the cusp (0, 0) the Bergman kernel is

g∑
i,j=1

(Im−1 Z)ij
4z2(i−1) · z2(j−1)

|(z2 − λ)(z2 − λ2) · p(z2)|
dz ∧ dz̄ =: k

(8)
λ (z)dz ∧ dz̄.

In the genus two case, the Bergman kernel can be written as

4 · (Im−1 Z)11 + (Im−1 Z)12z
2 + (Im−1 Z)21 · z2 + (Im−1 Z)22|z|4

|(z2 − λ)(z2 − λ2)(z2 − a)(z2 − b)|
dz ∧ dz̄. (2.10)

Let us then recall some Taylor expansions. The Taylor expansion of the function 1√
1−x

for x near 0 ∈ C says that 1√
1−x = 1 + x

2 + 3x2

8 + O(x3). When |a| < |s|, it holds that

1√
s− a

=
1√
s

{
1 +

a

2s
+

3a2

8s2
+ O(

a3

s3
)

}
.

As |s| < |a|, it holds that

1√
s− a

=
1√
−a
·
(

1 +
s

2a
+

3s2

8a2
+ O(

s3

a3
)

)
. (2.11)

Step 4. General curve

For general curves, we could use the pinching coordinates near a node, namely {xy =
λ}, as λ → 0. The advantage of a pinching coordinate is that it does not prescribe the
complex structure and it works not only for non-separating but also for separating nodes.
A complementary method is that any curve can be embedded into its Jacobian variety,
and the Bergman kernel is just the pull-back of the flat metric there. By Riemann theta
function, the asymptotic behavior is desirable.
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Chapter 3

Bergman kernel and potentials

For any complex torus, we compute via elliptic functions the ratio of the Bergman kernel
and the Arakelov metric, and obtain a sharp positive lower bound. For a once-punctured
complex torus, we compare the Bergman kernel and the fundamental metric, by construct-
ing explicitly the Evans-Selberg potential and discussing its asymptotic behaviors. These
works aim to generalize the Suita type results to potential-theoretically non-hyperbolic
Riemann surfaces.

3.1 Bergman kernel and Arakelov-Green function: compact
Suita conjecture

A complex torus

Since compact Riemann surfaces can be classified by the genus, we will first deal with
a complex torus, which is denoted by Xτ := C/ (Z + τZ), where τ ∈ C and Im τ > 0.
Consider the Hilbert space of L2-integrable holomorphic 1-forms on Xτ , and we know that
the Bergman kernel of Xτ by definition is the (1,1)-form

KXτ (z) =
1

Im τ
dz ∧ dz̄,

where z is the local coordinate induced from the complex plane C.

The Arakelov-Green function g(z, w) : Xτ ×Xτ → R with a pole w ∈ Xτ satisfies that

(a) ∂2g(z,w)
∂z∂z̄ = −π

2 ·
1

Im τ on Xτ \ {w};

(b) g(z, w) = log |z − w|+O(1), as z → w ;

(c) g(w,w) = −∞.

And it can be expressed as (see [We])

23



3.1. BERGMAN KERNEL AND ARAKELOV-GREEN FUNCTION: COMPACT
SUITA CONJECTURE

g(z, w) = log
‖θ‖(z − w + 1+τ

2 ; τ)

‖η‖(τ)
. (3.1)

Here θ(z; τ) :=
∑∞

n=−∞ exp(πin2τ + 2πinz) is the theta function and

η(τ) := q
1
12 ·

∞∏
n=1

(1− q2n)

is the Dedekin-η function, where we denote exp(πiτ) by q. Here it holds that

‖θ‖(x+ iy; τ) =
4
√

Im τ · e−πy2/Im τ · |θ(x+ iy; τ)|,

and

‖η‖(τ) =
4
√

Im τ · |η(τ)|.

Substituting these into (3.1), we will get

g(z, w) = log
4
√

Im τ · e−π
(

Im (z−w+ τ
2

)
)2
/Im τ · |θ(z − w + 1+τ

2 ; τ)|
4
√

Im τ · |η(τ)|

= log
e−π
(

Im (z−w+ τ
2

)
)2
/Im τ · |θ(z − w + 1+τ

2 ; τ)|
|η(τ)|

= log
exp(−π

(
Im (z − w + τ

2 )
)2
/Im τ) · |θ(z − w + 1+τ

2 ; τ)|
|q

1
12 ·
∏∞
n=1(1− q2n)|

= log
|θ(z − w + 1+τ

2 ; τ)|
|η(τ)|

− π

Im τ
·
(

Im (z − w +
τ

2
)
)2

= log

∣∣∣∣θ1(z − w; q)

η(τ)

∣∣∣∣− π · (Im(z − w))2

Im τ
,

where θ1 is defined in (3.2). From [Mu, p.17], it holds that

θ(z +
1 + τ

2
; τ) = exp(−1

4
πiτ − πi(z +

1

2
))

∞∑
n=−∞

exp(πi(n+
1

2
)2τ + 2πi(n+

1

2
)(z +

1

2
))

Applying Jacobi triple product (cf. [Ap, Theorem 14.6]), since q = exp(πiτ), we know

g(z, w) = log

e−π(Im (z−w+ τ2 )

)2
Im τ ·

∣∣∣∣∣2q 1
6 sin(π(z − w))

∞∏
n=1

(1− 2 cos(2π(z − w))q2n + q4n)

∣∣∣∣∣


·
∣∣∣∣−1

4
πiτ − πi(z − w +

1

2
))

∣∣∣∣ .
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By definition, it follows that

cXτ (z) = exp lim
w→z

(gτ (z, w)− log |z − w|)

= lim
w→z

e
−π
(
Im (z−w+ τ2 )

)2
Im τ · |2q1/6 sin(π(z − w))

∏∞
n=1(1− 2 cos(2π(z − w))q2n + q4n)e(− 1

4
πiτ−πi(z−w+ 1

2
))|

|z − w|

= exp−π
(

Im ( τ
2

)
)2
/Im τ ·2π · |q1/6

∞∏
n=1

(1− q2n)2 · exp(−1

4
πiτ − πi(1

2
))|

= exp−
π
4

Im τ ·2π · e−
π
6

Im τ · |
∞∏
n=1

(1− q2n)2| · exp
π
4

Im τ

=2π · exp(−π
6

Im τ) · |
∞∏
n=1

(1− q2n)2| = 2π · |η(τ)|2.

To acknowledge the relations between πKXτ and c2
Xτ

, we define their ratio as a new
function and get that

F (τ) : = log
πKXτ

c2
Xτ

= log
π · 1

Im τ

4π2 · e−
π
3

Im τ |
∏∞
n=1(1− q2n)4|

= log
1

Im τ · 4π · e−
π
3

Im τ |
∏∞
n=1(1− q2n)4|

= − log(Im τ · 4π · e−
π
3

Im τ |
∞∏
n=1

(1− q2n)4|)

= − log(Im τ)− log(4π) +
π

3
Im τ − 4

∞∑
n=1

log |1− q2n|.

With the help of computers, we obtained that F (τ) ≥ −1.8251 and therefore expF (τ) ≥
0.1612, ∀ τ ∈ C (Im τ > 0). This means for any complex torus, the following inequality
always holds:

απKXτ ≥ c2
Xτ , α ≈ 6.2034.

Figure 3.1: The 3D-graph of F (τ)
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And the “ = ” is attained when Im τ ≈ 1.9192 (explicit programs for this numerical
optimization attached below). In the proof, the following property is used.

Proposition 3.1.1. The infinite product
∞∏
n=1

(1 + an) converges absolutely if and only if

∞∑
n=1

an converges absolutely.

Since the last term of F (τ) converges and tends to 0 as Im τ → +∞, particularly we
obtain the following corollary.

Corollary 3.1.1. It follows that

lim
Im τ→+∞

πK

c2
= +∞.

This result can be read as: For this special torus, the above α can be close to 0.

Remark If we denote

θ11(z; q) := −2q1/4 sin(πz)
∞∏
n=1

(1− q2n)(1− 2 cos(2πz)q2n + q4n),

then the Jacobi triple product will yield that

θ11(z; q) = exp(
1

4
πiτ + πi(z +

1

2
))θ(z +

1 + τ

2
; τ).

Therefore, we could also rewrite

g(z, w) = log
e
−π
(
Im (z−w+ τ2 )

)2
Im τ · |θ11(z − w; q) · exp(−1

4πiτ − πi(z − w + 1
2))|

|q
1
12 ·
∏∞
n=1(1− q2n)|

.

Programs on MATLAB.

To make this paper complete, we attach here the explicit programs, to get the numerical
results concerning F (τ) defined above, running on MATLAB. We first define a function
called test(x,y,N) as below:
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Then we make the following computations:

Here [−x, x]× [0, y] forms the region where we plot the 3D-graph of F (τ). f represents
the minimal value on it for F (τ), achieved when τ = a + bi. And K, chosen to be large
enough, denotes the total times of summation needed to get the desired precision.

To run this program, we may first choose the appropriate x∗, y∗ and K∗. Then it suffices
to type into the command window:

�� [f, a, b] = myplot(x∗, y∗,K∗) ��

Method of Mathematica

The Arakelov-Green function on a complex torus Xτ defined as above with a pole w satisfies
the equation

∂2gw(z)

∂z∂̄z
=
π

2

(
δ(z − w)− 1

Im τ

)
,

and can be expressed via the theta function as

gw(z) = log

∣∣∣∣θ1(z − w; q)

η(τ)

∣∣∣∣− π · (Im(z − w))2

Im τ
.

Here η(τ) = q
1
12 ·
∏∞
m=1(1− q2m) and

θ1(z; q) := 2q1/4 sin(πz)

∞∏
n=1

(1− q2n)(1− 2 cos(2πz)q2n + q4n), (3.2)
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for q = exp(πiτ). In this case, it is possible to compare the Bergman kernel and the
Arakelov metric. Instead of using programming to numerically approximate the lower
bound as in [D14]1, the Gaussian curvature of the Arakelov metric can be computed by
Mathematica (Version 10.3). The following figure (plotted by Mathematica) illustrates that
the supremum of an Arakelov-Green function on a torus can be positive.

Figure 3.2: Figure of an Arakelov-Green function on a torus

In general, the Arakelov-Green function can be positive at some cases (see Figure 3.2).
This is different from the potential-theoretically hyperbolic case where the Green function
is always less than 0 in the interior. For the same reason, Berndtsson-Lempert’s method
cannot be directly applied to the potential-theoretically parabolic case, since an Evans-
Selberg potential tends to +∞ near the boundary.

3.2 Explicit formulas of the Evans-Selberg potential

Explicit formulas of the Evans-Selberg potentials are not quite understood, except the case
of C where the logarithmic kernel log |p − q| becomes a good candidate. In this section,
we first provide an explicit formula of the Evans-Selberg potential on the once-punctured
complex plane.

1The author apologizes for several mistakes contained in [D14].
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Theorem 3.2.1. There exists an Evans-Selberg potential on C \ {0} with a pole q given by

Eq(p) := log

∣∣∣∣√p

q
−
√
q

p

∣∣∣∣ .
Since the right hand side is symmetric in (p, q), it is also called an Evans kernel and we

have the following corollary.

Corollary 3.2.1. Let Gt(p, q) be the negative Green kernel on
{
z ∈ C |e−2t < |z| < e2t, t > 0

}
.

Then it follows that

lim
t→+∞

(
Gt(p, q) + log

(
et − e−t

))
= log

∣∣∣∣√p

q
−
√
q

p

∣∣∣∣ ,
uniformly on each compact subset of C \ {0} × C \ {0}.
Proof of Theorem 3.2.1. Without loss of generality assume q0 = 1 in Proposition 2.2, since
E(p, q) does not depends on a specific q0. For any t > 0, choose a function r = r(t) > 0 (to be
determined later) such that r ↘ 0+ as t→ +∞ and the annulus Ar := {p ∈ C

∣∣r < |p| < 1
r }

is equal to Σt := {p ∈ Σ |E(p, q0) < logNt}. By [CH, p.386-388], the negative Green kernel
for Ar can be expressed as

Gt(p, q) = Re

{
log

(
ip−2πiα/ log r θ1(ν − α; r2)

θ0(ν − α; r2)

)}
,

where ν := log p
2πi , α := log q

2πi and thus Gt(p, q) is symmetric in (p, q). Here

θ1(x; r2) = −iCr · r
1
2
(
eiπx − e−iπx

) ∞∏
j=1

(
1− r4je2iπx

) (
1− r4je−2iπx

)
and

θ0(x; r2) = Cr ·
∞∏
j=1

(
1− r4j−2e2iπx

) (
1− r4j−2e−2iπx

)
are theta functions with

Cr :=

∞∏
j=1

(1− r4j).

By Proposition 2.2.1, it follows that

E(p, q) = lim
t→∞

(Gt(p, q) + logNt)

= lim
t→∞

{
Re

{
log

(
ip−2πiα/ log r θ1(ν − α; r2)

θ0(ν − α; r2)

)}
+ logNt

}
= lim
t→∞

{
log

∣∣∣∣∣ip0 ·
−ir

1
2

(
eiπ(ν−α) − e−iπ(ν−α)

)∏∞
j=1

(
1− r4je2iπ(ν−α)

) (
1− r4je−2iπ(ν−α)

)∏∞
j=1

(
1− r4j−2e2iπ(ν−α)

) (
1− r4j−2e−2iπ(ν−α)

) ∣∣∣∣∣+ logNt

}
= lim
t→∞

{
log
∣∣∣r 1

2 ·
(
eiπ(ν−α) − e−iπ(ν−α)

)∣∣∣+ logNt

}
= log

∣∣∣eiπ(ν−α) − e−iπ(ν−α)
∣∣∣+ lim

t→∞

{
1

2
log r + logNt

}
= log

∣∣∣∣√p

q
−
√
q

p

∣∣∣∣+ lim
t→∞

{
1

2
log r + logNt

}
.
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If we choose Nt and r such that

lim
t→∞

{
1

2
log r + logNt

}
= 0, (3.3)

then the Evans kernel becomes

E(p, q) = log

∣∣∣∣√p

q
−
√
q

p

∣∣∣∣ = log

∣∣∣∣p− q√
pq

∣∣∣∣ ,
which is symmetric in (p, q). If a pole q is fixed, then Eq(p) := E(p, q) satisfies all the
conditions in Definition 2.2.2 and is indeed an Evans-Selberg potential. In this case, the
potential tends to +∞ respectively at the two Alexandroff ideal boundary points, namely 0
and∞. Finally, setting Nt := et−e−t and r := e−2t, we know that they satisfy by definition
the equality (3.3). Moreover, whenever t is sufficiently large it holds that Ar = Σt := {p ∈
Σ |E(p, q0) < logNt}, i.e. {

r < |p| < 1

r

}
=

{∣∣∣∣√p− 1
√
p

∣∣∣∣ < Nt

}
,

since Nt is strictly increasing in t. Thus, Theorem 3.2.1 and Corollary 3.2.1 are proved.

From the result of Theorem 3.2.1, we can construct by hand and obtain the following
result (since it satisfies the definition of an Evans-Selberg potential), although we are not
sure how to approximate C \ {0, 1}.

Theorem 3.2.2. An Evans-Selberg potential on C \ {0, 1} with a pole q is given by

Eq(p) = log

∣∣∣∣∣ p− q
p

1
3 q

1
3 (p− 1)

1
3 (q − 1)

1
3

∣∣∣∣∣. (3.4)

Infimum of an Evans-Selberg potential’s growth orders at the boundary

According to Proposition 2.2.4 (set D := C− {q} and w := 0 ∈ D), there exists a constant
b0 ≥ 0 such that Eq(p) − b0 log |p| is bounded from above near 0. Similarly, there exist
a constant b∞ ≥ 0 such that Eq(p) + b∞ log |p| is bounded from above near ∞. Take
b := max{b0, b∞}, and then it holds that

lim
p→0

Eq(p)− b log |p| <∞, lim
p→∞

Eq(p) + b log |p| <∞. (3.5)

Theorem 3.2.3. Let Eq(p) be an Evans-Selberg potential on C \ {0} with a pole q. Then,
it follows that

inf {b ≥ 0 |b satisfies (3.5) for Eq(p)} =
1

2
.
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Proof. Let us prove this by contradiction and denote the left hand side by bC∗ . From
Theorem 3.2.1 we know that there exists an Evans-Selberg’s potential φz0(z) = log

∣∣√z/z0−√
z0/z

∣∣, which means bC∗ ≤ 1/2. Suppose bC∗ < 1/2, then there exist another Evans-

Selberg’s potential ϕw0(z) that satisfies lim
z→0

ϕw0(z) − bC∗ log |z| < ∞ and lim
z→∞

ϕw0(z) +

bC∗ log |z| < ∞. So ϕw0(z) − φz0(z) < ϕw0(z) − bC∗ log |z| + 1/2 log |z| − φz0(z) < ∞,
as z → 0. Similarly, ϕw0(z) − φz0(z) < ∞, as z → ∞. Meanwhile since φz0(z) − ϕw0(z)
is a subharmonic function which is bounded from above on C \ {0}, then according to
Proposition 2.2.3, φz0(z) − ϕw0(z) is subharmonic on Ĉ := C ∪ {∞}, and therefore it is a
constant. This is a contradiction to bC∗ < 1/2, so bC∗ = 1/2.

