
Characteristics of grid turbulence

and turbulence modulation after

interacting with a shock wave

Takuya KITAMURA

Department of Mechanical Science and Engineering

Nagoya University

A thesis submitted for the degree of

Doctor of Engineering



Acknowledgements

I would like to record here my gratitude to Prof. Yasuhiko Sakai,

Prof. Koji Nagata, Prof. Akihiro Sasoh, Associate Prof. Yasumasa

Ito and Associate Prof. Takashi Ishihara.

Prof. Sakai guides my work from wide range of views. His mar-

velous education and attitude for turbulence study impressed me sig-

nificantly and directed my way. It was of my great pleasure and

privilege to work for him.

Without Prof. Nagata, this work could not be accomplished. I deeply

appreciate him for his guidance and encouragement. He is magnani-

mous and I would like to be a person like him in the future.

Prof. Sasoh gave me valuable advice on shock wave study. I deeply

respect his talents and attitude toward researches. I also would like

to thank him for reviewing this PhD thesis.

Kind advice by associate Prof. Ito was so precious to me. I could

have good times particularly through discussion about turbulence at

dinner. Also various experiences I shared with him are irreplaceable.

I would like to thank Associate Prof. Ishihara for reviewing this PhD

thesis.

I would like to thank Assistant Prof. Koji Iwano who gave me various

advices. He was also so precious to me.

Other people are also greatly appreciated. I am grateful for Mr. Tak-

agi, Mr. Harasaki, Mr. Saito, Mr. Takeuchi and Mr. Konishi for

their kind help in experiments, and I also would like to thank to all

the members of the statistical fluid engineering laboratory at Nagoya

University.



In addition, this work was executed under the Leading Graduate

School program, Nagoya University.

I would like to note that the great works by Drs. G. K. Batchelor, P.

G. Saffman, J. R. Kraichnan and a lot of researchers inspired me. I

would like to be a theorist like them who impresses researchers in the

future.

I would like to thank my friends, Mr. Okazaki (Nagasaki Seiryo high

school) and Mr. Hashiguchi (Yakitori Hide). They had positive and

significant impacts on my life. At last, I dearly would like to appreci-

ate my father, Shigeru, my mother, Ayako, my sister, Hiroko and my

brother, Wataru.



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Characteristics of grid turbulence . . . . . . . . . . . . . . 2

1.1.2 Turbulence-shock wave interaction . . . . . . . . . . . . . 3

1.1.2.1 Experimental studies on turbulence-shock wave

interaction . . . . . . . . . . . . . . . . . . . . . 3

1.1.2.2 Numerical and theoretical studies on turbulence-

shock wave interaction . . . . . . . . . . . . . . . 4

1.2 Research purpose of this thesis . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Statistical theory of turbulence : Brief introduction 8

2.1 Equations of motion of a fluid . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Equation of continuity . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Momentum equation . . . . . . . . . . . . . . . . . . . . . 8

2.2 Homogeneous turbulence . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Statistical description of homogeneous turbulence . . . . . 10

2.2.2 Statistical description of isotropic turbulence . . . . . . . . 11

2.3 Fourier representation of turbulence . . . . . . . . . . . . . . . . . 12

2.3.1 Description of homogeneous turbulence in Fourier space . . 12

2.4 Energy spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Energy spectrum at low wavenumbers . . . . . . . . . . . . 14

2.4.1.1 Loitsianskii’s integral . . . . . . . . . . . . . . . . 16

2.4.1.2 Saffman’s integral . . . . . . . . . . . . . . . . . 18

2.4.2 Inertial subrange . . . . . . . . . . . . . . . . . . . . . . . 19

iii



CONTENTS

2.4.3 Dissipation range . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Rapid distortion theory . . . . . . . . . . . . . . . . . . . . . . . . 23

3 On invariants in grid turbulence at moderate Reynolds numbers 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Energy spectra at low wavenumbers and energy decay: overviews 30

3.2.1 Energy spectra of isotropic turbulence at low wavenumbers 30

3.2.2 TKE decay of grid turbulence . . . . . . . . . . . . . . . . 32

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Homogeneities and isotropy . . . . . . . . . . . . . . . . . 40

3.4.2 Energy decay . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.3 TKE dissipation rate and effect of coefficient A . . . . . . 47

3.4.4 Length scales . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.5 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Changes in grid turbulence interacting with a weak shock wave 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Experimental apparatus . . . . . . . . . . . . . . . . . . . 64

4.2.2 Experimental conditions and methods . . . . . . . . . . . . 65

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 The characteristics of the shock wave . . . . . . . . . . . . 66

4.3.2 The variations of turbulence quantities . . . . . . . . . . . 68

4.3.3 Continuous wavelet analysis . . . . . . . . . . . . . . . . . 72

4.3.4 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.5 The effects of initial turbulent Mach number . . . . . . . . 75

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Rapid distortion analysis theory analysis on the interaction be-

tween homogeneous turbulence and a planar shock wave 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Rapid Distortion Theory . . . . . . . . . . . . . . . . . . . . . . . 83

iv



CONTENTS

5.2.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1.1 Mean flow . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1.2 Fluctuations . . . . . . . . . . . . . . . . . . . . 84

5.2.2 RDT assumptions for the turbulence-shock wave interaction 86

5.2.3 ODEs and analytical solution for inviscid RDT . . . . . . 89

5.3 Homogeneous axisymmetric turbulence . . . . . . . . . . . . . . . 91

5.4 Model spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Model spectra for homogeneous isotropic turbulence (model

spectrum A) . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.2 Model spectra for homogeneous axisymmetric turbulence . 95

5.4.2.1 Model spectra for Ansatz 1 (model spectrum B) . 96

5.4.2.2 Model spectra for Ansatz 2 (model spectrum C) . 97

5.5 Results and Discussions for inviscid RDT . . . . . . . . . . . . . . 98

5.5.1 Angular distribution of energy spectral tensor . . . . . . . 98

5.5.2 Velocity variances . . . . . . . . . . . . . . . . . . . . . . . 102

5.5.3 Vorticity variances . . . . . . . . . . . . . . . . . . . . . . 110

5.5.4 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.5 Turbulence characteristic length scales . . . . . . . . . . . 114

5.6 Results and Discussion for RDT analysis with non-zero viscosity . 118

5.6.1 TKE dissipation rate . . . . . . . . . . . . . . . . . . . . . 118

5.6.2 Dissipation length scale . . . . . . . . . . . . . . . . . . . . 120

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Conclusions 123

Appendix A 126

Appendix B 128

Appendix C 131

References 145

v



Chapter 1

Introduction

1.1 Background

Our understanding for turbulent flows remains minimal even though these equa-

tions were written down in the 19th Century. Turbulence is a complex, nonlinear

multiscale phenomenon far from equilibrium and is described in terms of its abil-

ity to transfer energy among various scales. This nonlinearity arizes randomness

and complexity of turbulent flows and they make the analysis of the system diffi-

cult. However, such randomness may permit us to treat the system statistically.

Therefore, the derivation of the statistical theory of turbulence from the first

principle such as Navier-Stokes equation is the main challenge in fluid mechanics.

Renowned physicist Richard Feynman described turbulence as “the most impor-

tant unsolved problem of classical physics”. In fact, the progress in construction

of turbulence theory seems limited compared with the progresses in the quark

theory, which deals with the submicroscopic world and with that in the big-bang

theory, which deals with the formation of the universe. It is due to turbulence

nature: strong nonlinearity, non-equilibrium, irreversibility and a lot of freedom

of degrees. Turbulence is also known as a ubiquitous phenomenon that we can see

around us; for example, smoke of cigarette, external flows over all kind of vehi-

cles such as cars, airplanes and ships, atmospheric flows at planets and universe.

Thus, it is important to understand turbulent phenomena from the engineering

perspective.
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1.1 Background

1.1.1 Characteristics of grid turbulence

Taylor (1935) introduced the concept of isotropic turbulence. Subsequently, the

various statistical theory of turbulence have been proposed. On the other hand,

in many practical engineering devices, turbulent flows are inhomogeneous and

anisotropic. However, there is a possibility that small scale structures behave like

isotropic and and are governed by the inherent Navier-Stokes dynamics far from

the boudary condition, regardless of large scale inhomogeneity and anistropy

(Kolmogorov, 1941a,b). Thus, a lot of experimental and numerical studies on

isotropic turbulence have been performed to confirm the validity of theory of

Kolmogorov (1941a,b). In experiments, the grid turbulence is close to homoge-

neous isotropic turbulence, and therefore a lot of studies have been carried out

(Antonia et al., 2003; Batchelor & Townsend, 1948a,b; Comte-Bellot & Corrsin,

1966; Lavoie et al., 2007; Mohamedo & LaRue, 1990; Simmons & Salter, 1934).

The main purpose to study grid turbulence was to investigate the small scale

structures (Makita, 1991; Mydlarski & Warhaft, 1996) and large scale struc-

tures related to the decay law of turbulence kinetic energy (TKE) (Batchelor

& Townsend, 1948a,b; Comte-Bellot & Corrsin, 1966; Lavoie et al., 2007; Mo-

hamedo & LaRue, 1990). As to the small scale structures, the experimental results

(Makita, 1991; Mydlarski & Warhaft, 1996) and numerical results (Kaneda et al.,

2003) revealed that the energy spectrum in the inertial subrange is close to the

Kolmogorov’s -5/3 law. On the other hand, as to the large scale structures, Ishida

et al. (2006) showed that the TKE decay law is close to the Kolmogorov’s -10/7

law for homogeneous isotropic turbulence. Its decay law is believed to be related

to the large scale structures, i.e. an initial energy spectrum at low wavenumbers

E (k → 0) ∼ km, where k is the wavenumber (Batchelor, 1953; Davidson, 2004;

Hinze, 1959; Sagaut & Cambon, 2008). Numerical simulations of homogeneous

isotropic turbulence with the various initial energy spectra showed that the TKE

decay law depends on the form of energy spectrum at low wavenumbers. How-

ever, little is known about the energy spectrum at low wavenumbers in a real

homogeneous isotropic turbulent field such as grid turbulence. In other words,

there are only a few experimental studies that investigate existence of invariants
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1.1 Background

related to the large scale in spite of the fact that the TKE decay law of grid

turbulence is one of fundamental and important problems in turbulence.

1.1.2 Turbulence-shock wave interaction

In addition, turbulence-shock wave interaction is interesting from an engineering

perspective. It is an important assignment in the aerospace engineering and space

physics. For example, demand of the next generation supersonic transport (SST)

has been increasing nowadays because of the rapid the globalization in various

fields. To develop new SST, one of the primary issue that we have to overcome is

the sonic boom problem. It is known that the deformation of pressure waveform

of sonic boom is mainly affected by atmospheric turbulence. However, the effect

of turbulence is not incorporated into the design of SST. Similarly, the effect of

the shock wave is of interest from a physical perspective. Thus, as a fundamental

research, it is important to investigate quantitatively how much a shock wave is

modified by turbulence and vice versa. In this study, we focused on the propa-

gating process of sonic boom, i.e. turbulence-shock wave interaction. The main

purpose is to clarify the fundamental mechanism with respect to turbulence-shock

wave interaction.

1.1.2.1 Experimental studies on turbulence-shock wave interaction

Keller & Merzkirch (1990) conducted experiments on the interaction between

compressible grid turbulence and a reflected shock wave, and measured density

fluctuations using the speckle method. They showed that the streamwise integral

length scale and Taylor microscale of density fluctuations are amplified after the

interaction. Honkan & Andreopoulos (1992) conducted shock-tube experiments

and showed that the streamwise root mean square (r.m.s) velocity was amplified

and that the energy at large scales (rather than that at small scales) was am-

plified; the turbulence dissipation scale was also increased. On the other hand,

Briassulis et al. (1996) showed that the eddies are significantly compressed in the

streamwise direction, whereas their extent in the transverse direction remains

similar for weak interactions; the eddies are compressed in both directions for

strong interactions. Agui et al. (2005) conducted experiments on grid turbulence
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1.1 Background

and a moving shock wave in a large shock tube facility. They investigated the

statistical quantities related to vorticity using a vorticity probe and showed that

the vorticity components perpendicular to the shock wavefront increase and that

the streamwise integral length scale decreases after the interaction. Regarding

the TKE dissipation rate, they found that the solenoidal dissipation occupies

more than the dilatational dissipation throughout the interaction, and that the

TKE dissipation rate was amplified after the interaction. Barre et al. (1996) con-

ducted experiments on the interaction between Mach 3 quasi-isotropic turbulence

and a standing shock wave, and showed that the amplification of the variance of

the streamwise velocity fluctuation, the strong anisotropy behind a shock wave,

and the decrease in the streamwise integral length scales by up to 1/7 after the

interaction.