For the domain C\{0, 1} (also parabolic in the potential-theoretical sense), according to
Proposition 2.2.4 there exists a constant b0 ≥ 0 such that Eq(p)− b0 log |p| is bounded from
above near 0, for Eq(p) given by (3.4). Similarly, there exist non-negative constants b1 such
that Eq(p)−b1 log |p− 1| is bounded from above near 1, and b∞ such that Eq(p)+b∞ log |p|
is bounded from above near ∞. Take b := max{b0, b1, b∞}, and then it holds that

lim
p→0

Eq(p)− b log |p| <∞, lim
p→1

Eq(p)− b log |p| <∞, lim
p→∞

Eq(p) + b log |p| <∞. (3.6)

Theorem 3.2.4. Let Eq(p) be an Evans-Selberg potential on C\{0, 1} with a pole q. Then,
it follows that

inf {b ≥ 0 |b satisfies (3.6) for Eq(p)} =
1

3
.

More generally, we should have results for Ĉ − {z1, ...zn}, (n ≥ 1), and the right hand
side should be 1

n . We may ask the following question:

Which Evans-Selberg potential can make the infimum equal to 1
n?

3.3 Suita conjecture for a once-punctured torus

As a typical example of potential-theoretically parabolic Riemann surfaces, Xτ,u admits an
Evans-Selberg potential and we have indeed constructed it.

Lemma 3.3.1. There exists an Evans-Selberg potential on Xτ,u := Xτ\{u} with a pole w
given by

Eτ,uw (z) = log

∣∣∣∣θ1(z − w; q)

θ1(z − u; q)

∣∣∣∣ ,
for z ∈ Xτ,u \ {w}.

Proof. We see that the two terms on the right hand side of (3.1) are responsible for the two
terms on the right hand side of (a), respectively. Keeping this in mind, we can construct
the Evans-Selberg potential by attaching physics meanings. We regard the potential as an
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electric flux generated at the pole w and ends at the boundary point u (see [Oo] for physics
explanations). Therefore, the Evans-Selberg potential Eτ,uw (z) with a pole w satisfies that

∂2Eτ,uw (z)

∂z∂̄z
=
π

2
(δ(z − w)− δ(z − u)) ,

and can be expressed via the theta function as

Eτ,uw (z) = log

∣∣∣∣θ1(z − w; q)

η(τ)

∣∣∣∣− log

∣∣∣∣θ1(z − u; q)

η(τ)

∣∣∣∣ = log

∣∣∣∣θ1(z − w; q)

θ1(z − u; q)

∣∣∣∣
= log

∣∣∣∣sin(π(z − w)) ·
∏∞
m=1(1− 2 cos(2π(z − w)) · q2m + q4m)

sin(π(z − u)) ·
∏∞
m=1(1− 2 cos(2π(z − u)) · q2m + q4m)

∣∣∣∣ .
Theorem 3.3.1. There exists a fundamental metric cτ,u on Xτ,u := Xτ\{u} under the
local coordinate w given by

cτ,u(w)|dw|2 =
2π · |η(τ)|3

|θ1(w − u; q)|
|dw|2.

Proof. This can be verified by definition, since

cτ,u(w) = exp lim
z→w

(
log

∣∣∣∣θ1(z − w; q)

θ1(z − u; q)

∣∣∣∣− log |z − w|
)

=

∣∣∣∣ π ·
∏∞
m=1(1− q2m)2

sin(π(w − u)) ·
∏∞
m=1(1− 2 cos(2π(w − u)) · q2m + q4m)

∣∣∣∣
=

∣∣∣∣∣ π · η(τ)2

q
1
6 · sin(π(w − u)) ·

∏∞
m=1(1− 2 cos(2π(w − u)) · q2m + q4m)

∣∣∣∣∣
=

∣∣∣∣∣π · η(τ)2 · 2q
1
4 ·
∏∞
m=1(1− q2m)

q
1
6 · θ1(w − u; q)

∣∣∣∣∣ =

∣∣∣∣∣∣∣
π · η(τ)2 · 2q

1
4 · η(τ)

q
1
12

q
1
6 · θ1(w − u; q)

∣∣∣∣∣∣∣ =

∣∣∣∣ 2π · η(τ)3

θ1(w − u; q)

∣∣∣∣ .
By the second equality above, cτ,u has the following asymptotic behavior, which will

yield Theorem 1.2.2 for any fixed τ .

Corollary 3.3.1. Under the same assumptions as in Theorem 3.3.1, as w → u, it follows
that

cτ,u(w) ∼ 1

|w − u|
→ +∞.
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The fundamental metric and its degenerate case

For the complex plane C itself, the logarithmic kernel log |z−w| is an Evans-Selberg poten-
tial and thus the fundamental metric under local coordinate w is written as 1 |dw|2, whose
Gaussian curvature is 0 by (2.2) since the Bergman kernel is 0. For C \ {0}, same argu-
ment holds for the Gaussian curvature of the fundamental metric, since the Bergman kernel
on C \ {0} is the same as on C by the removable singularity theorem for L2-holomorphic
functions. By Theorem 3.2.1, we can compute explicitly the fundamental metric.

Theorem 3.3.2. The fundamental metric on C \ {0} in local coordinate z is given by

|z|−1|dz|2.

Without using the formula (2.2), we also reach that the fundamental metric on C \ {0}
has Gaussian curvature 0. Moreover, the following asymptotic behaviors hold

c(w)→
{

0, as w →∞
+∞, as w → 0.

By studying the asymptotic behaviors of the fundamental metric under degeneration
with respect to the complex structure, we will prove Theorem 1.2.3. Relating Theorem
1.2.3 with (2.2), we further get Corollary 1.2.1.

Proof of Theorem 1.2.3. As Im τ → +∞ (q ≡ exp(πiτ)→ 0), it holds that

cτ,u(w)→
∣∣∣∣ π ·

∏∞
m=1(1− 02m)2

sin(π(w − u)) ·
∏∞
m=1(1− 2 cos(2π(w − u)) · 02m + 04m)

∣∣∣∣→ π

| sin(π(w − u))|
.

Therefore, it follows that

πKτ,u(w)

c2
τ,u(w)

→ | sin(π(w − u))|2

2 · Im τ · π
→ 0+,

since the denominator is uniformly bounded by 1 for any fixed w.

On the one hand, at the degenerate case of potential-theoretically hyperbolic Riemann
surfaces, we are not sure whether Gaussian curvatures of the Suita metrics are still bounded
from above by −4.

On the other hand, for a compact complex torus, the Gaussian curvature of the Arakelov
metric is always 0 by the genus reason, although our earlier result in [D14] shows that as
Im τ → +∞, it holds that

πKτ (w)

c2
τ (w)

→ +∞.
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Chapter 4

Bergman kernel on degenerate
elliptic curves

For a Legendre family of elliptic curves, using two methods (depending on elliptic functions’
special properties and Abelian differentials’ Taylor expansions) we show that the curvature
form of the relative Bergman kernel metric is strictly positive inside the moduli space
C \ {0, 1} and coincides with the the Poincaré metric there. In particular, the curvature
form blows up and has hyperbolic growth near the node 0. For other boundary points 1
and ∞, the asymptotic behaviors are also achieved. For other families of elliptic curves
degenerating to singular ones with a node or a cusp, we observe that it is either trivial with
a constant period or reducible to the Legendre family case.

4.1 Legendre family: a four-term asymptotic expansion at 0

Let us start from the following question.

Question. What is the Gaussian curvature of L
(1)
λ,z?

After careful computations, the curvature is observed to be identically equal to “−4”.
Moreover, the result is as follows.

Theorem 4.1.1. Under the same assumptions as in Theorem 1.1, it follows that L
(1)
λ,z is

the Poincaré metric of C \ {0, 1}.

On the one hand, this result seems to suggest a connection between the Bergman kernel’s
variation and the moduli space’s Poincaré metric. On the other hand, a four-term expansion
formula of the Poincaré metric of C \ {0, 1} are obtained as a corollary.

Corollary 4.1.1. Let ω0,1 denote the Poincaré metric of C \ {0, 1}. Then, as λ → 0, it
holds that

ω0,1 =

√
−1dλ⊗ dλ̄

|λ|2(− log |λ|2)2

(
1 + 2

log 16

log |λ|
+ 3

(
log 16

log |λ|

)2

+ 4

(
log 16

log |λ|

)3

+ O

(
1

(log |λ|)4

))
.
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The leading term of the above expansion formula implies that near the origin ω0,1 is
asymptotically similar to ωD∗ , and the negative second term seems to support that the
latter is bigger. Actually, it always holds that ω0,1 ≤ ωD∗ , wherever inside D∗ (see [SV]).
Last but not least, define p(λ) := − log (Im τ(λ)), where τ(·) is the inverse function of the
elliptic modular lambda function and λ ∈ C \ {0, 1}, we have the following asymptotic
expansion formula near 0.

Theorem 4.1.2. Under the same assumptions as in Corollary 4.1.1, p(λ) is a Kähler
potential of ω0,1. And as λ→ 0, it follows that

p(λ) = − log (− log |λ|) + log π +
log 16

log |λ|
+ O

(
1

(log |λ|)2

)
.

We remark that the first three terms in the above right hand side (denoted by p̃(λ)) is a
Kähler potential that exactly gives rise to the first two terms in the asymptotic expansion
in Corollary 4.1.1. From now on, we use the symbol “∼” to denote that the ratio of its
both sides tends to 1, as λ→ 0.

Proof of 1st & 2nd terms in Theorem 1.2.4

Proof. By definition, the Bergman kernel Bτ on Xτ (for its canonical bundle) can be written
as Bτ = 1

Im τ dz∧dz̄ in the local coordinate z, which means that kλ(z) = 1
Im τ . Now, we shall

analyze the asymptotic behaviors of Bτ as Im τ → +∞ (or equivalently the asymptotic
behaviors of Bλ as λ → 0). Using q := exp(π

√
−1τ), rewrite the elliptic modular lambda

function as

λ(τ) = 16q − 128q2 + 704q3 − 3072q4 + ... = 16q − 128q2 + O(q3), (4.1)

where we write O(f(q)) in place of g(q) if there exists a constant C ∈ R such that
limq→0 |g(q)/f(q)| = C. In particular, we have O(q2) = O(q̄2) = O(|q|2). Since |q| =
exp(−π · Im(τ)), i.e.,

Im τ =
log |q|
−π

, (4.2)

it holds that

log kλ(z) = log
1

Im τ
= − log Im τ = − log(− log |q|

π
). (4.3)

Thus, as Im τ → +∞ (q → 0), we know that

|λ| = |16q − 128q2 + O(q3)| = |q| · |16− 128q + O(q2)| ∼ 16|q| → 0, (4.4)

yielding that log |λ| = log |q|+ log |16− 128q+ O(q2)|. Therefore, as λ→ 0 (or equivalently
Im τ → +∞ or q → 0), it follows that

log kλ(z) ∼ − log(− log |λ|),
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which implies that

√
−1∂λ∂̄λ log kλ(z) ∼

√
−1 dλ ∧ dλ̄

4|λ|2(log |λ|)2
:= lλ,z

√
−1 dλ ∧ dλ̄,

and gives the leading term in Theorem 1.2.4.

In order to get the second term of lλ,z, we define a new function

Jλ := lλ,z −
1

4|λ|2(log |λ|)2
, (4.5)

and analyze its asymptotics as λ→ 0. Substituting (4.2) and (4.6) into (2.6), we get that

lλ,z =
1

4(log |q|)2 · |q|2 · |16− 256q + O(q2)|2
.

(4.1) also implies that λ′(τ) = ∂λ
∂q ·

∂q
∂τ = (16− 256q + O(q2)) · q ·

√
−1π and thus

|λ′(τ)| = |16− 256q + O(q2)| · |q| · π ∼ 16π|q| ∼ π|λ|. (4.6)

Therefore, it holds that

4|q|2 · Jλ

=
1

(log |q|)2|16− 256q + O(q2)|2
− 1

|16− 128q + O(q2)|2(log |q|+ log |16− 128q + O(q2)|)2

=
|16− 128q + O(q2)|2

(
2(log |q|) · log |16− 128q + O(q2)|+ (log |16− 128q + O(q2)|)2

)
(log |q|)2 · |16− 256q + O(q2)|2 · |16− 128q + O(q2)|2 · (log |q|+ log |16− 128q + O(q2)|)2

∼
|16− 128q + O(q2)|2

(
2(log |q|) · log 16 + (log 16)2

)
(log |q|)2 · |16− 256q + O(q2)|2 · |16− 128q + O(q2)|2 · (log |q|+ log |16− 128q + O(q2)|)2

∼ 2 · |16− 128q + O(q2)|2 · log 16

(log |q|) · |16− 256q + O(q2)|2 · |16− 128q + O(q2)|2 · (log |q|)2
∼ 2 · log 16

162 · (log |q|)3
.

As q → 0 (implying λ→ 0), it follows that

Jλ ∼
log 16

2|λ|2(log |λ|)3
.

Finally combining (4.5), one obtains the second term in Theorem 1.2.4.

An alternative proof of the first two terms in Theorem 1.2.4, without using the special
properties of elliptic functions, is given in [D3]. Let us then generalize Theorem 1.3 (i) in
[D15] by proving the following lemma1, which will be used later in this section.

1If one drops the lower terms, then the following two-term asymptotic formula holds: log kλ(z) ∼
− log(− log |λ|+ log 16).
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Lemma 4.1.1. Under the same assumptions as in Theorem 1.2.4, as λ→ 0, it holds that

kλ(z) =
π

− log |λ|+ log 16− Reλ
2 + O(λ2)

. (4.7)

Proof of Lemma 4.1.1. The preliminary section says that 1
kλ(z) = Im τ = − log |q|

π . As q → 0,

it holds that 1
kλ(z) ∼

− log |λ|
π . Considering their difference, from (4.1) one gets that

1

kλ(z)
− − log |λ|

π
=

1

π
log

∣∣∣∣λq
∣∣∣∣ =

1

π
log |16− 128q + O(q2)|.

Furthermore, it holds that |16 − 128q + O(q2)|2 = 162 − 32 · 128 Re q + O(q2), which
implies that

1

kλ(z)
− − log |λ|

π
=

1

2π
log
(
162 − 32 · 128 Re q + O(q2)

)
.

The Taylor expansion of log t at the point t = 162 says that

log
(
162 − 32 · 128 Re q + O(q2)

)
= log

(
162
)
− 16 Re q + O(q2),

by which it holds that

1

kλ(z)
=
− log |λ|+ log 16− 8 Re q + O(q2)

π
,

as q → 0. Since Re q ∼ Reλ
16 and O(q2) = O(λ2), the proof is completed.

Proof of the third and fourth terms in Theorem 1.2.4

Proof. From Lemma 4.1.1, as λ→ 0, we know that

log kλ(z) ∼ − log

(
− log |λ|+ log 16− Reλ

2

π

)
:= RHS.

Therefore, after some elementary calculations one first gets that

∂2(RHS)

∂λ∂λ̄
=

1 + Reλ+ 1
4 |λ|

2

4|λ|2
(
− log |λ|+ log 16− Reλ

2

)2 (∼ ∂2(log kλ(z))

∂λ∂λ̄

)
.

Step 1: estimating the third term. Comparing the difference, one gets

∂2(RHS)

∂λ∂λ̄
− 1

4|λ|2(log |λ|)2
− log 16

2|λ|2(log |λ|)3

=

(
Reλ+ 1

4 |λ|
2
)
· (log |λ|)2 + 2 log |λ|(log 16− Reλ

2 )− (log 16− Reλ
2 )2

4|λ|2(log |λ|)2
(
− log |λ|+ log 16− Reλ

2

)2 − log 16

2|λ|2(log |λ|)3

∼
−(log 16− Reλ

2 )2 log |λ|+ 4(log 16)2 log |λ| − 2(log 16)3

4|λ|2(log |λ|)3
(
− log |λ|+ log 16− Reλ

2

)2 ∼ 3(log 16)2

4|λ|2(log |λ|)4
,
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which means that

∂2(log kλ(z))

∂λ∂λ̄
=

1

4|λ|2(log |λ|)2

(
1 + 2

log 16

log |λ|
+ 3

(
log 16

log |λ|

)2

+ O

(
1

(log |λ|)3

))
.

Step 2: estimating the fourth term. Similarly as above, we know that

∂2(RHS)

∂λ∂λ̄
− 1

4|λ|2(log |λ|)2
− log 16

2|λ|2(log |λ|)3
− 3(log 16)2

4|λ|2(log |λ|)4

∼ 3 log |λ|(log 16)2 − 2(log 16)3

4|λ|2(log |λ|)3
(
− log |λ|+ log 16− Reλ

2

)2 − 3(log 16)2

4|λ|2(log |λ|)4

=
−2(log |λ|)(log 16)3 − 3(log 16)2

(
−2(log |λ|)(log 16− Reλ

2 ) + (log 16− Reλ
2 )2

)
4|λ|2(log |λ|)4

(
− log |λ|+ log 16− Reλ

2

)2
∼ 4 log |λ|(log 16)3 − 3(log 16)4

4|λ|2(log |λ|)4
(
− log |λ|+ log 16− Reλ

2

)2 ∼ (log 16)3

|λ|2(log |λ|)5
,

as λ→ 0, which finishes the full proof of Theorem 1.2.4.

Remark As λ → 0, we do not know why our results on the asymptotic behaviors of
Bergman kernels depend only on |λ|. Moreover, we will see in the next section that the
positivity of the above third term contributes to the completeness argument in the proof of
Theorem 4.1.1. It turns out that the subleading terms in the asymptotic expansion contain
more “logarithmic” information, slowing down the growth order at infinity of the left hand
side. As we can see, even though the 2nd and the 4th terms tend to −∞, the left hand side
of the above formula, which is mainly affected by the leading term, still tends to +∞. It is
expected that each term should have certain geometrical interpretations.

Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. We first compute the Gaussian curvature of the Kähler metric Lλ,z
on C \ {0, 1}. From the preliminary section, it is known that

Lλ,z =

√
−1 · |τ ′|2

4(Im τ)2
dλ ∧ dλ̄ =:

√
−1(Jλ)2 dλ ∧ dλ̄.

Therefore, it follows that

−4∂2 log(Jλ)

∂λ∂λ̄
=
−4∂2 log( |τ

′|
2·Im τ )

∂λ∂λ̄
=
−4∂2 log(|τ ′|)

∂λ∂λ̄
+

4∂2 log(2 · Im τ)

∂λ∂λ̄
.

Since τ(·), the inverse function of the elliptic modular function, is also conformal, it
holds that log(|τ ′|) is harmonic with respect to λ. So, we get

−4∂2 log(Jλ)

∂λ∂λ̄
=

4∂2 log(2 · Im τ)

∂λ∂λ̄
= − |τ ′|2

(Im τ)2
.
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Furthermore, it follows that

Curv(Lλ,z) =

−4∂2 log(Jλ)

∂λ∂λ̄

(Jλ)2
=
− |τ ′|2

(Im τ)2

( |τ
′|

2·Im τ )2
≡ −4.

To prove that Lλ,z is complete at 0, we use our asymptotic result in Theorem 1.2.4.
Since the subleading terms are all incomplete near 0, the sum of the first and second terms
becomes a complete metric (with a non-constant curvature) on D∗, denoted by ω′D∗ . Then,
due to the positivity of the third term we get that Lλ,z > ω′D∗ , which guarantees the
completeness of Lλ,z at 0. For the completeness at other boundary points 1 and ∞, we
proceed with the behaviors of the elliptic modular lambda function under the composition
with inverse or translation mappings (cf. [K-R, D3]).

Corollary 4.1.1 follows from Theorem 4.1.1 and Theorem 1.2.4.

Proof of Theorem 4.1.2

Proof. Previous computations in the preliminary section show that

0 <
1

4(Im τ · |λ′(τ)|)2
=
∂2(log (kλ(z)))

∂λ∂λ̄
=
∂2(p(λ))

∂λ∂λ̄
.

From Theorem 4.1.1, it follows that p(λ) is a Kähler potential of ω0,1. First, let us
consider its leading term of the asymptotic expansion. By (4.1) and (4.2), as λ→ 0, it can
be seen that

p(λ) ∼ − log (− log |λ|) =: p1(λ).

Actually, p1(λ) is the potential’s leading term near λ = 0 and satisfies

∂2(p1(λ))

∂λ∂λ̄
=

1

4|λ|2(log |λ|)2
.

By (4.7) in order to get the second term, we use p(λ) to subtract p1(λ) and analyze
their difference function, namely

p(λ)− p1(λ) ∼ − log(− log |λ|+ log 16) + log π + log (− log |λ|)

= log

(
1

− log |λ|+ log 16

)
+ log π + log (− log |λ|)

= log π − log

(
1− log 16

log |λ|

)
∼ log π +

log 16

log |λ|
∼ log π =: p2(λ).

The second to last similarity relation holds due to the Taylor expansion of log(1 + t) at
0. Similarly, we see that the third term is just log 16

log |λ| =: p3(λ).
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Remark We now verify our claim after Theorem 4.1.2 that p̃(λ) is a Kähler potential
that exactly gives rise to the first two terms in the asymptotic expansion in Corollary 4.1.1.
To check this, we make the following computations.

∂

(
1

log |λ|

)
=

−dλ
2λ(log |λ|)2

, ∂̄

(
1

log |λ|

)
=

−dλ̄
2λ̄(log |λ|)2

,

∂∂̄

(
1

log |λ|

)
= ∂

(
−dλ̄

2λ̄(log |λ|)2

)
=

2∂
(
λ̄(log |λ|)2

)
∧ dλ̄

4λ̄2(log |λ|)4

=
2λ̄∂

(
(log |λ|)2

)
∧ dλ̄

4λ̄2(log |λ|)4
=

2λ̄2(log |λ|)dλ2λ ∧ dλ̄
4λ̄2(log |λ|)4

=
dλ ∧ dλ̄

2|λ|2(log |λ|)3
.

Thus, since p2(λ) is a constant, it holds that

∂2(p2(λ) + p3(λ))

∂λ∂λ̄
=

log 16

2|λ|3(log |λ|)2
.

4.2 Legendre family: asymptotic formulas at 1 and ∞

In this section, explicit asymptotic formulas of the relative Bergman kernel metric for
a Legendre family of elliptic curves near the moduli space boundary points 1 and ∞ are
obtained respectively. These asymptotic behaviors also characterize the Poincaré hyperbolic
metric and its Kähler potential on C \ {0, 1}.

Theorem 4.2.1. Under the same assumptions as in Theorem 1.2.4, it follows that

(i) as λ→ 1, log k
(1)
λ (z) ∼ log(− log |λ− 1|),

(ii) and as λ→∞, log k
(1)
λ (z) ∼ log(log |λ|).

In particular, both the right hand sides of (i) and (ii) tend to +∞. Rather than taking
immediate second-order partial derivatives, we make more careful computations on the
curvature forms and derive the following theorem.

Theorem 4.2.2. Under the same assumptions as in Theorem 1.2.4, it follows that

(i) as λ→ 1,

Lλ,z ∼
√
−1

4|λ− 1|2(log |λ− 1|)2
dλ ∧ dλ̄,

(ii) and as λ→∞,

Lλ,z ∼
√
−1

4|λ|2(log |λ|)2
dλ ∧ dλ̄.
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Notice that the right hand sides of (i) and (ii) tend to +∞ and 0+, respectively. And this
is different from the potentials in Theorem 4.2.1 which have the same limit. The proofs of
Theorems 4.2.1 and 4.2.2 are mainly due to the elliptic modular lambda function’s special
properties (in particular its behavior under the composition with inverse or translation
mappings). By Theorem 4.1.1, we get the following corollary.

Corollary 4.2.1. Let ω0,1 denote the Poincaré hyperbolic metric on λ ∈ C \ {0, 1} with a
Kähler potential p(λ) := − log (Im τ(λ)), where τ(·) is the inverse of the elliptic modular
lambda function. Then, it follows that

(i) as λ→ 1,

p(λ) ∼ log(− log |λ− 1|),

ω0,1 ∼
√
−1

4|λ− 1|2(log |λ− 1|)2
dλ⊗ dλ̄,

(ii) and as λ→∞,

p(λ) ∼ log(log |λ|),

ω0,1 ∼
√
−1

4|λ|2(log |λ|)2
dλ⊗ dλ̄.

We remark that our result agrees in the limiting case λ→ 1 inside D∗ with the fact that
ω0,1 ≤ ωD∗ (see e.g. [SV, H]).

Proof of Theorem 4.2.1

Combining our results in [D15] and introducing two new parameters α := − 1
τ and β := τ−1,

we will prove new results. We shall use the following well-known properties of the elliptic
modular lambda function (see [Ah, p.279–280]):

(A) As Imα→ +∞, it holds that

λ(α) ∼ 16eπ
√
−1α → 0,

which means that log λ(α) ∼ π
√
−1α.

(B) λ(− 1
τ ) = 1− λ(τ).

(C) λ(β + 1) = λ(β)
λ(β)−1 = 1 + 1

λ(β)−1 ( =⇒ λ(β)− 1 = 1
λ(β+1)−1).

Proof of Theorem 4.2.1. Claim (i). As τ → 0 (⇐⇒ Imα → +∞), since log kλ(τ)(z) =
− log Im τ , we know by (2) that log kλ(τ)(z) ∼ − log Im α + log |α|2. Theorem 1.3 (i) in
[D15] says that as Imα→ +∞, one has

− log Im α ∼ − log(− log |λ(α)|),
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which yields as τ → 0 that

log kλ(τ)(z) ∼ − log(− log |λ(α)|) + 2 log |α|.

On the other hand by Property (A) we know that

π|α| ∼ | log λ(α)| = | log |λ(α)|+
√
−1 arg(α)| ∼ | log |λ(α)|| = − log |λ(α)|,

as Imα→ +∞ (⇐⇒ λ(α)→ 0), which gives that log |α| ∼ log(− log |λ(α)|). Therefore, by
Property (B) for the Bergman kernel we have proved that

log kλ(τ)(z) ∼ − log(− log |λ(α)|) + 2 log(− log |λ(α)|)
= log(− log |λ(α)|) = log(− log |λ(τ)− 1|)→ +∞,

as λ(α)→ 0 (⇐⇒ λ(τ)→ 1).

Claim (ii). It follows from Claim (i) that as β → 0 (⇐⇒ τ → 1),

− log Im β ∼ log(− log |λ(β)− 1|),

which implies by Property (C) that

log kλ(τ)(z) = − log Im τ = − log Im β

∼ log(− log |λ(β)− 1|) = log(log |λ(β + 1)− 1|)
= log(log |λ(τ)− 1|) ∼ log(log |λ(τ)|)→ +∞,

as λ(τ)→∞.

Proof of Theorem 4.2.2

Proof. Claim (i). From Property (B), one knows that λ′(α) · ∂α∂τ = −λ′(τ), which implies

|λ′(τ)| = |λ
′(α)|
|τ |2

.

By equalities (2.6) and (2.7), as Imα→ +∞, it holds that

∂2(log kλ(τ)(z))

∂λ∂λ̄
=

1

4(Im τ · |λ′(τ)|)2
=

1

4(Imα · |τ |2 · |λ
′(α)|
|τ |2 )2

=
1

4(Imα · |λ′(α)|)2
=
∂2(log kλ(α)(z))

∂λ∂λ̄
.

Theorem 1.3 (ii) in [D15] says that

∂2(log kλ(α)(z))

∂λ∂λ̄
∼ 1

4|λ(α)|2(log |λ(α)|)2
,

42



CHAPTER 4. BERGMAN KERNEL ON DEGENERATE ELLIPTIC CURVES

as Imα→ +∞(⇐⇒ τ → 0), which yields as λ(τ)→ 1 that

∂2(log kλ(τ)(z))

∂λ∂λ̄
∼ 1

4|λ(τ)− 1|2(log |λ(τ)− 1|)2
→ +∞.

Claim (ii). By Property (B) we get that

λ′(β) · ∂β
∂τ
· (λ(τ)− 1) + (λ(β)− 1) · λ′(τ) = 0.

This means λ′(τ) = λ′(β)·(λ(τ)−1)
−λ(β)+1 and therefore

|λ′(τ)| = |λ
′(β)| · |(λ(τ)− 1)|
|λ(β)− 1|

.

By (2.6) again, it follows that

∂2(log kλ(τ)(z))

∂λ∂λ̄
=

1

4 (Im τ · |λ′(τ)|)2

=
|λ(β)− 1|2

4 (Imβ · |λ′(β)| · |λ(τ)− 1|)2 =
∂2(log kλ(β)(z))

∂λ∂λ̄
· |λ(β)− 1|2

|λ(τ)− 1|2
.

By Claim (i), as λ(β)→ 1 it holds that

∂2(log kλ(β)(z))

∂λ∂λ̄
∼ 1

4 (|λ(β)− 1| · log |λ(β)− 1|)2 ,

which means that

∂2(log kλ(τ)(z))

∂λ∂λ̄
∼ 1

4 (|λ(β)− 1| · log |λ(β)− 1|)2 ·
|λ(β)− 1|2

|λ(τ)− 1|2

=
1

4(log |λ(β)− 1|)2 · |λ(τ)− 1|2
=

1

4(− log |λ(τ)− 1|)2 · |λ(τ)− 1|2

∼ 1

4(log |λ(τ)|)2 · |λ(τ)|2
→ 0+,

as λ(τ)→∞. The proof is thus finished.

At last, the following table indicates how the relative Bergman kernel and its curvature
form change as the parameter varies. Here τ is the inverse function of the elliptic modular
lambda function. As we can see, all the three cases have different asymptotic behaviors.

As the parameter As the parameter relative Bergman kernel the curvature form
τ tends to λ tends to log kλ(z)

√
−1∂λ∂̄λ log kλ(z)

∞ 0 → −∞ → +∞
0 1 → +∞ → +∞
1 ∞ → +∞ → 0+
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4.3 Legendre family: the leading asymptotics at 0 by Taylor
expansion

For a Legendre family of elliptic curves, the two-term asymptotic expansion of the relative
Bergman kernel metric near the degenerate boundary is shown by an approach based on
Abelian differentials’ Taylor expansions and elliptic curves’ periods. Namely, the horizontal
curvature form has hyperbolic growth with an explicit second term at the node. The proofs
do not depend on special elliptic functions. To re-prove first two terms in Theorem 1.2.4,
the following lemma is needed.

Lemma 4.3.1. Let Cλ be defined as in (2.3). Then as λ→ 0, it holds that

logC−1
λ ∼ − log (− log |λ|) .

Proof of Lemma 4.3.1. The numerator and the denominator in (2.5) will be estimated re-
spectively (cf. [CMSP]), and we make it precise so as to give the second term asymp-
totic expansion later on. The Taylor expansion of the function (

√
1− λ)−1 at 0 says

that (
√

1− λ)−1 = 1 + λ
2 + 3λ2

8 + O(λ3). For |x| > 1, it holds that (
√

1− x−1)−1 =
1 + 1

2x + 3
8x2

+ O(x−3), which means that(√
x(x− 1)

)−1
=

1

x
+

1

2x2
+

3

8x3
+ O(

1

x4
).

A© The Numerator. By the construction of γ̃ we know that∫
γ̃
ω = −2

∫ t

1
ω = −2

∫ 2

1
ω − 2

∫ t

2
ω

=− 2

∫ 2

1
ω − 2

∫ t

2

dx√
x(x− 1)(x− t)

=− 2

∫ 2

1
ω − 2

∫ t

2

(
1√
x

+
1√

(x− 1)
− 1√

x

)
dx√

x(x− t)

=− 2

∫ 2

1
ω − 2

∫ t

2

(
1√
x

)
dx√

x(x− t)
− 2

∫ t

2

(
1√
x− 1

− 1√
x

)
dx√

x(x− t)

=− 2

∫ 2

1
ω − 2

∫ t

2

dx

x
√
x− t

− 2

∫ t

2

(√
x−
√
x− 1√

x− 1 ·
√
x

)
dx√

x(x− t)

=− 2

∫ 2

1
ω − 2

∫ t

2

dx

x
√
x− t

− 2

∫ t

2

(
1√

x− 1 ·
√
x ·
(√
x+
√
x− 1

)) dx√
x(x− t)

.

Denote I :=
∫ t

2
dx

x
√
x−t and J :=

∫ t
2

(
1√

x−1·
√
x·(
√
x+
√
x−1)

)
dx√
x(x−t)

. Then it follows that

∫
γ̃
ω = −2

∫ 2

1
ω − 2I − 2J = −2

(∫ 2

1
ω + I + J

)
. (4.8)
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Firstly, let’s look at
∫ 2

1 ω. As t→∞, it holds that

∫ 2

1
ω =

∫ 2

1

dx√
x(x− 1)(x− t)

∼
∫ 2

1

dx
√
−t ·

√
x(x− 1)

=
1√
−t

log
(

2
√
x(x− 1) + 2x− 1

)∣∣∣2
1

=
1√
−t

log
(

2
√

2 + 4− 1
)

=
log(2

√
2 + 3)√
−t

.

Secondly, let’s look at I. As t→∞, an elementary computation shows that

I =
2√
t

arctan

√
x− t
t

∣∣∣∣∣
t

2

=
2√
t

arccos
1√

1 + x−t
t

∣∣∣∣∣∣
t

2

=
2√
t

arccos
1√
x
t

∣∣∣∣∣
t

2

=
2√
t

arccos

√
t

x

∣∣∣∣∣
t

2

=
2√
t

√
−1 log

(√
t

x
+

√
t

x
− 1

)∣∣∣∣∣
t

2

=
−2√
t

√
−1 log

(√
t

2
+

√
t

2
− 1

)

=
−2√
t

√
−1 log

(√
t

2

(
1 +

√
1− 2

t

))
=
−2√
t

√
−1

(
1

2
log

t

2
+ log

(
1 +

√
1− 2

t

))

∼−2√
t

√
−1

(
1

2
log

t

2
+ log 2

)
∼ log t√
−t
.

Thirdly, let’s look at J . On the one hand, x ≥ 2 implies that
(
1 ·
√
x · (
√

2 + 1)
)−1 ≥(√

x− 1 ·
√
x ·
(√
x+
√
x− 1

))−1
. Substituting it into J, we will get its bound from one

direction, i.e.,

∫ t

2

(
1

1 ·
√
x · (
√

2 + 1)

)
dx√

x(x− t)
= (
√

2− 1)

∫ t

2

dx

x
√

(x− t)
= (
√

2− 1)I.

On the other hand, x− 1 < x implies that

(√
x− 1 ·

√
x ·
(√
x+
√
x− 1

))−1
>
(√
x ·
√
x ·
(√
x+
√
x
))−1

.
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After similar substitutions, we will get the other bound for J, namely∫ t

2

(
1√

x ·
√
x · (
√
x+
√
x)

)
dx√

x(x− t)
=

1

2

∫ t

2

dx

x2
√
x− t

=
1

2

(
−1 ·

√
x− t

−t · 1 · x

∣∣∣∣t
2

− 2 · 2− 3

2 · (−t)

∫ t

2

dx

x
√
x− t

)

=
1

2

(√
x− t
t · x

∣∣∣∣t
2

+
1

2 · t

∫ t

2

dx

x
√
x− t

)
=

1

2

(
−
√

2− t
2t

+
I

2 · t

)
.

This will imply another bound for I + J which is(
1 +

1

4 · t

)
· I −

√
2− t
4t

∼ I.