Thus, although all previous studies showed the amplification of TKE after

the interaction with a shock wave, the question as to whether the turbulence

characteristic scale increases or decreases remains unsolved because there is little

agreement in previous studies. Furthermore, these studies focus on the highly

compressible turbulence, and therefore it is important to study the interaction

between divergence-free grid turbulence and a shock wave. For instance, the

previous studies investigated turbulence flows with MU ≫ 0.3, where MU is the

Mach number based on the upstream mean velocity (Agui et al., 2005). Thus,

there is a possibility that the changes in turbulence depend on the flow properties

as mentioned by Yoshizawa (1993). To the best of my knowledge, there is no

study on the changes in divergence-free turbulence interacting with a shock wave.

The present originality is in the first experiment on the low-Mach number grid

turbulence interacting with a shock wave.

1.1.2.2 Numerical and theoretical studies on turbulence-shock wave

interaction

Direct Numerical Simulations (DNSs) on the interaction between homogeneous

isotropic turbulence and a standing shock wave have been conducted to deepen

the fundamental understanding of these phenomena. Using DNS, Lee et al.

(1993) and Hannappel & Friedrich (1995) showed that all turbulence characteris-

tic lengths (i.e. longitudinal and lateral velocity integral length scale, longitudinal
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1.1 Background

and lateral velocity Taylor microscale, dissipation length scale, and the integral

length scales and Taylor microscales of density fluctuations) are decreased after

the interaction. Lee et al. (1997) showed that the turbulence dissipation scale is

increased after interaction with a strong shock wave. Mahesh et al. (1997) showed

that upstream entropy fluctuations and the velocity-temperature correlation have

a strong influence on the turbulence evolution across a shock wave. They also

found higher amplifications of TKE and enstrophy when the upstream turbu-

lence has a negative velocity–temperature correlation, whereas the amplifications

are lower when the upstream turbulence has a positive velocity-temperature cor-

relation. Lee et al. (1993) and Donzis (2012) suggested different criteria for

the structure characterized by ‘broken’ or ‘wrinkled’ shock regimes. Lee et al.

(1993) suggested M2
t / (M

2
s − 1) as the criterion that is valid when the pressure

fluctuations driven by turbulence in the upstream region is larger than the pres-

sure jump due to the shock wave. On the other hand, Donzis (2012) suggested

Mt/
(√

Reλ (Ms − 1)
)
as the criterion based on the dimensional and similarity

analyses. However, his criterion is in contrast to linear interaction approximation

(LIA) since the fluctuations must be weak in the assumption of LIA (Larsson

et al., 2013; Sagaut & Cambon, 2008). Instead of these criteria, Larsson & Lele

(2009) and Larsson et al. (2013) showed that the criterion for the ‘wrinkled’ and

‘broken’ shock regimes is well characterized by Mt/ (Ms − 1). One important

consequence of the effect of Mt is that a shock wave tends to be broken with an

increase of Mt/ (Ms − 1) (Larsson & Lele, 2009; Larsson et al., 2013). Larsson

& Lele (2009) showed that the amplification of vorticity fluctuations strongly de-

pends on the grid resolution. Larsson et al. (2013) also showed that the evolution

of TKE is damped and that TKE evolves to have a peak located at 0.8Lϵ be-

hind a shock wave, where Lϵ is the dissipation length scale. Grube et al. (2011)

showed that the evolution of TKE is approximately monotonic without damping

and that the compressible contribution is much larger than other contributions

for the transverse vorticity variance budget.

In theoretical studies of the amplification of velocity fluctuations when inter-

acting with a shock wave, there are two main methods: LIA and rapid distortion

theory (RDT). Lee et al. (1993) showed that the Taylor microscale is decreased

after interaction with a shock wave using LIA. On the other hand, RDT is a
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1.2 Research purpose of this thesis

valid method in the case of rapid distortion of turbulent structures such as in-

teraction with a shock wave. In RDT theory, either Cartesian coordinates or

Craya-Herring coordinates is used. The former is able to compare the results di-

rectly with experiments and DNS. The latter is convenient for interpretation and

is easy to calculate. Jacquin et al. (1993) conducted Craya-Herring decomposi-

tion into dilatational mode and solenoidal mode for a compressible Navier–Stokes

equation. They showed that turbulence is amplified when compressed in a one-

dimensional direction. On the other hand, Mahesh et al. (1994) conducted RDT

numerically for Cartesian coordinates. However, they did not find the analytical

solution. Furthermore, they did not obtain significant changes in the turbulence

characteristic length scales.

1.2 Research purpose of this thesis

Purpose of study in this thesis is to clarify characteristics of grid turbulence and

changes in turbulence after interacting with a shock wave. Before performing the

experiments of turbulence-shock wave interaction, it is necessary to investigate the

fundamental characteristics of grid turbulence. With regard to grid turbulence,

TKE decay law is one of unsolved problems in turbulence over half a century

as mentioned above. Inspired by the previous work by Krogstad & Davidson

(2010), the TKE decay law and invariants were investigated for five mesh sizes

in moderate Reynolds number flows. After confirming the characteristics of the

grid turbulence, we carried out experiments on turbulence interacting with a

shock wave and discuss the changes in turbulence after interacting with a shock

wave. The purpose of this experiment is to clarify peculiar phenomenon on the

interaction between divergence-free grid turbulence and the shock wave. However,

in the present experiment, a spherical shock wave follows an expansion fan and

therefore it is difficult to understand pure interaction between turbulence and a

planar shock wave since there are additional effects on changes in turbulence due

to the expansion fan. To begin with, there are a lot of open questions with regard

to turbulence-shock wave interaction (Andreopoulos et al., 2000). To deepen the

mechanism of the interaction, the rapid distortion theory (RDT) was carried

out. This theoretical approach allows us to answer the questions identified by
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1.3 Outline of this thesis

Andreopoulos et al. (2000). The purpose of this theoretical approach is to clarify

the changes in turbulence after the interaction within the framework of linear

theory.

1.3 Outline of this thesis

Chapter 1, this section, gives introduction and purpose. Chapter 2 briefly de-

scribes important theories in isotropic turbulence and brief explanation about

RDT for the sake of later discussion. Chapter 3 describes experimental results on

characteristics of grid turbulence (the TKE decay law, invariants and so forth) at

moderate Reynolds number flows. Chapter 4 describes experimental results on

characteristics of divergence-free grid turbulence interacting with a weak shock

wave under various Reynolds numbers based on Taylor microscale. Chapter 5 de-

scribes RDT results for turbulence-shock wave interaction. Chapter 6 describes

brief conlusion of this study.
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Chapter 2

Statistical theory of turbulence :

Brief introduction

2.1 Equations of motion of a fluid

2.1.1 Equation of continuity

The equation of continuity is

∂ρ

∂t
+ div (ρu) =

Dρ

Dt
+ ρdivu = 0, (2.1)

where ρ is the fluid density, u is velocity and D/Dt = ∂/∂t + u · ∇ is material

derivative, which allows us to relate the Eulerian and Lagrangian time derivatives

of a dependent variable. For an incompressible fluid, Dρ/Dt = 0. and we then

have
∂ui
∂xi

= 0. (2.2)

2.1.2 Momentum equation

The Cauchy momentum equation is a vector partial differential equation that de-

scribes the non-relativistic momentum transport in any continuum. It is written

by

ρ
Dui
Dt

= − ∂p

∂xi
+
∂τij
∂xj

+ Fi (2.3)

8



2.1 Equations of motion of a fluid

where p is the pressure, τ is the viscous stress tensor, F is the body force per unit

volume. When the stress tensor has a linear relation with the velocity gradient,

the stress tensor can be written as

τij = CijklAkl = Cijkl
∂uk
∂xl

, (2.4)

where Cijkl is the fourth-order tensor determined from the matter. Taking account

of the fact that the velocity gradient can be decomposed into the symmetrical

part S and anti–symmetrical part −1
2
ϵklmωm, τij can be written as

τij = CijklSkl −
1

2
Cijklϵklmωm, (2.5)

where ϵijk is the Levi-Civita tensor and ω is the vorticity. When the molecular

structure of the fluid is statistically isotropic, the fourth–order tensor takes a

simple form as follows (Batchelor, 1967):

Cijkl = µδikδjl + µ′δijδkl + µ′′δilδjk, (2.6)

where µ, µ′ and µ′′ are the scalar functions. δij is the Kronecker delta. Using the

symmetry of S with respect to the subscripts i and j, we then obtain µ′′ = µ.

τij = 2µSij + µ′Skkδij. (2.7)

Taking accont of the fact that the trace of the strain tensor in three dimensions

is Sii = divu, the trace of the stress tensor in three dimensions becomes

τii = (3µ′ + 2µ)Sii.

Decomposing the stress tensor into isotropic and deviatoric parts, τij is given by

τij =

(
µ′ +

2

3
µ

)
Skkδij + 2µSij −

2

3
µSkkδij.

Introducing the second viscosity ζ
(
= µ′ + 2

3
µ
)
, stress tensor is given by

τij = 2µSij +

(
ζ − 2

3
µ

)
Skkδij. (2.8)

9



2.2 Homogeneous turbulence

Here, the second viscosity vanishes for monatomic gases. In such case, the fluid

is said to be Stokesian with

τij = 2µ

(
Sij −

1

3
Skkδij

)
. (2.9)

When the variation of µ is neglected, the momentum equation now becomes

Du

Dt
= −1

ρ
∇p+ ν

[
∇2u+

1

3
∇ (divu)

]
+

F

ρ
, (2.10)

where ν = µ/ρ is the kinematic viscosity. For an incompressible fluid, momentum

equation is written by

Du

Dt
= −1

ρ
∇p+ ν∇2u+

F

ρ
. (2.11)

2.2 Homogeneous turbulence

2.2.1 Statistical description of homogeneous turbulence

We consider the correlation of the physical quantities a (x), b (x′), c (x′′) , . . . at

the locations x, x′, x′′ . . ., namely,

A (x,x′,x′′, . . .) = ⟨a (x) b (x′) c (x′′) · · · ⟩ (2.12)

Homogeneous turbulence is a turbulence whose correlations are statistically in-

variant under arbitrary translation at every point in space. In other words, when

following equation is satisfied, turbulent field is statistically homogeneous.

A (x+ r,x′ + r,x′′ + r, . . .) = A (x,x′,x′′, . . .) (2.13)

Turbulent field is homogeneous for the direction e, when above equation is sat-

isfied in the direction e. In fully developed region of grid turbulence, turbulent

field is close to homogeneous in the transverse directions.
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2.2 Homogeneous turbulence

2.2.2 Statistical description of isotropic turbulence

If the statistics are rotationally invariant in addition to the homogeneity, the field

is called isotropic. When a velocity field is isotropic, tensors become a relatively

simple form. The general form of an isotropic tensor, such as being dependent

on the relative position of two points, r = x′ − x, was suggested by Robertson.

(1940). The two-point 1st, 2nd and 3rd isotropic tensors which satisfy reflection

symmetry are given by

Qi (r) = A(1)ri, (2.14a)

Qij (r) = A(2)rirj +B(2)δij, (2.14b)

Qijk (r) = A(3)rirjrk +B(3)riδjk + C(3)rjδki +D(3)rkδij, (2.14c)

where the scalar coefficients A(1) ∼ D(3) are all even function of r 1.

Using (2.14a)-(2.14c), we obtain a two-point velocity correlation equation

called ‘Karman-Howarth equation’ for the incompressible isotropic turbulence

(Karman & Howarth, 1938) :

∂

∂t
⟨u · u ′⟩ = 1

r2
∂

∂r

1

r

∂

∂r

(
u3r4K (r)

)
+ 2ν∇2 ⟨u · u ′⟩ , (2.15)

where u3K (r) = ⟨u21 (x )u1 (x ′)⟩ and u =
√

⟨u2⟩. Here, ⟨u · u′⟩ is given by

⟨u · u′⟩ = u2

r2
∂ (r3f (r))

∂r
, (2.16)

where f (r) is the longitudinal correlation function. Here the pressure term is

omitted because the correlation between velocity and pressure is zero for incom-

pressible isotropic turbulence, meanwhile it is not zero for compressible isotropic

turbulence. In incompressible isotropic turbulence, g (r) = f (r) + 1
2
r ∂f(r)

∂r
holds

1For the exact sense, the general isotropic tensors are given by Qi (r) = A(1)ri, Qij (r) =

A(2)rirj + B(2)δij + C(2)ϵijkrk, Qijk (r) = A(3)rirjrk + B(3)riδjk + C(3)rjδki + D(3)rkδij +

E(3)ϵijlrlrk + F (3)ϵjklrlri +G(3)ϵkilrlrj +H(3)ϵijk. When helicity exists, we have to use these

forms. However, we usually use the isotropic tensor which satisfies the reflection symmetry.
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2.3 Fourier representation of turbulence

between the longitudinal correlation function f (r) and the lateral correlation

function g (r). In terms of the structure functions, (2.15) can be written as

1

2

∂

∂t

⟨
∆u2|| (r)

⟩
+

1

6r4
∂

∂r

[
r4
⟨
∆u|| (r)

3⟩]− ν

r4
∂

∂r

[
r4
∂

∂r

⟨
∆u|| (r)

2⟩] = −2

3
ϵ, (2.17)

where ∆u2∥ (r) = 2u2 (1− f (r)), ∆u3∥ (r) = 6u3K (r) and ϵ is the turbulence

kinetic energy (TKE) dissipation rate.