Combining these two sides estimates, we know2 that there exists a positive real number
C ∈

[
1,
√

2
]
, such that

I + J ∼ C · I,

as t→∞. Now by (4.8), the numerator has the following asymptotic behavior.

∫
γ̃
ω = −2

(∫ 2

1
ω + I + J

)
∼ −2

(
log(2

√
2 + 3)√
−t

+ C · I

)

∼ −2

(
log(2

√
2 + 3)√
−t

+ C · log t√
−t

)
∼ −2C · log t√

−t
.

Finally, let us change variables by setting s = 1
x and t = 1

λ . We know dx = −s−2ds.
Then as λ→ 0, it follows that

2C · log λ ·
√
λ√

−1
∼ −2

∫ t

1

dx√
x(x− 1)(x− t)

= −2

∫ λ

1

−s−2ds√
1
s (1
s − 1)(1

s −
1
λ)

= 2

∫ λ

1

ds√
s(s− 1)( sλ − 1)

=

∫
γ
ω ·
√
λ.

This means that as λ→ 0, it holds that∫
γ
ω ∼ −2C · log λ ·

√
−1. (4.9)

2This is not a precise argument, and up to here what we could only know is that the quotient of I + J
and I is bounded by some constant C. However, in the next section when proving the second term we give
a precise proof which determines this C to be 1.
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B© The Denominator. By the construction of −δ̃, which contains points {0, 1}, we know
that when t is large (as t→∞) compared to the radius R it holds that

∫
−δ̃
ω =

∫
δ̃

dx√
x(x− 1)(x− t)

∼
∫
−δ̃

dx√
x · x · (−t)

=
1√
−t

∫
−δ̃

dx

x
∼ 1√
−t
· 2π
√
−1 =

2π√
t
.

We then make the same change of variables by setting s = 1
x , t = 1

λ . For small λ, −δ
is a circle containing points {1,∞} (on a Riemann sphere this is equivalent to say that δ
contains only points {0, λ}). As λ→ 0, it holds that

2π ·
√
λ ∼

∫
−δ

−s−2ds√
1
s (1
s − 1)(1

s −
1
λ)

=
√
λ ·
∫
δ

ds√
s(s− 1)(s− λ)

,

which means that ∫
δ

ds√
s(s− 1)(s− λ)

∼ 2π. (4.10)

Combining (4.9) and (4.10) as λ→ 0, we know that

∫
γ ω∫
δ ω
∼ −2C · log λ ·

√
−1

2π
=
C · log λ

π
√
−1

.

Moreover, it holds that

Im

(
C · log λ

π
√
−1

)
= Im

(
−C
√
−1

π
· log |λ|

)
= −C · log |λ|

π
.

Therefore, as λ→ 0 we will get

logC−1
λ = log

1

Im

(∫
γ ω∫
δ ω

)
·
∣∣∫
δ ω
∣∣2 ∼ log

1

Im
(
−C·log λ

π
√
−1

) − 2 log(2π)

= log
1

−C·log |λ|
π

− 2 log(2π) ∼ log

(
1

− log |λ|

)
.

Thus, Lemma 4.3.1 is proved.
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By using Lemma 4.3.1 and (2.4), we get the following asymptotic behaviors

∂λ∂̄λ log kλ(·) ∼− ∂λ∂̄λ log (− log |λ|) = −∂λ
(
∂̄λ(log |λ|)

log |λ|

)
=− ∂λ∂̄λ(log |λ|)− ∂λ(log |λ|) ∧ ∂̄λ(log |λ|)

(log |λ|)2
=
∂λ(log |λ|) ∧ ∂̄λ(log |λ|)

(log |λ|)2

=
∂λ(log |λ|2) ∧ ∂̄λ(log |λ|2)

4(log |λ|)2
=

∂λ(|λ|2)
|λ|2 ∧ ∂̄λ(|λ|2)

|λ|2

4(log |λ|)2
=
∂λ(|λ|2) ∧ ∂̄λ(|λ|2)

4|λ|4(log |λ|)2

=
λ̄dλ ∧ λdλ̄

4|λ|4(log |λ|)2
=

dλ ∧ dλ̄
4|λ|2(log |λ|)2

,

as λ → 0. In this way, the hyperbolic growth of the leading term in Theorem 1.2.4 can
thus be shown. For the leading term asymptotics of the period, see [CMSP], where it is
remarked that the sub-leading terms of the period is holomorphic with respect to λ.

4.4 Legendre family: the two-term asymptotics at 0 by Tay-
lor expansion

Roughly speaking, the proof of Lemma 4.3.1 actually shows that there exists a positive real
number C ∈ [1,

√
2], such that as λ→ 0 it holds that

τ(λ) ∼ C · log λ√
−1π

,

where τ(λ) :=

∫
γ ω∫
δ ω

is the period of X
(1)
λ , λ ∈ C \ {0, 1}. In this section, we will show

that the above constant C can actually be chosen as “1”. Moreover, we will use the same
method to determine the precise second term, which requires little tricks.

Two-term asymptotic expansion of the period

In [Ah, p.280], two-term asymptotic expansion of the elliptic modular lambda function is
essentially studied where the Weierstrass-℘ function is used to investigate the period of

X
(1)
λ . However, we reprove this fact by using the Taylor expansions of Abelian differentials.

Proposition 4.4.1. Let τ(λ) denote the period of the elliptic curve Xλ, λ ∈ C \ {0, 1}.
Then as λ→ 0, it holds that

τ(λ) ∼ log λ− log 16√
−1π

.

Proof of Proposition 4.4.1. Let us go back to (4.8) in the proof of Lemma 4.3.1, where we
separate the numerator into a proper term −2

∫ 2
1 ω and an improper term −2

∫ t
2 ω. Now,

for any real number ε > 1, we re-separate the numerator as −2
∫ s

1 ω and −2
∫ t
s ω. Similarly,

as t→∞, it holds that
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∫ ε

1
ω =

∫ ε

1

dx√
x(x− 1)(x− t)

∼
∫ ε

1

dx
√
−t ·

√
x(x− 1)

=
1√
−t

log
(

2
√
x(x− 1) + 2x− 1

)∣∣∣ε
1

=
1√
−t

log
(

2
√
ε(ε− 1) + 2ε− 1

)
and ∫ t

ε

dx

x
√
x− t

=
2√
t

arctan

√
x− t
t

∣∣∣∣∣
t

ε

=
−2√
t

√
−1 log

(√
t

ε
+

√
t

ε
− 1

)

=
−2√
t

√
−1 log

(√
t

ε

(
1 +

√
1− ε

t

))
=
−2√
t

√
−1

(
1

2
log

t

ε
+ log

(
1 +

√
1− ε

t

))
=
−2√
t

√
−1

(
1

2
log

t

ε
+ log

(
2− 1

2
· 2ε

t
− 1

8
· 4ε2

t2
+ O(

ε3

t3
)

))
∼−2√

t

√
−1

(
1

2
log

t

ε
+ log 2

)
=

1√
−t

(log t+ 2 log 2− log ε) .

Also, x ≥ ε implies that(√
ε− 1 ·

√
x · (
√
ε+
√
ε− 1)

)−1 ≥
(√
x− 1 ·

√
x ·
(√
x+
√
x− 1

))−1
> 0.

Therefore, we will get that( √
ε√

ε− 1

)
· 1√

x
=

(
1√

ε− 1 ·
√
x · (
√
ε+
√
ε− 1)

)
+

1√
x
≥ 1√

x− 1
>

1√
x
.

Thus,
∫ t
ε ω =

∫ t
ε

dx√
x(x−1)(x−t)

can be squeezed by two terms A and B, namely

A :=

∫ t

ε

dx

x
√

(x− t)
∼ 1√
−t

(log t+ 2 log 2− log ε) ,

and

B :=

( √
ε√

ε− 1

)
·A ∼

( √
ε√

ε− 1

)
· 1√
−t

(log t+ 2 log 2− log ε) .

Finally, the numerator can be squeezed by −2(A+
∫ ε

1 ω) and −2(B+
∫ ε

1 ω). On the one
hand, it holds that

−2

(
A+

∫ ε

1
ω

)
∼ −2√
−t

(log t+ 2 log 2− log ε) +
−2√
−t

log
(

2
√
ε(ε− 1) + 2ε− 1

)
∼ −2√
−t

(
(log t+ 2 log 2) + log

(
2

√
ε− 1

ε
+ 2− 1

ε

))
.
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On the other hand, it holds that

− 2

(
B +

∫ ε

1
ω

)
∼ −2

(( √
ε√

ε− 1

)
· 1√
−t

(log t+ 2 log 2− log ε) +
log ε√
−t

)
=

( √
ε√

ε− 1

)
· −2√
−t

(log t+ 2 log 2− log ε) +
−2√
−t

log
(

2
√
ε(ε− 1) + 2ε− 1

)
=
−2√
−t

(( √
ε√

ε− 1

)
(log t+ 2 log 2− log ε) + log

(
2
√
ε(ε− 1) + 2ε− 1

))
=
−2√
−t

(( √
ε√

ε− 1

)
(log t+ 2 log 2) + log

(
2
√
ε(ε− 1) + 2ε− 1

)
−
√
ε · log ε√
ε− 1

)
.

Since ε is arbitrary, after taking the limit ε → ∞ we will see that the numerator is
asymptotic to

−2√
−t

(log t+ 2 log 2 + log(2 + 2)) =
−2√
−t

(log t+ log 16) ,

as t→∞. Similarly, we change variables again. Taking the inverse of t as λ→ 0, we get

2
√
−1 · (− log λ+ log 16) ·

√
λ ∼ −

∫
γ̃
ω ·
√
λ,

which implies that the numerator is asymptotic to −2
√
−1 (log λ− log 16) , as λ → 0.

Comparing it with the denominator, we finally obtain that

τ(λ) =

∫
γ ω∫
δ ω
∼ 2
√
−1 (log λ− log 16)

−2π
=

log λ− log 16

π
√
−1

,

as λ→ 0. This finishes the proof of Proposition 4.4.1.

Combining Proposition 4.4.1 and (2.5), we can get the following two-term asymptotic
expansion for logC−1

λ .

Lemma 4.4.1. Let Cλ be defined as in (2.3). Then as λ→ 0, it holds that

logC−1
λ ∼ − log (− log |λ|+ log 16) + C ′.

An alternative proof of Theorem 4.4.1

A two-term restricted version of Theorem 1.2.4 is stated as follows.

Theorem 4.4.1. Under the same assumptions as in Theorem 1.2.4, as λ → 0, it follows
that

L
(1)
λ,z =

√
−1dλ ∧ dλ̄

|λ|2(− log |λ|2)2

(
1 + 2

log 16

log |λ|
+ O

(
1

(log |λ|)2

))
.
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An alternative proof of Theorem 4.4.1. By (2.4) and Lemma 4.4.1, we first make the fol-
lowing computations on the horizontal curvature form of the Bergman kernel as λ→ 0.

∂λ∂̄λ log kλ(·) = ∂λ∂̄λ logC−1
λ ∼ −∂λ∂̄λ log (− log |λ|+ log 16)

= −∂λ
(

∂̄λ(log |λ|)
log |λ| − log 16

)
= −−∂λ(log |λ| − log 16) ∧ ∂̄λ(log |λ|)

(log |λ| − log 16)2

=
∂λ(log |λ|) ∧ ∂̄λ(log |λ|)

(log |λ| − log 16)2
=

dλ ∧ dλ̄
4|λ|2(log |λ| − log 16)2

.

By the leading term asymptotic expansion for the above left hand side, in order to
determine the second term we consider a new difference function h, namely

h(λ) :=
1

4|λ|2(log |λ| − log 16)2
− 1

4|λ|2(log |λ|)2
.

Making further computations

∂(log |λ|) =
1

2
∂(log(λλ̄)) =

λ̄dλ

2|λ|2
=
dλ

2λ
and ∂̄(log |λ|) =

dλ̄

2λ̄
,

we will know that

h(λ) =
(log |λ|)2 − (log |λ| − log 16)2

4|λ|2(log |λ| − log 16)2(log |λ|)2

=
2 log |λ| · log 16− (log 16)2

4|λ|2(log |λ| − log 16)2(log |λ|)2
=

2 log |λ| · log 16− (log 16)2

4|λ|2(log |λ| − log 16)2(log |λ|)2

∼ 2(log 16)

4|λ|2(log |λ| − log 16)2(log |λ|)
∼ (log 16)

2|λ|2(log |λ|)3
,

which implies that

l
(1)
λ,z ∼

1

4|λ|2(log |λ|)2
+ h(λ) ∼ 1

4|λ|2(log |λ|)2
+

(log 16)

2|λ|2(log |λ|)3
,

as λ→ 0. Thus, the proof is completed.

We finally remark that the importance of this alternative approach is that it works for
higher genus cases, where properties of special elliptic functions could not be applied to.

4.5 Another nodal family of degenerate elliptic curves

For another nodal-type degenerate family of elliptic curves X
(2)
λ , we study its Bergman

kernel by analyzing the Taylor expansions of Abelian differentials.
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Theorem 4.5.1. In the local coordinate z on X
(2)
λ , write its Bergman kernel as B

(2)
λ =

k
(2)
λ (z)dz ∧ dz̄, for λ ∈ C \ {0, 1}. Then as λ→ 0, it holds that

L
(2)
λ,z ∼

√
−1dλ ∧ dλ̄

|λ|2(− log |λ|2)2
.

Proof of Theorem 4.5.1. By the construction of γ, we know as λ→ 0 that∫
γ
ω =− 2

∫ 1

√
λ
ω = −2

∫ 1

√
λ

dx√
(x− 1)(x2 − λ)

∼− 2

∫ 1

√
λ

dx

x
√
x− 1

= −2 · 2
√
−1 log

(√
1

x
+

√
1

x
− 1

)∣∣∣∣∣
1

√
λ

=4
√
−1 log

(√
1√
λ

+

√
1√
λ
− 1

)
∼ 4
√
−1 log

(√
1√
λ

)
= −
√
−1 log λ.

Since δ is a big circle containing
√
λ and −

√
λ, on X

(2)
λ it is equivalent to say that −δ

contains only 1 and ∞. We then make changes of variables by setting s = 1
x , t = 1

λ and

denote the corresponding big circle by −δ̃ which contains 1 and 0. Then, it follows that

∫
δ
ω =

∫
δ

dx√
(x− 1)(x2 − λ)

= −
∫
−δ̃

−s−2ds√
(1
s − 1)( 1

s2
− 1

t )

=

∫
−δ̃

ds√
s(s− 1)( s

2

t − 1)
=

∫
−δ̃

√
t · ds√

s(s− 1)(s2 − t)
∼
∫
−δ̃

√
t · ds
s
√
−t

= 2π,

as λ→ 0 (t→∞). Therefore, we know that∫
γ ω∫
δ̃ ω
∼ −
√
−1 log λ

2π
.

By (2.4) and (2.5) we have finished the proof of Theorem 4.5.1.

4.6 Two families of degenerate elliptic curves with cusps

For the cusp degeneration case, it seems that the type of singularities determines various

boundary behaviors: either trivial with a constant period or reducible to the case of X
(1)
λ .

Theorem 4.6.1. In the local coordinate z on X
(3)
λ , write its Bergman kernel as B

(3)
λ =

k
(3)
λ (z)dz ∧ dz̄, for λ ∈ C \ {0}. Then as λ→ 0, it holds that L

(3)
λ,z ≡ 0.
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Proof of Theorem 4.6.1. We will show that the period of the elliptic curve X
(3)
λ is constant,

for all λ ∈ C \ {0}. For Yλ, the two cycles can be chosen such that δ is a big circle centered
at the origin which contains −

√
λ and 0, and γ satisfies that∫

γ
ω = −2

∫ √λ
0

ω = −2

∫ √λ
0

dx√
x(x−

√
λ)(x+

√
λ)
.

Since ω is holomorphic along δ, by Cauchy Integral Theorem, we can choose a path
which is homologous to δ and consists of two circles c1 and c2 (of radius r, centered at
−
√
λ and 0, respectively) and two straight lines l1 and l2 connecting almost −

√
λ+ r and

−r. Near the point −
√
λ, using polar coordinate we can denote x by −

√
λ + re

√
−1θ,

θ ∈ [β, 2π − β], for small β > 0. Then,∫
c1

ω =

∫ 2π−β

β

re
√
−1θ
√
−1dθ√

(−
√
λ+ εe

√
−1θ − 1)(−

√
λ+ εe

√
−1θ −

√
λ)re

√
−1θ

=

∫ 2π−β

β

√
re
√
−1θ
√
−1dθ√

(−
√
λ+ re

√
−1θ − 1)(−

√
λ+ re

√
−1θ −

√
λ)
→ 0,

as r → 0. Similarly, we can get
∫
c2
ω → 0. Since r is arbitrary and ω changes the sign when

switching between l1 and l2, we know that∫
δ
ω =

∫
c1

ω +

∫
c2

ω +

∫
l1

ω +

∫
l2

ω

=

∫
l1

ω +

∫
l2

ω = −2

∫ 0

−
√
λ
ω = −2

∫ 0

−
√
λ

dx√
x(x2 − λ)

.

After making changes of variables by setting s = −x, we know that∫
δ
ω = −2

∫ 0

√
λ

−ds√
−s(s2 − λ)

= −2

∫ 0

√
λ

√
−1ds√

s(s2 − λ)
= 2

∫ √λ
0

√
−1ds√

s(s2 − λ)
,

which implies ∫
γ ω∫
δ ω

=
−2
∫ √λ

0 ω

2
√
−1
∫ √λ

0 ω
≡
√
−1.

Although their ratio is constant, we still can determine the asymptotics of the numerator
and the denominator, first up to an multiplier and then with a precise constant. Take

∫
γ ω

for example, we observe that x+
√
λ is bounded on γ by

√
λ and 2

√
λ which have the same

order of growth. The antiderivative of the remaining term can be written down, namely∫ √λ
0

dx√
x(x−

√
λ)

= log

(
2

√
x(x−

√
λ) + 2x−

√
λ

)∣∣∣∣
√
λ

0

= π
√
−1.
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Therefore, we conclude that both the numerator and the denominator have the order

of growth O
(
λ−

1
4

)
. Now, we will determine precisely the numerator and the denominator

as below and see their relations with a Legendre family.

∫
δ
ω = −2

∫ 0

−
√
λ

dx√
x(x−

√
λ)(x+

√
λ)

q=x+
√
λ

======= −2

∫ √λ
0

dq√
q(q −

√
λ)(q − 2

√
λ)

q=v·
√
λ

====== −2

∫ 1

0

√
λ · dv√

v ·
√
λ · (v ·

√
λ−
√
λ) · (v ·

√
λ− 2

√
λ)

=
−2√√
λ

∫ 1

0

dv√
v(v − 1)(v − 2)

:=
α√√
λ
.

We know that this constant α is one period (the denominator part) of a Legendre family

of elliptic curve X2 :=
{
y2 = x(x− 1)(x− 2)

}
. Also, we know that

∣∣∫
δ ω
∣∣2 = |α|2 · |λ|0.5 .

Finally by (2.5) and (2.4), for all λ, it follows that

∂2(log kλ(·))
∂λ∂λ̄

=
∂2
{

Im
(√
−1
)
· |α|2 · |λ|0.5

}−1

∂λ∂λ̄
≡ 0.

For the elliptic curve X
(4)
λ with a non-constant period, we estimate the numerator and

the denominator, obtained from two cycle δ containing 0 and λ2, and γ containing λ2 and
λ, respectively.

Theorem 4.6.2. In the local coordinate z on X
(4)
λ , write its Bergman kernel as B

(4)
λ =

k
(4)
λ (z)dz ∧ dz̄, for λ ∈ C \ {0}. Then, as λ→ 0, it holds that

L
(4)
λ,z ∼

√
−1dλ ∧ dλ̄

|λ|2(− log |λ|2)2
.

Proof of Theorem 4.6.2. Firstly, as λ→ 0, it follows that∫
δ
ω = −2

∫ λ2

0

dx√
x(x− λ)(x− λ2)

q=x−λ2
=======

∫ 0

−λ2

−2dq√
q(q + λ2)(q + λ2 − λ)

q=−λ2·v
======= −2

∫ 0

1

−λ2dv√
−λ2v(−λ2v + λ2)(−λ2v + λ2 − λ)

=
−2

−λ
√
−1

∫ 1

0

dv√
v(v − 1)(v − 1 + 1

λ)
∼ 1

−λ
√
−1

∫
γ̃

dv

v
√
−1 + 1

λ

=
1

−λ
√
−1

2π
√
−1√

−1 + 1
λ

∼ 2π

−
√
λ
.
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Secondly, it holds that

− 2

∫ λ

0

dx√
x(x− λ)(x− λ2)

q=x−λ
====== −2

∫ 0

−λ

dq√
q(q + λ)(q + λ− λ2)

q=−λ·v
====== −2

∫ 0

1

−λdv√
−λv · (−λ)(v − 1) · (−λ)(v − 1 + λ)

= − −2√
−λ

∫ 1

0

dv√
v(v − 1)(v − 1 + λ)

u=1−v
======

2√
−λ

∫ 0

1

−du√
−u(−u+ 1)(−u+ λ)

=
2

−
√
λ

∫ 1

0

du√
u(u− 1)(u− λ)

u= 1
s====

t= 1
λ

2

−
√
λ

∫ 1

∞

−s−2ds√
1
s (1
s − 1)(1

s −
1
t )

=
2

λ

∫ ∞
1

ds√
s(s− 1)(s− t)

∼ 2

λ

∫ ∞
1

ds

s
√
s− t

=
4
√
−1

λ
√
t

log

(√
t

x
+

√
t

x
− 1

)∣∣∣∣∣
∞

1

=
4
√
−1√
λ

(
log
√
−1− log

(√
t+
√
t− 1

))
∼ 2
√
−1 log λ√
λ

,

as λ→ 0, and therefore we know that∫
γ
ω = −2

∫ λ

0

dx√
x(x− λ)(x− λ2)

+ 2

∫ λ2

0

dx√
x(x− λ)(x− λ2)

∼ 2
√
−1 log λ√
λ

.

Finally, τ ∼ log λ√
−1π

> 0 and Im τ ∼ − log |λ|
π . By (2.5) it follows that,

Cλ ∼
−4π

|λ|
· log |λ|,

as λ→ 0. By (2.4), we know that hyperbolic growth appears again for L
(4)
λ .
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Chapter 5

Bergman kernel on degenerate
hyperelliptic curves

Near degenerate boundaries with nodes or cusps, we estimate asymptotic behaviors of
the relative Bergman kernel metrics for a holomorphic family of hyperelliptic curves, with
applications to their Jacobians. Specifically, the curvature form tends near a node to an
incomplete metric on the parameter space, but tends near a certain cusp to 0. These results
are different from the elliptic curve case and the type of singularities determines various
boundary asymptotics. For the genus-two case particularly, asymptotic formulas with pre-
cise coefficients involving the complex structure information are written down explicitly.

5.1 Non-separating node: genus-two curves with precise co-
efficients

We start with the following two lemmas by analyzing the asymptotics of the matrices A

and B on X
(5)
λ , respectively.

Lemma 5.1.1. Under the same assumptions as in Theorem 1.2.5, as λ→ 0, it holds that

A(λ) ∼

(
−2π√
ab

0

0 C̃ab

)
,

where C̃ab := −2
∫ a

1
dx√

(x−1)(x−a)(x−b)
.

Proof of Lemma 5.1.1. We estimate all the four elements one by one. Firstly, a11 =
∫
δ1
ω1,

where δ1 only contains 0 and λ. Changing variables by setting t = 1
λ(→∞) and s = 1

x . As
λ→ 0, we will get that
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a11

s= 1
x====

t= 1
λ

∫
δ̃1

−s−2ds√
1
s (1
s −

1
t )(

1
s − 1)(1

s − a)(1
s − b)

= −
∫
−δ̃1

−
√
s
√
tds√

(s− 1)(s− 1
a)(s− 1

b )(s− t)
√
ab

=

∫
−δ̃1

√
sds√

−ab(s− 1)(s− 1
a)(s− 1

b )

(
1 +

s

2t
+ O(

s2

t2
)

)

=

∫
big

ds

−s
√
−ab

(
1 +

s

2t
+ O(

s2

t2
)

)(
1 +

1

2s
+ O(

1

s2
)

)(
1 +

1

2as
+ O(

1

s2
)

)(
1 +

1

2bs
+ O(

1

s2
)

)
=

∫
big

ds

−s
√
−ab

(
1 +

s

2t
+ O(

s2

t2
)

)(
1 + O(

1

s
)

)
=

1

−
√
−ab

∫
big

(
1 + O(

1

t
)

)
ds

s
=

2π

−
√
ab

(
1 + O(

1

t
)

)
∼ 2π

−
√
ab
.

where δ̃1 contains {t,∞}, −δ̃1 contains {0, 1, 1
a ,

1
b} and big is a big circle containing {0, 1, 1

a ,
1
b}.

Here 1 < |s| < |t|. Secondly, we look at a21 =
∫
δ1
ω2 and similarly it holds that

a21 =

∫
big

ds

−s2
√
−ab

(
1 +

s

2t
+ O(

s2

t2
)

)(
1 +

1

2s
+ O(

1

s2
)

)(
1 +

1

2as
+ O(

1

s2
)

)(
1 +

1

2bs
+ O(

1

s2
)

)
=

∫
big

ds

−s2
√
−ab

(
1 +

s

2t
+ O(

s2

t2
)

)(
1 + O(

1

s
)

)
=

1

−
√
−ab

∫
big

(
1

2t
+ O(

1

t2
)

)
ds

s
=

2π

−
√
ab

(
1

2t
+ O(

1

t2
)

)
t→∞−−−→ 0.

Thirdly, let δ2 contain {0, λ, 1, a}. Then, it holds that

a12 =

∫
δ2

dx√
x(x− 1)(x− a)(x− b)

· 1√
x

(
1 +

λ

2x
+ O(

λ2

x2
)

)
=

∫
δ2

dx

x
√

(x− 1)(x− a)(x− b)

(
1 +

λ

2x
+ O(

λ2

x2
)

)
∼
∫
δ2

dx

x
√

(x− 1)(x− a)(x− b)

=

∫
δ2

dx

x
√

(x− b)
· 1√

x

(
1 +

1

2x
+ O(

1

x2
)

)
· 1√

x

(
1 +

a

2x
+ O(

1

x2
)

)
=

∫
δ2

dx

x2
√

(x− b)
·
(

1 + O(
1

x
)

)
,

where |a| < |x| < |b|. Since δ2 doesn’t contain b, 1√
x−b is holomorphic and therefore bounded

on δ2 by C ∈ C. Then, it holds that

a12 ∼ C
∫
δ2

dx

x2
·
(

1 + O(
1

x
)

)
= 0.
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Lastly, we deal with a22 =
∫
δ2
ω2. Similarly, it holds that

a22 =

∫
δ2

xdx√
x(x− 1)(x− a)(x− b)

· 1√
x

(
1 +

λ

2x
+ O(

λ2

x2
)

)
=

∫
δ2

dx√
(x− 1)(x− a)(x− b)

(
1 +

λ

2x
+ O(

λ2

x2
)

)
∼
∫
δ2

dx√
(x− 1)(x− a)(x− b)

:= C̃a,b,

where δ2 contain {1, a}. Thus, we finish the proof of Lemma 5.1.1.

Lemma 5.1.2. Under the same assumptions as in Theorem 1.2.5, as λ→ 0, it holds that

B(λ) ∼

( −2 log λ√
−ab C̃ ′ab
−2√
−ab C̃ ′′ab

)
,

where C̃ ′ab := −2
∫ b
a

dx

x
√

(x−1)(x−a)(x−b)
and C̃ ′′ab := −2

∫ b
a

dx√
(x−1)(x−a)(x−b)

.

Proof of Lemma 5.1.2 . Again, all the four elements are estimated one by one. Firstly as
t→ 0, we make the following computations.∫ t

1

ds

s
√
s− t

=
2√
t

√
−1 log

(√
t+
√
t− 1

)∣∣∣∣t
1

∼
√
−1√
t

log t. (5.1)

∫ t

1

ds

s2
√
s− t

=

√
s− t
ts

∣∣∣∣t
1

+
1

2t

∫ t

1

ds

s
√
s− t

=
−
√

1− t
t

+

√
−1

2t
√
t

log t ∼ −
√
−1√
t
. (5.2)

In particular, (5.1) yields the boundedness of∫ t

1

√
t

s
√
s− t

·O(
1

s
)ds.

Then, for b11 it follows that

b11 =

∫
γ1

ω1 = −2

∫ 1

λ

dx√
x(x− λ)(x− 1)(x− a)(x− b)

=− 2

∫ 1

t

−
√
s
√
tds√

(s− 1)(s− 1
a)(s− 1

b )(s− t)
√
ab

=− 2

∫ t

1

√
s
√
tds

√
s− t

√
ab

1

s
√
s

(
1 +

1

2s
+ O(

1

s2
)

)(
1 +

1

2as
+ O(

1

s2
)

)(
1 +

1

2bs
+ O(

1

s2
)

)
=− 2

∫ t

1

√
s
√
tds

√
s− t

√
ab

1

s
√
s

(
1 + O(

1

s
)

)
= − 2√

ab

∫ t

1

√
tds

s
√
s− t

(
1 + O(

1

s
)

)
∼− 2√

ab

∫ t

1

√
tds

s
√
s− t

∼ −2 log λ√
−ab

,
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where 1 < |s| < |t|. Secondly, by a similar argument(see also [CMSP, D3]), we can get that

b21 =

∫
γ1

ω2 = −2

∫ 1

λ

xdx√
x(x− λ)(x− 1)(x− a)(x− b)

=− 2

∫ 1

t

−
√
s
√
tds

s
√

(s− 1)(s− 1
a)(s− 1

b )(s− t)
√
ab

=− 2

∫ t

1

√
tds√

s(s− t)
√
ab

1

s
√
s

(
1 + O(

1

s
)

)(
1 +

1

2as
+ O(

1

s2
)

)(
1 +

1

2bs
+ O(

1

s2
)

)
=− 2

∫ t

1

√
tds

s2
√
s− t

√
ab

(
1 + O(

1

s
)

)
∼ − 2

√
t√
ab

∫ t

1

ds

s2
√
s− t

∼ −2√
−ab

.

Thirdly, it follows that

b12 =

∫
γ2

ω1 =

∫
γ2

dx√
x(x− λ)(x− 1)(x− a)(x− b)

=

∫
γ2

dx√
x(x− 1)(x− a)(x− b)

· 1√
x

(
1 +

λ

2x
+ O(

λ2

x2
)

)
∼
∫
γ2

dx

x
√

(x− 1)(x− a)(x− b)
= −2

∫ b

a

dx

x
√

(x− 1)(x− a)(x− b)
=: C̃ ′ab,

where |a| < |x| < |b|. Lastly, it holds that,

b22 =

∫
γ2

ω1 =

∫
γ2

xdx√
x(x− λ)(x− 1)(x− a)(x− b)

=

∫
γ2

xdx√
x(x− 1)(x− a)(x− b)

· 1√
x

(
1 +

λ

2x
+ O(

λ2

x2
)

)
∼
∫
γ2

dx√
(x− 1)(x− a)(x− b)

= −2

∫ b

a

dx√
(x− 1)(x− a)(x− b)

=: C̃ ′′ab,

and this finishes the proof of Lemma 5.1.2.

Combining Lemmas 5.1.1 and 5.1.2, we will prove the following lemma, which leads to
the asymptotics for the Bergman kernels by combining (2.8).

Lemma 5.1.3. Let Z
(5)
λ denote the period matrix of X

(5)
λ . Then, as λ→ 0, it holds that

(ImZ
(5)
λ )−1 ∼ π

−c1 log |λ| − c2
2

(
c1 −c2

−c2 − log |λ|

)
.

Proof of Lemma 5.1.3. By Lemma 5.1.1, we know that

A−1 ∼

(
−2π√
ab

0

0 C̃ab

)−1

=

(
−
√
ab

2π 0

0 C̃−1
ab

)
,
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as λ→ 0. Therefore, it follows that

Z = A−1B ∼

(
−
√
ab

2π 0

0 C̃−1
ab

)
·

( −2 log λ√
−ab C̃ ′ab
−2√
−ab C̃ ′′ab

)
=

 −
√
−1
π log λ

−C̃′ab
√
ab

2π
−2

C̃ab
√
−ab

C̃′′ab
C̃ab

 .

Since Z is symmetric, this implies that

√
−1abC̃abC̃

′
ab = 4π,

namely

√
−1ab

∫ a

1

dx√
(x− 1)(x− a)(x− b)

·
∫ b

a

dx

x
√

(x− 1)(x− a)(x− b)
= π.

Moreover, as λ→ 0 we know that,

ImZ ∼

 − log |λ|
π

−1
2π Im

{
C̃ ′ab
√
ab
}

−1
2π Im

{
C̃ ′ab
√
ab
}

Im
{
C̃′′ab
C̃ab

}  =:
1

π

(
− log |λ| c2

c2 c1

)
,

which proves Lemma 5.1.3. Here

c2 =
−1

2
Im
{
C̃ ′ab
√
ab
}

= Im

{∫ b

a

√
abdx

x
√

(x− 1)(x− a)(x− b)

}
∈ R,

c1 = π Im

{
C̃ ′′ab
C̃ab

}
= π Im


∫ b
a

dx√
(x−1)(x−a)(x−b)∫ a

1
dx√

(x−1)(x−a)(x−b)

 = π Im

{
τ

(
1− b
1− a

)}
> 0, (5.3)

and τ(·) is the inverse of the elliptic modular lambda function. We could also derive that
c1 > 0, due to the fact that ImZ positive definite. Also, it holds that −c1 log |λ| − c2

2 =
| − c1 log |λ| − c2

2| > 0.

Proof of Theorem 1.2.5. By (2.8), we know that near the node (0, 0), the coefficient of the
Bergman kernel in the local coordinate z =

√
x is given by

kλ(z) =

2∑
i,j=1

(Im−1 Z)ij
4z2(2−i) · z2(2−j)

|(z2 − 1)(z2 − a)(z2 − b)(z2 − λ)|

=4 · (Im−1 Z)11 + (Im−1 Z)12z
2 + (Im−1 Z)21 · z2 + (Im−1 Z)22|z|4

|(z2 − 1)(z2 − a)(z2 − b)(z2 − λ)|

∼4 · c1 − c2z
2 − c2 · z2 − log |λ| · |z|4

|(z2 − 1)(z2 − a)(z2 − b)(z2 − λ)|
· π

−c1 log |λ| − c2
2

,
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as λ→ 0. It is not hard to see that the leading term asymptotic expansion of kλ(z) is

4π|z|2

c1 |(z2 − 1)(z2 − a)(z2 − b)|
.

Subtracting the leading term from kλ(z), we determine the two-term asymptotic expansion
as follows. As λ→ 0, it holds that

kλ(z) ∼

{
|z|2

c1
+

∣∣∣∣1− c2

c1
z2

∣∣∣∣2 · 1

− log |λ| · |z|2

}
· 4π

|(z2 − 1)(z2 − a)(z2 − b)|
.