2.3 Fourier representation of turbulence

2.3.1 Description of homogeneous turbulence in Fourier

space

In here, we consider an incompressible fluid only. The Fourier transformed Navier

Stokes equation (2.11) is written by(
∂

∂t
+ νk2

)
ûi (k, t) = −ıkjPil (k)

∫
p+q=k

ûl (p, t) ûj (q, t) dp

=Mijl (k)

∫
p+q=k

ûl (p, t) ûj (q, t) dp,

(2.18)

where ı =
√
−1 and

Mijl (k) = − ı

2
(klPij (k) + kjPil (k)) , Pij (k) = δij −

kikj
k2

. (2.19)

After multiplying û∗i (k, t) to (2.18) and taking the average, we have(
∂

∂t
+ 2νk2

)
⟨ûi (k, t) û∗i (k, t)⟩ =Mijl (k)

∫∫
dpdqδ (k − p− q) [⟨ûi (−k, t) ûj (p, t) ûl (q, t)⟩

− ⟨ûi (k, t) ûj (p, t) ûl (q, t)⟩]

=

∫∫
dpdq S (k,p, q, t) ,

(2.20)

where

S (k,p, q, t) = −2ℜ [Mijl (k) ⟨ûi (k, t) ûj (p, t) ûl (q, t)⟩ δ (k + p+ q)] , (2.21)

12



2.3 Fourier representation of turbulence

Figure 2.1: Schematic of E (k) and T (k).

where ℜ [ ] indicates the real part and δ (x) is the three-dimensional Dirac delta

function. S (k,p, q, t) satisfies S (k,p, q, t) + S (p, q,k, t) + S (p, q,k, t) = 0 as a

consequence of conservation of energy. After multiplying 2πk2, we have the Lin

equation: (
∂

∂t
+ 2νk2

)
E (k, t) = T (k, t) , (2.22)

where E (k, t) is the energy spectrum and T (k, t) is the energy transfer func-

tion. Lin equation is the spectral equivalent of the Karman-Howarth equation.

Schematic of E (k) and T (k) is shown in figure 2.1. T (k) is negative for small k

and positive for large k. This can be interpreted as removal of energy from large

scales and deposition of energy at small scales. Integrating (2.22) from 0 to ∞,

we have
d

dt

⟨u2⟩
2

= −ϵ, (2.23)

where

⟨u2⟩
2

=

∫ ∞

0

dk E (k, t) , ϵ = 2ν

∫ ∞

0

dk k2E (k, t) ,

∫ ∞

0

dk T (k, t) = 0. (2.24)

There are following relations between the physical space and Fourier space (David-

son, 2004):

13



2.4 Energy spectrum

• The relationship between E (k) and f (r)

E (k) =
u2

π

∫ ∞

0

dr
1

r2
∂

∂r

(
r3f (r)

)
kr sin (kr) (2.25)

u2f (r) = 2

∫ ∞

0

E (k)

k2r2

(
sin kr

kr
− cos kr

)
dk (2.26)

• The relationship between T (k) and K (r)

T (k) =
k

π

∫ ∞

0

dr
1

r

∂

∂r

1

r

∂

∂r

[
r4u3K (r)

]
sin (kr) (2.27)

K (r) =
2r

u3

∫ ∞

0

dk
3 (sin (kr)− kr cos (kr))− (kr)2 sin (kr)

(kr)5
T (k) (2.28)

2.4 Energy spectrum

In general, it is considered that energy spectrum can be divided into three ranges:

the energy containing range, inertial subrange and dissipation range. A typical

model spectrum to express these three ranges is given by

E (k) = K0ϵ
2
3k−

5
3fL (kLuu) fη (kη) , (2.29)

where K0 is the Kolmogorov constant, Luu is integral length scale and η is Kol-

mogorov scale. Here, fL (kLuu) and fη (kη) represent the energy spectra at the

energy containing range and at the dissipation range, respectively. Kolmogorov’s

-5/3 law with wide wavenumber range has been observed in the local interstel-

lar medium (Armstrong et al., 1995), stratosphere (Nastrom & Gage, 1985) and

various high Reynolds number flows as confirmed by a lot of experiments and

numerical simulations. The following subsections briefly describe our agreements

on energy spectrum over three ranges.

2.4.1 Energy spectrum at low wavenumbers

When equation (2.25) is expanded in series by Taylor expansion at k = 0, we

have

E (k → 0) =
L

4π2
k2 +

I

24π2
k4 + · · · , (2.30)
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2.4 Energy spectrum
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k
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k-5/3k2

Figure 2.2: Time evolution of the energy spectrum by eddy damped quasi-normal

Markovianization. The initial energy spectrum is given by Saffman type energy

spectrum.

where L is called Saffman’s integral and is

L =

∫
dr ⟨u · u′⟩ , (2.31)

while I is called Loitsianskii’s integral and is

I = −
∫
dr r2 ⟨u · u′⟩ . (2.32)

These variables are known as invariants. The time evolution of the energy spec-

trum by eddy damped quasi-normal Markovianization (EDQNM) is shown in

figure 2.2. It is clear from figure 2.2 that L is an invariant throughout the time

evolution. However, there are a lot of open questions and problems as to Loit-

sianskii’s integral I.
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2.4 Energy spectrum

2.4.1.1 Loitsianskii’s integral

Using (2.16) and integrating (2.15) over r = 0 to∞, we have (Karman & Howarth,

1938)

d

dt

[
u2
∫ ∞

0

r4f (r, t) dr

]
=
[
u3r4K (r)

]
∞ + 2ν

[
u2r4

∂

∂r
f (r)

]
∞
, (2.33)

where subscript ∞ denotes the limiting value of r → ∞. Loitsianskii (1939)

assumed that, for large r, the velocity at x + rê1 is statistically independent

of the velocity at x in the sense that both f (r) and K (r) decay exponentially.

Then, the right hand side of (2.33) becomes zero, and therefore, Loitsianskii’s

integral becomes invariant (Loitsianskii, 1939):

I = −
∫

r 2 ⟨u · u ′⟩ dr = 8πu2
∫ ∞

0

r4f (r) dr = const. (2.34)

Landau & Lifshitz (1959) showed that Loitsianskii’s integral refers to the conser-

vation of angular momentum by hypothesizing that f (r) and K (r) decay rapidly

for large r and that the global linear momentum in a large control volume V is

zero. Thus,

I = −
∫

r 2 ⟨u · u ′⟩ dr =

⟨
H 2
⟩

V
= const. (2.35)

Here, H =
∫
(x × u) dV is the global angular momentum for large V . Note that

the Saffman type energy spectrum is not considered beforehand because of the

assumption that the global linear momentum is zero (Loitsianskii, 1939).

Kolmogorov (1941c) predicted that the decay exponent of isotropic turbulence

becomes 10/7 under the following three assumptions:

1. TKE decays according to du2

dt
= −A u3

Luu
, where A is a constant．

2. Large-scale motions evolve in a self-similar manner when r is normalised

by Luu．

3. Loitsianskii’s integral is constant and independent of time.

Using assumptions (2) and (3), we observe that the constancy of Loitsianskii’s

integral is equivalent to that of u2r.m.sL
5
uu:

I = 8πu2
∫ ∞

0

r4f

(
r

Luu

)
dr = 8πu2L5

uu

∫ ∞

0

ξ4f (ξ) dξ = αu2L5
uu, (2.36)
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2.4 Energy spectrum

where α is a constant. The first assumption (1) has been confirmed by exper-

iments (Pearson et al., 2002) and numerical simulations (Kaneda et al., 2003).

When the above three assumptions are satisfied, the time evolutions of the TKE

and integral length scale are given by u2 ∼ t−
10
7 and Luu ∼ t

2
7 , respectively. How-

ever, the decay exponent of TKE for homogeneous isotropic turbulence is some-

times inconsistent with Kolmogorov’s decay exponent. Proudman & Reid (1954)

showed by the quasi-normalised theory that d2I
dt2
＞ 0, which implies that Loit-

sianskii’s integral I is time-dependent 1. Batchelor & Proudman (1956) pointed

out that the difference between the results of Loitsianskii (1939) and Landau &

Lifshitz (1959) and those of Proudman & Reid (1954) are arised from the effect of

pressure. They showed that the pressure-velocity correlation is ⟨uiujp′⟩∞ ∼ r−3

for homogeneous anisotropic turbulence, because the pressure fluctuations at

x ′ = x +r , which arise from an eddy located at x , have a relationship p′∞ ∼ r−3.

Thus, the triple velocity correlation is given by ⟨uiuju′k⟩ ∼ Cijkr
−4. Here, the

value of coefficient Cijk has not been discussed in detail. Furthermore, Batchelor

& Proudman (1956) have not validated this correlation for long ranges due to

isotropy. Equation (2.33) implies that Loitsianskii’s integral I is time-dependent

if u3K (r) ∼ Cr−4, i.e. Loitsianskii’s integral I is not invariant. Thus, Kol-

mogorov’s decay exponent 10/7 has been controversial. Here, C is an unknown

coefficient. However, Ishida et al. (2006) showed by means of a DNS that Loit-

sianskii’s integral I is an invariant in homogeneous isotropic turbulence. This

implies that the coefficient C = [r4K (r)]∞ is very small. In addition, they

showed that the decay exponent is 10/7. However, they set the initial energy

spectrum as E (k → 0) ∼ k4, in which Saffman’s energy spectrum was not con-

sidered. Thus, what is shown in that Loitsianskii’s integral becomes constant in

homogeneous isotropic turbulence if the energy spectrum at low wavenumbers

is E (k → 0) ∼ k4. However, little is known about the energy spectrum at low

1In EDQNM, it is easily shown that (Lesieur & Schertzer, 1978)

T (k → 0) = Ak4 − 2νtk
2E (k) ,

where νt is turbulent eddy viscosity and A is a constant. Thus, a time-varying Loitsianskii’s

integral is obtained in EDQNM and TKE decay law is different from Kolmogorov’s -10/7 law.
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2.4 Energy spectrum

wavenumbers in a real homogeneous quasi-isotropic turbulent field such as grid

turbulence (Davidson, 2011).

2.4.1.2 Saffman’s integral

For homogeneous isotropic turbulence, with the use of (3.4) and (2.16), Saffman’s

integral is given by

L =

∫
⟨u · u ′⟩ dr =

∫
u2

r2
∂

∂r

(
r3f (r)

)
dr = 4πu2

[
r3f (r)

]
∞ . (2.37)

When u3K (r)∞ ∼ r−4 +O (r−5) for large r, we have

dL

dt
= 4π

[
1

r

∂

∂r

(
r4u3K (r)

)]
∞

= 0. (2.38)

Thus, L is an invariant. The characteristics of Saffman turbulence is that the

autocorrelation for large r takes the form of f (r → ∞) ∼ r−3, and large-scale

eddies behave similar to dipoles. The physical interpretation of Saffman’s integral

was discussed by Saffman (1967) and Davidson (2004). L is expressed as

L =
1

V

⟨[∫
V

udV

]2⟩
=

⟨
P2
⟩

V
, (2.39)

where V is a large control volume and the volume average is equal to the ensemble

average, and P is the global linear momentum
∫
V
udV in the large control volume

V for homogeneous turbulence. The global angular momentum for the Saffman

turbulence is expressed by the summation of the linear impulse Li and angular

momentum H i of individual eddy (Davidson, 2004):

H =
∑

H i +
∑

x i × Li, (2.40)

and the global linear momentum is expressed by

P ∼
∑

Li =
∑ 1

2

∫
Vi

x × ωdV, (2.41)

where H i =
1
3

∫
Vi
r i × (r i × ω) dV is the angular impulse of the i-th eddy in the

control volume, x i represents a position vector and r i (= x − x i) is the position

vector from the centre of the i-th eddy. In the Batchelor turbulence, because the
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2.4 Energy spectrum

linear impulse Li = 0, we obtain the global angular momentum H =
∑

H i. In

contrast, in the Saffman turbulence, Li is dominant over global angular momen-

tum H .

Assuming large-scale self-similarity, Saffman’s integral becomes equivalent to

L = βu2L3
uu, (2.42)

where β is a constant. In this case, using Kolmogorov’s assumption (a), the time

evolution of TKE and the integral length scale are expressed as u2 ∼ t−
6
5 and

Luu ∼ t
2
5 , respectively.

2.4.2 Inertial subrange

The Kolmogorov’s -5/3 law can be observed more than 10 decades in the electron-

density power spectrum of the interstellar medium resulting from various direct

or indirect observation (Armstrong et al., 1995). In the paper of Kolmogorov

(1941a,b), the Kolmogorov’s -5/3 law was derived from the dimensional anal-

ysis 1. Thus, a lot of theoretical analyses have been carried out to derive the

Kolmogorov’s -5/3 law from the first principle such as Navier-Stokes equation.

For details, refer to Leslie (1973), McComb (1989, 2014). To the best of my

knowledge, the most sophisticated two-point two-time closure will be the La-

grangian Renormalized Approximation (LRA) constructed by Kaneda (1981).

Unlike EDQNM, LRA enables us to calculate the statistical quantities theoret-

ically without introduction of any adjustable parameters. Figure 2.3 shows the

one-dimensional energy spectra obtained from experiments of grid turbulence and

DNS of isotropic turbulence together with the result obtained by LRA. The spec-

tra collapse well in the inertial subrange and dissipation range and disagreement

is seen only in the energy containing range. The energy spectra almost following

-5/3 power law have been found in many high-Reynolds-number fully-developed

turbulent flows (Frisch, 1995).

Here, there is also the celebrated theory for the third order structure function,

namely, the Kolmogorov’s 4/5 law (Kolmogorov, 1941a). Under the assumption
1In his paper, theory has been constructed in physical space, and therefore 2/3 law for

the 2nd order structure function has been derived, and -5/3 law for energy spectrum has been

derived by his student Obukhov (1941).
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2.4 Energy spectrum

of quasi-stationary, i.e. | ∂
∂t

⟨
∆u2|| (r)

⟩
|≪| ∂u2

∂t
|≤ ϵ in the inertial subrange, the

time derivative in (2.17) may be neglected, and therefore we have

∂

∂r

[
r4
⟨
∆u|| (r)

3⟩]− 6ν
∂

∂r

[
r4
∂

∂r

⟨
∆u|| (r)

2⟩] = −4r4ϵ. (2.43)

Integrating the above equation under the boundary conditions such as ∂
∂r

⟨
∆u|| (r)

2⟩ =
0 and

⟨
∆u|| (r)

3⟩ = 0 at r = 0, we obtain

⟨
∆u|| (r)

3⟩ = −4

5
ϵr + 6ν

∂

∂r

⟨
∆u|| (r)

2⟩ . (2.44)

In the inertial subrange, we have⟨
u|| (r)

3⟩ = −4

5
ϵr (2.45)

This is called Kolmogorov’s 4/5 law. In is worth noting that this equation is

directly derived from the Navier-Stokes equation. Kolmogorov (1941b) further

argued that the third order structure function S (r) =
⟨
∆v (r)3

⟩
/
⟨
∆v (r)2

⟩ 3
2

leads to ⟨
∆v (r)2

⟩
=

(
− 4

5S (r)

) 2
3

(ϵr)
2
3 . (2.46)
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Figure 2.3: The one-dimensional energy spectra normalized by the Kolmogorov

variables. The red circle is the experimental result of fractal square grid turbu-

lence.
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2.4.3 Dissipation range

From (2.26), we have

u2
[
∂nf (r)

∂rn

]
r=0

=

{
(−1)

n
2 2

(n+1)(n+3)

∫∞
0
knE (k) dk for even n,

0 for odd n.
(2.47)

In homogeneous isotropic turbulence, Taylor series expansion of f (r) at r = 0

yields (Davidson, 2004)

f (r) = 1− ⟨ω2⟩
30u2

r2 +

⟨
(∇× ω)2

⟩
840u2

r4 −

⟨
(∇2ω)

2
⟩

45360u2
r6 + · · · . (2.48)

This also gives

lim
r→0

⟨
∆u|| (r)

2⟩ = 1

15

ϵr2

ν
. (2.49)

If Taylor series expansion is possible1, the form of the energy spectrum at high-

wavenumbers takes an exponential form, not a power law. In other words, fη (x)

must be a fast-decaying function when the energy spectrum can be written by

E (k) = K0ϵ
2
3k−

5
3fη (kη). Townsend (1951) introduced the different model eddies

and showed that E (k) ∼ k−1 exp (−αk2ν) for vortex tube like structures, where

α is a model parameter, while E (k) ∼ k−2 exp (−αk2ν) for vortex sheet like

structure. Interestingly, Kolmogorov’s -5/3 law lies between the above models.

Thus, it is considered that the Kolmogorov’s -5/3 law may be consisted of the

superposition of both vortex tubes and vortex sheets. Lundgren (1982) showed

that E (k) ∼ k−
5
3 exp (−αk2ν) for the superposition of the spiralled vortex model.

Although there are a lot of proposals for fη (x), a widely-admitted one is (Sagaut

& Cambon, 2008)

fη (x) = Cxα exp (βxn) . (2.50)

Pao (1965) suggested n = 4
3
. Townsend (1951) suggested n = 2 assuming linear

response at small scales. Two-point spectral closures such as EDQNM, direct

interaction approximation and LRA, and the DNS by Ishihara et al. (2005) sug-

gested n = 1. For other parameters, e.g. C and α, refer to Ishihara et al. (2005)

and Sagaut & Cambon (2008).

1The differentiation possibility of the solution is not proved mathematically. In addition,

whether theoretical form of exponential law is appropriate or not is still an open question.
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2.5 Rapid distortion theory

2.5 Rapid distortion theory

RDT is used to explain the statistical properties and eddy structures in turbulence

from kinematical and dynamical aspects when turbulence is deformed by mean

gradient or by boundary. The advantages of RDT are that the exact solution

with a functional form can be obtained and the phenomenology can be explained

within the framework of the linear theory. RDT is valid for the case in which

turbulence intensity is weak, so that turbulence fluctuations mainly interact with

mean velocity. This assumption allows one to linearize the govering equations,

and RDT is valid for TD ≪ TL = Luu/ur.m.s, where TD is the distortion time,

TL is eddy turnover time, Luu is integral length scale and ur.m.s is r.m.s value

of velocity fluctuations. The main difference between RDT and exact solution

(DNS) can be seen mainly at high wavenumbers for TD ≪ TL and RDT is no

longer valid for TD ∼ TL. Here is a brief review on RDT, so see the literatures

(Durbin & Pettersson Reif, 2010; Sagaut & Cambon, 2008; Townsend, 1976) as

to its detail on RDT. In the previous studies, RDT has been mainly used for the

following cases: (i) uniform distortion of homogeneous turbuelence (Batchelor &

Proudman, 1954), (ii) non-uniform distortion of homogeneous turbulence (Hunt,

1973) and (iii) uniform distortion of inhomogeneous turbulence (Townsend, 1980).

For case (ii), Hunt’s RDT can be classified into the cases d≫ Luu and d≪ Luu,

where d is the scale of body. For the problem such as d ≫ Luu, the analysis

becomes quite complicated one, whereas d≪ Luu, the analysis becomes easy. As

to later case, for example, see Nagata et al. (2011). As an example of RDT, we

consider the famous Townsend’s simple shear flow (Townsend, 1976) since the

detailed comparison between RDT and DNS have been carried out by Lee et al.

(1990), Matsumoto et al. (1994) and Iida et al. (2000). With the assumptions of

local homogeneity and high Reynolds number flow, Townsend’s simple shear flow

is useful to understand the structures of vorticity affected by the mean velocity

gradient. For instance, Fung (1990) showed by means of kinematic simulation

together with RDT for Townsend’s simple shear flow that the velocity structures

can be expressed by the highly enlogated high- and low-speed streaks structures

as seen in the turbulent boundary layer. Lee et al. (1990) also showed the similar

behaviours of Reynolds stress u1u2 between Townsend’s simple shear flow and
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turbulent boundary layer. This is typical example of the validity for assumption

of local homogeneity. The incompressible inviscid linearized momentum equation

is given by
∂ui
∂t

+ Uj
∂ui
∂xj

+ uj
∂Ui
∂xj

= −1

ρ

∂p

∂xi
, (2.51)

where Ui = xj
∂Ui

∂xj
for homogeneous flow. As to the examples and constraints

of homogeneous flows, refer to Kida & Yanase (1999) for homogeneous incom-

pressible flows and Durbin & Zeman (1992) for homogeneous compressible flows.

In homogeneous turbulence, velocity fluctuation can be expressed by the Fourier

coefficient,

u (x, t) =

∫
dχ û (χ (t) , t) exp (ıχ (t) · x) , (2.52)

where ı =
√
−1 and χ is the wavenumber and is expressed by time. Substituting

the above expression into (2.51), the first and second left terms become

∂ui
∂t

+ Uj
∂ui
∂xj

=

∫
dχ exp (ıχ · x)

[
dûi
dt

+ ıxj

(
dχj
dt

+ χk
∂Uk
∂xj

)
ûi

]
. (2.53)

To ensure homogeneity in Fourier space, the space dependency must become zero,

i.e.
dχj

dt
+χk

∂Uk

∂xj
= 0. In the Townsend’s simple shear flow, U1 = Sx2, U2 = U3 = 0,

the wavenumbers are given by χ1 = k1, χ2 = k2 − Stk1 and χ3 = k3. The RDT

ordinary differential equations for solenoidal modes are given by

dûi (χ, t)

dt
= −∂Ui

∂xj
ûj (χ, t) + 2

χiχj
χ2

∂Uj
∂xk

ûk (χ, t) . (2.54)

In general, the analytical solutions can be expressed as follows:

ûi (χ, t) = Aij (χ, t) ûj (k, 0) , (2.55)

so that Reynolds stress can be given by

⟨uiuj⟩ =
∫
dχ AiαAjβΦαβ (k, 0) , (2.56)

where Φij (k) =
⟨
ûiû

∗
j

⟩
is the energy spectral tensor. Lee et al. (1990) showed that

a good agreement with regard to the time evolution of Reynolds stresses between

DNS and RDT. Matsumoto et al. (1994) also compared DNS and RDT results

and showed that there are no remarkable differences as to the time evolution of
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Reynolds stresses and their budgets. However, as shown by Iida et al. (2000),

RDT is invalid for the statistical quantities such as higher-order moments and

small scale structures related to the strain-rate tensor. These differences are come

from remarkable effects by nonlinear terms. As above-mentioned, this point is

one of weak points in RDT. However, in other words, RDT is useful to understand

the dynamics due to nonlinear effects by comparing DNS and RDT.

For more details on RDT, see Townsend (1976), Sagaut & Cambon (2008)

and Durbin & Pettersson Reif (2010).
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Chapter 3

On invariants in grid turbulence

at moderate Reynolds numbers

3.1 Introduction

Comprehensive theories on homogeneous isotropic turbulence have been presented

in literatures (e.g. Batchelor 1953; Hinze 1959; Monin & Yaglom 1975; Davidson

2004; Lesieur 2008; Sagaut & Cambon 2008). They consider that there exist im-

portant relationships between the decay exponent n of turbulence kinetic energy

(TKE) (=⟨u2⟩ /2; ⟨ ⟩ denotes the ensemble average) and the form of energy spec-

trum at low wavenumbers in homogeneous isotropic turbulence when large-scale

self-similarity is assumed. This idea is based on three assumptions: (a) the coef-

ficient of energy spectrum at low wavenumbers is constant throughout the decay,

(b) large-scale self-similarity and (c) TKE decays according to du2r.m.s

dt
= −Au3r.m.s

Luu
.