Taking the logarithm, as λ→ 0, we will know that

log kλ(z) ∼ log
4π · |z|2

|(z2 − 1)(z2 − a)(z2 − b)|
+ log

{
1

c1
+

∣∣∣∣ 1

z2
− c2

c1

∣∣∣∣2 · 1

− log |λ|

}

= log
4π · |z|2

c1 |(z2 − 1)(z2 − a)(z2 − b)|
+

∣∣∣∣ 1

z2
− c2

c1

∣∣∣∣2 · c1

− log |λ|
+ O

(
1

(log |λ|)2

)
.

Notice that the coefficients in front of (− log |λ|)−1 is strictly positive, for small |z| 6= 0,

and log k
(5)
λ (z) has Lelong number zero at the origin. Moreover, we further obtain the

curvature form of the relative Bergman kernel metric on X
(5)
λ .

Theorem 5.1.1. Under the same assumptions as in Theorem 1.2.5, as λ → 0, it follows
that

∂∂̄ log k
(5)
λ (z) ∼

∣∣∣∣ 1

z2
− c2

c1

∣∣∣∣2 c1 · dλ ∧ dλ̄
2|λ|2(− log |λ|)3

+
(c2 − c1z

−2) · z̄−3dλ ∧ dz̄
λ(− log |λ|)2

+
(c2 − c1z̄

−2) · z−3dz ∧ dλ̄
λ̄(− log |λ|)2

+
4c1dz ∧ dz̄
|z|6(− log |λ|)

.

5.2 Non-separating node: hyperelliptic curves, general curves
and Jacobians

The results in Section 5.1 can be generalized1 to a family of hyperelliptic curves X
(10)
λ :={

y2 = x(x− λ)p(x)
}

, with a non-separating nodal degeneration as λ → 0, where p(x) is a
polynomial of degree at least 3 with roots aj of distinct absolute values.

Theorem 5.2.1. In the local coordinate z =
√
x on X

(10)
λ , write its Bergman kernel as

B
(10)
λ = k

(10)
λ (z)dz ∧ dz̄, λ ∈ C \ {0,∪jaj}. Then, as λ→ 0 for |z| 6= 0 small, it holds that

L
(10)
λ,z ∼

C(z) · dλ ∧ dλ̄
|λ|2(− log |λ|)3

,

where C(z) > 0 is a function of z depending on p(x).

1After a preliminary version of this work was presented as TSIMF in January 2016, the author was kindly
informed by Prof. Z. Huang about the paper [HJ].
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AND JACOBIANS

After analyzing the asymptotics of the matrices A and B respectively, we can get the
asymptotics of the period matrix.

Lemma 5.2.1. For X
(10)
λ , as λ→ 0, it holds that

A(λ) ∼


−2π√
a1a2...

0 . . . 0

0 α22 . . . α2,g
...

...
. . .

...
0 αg,2 . . . αg,g

 and B(λ) ∼


−2 log λ√
−a1a2...

β12 . . . β1,g

β21 β22 . . . β2,g
...

...
. . .

...
βg,1 βg,2 . . . βg,g

 ,

where αij and βij are constants depending on p(x).

Then, this yields the following lemma on the asymptotics of the period matrix.

Lemma 5.2.2. Let Z
(10)
λ denote the period matrix of X

(10)
λ . Then as λ→ 0, it holds that

ImZ(λ) ∼


− log |λ|

π C12 . . . C1g

C21 C22 . . . C2g
...

...
. . .

...
Cg,1 Cg,2 . . . Cg,g

 ,

where Ci,j are real-valued constants depending on p(x).

Proof of Theorem 5.2.1. By Lemma 5.2.1, we know that

A−1 ∼


√
aaa2...
−2π 0 . . . 0

0 α̃22 . . . α̃2,g
...

...
. . .

...
0 α̃g,2 . . . α̃g,g

 ,

as λ→ 0. Therefore, it follows that

Z = A−1B ∼


−
√
−1 log λ
π β̃12 . . . β̃1,g

β̃21 β̃22 . . . β̃2,g
...

...
. . .

...

β̃g,1 β̃g,2 . . . β̃g,g

 ,

where β̃i,j = β̃j,i are constants for all (i, j) 6= (1, 1), since Z is symmetric. Also, we have

(ImZ)−1 ∼


π

− log |λ|
C̃12
− log |λ| . . .

C̃1g

− log |λ|
C̃21
− log |λ| C̃22 . . . C̃2,g

...
...

. . .
...

C̃g1
− log |λ| C̃g,2 . . . C̃g,g

 ,
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where Cij = Cji and Ckg = Cgk(2 ≤ i, j, k ≤ g) are real numbers. We know that the
coefficient of the Bergman kernel in the local coordinate z =

√
x is given by

kλ(z) =

g∑
i,j=1

(Im−1 Z)ij
4z2(i−1) · z2(j−1)

|(z2 − λ) · p(z2)|

=

4

{
g∑

i,j=2
C̃ijz

2(i−1)z2(j−1) +

g∑
i=2

C̃1i(z2(g−i)+z2(g−j))+π

− log |λ|

}
|(z2 − λ) · p(z2)|

+ O

(
1

(log |λ|)2

)
.

As λ→ 0, it follows that

log kλ(z) = log

4
g∑

i,j=2
C̃ijz

2(i−1)z2(j−1)

|(z2 − λ) · p(z2)|
+

π + 2 Re
{ g∑
i=2

C̃1iz
2(g−i)

}
− log |λ| ·

g∑
i,j=2

C̃ijz2(i−1)z2(j−1)

+ O

(
1

(log |λ|)2

)
,

for 0 6= |z| is small, which means that log kλ(z) = C + O( 1
log |λ|).

Remark We remark that the Bergman kernel on the Jacobian of X
(10)
λ (of genus g) can be

written as (det ImZ(λ))−1dW ∧ dW =: Kλ(W )dW ∧ dW , in the local coordinate W ∈ Cg.
Thus, it holds that logKλ(W ) ∼ − log(− log |λ|), as λ→ 0, where det ImZ(λ)→ +∞. We

observe that all aj , which determine the complex structure of X
(10)
λ , play no role in the

final result for the Jacobian. Therefore, as λ→ 0 for |W | 6= 0 small, it holds that

∂λ∂̄λ logKλ(W ) ∼ dλ ∧ dλ̄
|λ|2(− log |λ|2)2

. (5.4)

Without caring precise coefficients, the leading term in our Theorem 5.1.1 can be in-
terpreted as special cases of Proposition 3.2 (ii) in [HJ] for m = 1. One can also make
changes of variables from our family to a pinching-coordinate family. Comparing the re-
sults of Habermann- Jost [HJ] and ours, there seems to be no essential difference for the
Bergman kernels near non-separating nodes on general degenerate curves and hyperelliptic
degenerate curves. However, a big difference exists in degeneration between genus-one and
higher-genus curves, probably due to the Uniformization Theorem.

5.3 Cusp I: genus-two curves with precise coefficients

For a family of genus two curves X
(8)
λ :=

{
y2 = x(x2 − λ)(x− a)(x− b)

}
degenerating to a

singular one X
(8)
0 (≡ X(7)

0 ) with a cusp as λ→ 0, where a, b, λ are distinct complex numbers
in C \ {0} satisfying |a| < |b|, we determine the precise coefficients as follows.
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Theorem 5.3.1. In the local coordinate z =
√
x on X

(8)
λ , write its Bergman kernel as

B
(8)
λ = k

(8)
λ (z)dz ∧ dz̄. Then, as λ→ 0 for small |z| 6= 0, it follows that

log kλ(z) = log
4
(
c+ |z|4

)
c|z4(z2 − a)(z2 − b)|

−
(z2 + z2) Im

{
c′ · λ

1
4

}
c+ |z|4

+ O
(
λ

1
2

)
,

where c := Im
{
τ
(
b
a

)}
and c′ :=

√
ab

∫ b
a

dx

x
√
x(x−a)(x−b)

−
∫ 1
0

du√
u(u−1)(u−2)

.

To prove the above theorem, we need to prove the following Lemma 5.3.1 and Lemma

5.3.2, by analyzing asymptotics of two matrices A
(8)
λ :=

(∫
δj
ωi

)
ij

and B
(8)
λ :=

(∫
γj
ωi

)
ij

(where δj and ωi are as above), respectively.

Lemma 5.3.1. Under the same assumptions as in Theorem 5.3.1, as λ→ 0, it holds that

A
(8)
λ ∼


C(1,2)

−
√
ab
√
λ

0

C′
(1,2)

√√
λ

−
√
ab

Ca,b

 ,

where Ca,b :=
∫ a

0
−2dx√

x(x−a)(x−b)
, C(1,2) :=

∫ 1
0

−2du√
u(u−1)(u−2)

and C ′(1,2) :=
∫ 1

0
−2(u−1)du√
u(u−1)(u−2)

.

Proof of Lemma 5.3.1. We estimate all the four elements one by one. Firstly, let δ1 contain
only −

√
λ and 0. By Cauchy Integral Theorem, we can get that

a11 =

∫
δ1

ω1 = −2

∫ 0

−
√
λ

dx√
x(x−

√
λ)(x+

√
λ)(x− a)(x− b)

,

where x−
√
λ is bounded by −

√
λ and −2

√
λ. Then, there exists a real number C ∈ [ 1√

2
, 1]

such that

a11 =
−2C√
−
√
λ

∫ 0

−
√
λ

dx√
x(x+

√
λ)(x− a)(x− b)

=
C√
−
√
λ

∫
δ̃1

dx√
x(x+

√
λ)

1√
−a

(
1 +

x

2a
+ O(

x2

a2
)

)
1√
−b

(
1 +

x

2b
+ O(

x2

b2
)

)

=
C

−
√
−ab
√
λ

∫
δ̃1

dx√
x(x+

√
λ)

(1 + O(x))

=
C

−
√
−ab
√
λ

∫
δ̃1

dx√
x

1√
x

(
1 +
−
√
λ

2x
+ O(

λ

x2
)

)
(1 + O(x))

∼ C

−
√
−ab
√
λ

∫
δ̃1

dx

x
(1 + O(x)) =

2πC

−
√
ab
√
λ
,
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where δ̃1 contains only −
√
λ and 0 which satisfies |λ| < |x| < |a|. Notice that the Taylor

expansions are different since a and b are not contained in δ1, while −
√
λ and 0 are.

Furthermore, we will determine this constant C precisely by using Taylor expansions and
elliptic functions.

a11 = −2

∫ 0

−
√
λ
ω1 = −2

∫ 0

−
√
λ

dx√
x(x−

√
λ)(x+

√
λ)(x− a)(x− b)

= −2

∫ 0

−
√
λ

dx√
x(x−

√
λ)(x+

√
λ)

1√
−a

1√
−b

(
1 +

x

2a
+ O(x2)

)(
1 +

x

2b
+ O(x2)

)

=
−2

−
√
ab

∫ 0

−
√
λ

dx√
x(x−

√
λ)(x+

√
λ)

(1 + O(x))

s=x+
√
λ

=======
−2

−
√
ab

∫ √λ
0

ds√
s(s−

√
λ)(s− 2

√
λ)

(
1 + O(s−

√
λ)
)

s=u·
√
λ

======
−2

−
√
ab

∫ 1

0

√
λ · du√

u ·
√
λ · (u ·

√
λ−
√
λ) · (u ·

√
λ− 2

√
λ)

(1 + O(λ(u− 1)))

=
−2

−
√
ab
√
λ

∫ 1

0

du√
u(u− 1)(u− 2)

(1 + O (λ(u− 1)))

∼ −2

−
√
ab
√
λ

∫ 1

0

du√
u(u− 1)(u− 2)

:=
C(1,2)

−
√
ab
√
λ
.

Secondly, we look at a21 =
∫
δ1
ω2 and similarly it holds that

a21 =
−2

−
√
ab

∫ 0

−
√
λ

xdx√
x(x−

√
λ)(x+

√
λ)

(1 + O(x))

s=x+
√
λ

=======
−2

−
√
ab

∫ √λ
0

(s−
√
λ) · ds√

s(s−
√
λ)(s− 2

√
λ)

(
1 + O(s−

√
λ)
)

s=u·
√
λ

======
−2

−
√
ab

∫ 1

0

(u− 1)
√
λ ·
√
λdu ·

(
1 + O((u− 1) ·

√
λ)
)

√
u ·
√
λ · (u ·

√
λ−
√
λ) · (u ·

√
λ− 2

√
λ)

=
−2
√√

λ

−
√
ab

∫ 1

0

(u− 1)du√
u(u− 1)(u− 2)

(
1 + O((u− 1) ·

√
λ)
)

∼ −2
√√

λ

−
√
ab

∫ 1

0

(u− 1)du√
u(u− 1)(u− 2)

:=
C ′(1,2)

√√
λ

−
√
ab

.
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Thirdly, let δ2 contain only −
√
λ, 0,
√
λ and a. Then, it follows that

a12 =

∫
δ2

dx√
x(x−

√
λ)(x+

√
λ)(x− a)(x− b)

=

∫
δ2

dx√
x(x− b)

1√
x

(
1 +

√
λ

2x
+ O(

λ

x2
)

)
1√
x

(
1 +
−
√
λ

2x
+ O(

λ

x2
)

)
1√
x

(
1 + O(

1

x
)

)

=

∫
δ2

dx

x2
√

(x− b)

(
1 +

√
λ

2x
+ O(

λ

x2
)

)(
1 +
−
√
λ

2x
+ O(

λ

x2
)

)(
1 + O(

1

x
)

)
,

for |a| < |x| < |b|. Since δ2 doesn’t contain b, 1√
(x−b)

is holomorphic and therefore bounded

on δ2 by C ∈ C. Then, a12 is bounded by

C

∫
δ2

dx

x2

(
1 +

√
λ

2x
+ O(

λ

x2
)

)(
1 +
−
√
λ

2x
+ O(

λ

x2
)

)(
1 + O(

1

x
)

)
= 0.

Lastly, we deal with a22 =
∫
δ2
ω2. Similarly, it holds that

a22 =

∫
δ2

xdx√
x(x−

√
λ)(x+

√
λ)(x− a)(x− b)

=

∫
δ2

xdx√
x(x− b)

1√
x

(
1 +

√
λ

2x
+ O(

λ

x2
)

)
1√
x

(
1 +
−
√
λ

2x
+ O(

λ

x2
)

)
1√
x

(
1 + O(

1

x
)

)

=

∫
δ2

dx

x
√

(x− b)

(
1 +

√
λ

2x
+ O(

λ

x2
)

)(
1 +
−
√
λ

2x
+ O(

λ

x2
)

)(
1 + O(

1

x
)

)

= C

∫
δ2

dx

x

(
1 +

√
λ

2x
+ O(

λ

x2
)

)(
1 +
−
√
λ

2x
+ O(

λ

x2
)

)(
1 + O(

1

x
)

)
= 2π

√
−1C.

Also, we could have

a22 =

∫
δ2

xdx√
x(x−

√
λ)(x+

√
λ)(x− a)(x− b)

=

∫
δ2

xdx√
x(x− a)(x− b)

1√
x

(
1 +

√
λ

2x
+ O(

λ

x2
)

)
1√
x

(
1 +
−
√
λ

2x
+ O(

λ

x2
)

)

=

∫
δ2

dx√
x(x− a)(x− b)

(
1 + O(

√
λ

x
)

)
∼
∫
δ2

dx√
x(x− a)(x− b)

:= Ca,b,

where δ2 contains 0 and a. Therefore, we could get the asymptotics of the matrix A
(8)
λ and

finish the proof of Lemma 5.3.1.
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Lemma 5.3.2. Under the same assumptions as in Lemma 5.3.1, as λ→ 0, it holds that

B
(8)
λ ∼

1√
−ab

 C(1,2)√√
λ
, C ′′a,b

√
−ab

−C ′(1,2) ·
√√

λ C ′a,b
√
−ab

 ,

where C ′′a,b := −2
∫ b
a

dx

x
√
x(x−a)(x−b)

and C ′a,b := −2
∫ b
a

dx√
x(x−a)(x−b)

.

Proof of Lemma 5.3.2. Again, we estimate all the four elements one by one. Firstly, let γ1

contain only 0 and
√
λ. By Cauchy Integral Theorem, we can get that

b11 = −2

∫ √λ
0

ω1 = −2

∫ √λ
0

dx√
x(x−

√
λ)(x+

√
λ)(x− a)(x− b)

= −2

∫ √λ
0

dx√
x(x−

√
λ)(x+

√
λ)

1√
−a

1√
−b

(
1 +

x

2a
+ O(x2)

)(
1− x

2b
+ O(x2)

)

=
−2

−
√
ab

∫ √λ
0

dx√
x(x−

√
λ)(x+

√
λ)

(1 + O(x))

s=x−
√
λ

=======
−2

−
√
ab

∫ 0

−
√
λ

ds√
s(s+

√
λ)(s+ 2

√
λ)

(
1 + O(s+

√
λ)
)

s=−u·
√
λ

=======
−2

−
√
ab

∫ 0

1

−
√
λ · du ·

(
1 + O((−u+ 1)

√
λ)
)

√
−u ·

√
λ · (−u ·

√
λ+
√
λ) · (−u ·

√
λ+ 2

√
λ)

=
−2

−
√
ab
√
λ

∫ 0

1

−du
−
√
−u(u− 1)(u− 2)

(
1 + O((−u+ 1) ·

√
λ)
)

∼ −2

−
√
ab
√
λ

∫ 0

1

du√
−u(u− 1)(u− 2)

=
−2

−
√
ab
√
λ

∫ 1

0

√
−1du√

u(u− 1)(u− 2)
:=

C(1,2)√
−ab
√
λ
.