Here，ur.m.s

(
∼
√

⟨u2⟩
3

)
denotes the root mean square of streamwise velocity fluc-

tuations, Luu(=
∫∞
0
f (r) dr: f (r) = ⟨u (x)u (x+ rex)⟩ /

⟨
u (x)2

⟩
is the longitu-

dinal autocorrelation coefficient and r denotes separation) is the integral length

scale, t denotes time and A denotes a constant. With regard to (a), Batchelor

(1949) and Saffman (1967) showed the permanence of large eddies throughout

the decay under the assumption that integral moments of cumulants of veloc-

ity and vorticity distributions converge. In this case, once turbulence is fully

developed, it remembers its initial conditions: coefficient cm in the expression
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E (k → 0) ∼ cmk
m becomes an invariant for m ≤ 4 (Lesieur & Ossia 2000; David-

son 2004; Ishida, Davidson & Kaneda 2006). As a consequence of (b), invariants

are expressed as cm ∼ u2r.m.sL
m+1
uu , and as a consequence of (c), the TKE decay

power law and growth of the integral length scale are respectively represented by⟨
u2
⟩
∼ t−

2(m+1)
m+3 , Luu ∼ t

2
m+3 . (3.1)

Taylor microscale λ and Kolmogorov scale η are respectively represented by

λ ∼ t
1
2 , η ∼ t

n+1
4 . (3.2)

Note that the only requirement to hold (3.2) is a power law, i.e. ⟨u2⟩ ∼ t−n,

which can be obtained without similarity.

With regard to the form of the energy spectrum in homogeneous isotropic tur-

bulence, many studies dealing with the Karman–Howarth and the Lin equations

suppose some type of self-similarity such as complete self-similarity (e.g. Dry-

den 1943; Korneyev & Sedov 1976; George 1992), asymptotic-type behaviours

(e.g. Speziale & Bernard 1992) and infeasibility of one similarity range extend-

ing from k = 0 to k = ∞ (e.g. Batchelor 1948; Karman & Lin 1949; Saffman

1967). In the case of complete self-similarity of the energy spectrum, the energy

spectrum at low wavenumbers is represented as E (k → 0) ∼ k, and this yields

⟨u2⟩ ∼ t−1 and Luu ∼ t
1
2 . Thus, the Reynolds numbers ReL (=ur.m.sLuu

ν
) and

Reλ (=ur.m.sλ
ν

), where ν is the kinematic viscosity, are conserved throughout the

decay. Furthermore, the ratios of η and Luu, i.e. η/Luu ∼ Re
− 3

4
L , and of λ and

Luu, i.e. λ/Luu ∼ Re
− 1

2
L are also conserved. Therefore, E (k → 0) ∼ k is a special

case in the sense that it is the only spectrum in which complete self-similarity

over all scales is maintained. Turbulence corresponding to this spectrum may be

simulated numerically using DNS (Davidson 2011), as done in EDQNM (Lesieur

& Ossia 2000).

In contrast, with regard to the energy spectrum that relates to the infeasi-

bility of a single similarity range from k = 0 to k = ∞ (e.g. Batchelor 1948;

Karman & Lin 1949; Saffman 1967), the energy spectrum needs to be divided

into at least three ranges: low wavenumber range which is essentially determined

by invariants, intermediate range that does not necessarily comply with the sim-

ilarity characteristics of high wavenumbers but is significantly influenced by the
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TKE dissipation rate ϵ and high wavenumber range influenced by both ϵ and ν.

It is considered that this is the plausible spectral form of real turbulence such

as grid turbulence. With regard to this energy spectrum, two different forms of

energy spectra are believed to exist: the Saffman spectrum and the Batchelor

spectrum. In Saffman turbulence, the energy spectrum at low wavenumbers is

given by E (k → 0) ∼ Lk2

4π2 (Saffman, 1967). Here, L =
∫
⟨u · u ′⟩ dr（⟨u · u ′⟩ is

a two-point velocity correlation, u ′ is a velocity vector with separation r = |r |)
is Saffman’s integral, which is known as the conservation of linear momentum.

In the case of Saffman turbulence, TKE decays according to ⟨u2⟩ ∼ t−
6
5 . By

contrast, in Batchelor’s turbulence, the energy spectrum at low wavenumbers is

given by E (k → 0) ∼ Ik4

24π2 (Batchelor, 1953; Batchelor & Proudman, 1956). Here,

under the assumption of L = 0, I = −
∫
r 2 ⟨u · u’ ⟩ dr is called Loitsianskii’s in-

tegral, which is known as the conservation of angular momentum. If Loitsianskii’s

integral is constant, TKE decays according to ⟨u2⟩ ∼ t−
10
7 . The initial condition

determines whether the resulting energy spectrum would be of the Saffman type

E (k → 0) ∼ k2 or the Batchelor type E (k → 0) ∼ k4. In the presence of an ade-

quate linear impulse, Saffman turbulence would be generated. Conversely, in the

absence of an adequate linear impulse, Batchelor turbulence would be generated.

In numerical simulations, various energy spectra can be set (Lesieur & Ossia,

2000), and the energy spectrum changes according to the initial condition (Lesieur

& Ossia, 2000). In addition, Lesieur & Ossia (2000) showed that the TKE power

law and the growth of the integral length scale are not inconsistent with the

consequence of the self-similarity assumption.

Grid turbulence has been commonly used to investigate the nature of homoge-

neous isotropic decaying turbulence. However, very few studies (e.g. Krogstad &

Davidson 2010) have investigated the existence of invariants related to the large

scale. Therefore, the TKE decay exponent and the energy spectrum form at low

wavenumbers in grid turbulence are still controversial. Furthermore, experimen-

tal investigations on the deterministic characteristics of the energy spectrum at

low wavenumbers have been insufficient, although these behaviours have been

confirmed via DNS and EDQNM (e.g. Ishida et al. 2006; Lesieur & Ossia 2000).

In previous experiments, ⟨u2⟩ ∼ t−1 (e.g. Gad-El-Hak & Corrsin 1974; Sched-

vin et al. 1974) and the decay exponent close to Saffman’s decay exponent or
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Kolmogorov’s decay exponent (e.g. Comte-Bellot & Corrsin 1966; Mohamedo &

LaRue 1990; Lavoie et al. 2007; Krogstad & Davidson 2010) have been reported.

It should be noted that only a few previous studies applied the appropriate re-

gion, i.e. x/M＞ 40 - 60, to determine the virtual origin and the decay exponent,

where x is the distance from the grid and M is the grid mesh size. Therefore, the

question whether typical grid turbulence is of the Saffman or Batchelor type or

neither (Monin & Yaglom 1975) remains unanswered. The answer to this question

is quite important because numerous fundamental and practical experiments in

grid turbulence have been conducted thus far. The TKE decay of grid turbulence

is reviewed carefully in §3.2.2.
In this study, TKE decay and invariants in grid turbulence are investigated

under a wide range of M and ReM (=UM/ν, where U is the mean velocity)

(i.e. M = 10, 15, 25 and 50 mm and ReM = 6700, 9600, 16000 and 33000)

values using cylindrical and square grid bars. In the decay region, the Reynolds

numbers based on the Taylor microscale λ, Reλ

(
=

√
⟨u2⟩/3λ
ν

)
, range from 27 to

112. Here, we used ⟨u2⟩ = u2r.m.s + v2r.m.s + w2
r.m.s ≈ u2r.m.s + 2v2r.m.s. In addition,

the effects of the values of M and ReM (within the range considered here) and

the shape of the grid bar (i.e. cylindrical and square) are discussed. In this study,

we limit the discussions to ‘regular’ grid turbulence (i.e. turbulence generated by

rectangular array of square or cylindrical bars with a standard value of solidity σ)

at moderate Reynolds numbers, i.e. Reλ=27∼112: we do not consider other types

of turbulent generator for generating higher Reλ. Note that in most previous

experiments using a ‘regular’ grid, Reλ = O (10) ∼ O (102), which is similar

magnitude considered in this study.

29
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3.2 Energy spectra at low wavenumbers and en-

ergy decay: overviews

3.2.1 Energy spectra of isotropic turbulence at low wavenum-

bers

In homogeneous isotopic turbulence, the energy spectrum E (k) is represented as

follows (Krogstad & Davidson 2010; Davidson 2011):

E (k) =
1

π

∫ ∞

0

⟨u · u ′⟩ krsin (kr) dr. (3.3)

The energy spectrum at low wavenumbers can be expanded in series by Taylor

expansion at k = 0 as in (2.30). Here,

L =

∫
⟨u · u ′⟩ dr =

∫
u2r.m.s
r2

∂

∂r

[
r3f (r)

]
dr = 4πu2r.m.s

[
r3f (r)

]
∞ (3.4)

is Saffman’s integral and

I = −
∫

r 2 ⟨u · u ′⟩ dr = 8πr2r.m.s

∫ ∞

0

r4f (r) dr (3.5)

is Loitsianskii’s integral. When either Saffman or Loitsianskii’s integral is con-

stant with time, the energy spectrum at low wavenumbers is conserved throughout

the energy decay process.

Assuming large-scale self-similarity, Saffman’s integral becomes equivalent to

(2.42). When Saffman’s integral becomes constant, we represent the time evolu-

tion of the TKE and the integral length scale as follows: (Krogstad & Davidson,

2010):

u2r.m.s
u

′2
r.m.s0

=

(
1 +

5A

6

ur.m.s0t

Luu0

)− 6
5

,
Luu
Luu0

=

(
1 +

5A

6

ur.m.s0t

Luu0

) 2
5

, (3.6)

where ur.m.s0 and Luu0 are the initial values of ur.m.s and Luu, respectively.

30



3.2 Energy spectra at low wavenumbers and energy decay: overviews

Assuming large-scale self-similarity , Loitsianakii’s integral becomes equiva-

lent to (2.36). Note that when Loitsianskii’s integral becomes constant, the time

evolutions of the TKE and integral length scale are as follws:

u2r.m.s
u2r.m.s0

=

(
1 +

7A

10

ur.m.s0t

Luu0

)− 10
7

,
Luu
Luu0

=

(
1 +

7A

10

ur.m.s0t

Luu0

) 2
7

. (3.7)

However, there are opinions that Loitsianskii’s integral is not constant during the

decay, even if energy spectrum is E (k → 0) ∼ k4 (Batchelor & Proudman 1956;

Chasnov 1993). That is, if Loitsianskii’s integral depends on time (i.e. I ∼ tγ,

where γ is a constant.), the time evolutions of the TKE and integral length scale

are as follows:

u2r.m.s ∼ t2
5−γ
7 , Luu ∼ t

2+γ
7 . (3.8)

This means that non-invariance of Loitsianskii’s integral does not necessarily

preclude Batchelor turbulence.

Here, it is worth revisiting other energy spectra at low wavenumbers in homo-

geneous isotropic turbulence, as expanded by Davidson (2011). Equation (3.3)

could be rewritten as follows:

E (k) =
k2

π

∫ ∞

0

∂

∂r

(
r3u2r.m.sf (r)

) d

d (kr)

(∫ kr

0

sin (t)

t
dt

)
dr, (3.9)

If f (r → ∞) ∼ r−2 is satisfied, the energy spectrum at low wavenumbers can be

expanded

E (k → 0) =
ku2r.m.s

2

[
3r2f (r) + r3

∂f (r)

∂r

]
r=∞

−k
2

π

∫ ∞

0

r
∂2

∂r2
(
r3u2r.m.sf (r)

)
dr+· · · .

(3.10)

In this case, u2r.m.sL
2
uu becomes constant throughout the decay when using self-

similarity of the integral length scale. Furthermore, u2r.m.sλ
2 and u2r.m.sη

2 become

constant because this case requires complete self-similarity of the spectrum. How-

ever, as noted in §3.1, E (k → 0) ∼ k is a special case in the sense that it is the

only spectrum in which complete self-similarity over all scales can be maintained

at high Re (Davidson, 2011).

The energy spectrum at low wavenumbers can be expanded in series by Taylor

expansion of sin (kr) at k = 0. By truncating the Taylor series such as sin (kr) =
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kr − k2r2

2
sin (ϕ) , 0 < ϕ < kr, we obtain (Davidson, 2011):

E (k → 0) =
Lk2

4π2
− k3

2π

∫ ∞

0

⟨u · u′⟩ r3 sin (ϕ) dr. (3.11)

If f (r → ∞) ∼ r−4 is satisfied, E (k → 0) ∼ k3 is obtained. In this case, L

becomes invariant (=0) throughout the energy decay. This form of the energy

spectra at low wavenumbers yields the TKE decay of ⟨u2⟩ ∼ t−
4
3 . Other energy

spectra at low wavenumbers have been confirmed in a numerical simulation by

Lesieur & Ossia (2000), e.g. E (k → 0) ∼ ks, where 3 < s < 4. With regard

to these theories, considerable parts remain unclear, including physical meanings

(Davidson 2011).