Secondly, substitute ω1 with ω2 and similarly it holds that

b21 =
−2

−
√
ab

∫ √λ
0

xdx√
x(x−

√
λ)(x+

√
λ)

(1 + O(x))

s=x−
√
λ

=======
−2

−
√
ab

∫ 0

−
√
λ

(s+
√
λ)ds√

s(s+
√
λ)(s+ 2

√
λ)

(
1 + O(s+

√
λ)
)

s=−u·
√
λ

=======
−2

−
√
ab

∫ 0

1

(−u+ 1)
√
λ · (−

√
λ)du ·

(
1 + O((−u+ 1) ·

√
λ)
)

√
−u ·

√
λ · (−u ·

√
λ+
√
λ) · (−u ·

√
λ+ 2

√
λ)
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=
−2
√√

λ

−
√
ab

∫ 0

1

(u− 1)du

−
√
−u(u− 1)(u− 2)

(
1 + O((−u+ 1) ·

√
λ)
)

∼ −2
√√

λ

−
√
ab

∫ 1

0

(u− 1)du√
−u(u− 1)(u− 2)

=
−2
√√

λ

−
√
ab

∫ 1

0

−
√
−1(u− 1)du√

u(u− 1)(u− 2)
:=

√
−
√
λC ′(1,2)√
ab

.

Thirdly, let γ2 contain only a and b. Then, it follows that

b12 =

∫
γ2

dx√
x(x−

√
λ)(x+

√
λ)(x− a)(x− b)

=

∫
γ2

dx√
x(x− a)(x− b)

1√
x

(
1 +

√
λ

2x
+ O(

λ

x2
)

)
1√
x

(
1 +
−
√
λ

2x
+ O(

λ

x2
)

)

=

∫
γ2

dx

x
√
x(x− a)(x− b)

(
1 + O(

√
λ

x
)

)
∼
∫
γ2

dx

x
√
x(x− a)(x− b)

:= C ′′a,b.

Lastly, it holds that

b22 =

∫
γ2

xdx√
x(x−

√
λ)(x+

√
λ)(x− a)(x− b)

=

∫
γ2

xdx√
x(x− a)(x− b)

1√
x

(
1 +

√
λ

2x
+ O(

λ

x2
)

)
1√
x

(
1 +
−
√
λ

2x
+ O(

λ

x2
)

)

=

∫
γ2

dx√
x(x− a)(x− b)

(
1 + O(

√
λ

x
)

)
∼
∫
γ2

dx√
x(x− a)(x− b)

:= C ′a,b.

and this finishes the proof of Lemma 5.3.1.

The asymptotic results in Theorem 5.3.1 for the Bergman kernels are obtained by com-
bining (2.9) and the following lemma.

Lemma 5.3.3. Let Z
(8)
λ denote the period matrix of X

(8)
λ . Then, as λ→ 0, it holds that

(ImZ
(8)
λ )−1 ∼ 1

c− Im2
{
c′ · λ

1
4

}
 c − Im

{
c′ · λ

1
4

}
− Im

{
c′ · λ

1
4

}
1

 .
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Proof of Lemma 5.3.3. By Lemma 5.3.1, we know as λ→ 0 that

A−1 ∼

 1

−
√
ab
√
λ
C(1,2), 0

C′
(1,2)

√√
λ

−
√
ab

Ca,b

−1

=
−
√
ab
√√

λ

Ca,bC(1,2)

 Ca,b 0

C′
(1,2)

√√
λ

√
ab

1

−
√
ab
√
λ
C(1,2)

 .

Therefore, it follows that

Z =A−1B

∼−
√
ab
√√

λ

Ca,bC(1,2)

 Ca,b 0

C′
(1,2)

√√
λ

√
ab

1

−
√
ab
√
λ
C(1,2)

 1√
−ab

 C(1,2)

−
√√

λ
C ′′a,b
√
−ab

−C ′(1,2)

√√
λ C ′a,b

√
−ab


=

√
−
√
λ

Ca,bC(1,2)


Ca,bC(1,2)√√

λ
, Ca,bC

′′
a,b

√
−ab

2C′
(1,2)

C(1,2)√
ab

C ′(1,2)C
′′
a,b

√
−
√
λ+

C(1,2)C
′
a,b√

−
√
λ


∼
√
−
√
λ

Ca,bC(1,2)


Ca,bC(1,2)√√

λ
, Ca,bC

′′
a,b

√
−ab

2C′
(1,2)

C(1,2)√
ab

C(1,2)C
′
a,b√

−
√
λ

 =

 √
−1

−C′′a,b
√
ab
√
λ

C(1,2)

2C′
(1,2)

√
−
√
λ

Ca,b
√
ab

C′a,b
Ca,b

 .

Since Z is symmetric, this implies that

ab
√
−1C ′′a,bCa,b = 2C(1,2)C

′
(1,2),

namely

2ab
√
−1

∫ a

0

dx√
x(x− a)(x− b)

∫ b

a

dx

x
√
x(x− a)(x− b)

= C(1,2)C
′
(1,2).

Moreover, as λ→ 0 we know that,

ImZ ∼


1 Im

{
−C′′a,b

√
ab
√
λ

C(1,2)

}
Im

{
2C′

(1,2)

√
−
√
λ

Ca,b
√
ab

}
Im
{
C′a,b
Ca,b

}
 =:

 1 Im
{
c′λ

1
4

}
Im
{
c′λ

1
4

}
c

 ,

where

c := Im

{
C ′a,b
Ca,b

}
= Im


∫ b
a

dx√
x(x−a)(x−b)∫ a

0
dx√

x(x−a)(x−b)

 = Im

{
τ

(
b

a

)}
> 0.

Since is ImZ positive definite, we get that c > Im2
{
c′ · λ

1
4

}
.
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Proof of Theorem 5.3.1. By (2.9), we know that the coefficient of the Bergman kernel in
local coordinate z =

√
x is given by

kλ(z) =
2∑

i,j=1

(Im−1 Z)ij
4z2(2−i) · z2(2−j)

|(z4 − λ)(z2 − a)(z2 − b)|

=4 · (Im−1 Z)11 + (Im−1 Z)12z
2 + (Im−1 Z)21 · z2 + (Im−1 Z)22|z|4

|(z4 − λ)(z2 − a)(z2 − b)|

∼4 ·
c− Im

{
c′ · λ

1
4

}
(z2 + z2) + |z|4

|(z4 − λ)(z2 − a)(z2 − b)|
· 1

c− Im2
{
c′ · λ

1
4

} ,
as λ→ 0. We can see that the leading term asymptotic expansion of kλ(z) is

4

c
· c+ |z|4

|z4(z2 − a)(z2 − b)|
.

Subtracting the leading term from kλ(z), we determine the two-term asymptotic expan-
sion as follows. As λ→ 0, it holds that

kλ(z)− 4

c
· c+ |z|4

|z4(z2 − a)(z2 − b)|

∼ 4

|z4(z2 − a)(z2 − b)|

c− Im
{
c′ · λ

1
4

}
(z2 + z2) + |z|4

c− Im2
{
c′ · λ

1
4

} − c+ |z|4

c


∼ 4

|z4(z2 − a)(z2 − b)|

− Im
{
c′ · λ

1
4

}
(z2 + z2)c+ {c+ |z|4} · Im2

{
c′ · λ

1
4

}
{
c− Im2

{
c′ · λ

1
4

}}
c


∼

4 Im
{
c′ · λ

1
4

}
|z4(z2 − a)(z2 − b)|

−(z2 + z2)c+ {c+ |z|4} · Im
{
c′ · λ

1
4

}
c2


∼

4 Im
{
c′ · λ

1
4

}
|z4(z2 − a)(z2 − b)|

{
−(z2 + z2)

c

}
,

which implies that

kλ(z) ∼ 4

c|z4(z2 − a)(z2 − b)|

{
c+ |z|4 − (z2 + z2) Im

{
c′ · λ

1
4

}}
.
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Taking the logarithm, as λ→ 0, we will get the following two-term asymptotic formula

log kλ(z) ∼ log
4

c|z4(z2 − a)(z2 − b)|
+ log

{(
c+ |z|4

)
− (z2 + z2) Im

{
c′ · λ

1
4

}}
= log

4
(
c+ |z|4

)
c|z4(z2 − a)(z2 − b)|

+ log

1−
(z2 + z2) Im

{
c′ · λ

1
4

}
c+ |z|4


∼ log

4
(
c+ |z|4

)
c|z4(z2 − a)(z2 − b)|

−
(z2 + z2) Im

{
c′ · λ

1
4

}
c+ |z|4

.

5.4 Cusp I: hyperelliptic curves and Jacobians

For X
(6)
λ , we will analyze the asymptotics of the matrices A

(6)
λ and B

(6)
λ respectively. To

make the statements precise, we assume that p(x) is a polynomial of degree at least 2 with
distinct roots aj such that |a1| < |a2| < ... and λ ∈ C \ {0,∪jaj}.

Lemma 5.4.1. Under the same assumptions as in Theorem 1.2.6, as λ→ 0, it holds that

A
(6)
λ ∼



C
(1)
(1,2) · λ

− 1
4 0 . . . . . . . . . 0

C
(2)
(1,2) · λ

1
4 α22 0 . . . 0

...
...

...
. . .

. . .
...

...
...

...
. . . 0

...
... αg−1,2 . . . . . . αg−1,g−1 0

C
(g)
(1,2) ·

√
λ

1
2

+g−2
αg,2 . . . . . . . . . αg,g



where C
(k)
(1,2) := −2

∫ 1
0

(u−1)k−1du√
u(u−1)(u−2)

· 1√
−a1(−a2)(−a3)...

, and αij(i ≥ j ≥ 2) are non-zero

constants depending on p(x).
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Proof. We will estimate all the g × g elements one by one. Firstly, as λ→ 0, it holds that

a11 =

∫
δ1

ω1 = −2

∫ 0

−
√
λ

dx

y
= −2

∫ 0

−
√
λ

dx√
x(x2 − λ)(x− a1)(x− a2)(x− a3)...

Taylor
====== −2

∫ 0

−
√
λ

dx√
x(x2 − λ)

1√
−a1(−a2)(−a3)...

(1 + O(x))

s=x+
√
λ

======= −2

∫ √λ
0

ds√
s(s−

√
λ)(s− 2

√
λ)

1√
−a1(−a2)(−a3)...

(1 + O(s+
√
λ))

s=u·
√
λ

====== −2

∫ 1

0

√
λdu√√

λu(
√
λu−

√
λ)(
√
λu− 2

√
λ)

(1 + O((u− 1)
√
λ))√

−a1(−a2)(−a3)...

∼ −2

∫ 1

0

√
λdu√√

λu(
√
λu−

√
λ)(
√
λu− 2

√
λ)

1√
−a1(−a2)(−a3)...

= −2

∫ 1

0

du√
u(u− 1)(u− 2)

1√
−a1(−a2)(−a3)...

· 1

λ
1
4

=: C
(1)
(1,2) · λ

− 1
4 .

For a21, there is an extra x in the original integrand and thus an extra
√
λ(u−1) in the

final numerator. Then, it follows that

a21 ∼ −2

∫ 1

0

(u− 1)du√
u(u− 1)(u− 2)

1√
−a1(−a2)(−a3)...

· λ
1
4 =: C

(2)
(1,2) · λ

1
4 .

And similarly, as λ→ 0, it holds that

ag1 ∼ −2

∫ 1

0

(u− 1)g−1du√
u(u− 1)(u− 2)

√
λ

1
2

+g−2√
−a1(−a2)(−a3)...

=: C
(g)
(1,2) ·

√
λ

1
2

+g−2
.

Secondly, δ2 contains only −
√
λ, 0,
√
λ and a1, but not a2, a3, .... Then, it follows that

a12 =

∫
δ2

dx√
x(x2 − λ)(x− a1)(x− a2)...

=

∫
δ2

dx

x2
√

(x− a2)(x− a3)...

(
1 +

λ

2x2
+ O(

λ2

x4
)

)(
1 + O(

1

x
)

)
,

for |a1| < |x| < |a2| < |a3| < .... Since δ2 doesn’t contain a2, a3, ...,
1√

(x−a2)(x−a3)...
is

holomorphic and therefore bounded on δ2 by C ∈ C. Then, it holds that

a12 = C

∫
δ2

dx

x2

(
1 +

λ

2x2
+ O(

λ2

x4
)

)(
1 + O(

1

x
)

)
= 0.

However, such a phenomenon will not happen for aj2(j ≥ 2), since there is an extra
xj−1 in the numerator, which makes aj2(j ≥ 2) asymptotic as λ→ 0 to non-zero constants
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denoted by αj2. Thirdly, δ3 contains only −
√
λ, 0,
√
λ, a1, a2 and a3, but not a4, a5, ....

Then, it follows that

a13 =

∫
δ3

dx√
x(x2 − λ)(x− a1)(x− a2)(x− a3)(x− a4)(x− a5)...

=

∫
δ3

dx

x3
√

(x− a4)(x− a5)...

(
1 +

λ

2x2
+ O(

λ2

x4
)

)(
1 + O(

1

x
)

)
,

for |a3| < |x| < |a4| < |a5| < .... Since δ3 doesn’t contain a4, a5, ...,
1√

(x−a4)(x−a5)...
is

holomorphic and therefore bounded on δ3 by C ′ ∈ C. Then, it holds that

a13 = C ′
∫
δ3

dx

x3

(
1 +

λ

2x2
+ O(

λ2

x4
)

)(
1 + O(

1

x
)

)
= 0.

For a23, same argument also gives that a23 = 0. However, for aj3(j ≥ 3) this is not the
case, since there is an extra xj−1 in the numerator, which makes aj3(j ≥ 3) asymptotic as
λ → 0 to non-zero constants denoted by αj3. Lastly, repeating the above process, we will
conclude that all elements above the diagonal in the matrix A vanishes.

Lemma 5.4.2. Under the same assumptions as Theorem 1.2.6, as λ→ 0, it holds that

B
(6)
λ ∼



√
−1 · C(1)

(1,2) · λ
− 1

4 β12 . . . β1,g

−
√
−1 · C(2)

(1,2) · λ
1
4 β22 . . . β2,g

...
...

...

(−1)g−1
√
−1 · C(g)

(1,2) ·
√
λ

1
2

+g−2
βg,2 . . . βg,g

 ,

where βij are constants depending on p(x).

Proof. Firstly, for the first column of B we can make the change of coordinates (similar
to the proof of Lemma 5.2.1) by setting x = (−u + 1) ·

√
λ, which yields that bi1 ∼√

−1 · ai1 · (−1)i−1 for 1 ≤ i ≤ g. Secondly, γ2 contains only a1 and a2, and we can get
that |x2| > |λ| for small λ. The Taylor expansion for 1√

x2−λ will then guarantee that bi2
is asymptotic to a non-zero constants which depends on a1, a2, ..., denoted by βi2. Lastly,
similar arguments work for other columns and the proof could be completed.

Now, we state the results on the asymptotic behaviors of the period matrix of X
(6)
λ .

Lemma 5.4.3. Let Z
(6)
λ denote the period matrix of X

(6)
λ . Then, as λ→ 0, it holds that

(ImZ
(6)
λ )−1 ∼


1 O(λ

1
4 ) . . . O(λ

1
4 )

O(λ
1
4 ) O(1) . . . O(1)

...
...

. . .
...

O(λ
1
4 ) O(1) . . . O(1)

 ,

where the involved constants depend on p(x).
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Proof of Lemma 5.4.3. We know that

A−1 ∼ λ
1
4

C
(1)
(1,2)α22 · ... · αgg



α22 · ... · αgg 0 . . . . . . . . . 0

O(λ
1
4 ) O(λ−

1
4 ) 0 . . . 0

...

O(λ
1
4 )

...
. . .

. . .
...

...
...

...
. . . 0

...
... O(λ−

1
4 ) . . . . . . O(λ−

1
4 ) 0

O(λ
1
4 ) O(λ−

1
4 ) . . . . . . . . . O(λ−

1
4 )



=



λ
1
4

C
(1)
(1,2)

0 . . . . . . . . . 0

O(λ
1
2 ) O(1) 0 . . . 0

...

O(λ
1
2 )

...
. . .

. . .
...

...
...

...
. . . 0

...
... O(1) . . . . . . O(1) 0

O(λ
1
2 ) O(1) . . . . . . . . . O(1)


as λ→ 0. Therefore, it follows that

Z = A−1B ∼


√
−1 C(2)λ

1
4 . . . C(g)λ

1
4

C(2)λ
1
4 O(1) . . . O(1)

...
...

. . .
...

C(g)λ
1
4 O(1) . . . O(1)

 ,

where C(j) are constants depending on aj(2 ≤ j ≤ g). Moreover, as λ→ 0, we know that

ImZ ∼


1 Im

{
C(2)λ

1
4

}
. . . Im

{
C(g)λ

1
4

}
Im
{
C(2)λ

1
4

}
r2,2 . . . r2,g

...
...

. . .
...

Im
{
C(g)λ

1
4

}
rg,2 . . . rg,g

 , (5.5)

which yields that

(ImZ)−1 =


1 O(λ

1
4 ) . . . O(λ

1
4 )

O(λ
1
4 ) O(1) + O(λ

1
2 ) . . . O(1) + O(λ

1
2 )

...
...

. . .
...

O(λ
1
4 ) O(1) + O(λ

1
2 ) . . . O(1) + O(λ

1
2 )

 := Cij .