3.2.2 TKE decay of grid turbulence

Analyses based on the self-similarity of correlation, structure function and energy

spectrum have led to predictions of the TKE decay exponent in homogeneous

isotropic turbulence (Kolmogorov 1941c; Dryden 1943; Saffman 1967; George

1992). Therefore, the TKE power decay law in grid turbulence has been investi-

gated to determine which theory expresses real turbulence.

In ‘regular’ grid turbulence, Comte-Bellot & Corrsin (1966) showed that the

decay exponent n lies in 1.15 < n < 1.33 in the ReM range of 17000–135000 after

straining by contraction for improving isotropy. Lavoie et al. (2007) showed that

n lies in 1.10 < n < 1.23 after straining by contraction and lies in 1.04 < n <

1.21 without contraction at ReM = 10400. Krogstad & Davidson (2010) showed

that n = 1.13±0.02. Further, they showed that u2r.m.sL
3
uu, which corresponds to

Saffman’s integral, is constant. From these results, the energy decay exponent

n has been measured to be close to Saffman’s energy decay of n = 6/5. On the

other hand, Batchelor & Townsend (1948b) and Bennett & Corrsin (1978) showed

that the energy spectrum should take the form E (k → 0) ∼ k4 for Batchelor

turbulence because they obtained u2r.m.s ∼ t−
5
2 in the final period of decay in

grid turbulence. Further, Schedvin et al. (1974) conducted the experiments at

high ReM of 408000 and suggested that n = 1. However, their experiments

were conducted at x/M = 35, 38, 40 and 41: Their test section was too short
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compared with the mesh size for properly determining the decay exponent and

realising quasi-homogeneous isotropic turbulence, as mentioned later.

For generating high Reλ turbulence, other types of turbulent generator have

been used. Gad-El-Hak & Corrsin (1974) measured the decay exponent in the

ReM range of 41800-73400 using an active grid, which injects air into the free

stream. For co-flow injection, which generates relatively isotropic turbulence,

they reported that n lies in 1.04＜ n＜ 1.28, with the lowest value of n corre-

sponding to the highest injection rate. However, significant inhomogeneities were

observed at the highest injection rate. For counter-flow injection, they estimated

1.00＜ n＜ 1.24. However, this arrangement also produced significant anisotropy

and inhomogeneities. Mydlarski & Warhaft (1996) conducted the experiments

with an active grid at Reλ = 319 and estimated the TKE decay exponent n =

1.21. Then, Antonia et al. (2013) reestimated the TKE decay exponent of Makita

(1991) and reported that n = 1.12 for an active grid at Reλ = 387.

With regard the TKE decay exponent n, George (1992) found that ⟨u2⟩ ∼ t−1

at very high Reynolds numbers. Then, he showed that there is a possiblity that

the TKE decay exponent depends on the turbulent Reynolds number and that

TKE decay asymptotes to ⟨u2⟩ ∼ t−1 at very high Reynolds numbers. Actually,

experimental (George 1992; George & Davidson 2004) and numerical (Burattini

et al. 2006) results asymptote to ⟨u2⟩ ∼ t−1 with increasing Reynolds num-

ber. Antonia et al. (2013) recently showed that TKE power law approaches

⟨u2⟩ ∼ t−1 with increasing Reynolds number. However, most previous high–

Reynolds–number experiments lack large-scale homogneities in cross-section (e.g.

Makita 1991; Kang et al. 2003). In that sense, it is unclear that ⟨u2⟩ ∼ t−1 is due

to E (k → 0) ∼ k. Note that the corresponding invariant, u2r.m.sL
2
uu=constant,

has not been confirmed in previous studies on grid turbulence. In contrast, Bu-

rattini et al. (2006), Huang & Leonard (1994) and Mohamedo & LaRue (1990)

suggested that n ̸= 1 at sufficiently high ReM . Davidson (2011) showed that

the energy spectrum corresponding to ⟨u2⟩ ∼ t−1, E (k → 0) ∼ k, is unlikely in

grid turbulence because its energy spectrum tensor diverges as k → 0 and long

range correlation f (r → ∞) ∼ r−2 is too strong. Therefore, he concluded that

the minimum energy decay rate in grid turbulence is probably that for Saffman
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turbulence and slight departure of the decay exponent from 6/5 for Saffman tur-

bulence may be the influence of A, which is a weak function of t as discussed later.

Thus, these asymptotic behaviour to ⟨u2⟩ ∼ t−1 should be carefully investigated

by means of experiments at high Reλ with large-scale homogeneities. This will

be a subject of future study and is out of scope in this paper.

3.3 Experiments

Schematic views of the experimental apparatus and the test section are shown

in figures 3.1(a) and 3.1(b), respectively. The experiments were conducted in a

closed-loop wind tunnel at Nagoya University（figure 3.1a), the same as that used

in Nagata et al. (2011) and Sasoh et al. (2014). The test section has a width of

0.994 m, height of 0.46 m and length of 4 m. The side walls of the test section

are made of acrylic resin, and the lower and upper walls are made of aluminium.

The contraction ratio is 12:1, and the background turbulence is less than 0.4%

of mean velocity. Turbulence was generated by grids (figure 3.2(a): M = 10 mm

and 25 mm, figure 3.2(b): M = 15 mm, 25 mm and 50 mm) installed at the

entrance of the wind tunnel’s test section, as shown in figure 3.1(b). Grid solidity

was σ = 0.36 for all grids. This value is typical of turbulence-generating grids

used in previous studies (e.g. Batchelor & Townsend 1948b; Bennett & Corrsin

1978; Gad-El-Hak & Corrsin 1974; Lavoie et al. 2007; Nagata et al. 2011). The

mesh Reynolds numbers were set to ReM = 6700, 9600, 16000 and 33000. The

experimental conditions are summarised in Table 3.1.

For streamwise and vertical velocity measurements, constant-temperature anemom-

etry (DANTEC Streamline) with an I-type hot-wire probe (DANTEC 55P11,

hereinafter referred to as ‘single wire’) and an X-type hot-wire probe (DANTEC

55P61, hereinafter referred to as ‘cross wire’) were used. The diameter of the

single wire was 5 µm and its length was 1.25 mm. The diameter of the cross

wire was 5 µm and its length was 1.25 mm; the separation between these two

sensors was 1 mm. The single wire was calibrated in the wind tunnel, and instan-

taneous streamwise velocity was calculated according to King’s law. The cross

wire was calibrated in yaw in the wind tunnel. A set of calibration data were

obtained for both hot-wire sensors by varying the yaw angle θ from -45◦ to 45◦
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x

z
y

Measuring region

Figure 3.1: Experimental setup: (a) wind tunnel overview and (b) schematic of

test section and measurement area

(a) (b)

Figure 3.2: Schematic of (a) cylindrical grid and (b) square grid

35



3.3 Experiments

in steps of 5◦, while maintaining a constant velocity across the probe. Then, the

effective velocity Ueff was calculated as Ueff = V f (θ) = V
√
cos2 θ + k2 sin2 θ

(Hinze 1959). Here, f (θ) is a yaw function and the unknown coefficient k for

each wire was determined from yaw-angle calibration. The Levenberg-Marquardt

method was used for calculating the unknown parameter. V was calculated from

V =
U1eff+U2eff

f1(θ)+f2(θ)
using the bisection method. Here, f1 (θ) and f2 (θ) are the

yaw functions of hot wires 1 and 2, respectively. Then, instantaneous stream-

wise velocity Uins. and instantaneous vertical velocity Vins. were calculated from

Uins. = V cos θ and Vins. = V sin θ. The frequency response of the single wire was

found to be approximately 60 kHz for U= 10 ms−1. The sampling rate fs in the

single-wire experiments was set to 50 kHz for obtaining reliable derivative quan-

tities, e.g. TKE dissipation rate ϵ. The sampling rate fs for the cross wire was

set to 40 kHz. The frequency response was found to be approximately 50 kHz for

U = 10 ms−1. For both measurements, the data sampling number was 1048576

and 10 measurements were conducted at each point for reducing statistical errors.

Measurements using the single wire were conducted from x = 500 mm to 2350

mm in steps of 50 mm at the centre of the wind tunnel. Measurements using the

cross wire were conducted from x = 500 mm to 2100 mm in steps of 50 mm at

the centre of the wind tunnel.

Furthermore, for confirming homogeneity, measurements were conducted in

the vertical direction at the most downstream location. We adjusted the mean

velocities to be the same as those in the decay characteristics experiments. Note

that homogeneity tends to break in the far downstream region because eddies

become larger relative to the tunnel side in that region. The sampling rate fs

for this measurement was set to 10 kHz. This value is sufficient for resolving the

Kolmogorov frequency. Measurements were conducted from y = 50 mm to 410

mm in steps of 20 mm. The data sampling number for this case was 262144 and

10 measurements were conducted at each point.

If we calculate derivative quantities directly without removing electric noise,

suspicious derivative quantities are obtained, and their values may depend on the

filter’s cutoff. In the case without electric noise removal, artificial signals having

the characteristics of white noise are seen. As a characteristic of white noise, the

power spectrum P (f) takes the form P (f) = const. with the same intensity for
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all frequency regions; therefore, the S/N ratio decreases in the high-wavenumber

region. The effect of electric noise is considerable in the one-dimensional dissipa-

tion spectrum. Therefore, we should remove these artificial signals for obtaining

reliable derivative quantities. There are mainly two methods of noise removal:

an analogue filter and a digital filter (with the use of Fourier transform, wavelet

transform and so on). In this study, we used a digital filter. Two methods are

used for calculating the Taylor microscale λ. In the first method, we used

λ2 =
u2r.m.s⟨(
∂u
∂x

)2⟩ =

∫ kmax

kmin
E11 (k1) dk1∫ kmax

kmin
k21E11 (k1) dk1

=
U2

4π2

∫ fmax

fmin
E11 (f) df∫ fmax

fmin
f 2E11 (f) df

(3.12)

where kmin = 2πfmin

U
is the lowest wavenumber which is determined from the data

number and kmax =
2πfmax

U
is the cutoff wavenumber.

The second method is the use of the Fourier expansion derivative. Let us

consider the derivative of signal x (t) and express x (t) in Fourier expansion. Then,

we have,

x (t) ∼ a0
2
+a1 cos (ω1t)+b1 sin (ω1t)+· · ·+anmax cos (ωnmaxt)+bnmax sin (ωnmaxt)

+ · · ·+ aN cos (ωN t) + bN sin (ωN t) , (3.13)

where ωN = πfs is the Nyquist frequency, whose value is higher than typical

Kolmogorov frequency, and the time derivative of above equation is as follows:

dx (t)

dt
∼ −ω1a1 sin (ω1t)+ω1b1 cos (ω1t)+· · ·−ωnmaxanmax sin (ωnmaxt)+ωnmax cos (ωnmaxt)

+ · · · − ωNaN sin (ωN t) + ωNbN cos (ωN t) . (3.14)

As shown in (3.14), the high sampling rate affects the derivative quantity be-

cause the Nyquist frequency ωN increases with an increase in the sampling rate.

Thus, we should truncate the irrelevant signal, whose frequency is higher than

the optimum frequency ωnmax in the Fourier space. Here, ωnmax is the optimum

frequency, which does not include the effects of white noise. Using the inverse

Fourier transform, we could calculate derivative quantities. We confirmed that

there are no differences between the first and the second methods when calculat-

ing λ. Thus, these methods are reliable for obtaining derivative quantities, e.g.

37



3.3 Experiments

TKE dissipation rate ϵ, derivative skewness S ∂u
∂x

and derivative flatness F ∂u
∂x
. The

results of S ∂u
∂x

and F ∂u
∂x

are shown in §3.4 and are in good agreement with those

of a previous study (Sreenivasan & Antonia, 1997).

The longitudinal and lateral integral length scales, Luu and Lvv, are defined as

the integration of the longitudinal and lateral correlation coefficients, f (r) and

g (r) = ⟨v (x) v (x+ rex)⟩ /
⟨
v (x)2

⟩
, from 0 to ∞, respectively. However, in the

pratical calculation of the integral length scales, the correlation coefficient can

never be measured for infinite separation and the correlation at large separation

is affected by noise. In this study, we truncated the integration from 0 to rf for

calculating Luu and the integration from 0 to rg for calculating Lvv:

Luu =

∫ rf

0

f (r) dr, Lvv =

∫ rg

0

g (r) dr (3.15)

In this study, rf was set to the first zero-crossing point and rg was set to the

second zero-crossing point, where g (r) turns into positive from negative. We also

used Taylor frozen hypothesis. Typical profiles of f (r) and g (r) are shown in the

next section.
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3.4 Results and discussion

3.4 Results and discussion

3.4.1 Homogeneities and isotropy

In this study, we are interested in the behaviour of large-scale structures. Thus,

we first demonstrate that there are no or negligible effects of wind tunnel size on

the measurements. To this end, we carefully checked the homogeneities of the

vertical direction (cross-section) at the most downstream position. Figure 3.3

shows the vertical distribution of ur.m.s normalised by U at the most downstream

position . The vertical coordinate y is normalised by Luu. As shown in figure

3.3, side wall effects are very small except for Sq50a, and we confirmed good

homogeneities across a wide range in the vertical direction. Note that width

of the test section is more than twice as large as the height. With regard to

Sq50a, we do not make quantitative discussions of the statistics because of the

narrow range of homogeneities. The large homogeneous domain ensures that the

turbulence has enough time to settle down to a homogeneous shear-free state.