Finally, we will prove Theorem 1.2.6 by Lemma 5.4.3.
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Proof of Theorem 1.2.6. The Bergman kernel of X
(6)
λ in the local coordinate z =

√
x is

k
(6)
λ (z) =

g∑
i,j=1

(Im−1 Z)ij
4z2(i−1) · z2(j−1)

|(z4 − λ)(z2 − a1)(z2 − a2)...|

∼ 4

|(z4 − λ)(z2 − a1)(z2 − a2)...|

1 +

g∑
i,j=2

Cijz
2(i−1)z2(j−1) + 2

g∑
j=2

Cjg · Re
(
z2(j−1)

)
=

4

|z4(z2 − a1)(z2 − a2)...|

1 + O(z4) + O(λ
1
4 ) · Re

 g∑
j=2

z2(j−1)

+ O(λ
1
2 ),

as λ→ 0. We further obtain that

log k
(6)
λ (z) = log

4
(
1 + O(z4)

)
|z4(z2 − a1)(z2 − a2)...|

+
O(λ

1
4 ) · Re

(∑g
j=2 z

2(j−1)
)

1 + O(z4)
,

as λ → 0 for small |z| 6= 0. Note that both the leading and the subleading terms above is
harmonic with respect to λ, which vanishes under the ∂λ∂̄λ operator.

Remark For the Jacobians of X
(6)
λ (of genus g), the Bergman kernel can be written as

1

det ImZ
(6)
λ

dW ∧ dW =: Kλ(W )dW ∧ dW,

for W ∈ Cg. Then, as λ→ 0 for |W | 6= 0 sufficiently small, it holds by (5.5) that

logKλ(W ) = − log det ImZ
(6)
λ ∼ − log

(
C +

(
O(λ

1
4 )
)2
)
∼ C ′ + O(λ

1
2 ),

where C and C ′ depend on p. In particular, if p(x) = (x − a)(x − b), then as λ → 0 it
follows that

logKλ(W ) ∼ − log c1 +
1

c1
· Im2

{
c2 · λ

1
4

}
,

which is the precise result for the genus-two case. So, it seems that the Jacobian of X
(6)
λ

remains non-degenerate, since det ImZ(λ) ∼ exp(−C ′) < +∞.

5.5 Cusp II: genus-two curves with precise coefficients

We first prove the following Lemma 5.5.1 and Lemma 5.5.2, by analyzing asymptotics of

two matrices A
(7)
λ :=

(∫
δj
ωi

)
ij

and B
(7)
λ :=

(∫
γj
ωi

)
ij

, respectively.
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Lemma 5.5.1. Under the same assumptions as Theorem 1.2.7, as λ→ 0, it holds that

A
(7)
λ ∼

(
2π√
ab
√
λ

0

Cλ
√
λ Cab

)
,

where Cab := −2
∫ a

0
dx√

x(x−a)(x−b)
and C is a constant depending on a and b.

Proof of Lemma 5.5.1. We estimate all the four elements one by one. Firstly, a11 =
∫
δ1
ω1,

where δ1 only contains 0 and λ2. As λ→ 0, it follows that

a11 = −2

∫ λ2

0
ω1 = −2

∫ λ2

0

dx√
x(x− λ)(x− λ2)(x− a)(x− b)

= −2

∫ λ2

0

dx√
x(x− λ)(x− λ2)

1√
−a

1√
−b

(
1 +

x

2a
+ O(x2)

)(
1− x

2b
+ O(x2)

)
=
−2

−
√
ab

∫ λ2

0

dx√
x(x− λ)(x− λ2)

(1 + O(x))

∼ −2

−
√
ab

∫ λ2

0

dx√
x(x− λ)(x− λ2)

q=x−λ2
=======

1

−
√
ab

∫ 0

−λ2

−2dq√
q(q + λ2)(q + λ2 − λ)

q=−λ2·v
=======

−2

−
√
ab

∫ 0

1

−λ2dv√
−λ2v(−λ2v + λ2)(−λ2v + λ2 − λ)

=
1

−
√
ab

−2

−λ
√
−1

∫ 1

0

dv√
v(v − 1)(v − 1 + 1

λ)
∼ 1

−
√
ab

1

−λ
√
−1

∫
γ̃

dv

v
√
−1 + 1

λ

=
1

−
√
ab

1

−λ
√
−1

2π
√
−1√

−1 + 1
λ

∼ 2π√
ab
√
λ
.

Secondly, it holds that

a21 = −2

∫ λ2

0
ω1 = −2

∫ λ2

0

xdx√
x(x− λ)(x− λ2)(x− a)(x− b)

= −2

∫ λ2

0

xdx√
x(x− λ)(x− λ2)

1√
−a

1√
−b

(
1 +

x

2a
+ O(x2)

)(
1− x

2b
+ O(x2)

)
=
−2

−
√
ab

∫ λ2

0

xdx√
x(x− λ)(x− λ2)

(1 + O(x)) ∼ −2

−
√
ab

∫ λ2

0

xdx√
x(x− λ)(x− λ2)

q=−λ2·v
=======
q=x−λ2

−2

−
√
ab

∫ 0

1

−λ2(λ2(1− v))dv√
−λ2v(−λ2v + λ2)(−λ2v + λ2 − λ)

=
λ

−
√
ab

−2√
−1

∫ 1

0

(v − 1)dv√
v(v − 1)(v − 1 + 1

λ)
∼ λ
√
λ√
ab

2√
−1

∫ 1

0

√
v − 1

v
dv := Cλ

√
λ.

76



CHAPTER 5. BERGMAN KERNEL ON DEGENERATE HYPERELLIPTIC CURVES

Thirdly, let δ2 contain only 0, λ, λ2 and a. Then, it follows that

a12 =

∫
δ2

dx√
x(x− λ)(x− λ2)(x− a)(x− b)

=

∫
δ2

dx

x2
√
x− b

(
1 +

λ

2x
+ O(

λ2

x2
)

)(
1 +

λ2

2x
+ O(

λ4

x2
)

)(
1 + O(

1

x
)

)
,

for |a| < |x| < |b|. Since δ2 doesn’t contain b, 1√
(x−b)

is holomorphic and therefore bounded

on δ2 by C ∈ C. Then, a12 is asymptotically bounded by

C

∫
δ2

dx

x2

(
1 +

λ

2x
+ O(

λ2

x2
)

)(
1 +

λ2

2x
+ O(

λ4

x2
)

)(
1 + O(

1

x
)

)
= 0.

Lastly,

a22 =

∫
δ2

xdx√
x(x− λ)(x− λ2)(x− a)(x− b)

=

∫
δ2

dx√
x(x− a)(x− b)

1√
x

(
1 +

λ

2x
+ O(

λ2

x2
)

)(
1 +

λ2

2x
+ O(

λ4

x2
)

)
= ∼

∫
δ2

dx√
x(x− a)(x− b)

:= Ca,b,

where δ2 contains 0 and a. Therefore, we could get the asymptotics of the matrix A and
finish the proof of Lemma 5.5.1.

Lemma 5.5.2. Under the same assumptions as Theorem 1.2.7, as λ→ 0, it holds that

B
(7)
λ ∼

(
2
√
−1 log λ

−
√
ab
√
λ

C ′′a,b
2√
ab

√
−λ C ′ab

)
,

where C ′ab := −2
∫ b
a

dx√
x(x−a)(x−b)

and C ′′ab := −2
∫ b
a

dx

x
√
x(x−a)(x−b)

.

Proof of Lemma 5.5.2. Again, all the four elements are estimated one by one. Firstly, let
γ1 contain only λ and λ2, and we get that

−2

∫ λ

0
ω1 = −2

∫ λ

0

dx√
x(x− λ)(x− λ2)(x− a)(x− b)

= −2

∫ λ

0

dx√
x(x− λ)(x− λ2)

1√
−a

1√
−b

(
1 +

x

2a
+ O(x2)

)(
1− x

2b
+ O(x2)

)
=
−2

−
√
ab

∫ λ

0

dx√
x(x− λ)(x− λ2)

(1 + O(x)) ∼ −2

−
√
ab

∫ λ

0

dx√
x(x− λ)(x− λ2)

∼ 1

−
√
ab

2
√
−1 log λ√
λ

,
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as λ→ 0. Thus, by Cauchy Integral Theorem we know that

b11 = −2

∫ λ

0
ω1 + 2

∫ λ2

0
ω1 ∼

1

−
√
ab

2
√
−1 log λ√
λ

− 2π√
ab
√
λ
∼ 2
√
−1 log λ

−
√
ab
√
λ
.

Secondly, substitute ω1 with ω2 and similarly it holds that

b21 = −2

∫ λ

λ2
ω2 = −2

∫ λ

λ2

xdx√
x(x− λ)(x− λ2)(x− a)(x− b)

= −2

∫ λ

λ2

xdx√
x(x− λ)(x− λ2)

1√
−a

1√
−b

(
1 +

x

2a
+ O(x2)

)(
1− x

2b
+ O(x2)

)
=
−2

−
√
ab

∫ λ

λ2

xdx√
x(x− λ)(x− λ2)

(1 + O(x)) ∼ −2

−
√
ab

∫ λ

λ2

xdx√
x(x− λ)(x− λ2)

x=λ
s====

t= 1
λ

1

−
√
ab

2

λ

∫ t

1

λds

s
√
s(s− 1)(s− t)

∼ 2

−
√
ab

∫ t

1

ds

s2
√
s− t

∼ 2

−
√
ab

(
−
√
−1√
t

)
=

2√
ab

√
−λ,

as λ→ 0. Thirdly, let γ2 contain only a and b. Then, it follows that

b12 =

∫
γ2

dx√
x(x− λ)(x− λ2)(x− a)(x− b)

=

∫
γ2

dx√
x(x− a)(x− b)

1√
x

(
1 +

λ

2x
+ O(

λ2

x2
)

)
1√
x

(
1 +

λ2

2x
+ O(

λ4

x2
)

)
=

∫
γ2

dx

x
√
x(x− a)(x− b)

(
1 + O(

λ

x
)

)
∼
∫
γ2

dx

x
√
x(x− a)(x− b)

:= C ′′a,b.

Lastly, it holds that

b22 =

∫
γ2

xdx√
x(x− λ)(x− λ2)(x− a)(x− b)

=

∫
γ2

xdx√
x(x− a)(x− b)

1√
x

(
1 +

λ

2x
+ O(

λ2

x2
)

)
1√
x

(
1 +

λ2

2x
+ O(

λ4

x2
)

)
=

∫
γ2

dx√
x(x− a)(x− b)

(
1 + O(

λ

x
)

)
∼
∫
γ2

dx√
x(x− a)(x− b)

:= C ′a,b.

and this finishes the proof of Lemma 5.5.2.

The asymptotic results for the Bergman kernels are obtained by combining (2.10) and
the following lemma.
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Lemma 5.5.3. Under the assumptions as in Theorem 1.2.7, let Z
(7)
λ denote the period

matrix of X
(7)
λ . Then, as λ→ 0, it holds that

(ImZ
(7)
λ )−1 ∼ π

−c log |λ| − Im
{
c′′λ

1
2

}2

 c − Im
{
c′′λ

1
2

}
− Im

{
c′′λ

1
2

}
− log |λ|

 ,

where c′′ = −
√
ab
π

∫ b
a

dx

x
√
x(x−a)(x−b)

.

Proof of Lemma 5.5.3. By Lemma 5.1.1, we know that

A−1 ∼

(
2π√
ab
√
λ

0

Cλ
√
λ Cab

)−1

=
1

2π√
ab
√
λ
Cab

(
Cab −Cλ

√
λ

0 2π√
ab
√
λ

)
,

as λ→ 0. Therefore, it follows that

Z = A−1B ∼ 1
2π√
ab
√
λ
Cab

(
Cab −Cλ

√
λ

0 2π√
ab
√
λ

)
·

(
2
√
−1 log λ

−
√
ab
√
λ

C ′′a,b
2√
ab

√
−λ C ′ab

)

=

√
ab
√
λ

2πCab

 2
√
−1Cab log λ

−
√
ab
√
λ
− 2
√
−1Cλ2√
ab

, CabC
′′
a,b − Cλ

√
λC ′ab

4π
√
−1

ab
2πC′ab√
ab
√
λ

 ∼
 √

−1 log λ
−π

C′′a,b
√
ab
√
λ

2π√
λ

Cab

2
√
−1√
ab

C′ab
Cab


Since Z is symmetric, this implies that

CabC
′′
a,bab = 4π

√
−1,

namely

ab

∫ a

0

dx√
x(x− a)(x− b)

∫ b

a

dx

x
√
x(x− a)(x− b)

= π
√
−1.

Moreover, as λ→ 0 we know that,

ImZ ∼

 − log |λ|
π

Im{C′′ab
√
abλ}

2π

2 Re
{ √

λ
Cab
√
ab

}
Im
{
C′ab
Cab

}  =:
1

π

 − log |λ| Im
{
c′′λ

1
2

}
Im
{
c′′λ

1
2

}
c

 . (5.6)

We could also derive that c > 0, due to the fact that ImZ positive definite. Also, it has

−c log |λ| > Im
{
c′′λ

1
2

}2
. Moreover, we have

(ImZ)−1 ∼ π

 − log |λ| Im
{
c′′λ

1
2

}
Im
{
c′′λ

1
2

}
c

−1

=
π

−c log |λ| − Im
{
c′′λ

1
2

}2

 c − Im
{
c′′λ

1
2

}
− Im

{
c′′λ

1
2

}
− log |λ|

 ,

which proves Lemma 5.1.3.
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Proof of Theorem 1.2.7. By (2.10), we know that near the cusp (0, 0), the coefficient of the
Bergman kernel in local coordinate z =

√
x is given by

k
(7)
λ (z) =

2∑
i,j=1

(Im−1 Z)ij
4z2(2−i) · z2(2−j)

|(z2 − λ)(z2 − λ2)(z2 − a)(z2 − b)|

=4 · (Im−1 Z)11 + (Im−1 Z)12z
2 + (Im−1 Z)21 · z2 + (Im−1 Z)22|z|4

|(z2 − λ)(z2 − λ2)(z2 − a)(z2 − b)|

∼4 ·
c− Im

{
c′′λ

1
2

}
z2 − Im

{
c′′λ

1
2

}
· z2 − log |λ| · |z|4

|(z2 − λ)(z2 − λ2)(z2 − a)(z2 − b)|
· π

−c log |λ| − Im
{
c′′λ

1
2

}2 ,

as λ→ 0. We can see that the leading term asymptotic expansion of k
(7)
λ (z) is

4π

c |(z2 − a)(z2 − b)|
.

Subtracting the leading term from k
(7)
λ (z), we determine the two-term asymptotic ex-

pansion as follows. As λ→ 0, it has

k
(7)
λ (z) ∼

{
1

c
+

1

− log |λ| · |z|4

}
· 4π

|(z2 − a)(z2 − b)|
.

Taking the logarithm, we will know that, as λ→ 0,

log k
(7)
λ (z) = log

4π

c |(z2 − a)(z2 − b)|
+

c

− log |λ| · |z|4
+ O

(
1

(log |λ|)2

)
.

We remark that for the Jacobian varieties of X
(7)
λ (more generally X

(9)
λ ), as λ → 0,

hyperbolic growth appears again by (5.6) in the proof of Lemma 5.5.3.

Theorem 5.5.1. Under the same assumptions as Theorem 1.2.7, as λ→ 0, it holds that

∂∂̄ log k
(7)
λ (z) ∼ c

|z|4

{
dλ ∧ dλ̄

2|λ|2(− log |λ|)3
− dλ ∧ dz̄
z̄λ(− log |λ|)2

− dz ∧ dλ̄
zλ̄(− log |λ|)2

+
4dz ∧ dz̄

|z|2(− log |λ|)

}
.

Concluding remarks Although Bergman kernels near different types of singularities
behave differently, it might be interesting if there exists some special coordinate working
for the cusp case, in comparison to the pinching coordinate for the node case, so that results
for general curves can be further obtained. Geometric interpretations of the coefficients are
also appreciated.

80



Acknowledgements

I would like to express my deepest gratitude to my advisor Prof. Takeo Ohsawa for his strict
supervision at each weekly seminar, posing inspiring problems with insightful perspectives
and offering enlightening communications with encouraging cares, all of which (dating back
to early 2012) are definitely indispensable to this thesis’ completion.

I am grateful to Prof. Hideyuki Ishi for his recommendation for my JSPS fellowship.
I am grateful to my PhD Judging Committee, especially to Prof. Ryoichi Kobayashi who
carefully read several preliminary versions of this thesis, pointing out many mistakes and
providing fruitful comments. I am grateful to Prof. Bo-Yong Chen (who used to be my ad-
visor at Tongji University), Prof. Zhihua Chen and Prof. Jinhao Zhang for their continuous
support from Shanghai throughout the years.

At Nagoya University, I am indebted to my senior M. Adachi for many constructive
conversations. I am indebted to A.-K. Gallagher for her various maths-related suggestions,
especially on the teaching side. I am indebted to T. Hisamoto for his comments on my re-
search and bringing attention [CMSP]. I am indebted to H. Fujino, X. Liu and other people
for having seminars together. I am indebted to Prof. S. Nayatani, who organized for my
Gakushin-Mensetsu two mock interviews where I received enormously valuable feedbacks
from seven professors. I am indebted to the staffs for their support, especially to E. Katada,
K. Kozaki and Y. Watanabe. I am indebted to several journals’ anonymous referees for
their comments on my results contained in this thesis.

I thank the organizers of academic conferences, especially KAWA, Hayama, KSCV and
Nianhui, for their support and encouragement. I thank KAKENHI, Gakushu-Shoreihi, the
Gakusei-Project and Japanese Government Scholarship for the support. I thank Professors
B. Berndtsson, Z. B locki, F.-S. Deng, S./Z. Dinew, S. Fu, Q.-A. Guan, Z. Huang, S. Kikuta,
T. Koike, Y. Matsumoto, S. Matsumura, M. Pǎun, D. Popovici, S. Richard, S. Seto, K.
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