Thus, the bulk properties of a turbulent flow evolving in a very large domain

(LDomain ≫ Luu) are not influenced by the remote boundaries.

We expect the skewness S and the flatness F of homogeneous isotropic turbu-

lence to be 0 and 3, respectively, for all velocity components. However, the dis-

tribution of fluctuating velocities in grid turbulence is expected to depart slightly

from the Gaussian distribution owing to slow streamwise decay. Figure 3.4 shows

the streamwise distribution of streamwise velocity skewness Su (= ⟨u3⟩ /u3r.m.s)
and flatness Fu (= ⟨u4⟩ /u4r.m.s). As shown in figure 3.4, the positive values of

Su near the grid decrease with increasing downstream distance. These results

are consistent with those of Bennett & Corrsin (1978) and Mohamedo & LaRue

(1990). Note that the values of Su approach 0 around x/M = 50–60, while Fu ∼
3 in the entire streamwise direction. This implies that there are some effects of

shear in the region x/M ＜ 50–60.

For isotropic turbulence, the ratios u2r.m.s/v
2
r.m.s and u2r.m.s/w

2
r.m.s should be

unity everywhere, where v2r.m.s and w2
r.m.s are the vertical and spanwise turbu-

lent intensities, respectively. However, as observed in previous experiments (e.g.

Comte-Bellot & Corrsin 1966; Lavoie et al. 2007), ur.m.s is slightly larger than
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3.4 Results and discussion

-10 0 1010-4
10-3
10-2
10-1

 y/Luu
 ur.m.s/U

Figure 3.3: Vertical distribution of ur.m.s/U . The vertical coordinate y is nor-

malised by Luu. For symbols, see Table 3.1.

0 100 200-0.2
-0.1

0
0.1
0.2

 x/M

 Su

50 150 0 100 2002.82.93
3.13.2

 x/M

 Fu

50 150
Figure 3.4: Streamwise distribution of streamwise velocity skewness Su and flat-

ness Fu. For symbols, see Table 3.1.
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vr.m.s and wr.m.s in grid turbulence. The ratio of u2r.m.s and v2r.m.s is shown in

figure 3.5. Additionally, the profiles of u2r.m.s/v
2
r.m.s and u2r.m.s/w

2
r.m.s in Lavoie

et al. (2007) and Krogstad & Davidson (2010) are shown in figure 3.5. Profiles of

u2r.m.s/w
2
r.m.s without contraction in Lavoie et al. (2007) (Sq25la: □□ , Cy25lb: △△ ,

Cy25la: ▽▽ ) are nearly constant for x/M＞ 50, although slight anisotropies stand

out. These anisotropies can be reduced by introducing the contraction as shown

by Lavoie et al. (2007) (not shown in figure 3.5). In contrast, the ratios given in

Krogstad & Davidson (2010) are close to unity. Our results shows that values

of u2r.m.s/v
2
r.m.s for Cy25a, Cy25b, Sq25a, Sq25b and Sq50a are close to unity.

Profiles of u2r.m.s/v
2
r.m.s for Cy10a, Sq15a and Sq15b show slight anisotropy; they

are close to the results of Lavoie et al. (2007).

To investigate the degree of anisotropy and the effects of different grid ge-

ometries, autocorrelation coefficients are investigated. In homogeneous isotropic

turbulence, the relationship between f (r) and g (r) is found to be as follows from

the relationship g (r) = f (r) + 1
2
r ∂f(r)

∂r
(Batchelor, 1953):∫ ∞

0

rmg (r) dr =
1−m

2

∫ ∞

0

rmf (r) dr (m ≥ 0) . (3.16)

From (3.16), g (r) is negative for large r if f (r) is positive for large r. Figure 3.6

shows f (r) and g (r) at x/M = 50. As shown in figure 3.6, the autocorrelation

coefficients have slightly different forms depending on grid geometry. Similar

observation was made in Lavoie et al. (2005), although they made the observation

from the structure function. As shown in figure 3.6, g (r) agrees well with the

g (r)cal. calculated using the isotropic relationship for Sq25a and Sq25b. Note that

g (r) for the square grids has a smaller negative value than that for the cylindrical

grids. For both grids, g (r) takes large negative values at lower Reλ than those

at high Reλ. This overshoot at large separations suggests that the turbulence

generated by the cylindrical grids is more periodic than that generated by the

square grids. Then, the form of the autocorrelation coefficients depend on Reλ.

To demonstrate that the present grid turbulence is a typical one (which is free

from the tunnel’s wall effect) and to confirm that reliable derivative quantities can

be obtained, we compared derivative skewness S ∂u
∂x

(
=
⟨
(∂u/∂x)3

⟩
/
⟨
(∂u/∂x)2

⟩ 3
2

)
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10 50 1000.91
1.11.21.31.41.5

 x/M ur.m.s2 /vr.m.s2 , ur.m.s2 /wr.m.s2

Figure 3.5: Streamwise distribution of stress ratios. For symbols, see Table 3.1.

Also included are distributions from Krogstad & Davidson (2010); (ur.m.s/vr.m.s)
2

(LDA): ●, (ur.m.s/vr.m.s)
2 (CTA) : ▲, (ur.m.s/wr.m.s)

2 (CTA) : ■, q2/3u2r.m.s
(CTA) : ◎ and Lavoie et al. (2007). The symbols used in Lavoie et al. (2007)

are defined in Table 3.1.

0 20 40 6000.20.40.60.81

 r/λ Autocorr
elation co
efficients  f(r) g(r) g(r)cal.Cy25a

0 20 40 6000.20.40.60.81

 r/λ Autocorr
elation co
efficients  f(r) g(r) g(r)cal.Sq25a

0 50 10000.20.40.60.81

r/λ Autocorr
elation co
efficients f(r) g(r) g(r)cal.Cy25b

0 50 10000.20.40.60.81  f(r) g(r) g(r)cal.
 Autocorre
lation coe
fficients

r/λ

Sq25b

Figure 3.6: Measured and calculated (subscript cal.) distribution of autocorrela-

tion coefficients for different grid geometries and Reλ.
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100 101 102 103 10410-1
100
101
102

 Reλ
 -S∂u/∂x

 Kerr (1985) Van Atta (1980) Wake Plane Jet Antonia (1980) Jimenz (1993) Gibson (1970) Ishihara (2007)

Figure 3.7: Relationship between derivative skewness S ∂u
∂x

and Reλ. The data are

compared with those compiled by Sreenivasan & Antonia (1997). For symbols

used in the present study, see Table 3.1. The symbols used in Sreenivasan &

Antonia (1997) are shown in the figure. See Sreenivasan & Antonia (1997) about

citations. DNS results for kmaxη ≈ 1 in Ishihara et al. (2007) are also included.

100 101 102 103 104100
101
102

 Reλ
 F∂u/∂x

Figure 3.8: Relationship between derivative flatness F ∂u
∂x

and Reλ. Symbols are

the same as those in figure 3.7.
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and derivative flatness F ∂u
∂x

(
=
⟨
(∂u/∂x)4

⟩
/
⟨
(∂u/∂x)2

⟩2)
with those compiled by

Sreenivasan & Antonia (1997) in figures 3.7 and 3.8: We confirmed good agree-

ments with the previous results.

3.4.2 Energy decay

Figure 3.9 shows the decay of turbulent intensity normalised by U2. It can be

seen that u2r.m.s/U
2 largely depends on M and grid geometry, but it has a minor

ReM dependence for the same M value and grid geometry.

In grid turbulence, streamwise turbulent intensity decays according to the

following power law:

u2r.m.s
U2

= a
( x
M

− x0
M

)−n
, (3.17)

where a is a constant. The methods for calculating n and the virtual origin

x0 are very important while discussing the energy decay characteristics of grid

turbulence. In (3.17), three unknowns, a, x0 and n are included. In this study,

the two methods used by Krogstad & Davidson (2010) are adopted.

In the first method, called the regression method (RM), optimum data that

do not include data from inadequate regions (i.e. the upstream region, where

turbulence is not fully developed, and the region corresponding to the final period

of decay) are selected. Then, the objective function is determined using the

data from the adequate region. First, all data measured from the upstream to

the downstream direction are employed for obtaining a power function using a

nonlinear least-squares method. Here, we used the Levenberg-Marquardt method.

Let xlow be the first streamwise position for obtaining the smallest deviation

between the measured data and the objective function. Second, the data are

fitted from the most downstream point by fixing xlow. Let xhigh be the position

for obtaining the smallest deviation. Finally, the power function exponent is

obtained by fitting the data in the regions between xlow and xhigh.

The second method is called the maximum decay range method (MDRM)

suggested by Lavoie et al. (2007). In this method, some virtual origins are given,

and the decay exponent is searched for by fitting the power function over different
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3.4 Results and discussion

regions. To this end, at least 10 points are fixed in the most downstream region.

Let xstart be the starting point for fitting, and let n (xstart) be the decay exponent

calculated from the fitting process originating from xstart.

n (xstart) = ln

(
a

u2
r.m.s

U 2 (xstart)

)
/ln

(
xstart − x0

M

)
(3.18)

The Levenberg-Marquardt method was used for fitting. The virtual origin was

determined from among the assumed values that provided the minimum scatter-

ing of n. Finally, the decay exponent is obtained by averaging for the determined

x0 values.

Table 3.1 lists the values of n obtained using the two methods. In addition,

the results of Krogstad & Davidson (2010) (Ref. a in Table 3.1) and Lavoie

et al. (2007) (Ref. b in Table 3.1) are listed. In both methods, the values of n

are close to 6/5 for Saffman turbulence. Additionally, the results of Krogstad &

Davidson (2010) and Lavoie et al. (2007) are close to 6/5. Lavoie et al. (2007)

investigated the effects of initial conditions using a square mesh, cylindrical mesh

and a cylindrical mesh wound by a small helical wire. They showed that the

decay exponent for square grids without contraction is n = 1.04±0.02 and that

for the other cylindrical grids without contraction is n ≈ 6/5. Note that the

values of the decay exponents in our results, the results of Krogstad & Davidson

(2010) and those of Lavoie et al. (2007) are different from the previously adopted

values of n = 1.25 (Comte-Bellot & Corrsin, 1966) and n = 1.3 (Mohamedo &

LaRue, 1990). Furthermore, they are different from n = 1, which was predicted

by Dryden (1943). In addition, the values of the virtual origins are never zero, as

suggested by Mohamedo & LaRue (1990). The values of xlow for RM and xstart

for MDRM are listed in Table 3.1. On average, the decay of turbulent intensity

is well fitted using the power law in the region x/M ＞ 50 for the square grids

and x/M ＞ 60 for the cylindrical grids.

Figure 3.10 shows the power law decay. Hereafter, x0 obtained by RM is

used. Speziale & Bernard (1992) showed that TKE decay in completely self-

similar isotropic turbulence is determined by the initial conditions. With regard

to the difference in grid geometry (i.e. Sq25a and Cy25a, Sq25b and Cy25b in

our results), there are no differences in terms of the decay exponents. In contrast,
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3.4 Results and discussion

turbulence generated by the cylindrical grids is slightly anisotropic compared with

that generated by the square grids, as mentioned in §3.1, and there are slight

differences in the starting points of their respective fully developed regions. For

turbulence generated by the cylindrical grids, the fully developed region tends to

be far from the grids, while for turbulence generated by the square grids, the fully

developed region tends to start slightly closer to the grids. In fact, the power law

decay regions start from a farther location for the cylindrical grids in RM and

MDRM. This is due to the difference in the wake-development processes. In fact,

Lavoie et al. (2007) showed that the peaks in the spectra remain at x/M = 20,

and this is associated with strong periodic motions in the flow. Then, there are

larger overshoots in autocorrelation coefficients for the cylindrical grids, as shown

in figure 3.6. Thus, it is possible that the turbulence generated by the cylindrical

grids needs a longer distance to be fully developed compared with that generated

by the square grids. Note that the values of x0 are similar for both cylindrical

and square grids.

Figure 3.11 shows the streamwise variation in Reλ. In homogenous isotropic

turbulence, Reλ is represented by Reλ ∼ t
−n+1

2 . Figure 3.11 also shows the

theoretically estimated Reλ ∼ (x/M − x0/M)−0.1 for Saffman turbulence (i.e.

n = 6/5). Hereafter, the coloured symbols for this study correspond to the

downstream regions of xlow/M .

3.4.3 TKE dissipation rate and effect of coefficient A

It is known that the following relation is satisfied at high Reλ from experiments

and numerical simulations (e.g. Taylor 1935; Sreenivasan 1984; Kaneda et al.

2003):

du2r.m.s
dt

= −Au
3
r.m.s

Luu
, (3.19)

The relationship between the coefficient A and Reλ was investigated by means

of DNS (Kaneda et al., 2003): A is almost constant at high Reλ. When (3.19)

holds, TKE dissipation rate can be considered to be dominated by large-scale

eddies. Thus, the energy spectrum at low wavenumbers plays an important role
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500 100010-4
10-3
10-2

 x [mm]
 ur.m.s2 /U2

2000
Figure 3.9: Turbulent intensity decay. For symbols, see Table 3.1.

10 50 10010-4
10-3

 x/M-x0/M
 ur.m.s2 /U2

 Slope -6/5

Figure 3.10: Power law decay of u2r.m.s/U
2. The results of Krogstad & Davidson

(2010) are included as well. For symbols, see Table 3.1.
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0 100 2000
50

100
150

 Reλ

 x/M
Figure 3.11: Streamwise variation in Reλ. For symbols, see Table 3.1. The lines

show Reλ ∼ (x/M − x0/M)−0.1.

in the turbulent field. For instance, E (k → 0) ∼ km yields the TKE decay expo-

nent n = 2 (m+ 1) / (m+ 3) using self-similarity and (3.19) (Sagaut & Cambon,

2008). Note that this relationship is satisfied only when A is constant. Krogstad

& Davidson (2010) showed that A is a weak function of time in grid turbulence.

Therefore, they concluded that the TKE decay exponent departs slightly from

Saffman’s theoretical value. For investigating the behaviours of A, TKE dissipa-

tion rate ϵ should be calculated with high accuracy. In homogeneous isotropic

turbulence, the left side of (3.19) becomes equivalent to ϵ = 2ν ⟨SijSij⟩ from the

TKE equation because there are no spatial gradients for the statistical quanti-

ties, where Sij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. Additionally, ϵ is known for a physical quantity

that characterises turbulence, and the following equation holds for homogeneous

isotropic turbulence.

ϵ = ν
⟨
ω2
⟩
= 2ν

∫ ∞

0

k2E (k) dk = −3

2

du2r.m.s
dt

(3.20)
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(a)

(b)

10-4 10-3 10-2 10-1 10010-410-310-210-1100101

 k15/3E11(k1)
/ε2/3

 k1η

10-4 10-3 10-2 10-1 10010-210-1100101102103104105

 E11(k1)(ε
ν5 )(−1/4)

 k1η

 Slope -5/3

Figure 3.12: (a) One-dimensional longitudinal spectra and (b) one-dimensional

longitudinal spectra multiplied by (k1η)
5/3. Symbols correspond to Cy10a : ▽

—, Sq15a : ◦ —, Sq15b : △ · · · , Cy25a : ⊕ —, Cy25b : ⊗ · · · , Sq25a : � —,

Sq25b : × · · · , Sq50a : + · · · .
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Figure 3.13: Streamwise variation in ϵ
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(a)

(b)
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Figure 3.14: (a) Streamwise variation in A and (b) dependence of A on Reλ in

the power law decay region of x/M > xlow/M . For symbols, see Table 3.1. Also

included are results from Krogstad & Davidson (2010): ◎ and grid turbulence

data compiled by Sreenivasan (1984). See Sreenivasan (1984) about citations.
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3.4 Results and discussion

In the experiments, we have difficulties in calculating ϵ without any assump-

tions. In grid turbulence, turbulence is nearly homogeneous and isotropic, as

shown before. In this study, ϵ is calculated using three methods (Krogstad &

Davidson, 2010). In the first method, assuming isotropy, ϵ can be written as

follows:

ϵ = 15ν

⟨(
∂u

∂x

)2
⟩

= 15ν

∫ ∞

0

k21E11 (k1) dk1 (3.21)

The estimation of ϵ by (3.21) requires only the measurement of u. This method

is valid for relatively high-Reynolds-number flows. The energy dissipation rate

calculated using (3.21) is denoted by ϵiso. In the second method, ϵ was calculated

from TKE decay, ϵ = −1
2

d⟨u2⟩
dt

= −U
2

d⟨u2⟩
dx

, using the isotropy assumption and

Taylor’s frozen hypothesis. The TKE dissipation rate thus calculated with the

single wire is denoted by ϵq2,iso, and that calculated with the cross wire is denoted

by ϵq2 . Here, we assumed ⟨u2⟩ = u2r.m.s+2v2r.m.s. In the third method, the univer-

sality of inertial subrange is used. Kolmogorov’s second hypothesis predicts a spe-

cific form of the universal velocity spectrum called the ‘inertial subrange’, which

is valid for wavenumbers k between the large-scale energy-containing wavenum-

ber (kLuu) region and the small-scale viscous dissipation (kη) region. If such a

wavenumber regime exists, its spectrum will depend only on k and the energy flux

from the larger to the smaller scales at the energy dissipation rate ϵ. The inertial

subrange for the energy spectrum is determined from dimensional analysis:

E (k) = Ckϵ
2
3k−

5
3 for kLuu ≪ k ≪ kη, (3.22)

where Ck is the constant. For a one-dimensional longitudinal spectrum, Euu (k1) =

C1ϵ
2
3k

− 5
3

1 is obtained for isotropic turbulence, where k1 is the longitudinal wavenum-

ber. In this study, C1 ≈ 0.4, as reported in the DNS results for homogeneous

isotropic turbulence (Kaneda et al., 2003) as well as in experiments on various

types of turbulence (Sreenivasan, 1995), was adopted. Figure 3.12(a) shows the

one-dimensional longitudinal spectra. It can be confirmed that the -5/3 power

law in the inertial subrange expands with increasing Reλ (with increasing ReM).

In contrast, the energy spectra for Cy10a and Sq15a have narrow regions ex-

hibiting the -5/3 power law because of relatively low Reλ. Thus, we used the
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profiles multiplied by (k1η)
5
3 (figure 3.12b) to calculate the value of ϵ. The TKE

dissipation rate calculated using the third method is denoted by ϵspec. Figure

3.13 shows the streamwise variation in ϵ calculated using the three methods. As

shown in figure 3.13, we can see good agreement among ϵiso, ϵq2,iso, ϵq2 and ϵspec.

Thus, it is considered that local isotropy is satisfied. In this study, ϵiso was used

for calculating A because of the lowest scatter.

Streamwise variations in A are shown in figure 3.14(a). Here, A is calculated

as follows:

3A

2
=

ϵLuu
u3r.m.s

. (3.23)

With the exception of Cy10a, A is a decreasing function in the upstream region.

This tendency is consistent with the results of Krogstad & Davidson (2010).

However, in the downstream region of x/M ＞ xlow/M , where turbulence is fully

developed and freely decaying, A is almost constant except for Cy10a. Variations

inA againstReλ are shown in figure 3.14(b). Here, the data in the power law decay

region (i.e. x/M ＞ xlow/M) are plotted. The results of Krogstad & Davidson

(2010) and the data of grid turbulence compiled by Sreenivasan (1984) are also

shown in figure 3.14(b). As shown in this figure, we could confirm good agreement

with previous grid turbulence results: A tends to become constant with increasing

Reλ.

In contrast, A is a function of time even for fully developed turbulence when

Reλ is low (for Cy10a in this study). This tendency was also observed in a DNS

(Kaneda et al., 2003). In this case, the TKE decay and the evolution of the

integral length scale are represented by (3.24) and (3.25) when Saffman’s integral

is constant (Krogstad & Davidson, 2010).

u2r.m.s
u

′2
0

=

[
1 +

5

6

ur.m.s0
Luu0

∫ t

0

A (t) dt

]− 6
5

(3.24)

Luu
Luu0

=

[
1 +

5

6

ur.m.s0
Luu0

∫ t

0

A (t) dt

] 2
5

(3.25)
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If A is a power function of time, A (t) ∼ tp, the following equations can be derived

(Krogstad & Davidson, 2010).

u2r.m.s ∼ t−
6
5
(1+p) (3.26)

Luu ∼ t
2
5
(1+p) (3.27)

For Cy10a, p ∼ 0.1 is determined using the least squares method. Note that

p ≈ 0 for other cases at x/M ＞ xlow/M (see figure 3.14(a)). Thus, u2r.m.s ∼ t−1.32

and Luu ∼ t0.44 correspond to Saffman turbulence for Cy10a.

3.4.4 Length scales

In grid turbulence, λ2 is linearly proportional to distance if the TKE power law

decays following (3.17) and isotropy is satisfied (e.g. this assumption corresponds

to (3.20)). Further, appling Taylor frozen hypothesis, we obtain:

λ2 =
u2r.m.s⟨

(∂u/∂x)2
⟩ = 15ν

u2r.m.s
ϵ

= −10ν

U

u2r.m.s
du2r.m.s/dx

=
10ν

Un
(x− x0) . (3.28)

When n = 6/5 for Saffman turbulence is applied to (3.28),

λ2

M2
=

25

3ReM

( x
M

− x0
M

)
. (3.29)

When Saffman’s integral is constant and A (t) ∼ tp is compensated for, Luu and

Lvv are represented by

Luu
M

∝ Lvv
M

∝
( x
M

− x0
M

) 2
5
(1+p)

. (3.30)

Similarly, λ is represented by

λ2

M2
=

25

3ReM (1 + p)

( x
M

− x0
M

)
. (3.31)
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500.3
0.8

200 x/M-x0/M

 Luu/M
2  Theory Slope 2/5         ( for M =10, slope is 2(1+p)/5)

Figure 3.15: Streamwise variation in Luu/M . For symbols, see Table 3.1. The

lines show the theoretical slope 2/5 (for Cy10a, slope is 2 (1 + p) /5).

500.3
0.82Lvv/M

x/M-x0/M

2

200
Figure 3.16: Streamwise variation in 2Lvv/M . For symbols, see Table 3.1. The

lines are the same as those in figure 3.15.
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100 2000
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 x/M-x0/M

 λ2 /M2
 Theory Slope 25/(3ReM)          ( for M=10, slope is 25/( 3ReM (1+p))

Figure 3.17: Streamwise variation in λ2/M2. For symbols, see Table 3.1.

The streamwise variations in Luu, Lvv and λ
2 are shown in figures 3.15, 3.16 and

3.17, respectively. Figures 3.15 and 3.16 show that Luu and Lvv grow according to

(3.30) for Saffman turbulence. Note that isotropic relationships, i.e. Luu = 2Lvv,

are confirmed except for Cy10a, which is a slightly anisotropic case. Similar

observations were also made by Antonia et al. (2003), who showed that Luu ∼
Lvv ∼ t

2
5 ; however, in their case, Luu/Lvv was 2.75. For Cy10a, which is the most

anisotropic case in this study, this ratio is about 2.5. Figure 3.17 shows that

λ2 grows linearly and that the profiles are well described by (3.31) for Saffman

turbulence.

3.4.5 Invariants

The invariants u2r.m.sL
3
uu and v2r.m.sL

3
vv corresponding to Saffman turbulence are

shown in figures 3.18 and 3.19, and the invariants u2r.m.sL
5
uu and v2r.m.sL

5
vv corre-

sponding to Batchelor turbulence are shown in figures 3.20 and 3.21, respectively.

Here, the invariants are normalised using U and M . Figures 3.18 and 3.19 show

that Saffman’s integral becomes invariant regardless of grid geometry and exam-
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3 )

Figure 3.18: Streamwise variation in normalised u2r.m.sL
3
uu. The results of

Krogstad & Davidson (2010): ◎ are also included. For symbols, see Table 3.1.
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Figure 3.19: Streamwise variation in normalised v2r.m.sL
3
vv. For symbols, see Table

3.1. 58



3.4 Results and discussion
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Figure 3.20: Streamwise variation in normalised u2r.m.sL
5
uu. For symbols, see Table

3.1.
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Figure 3.21: Streamwise variation in normalised v2r.m.sL
5
vv. For symbols, see Table

3.1. 59
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10-4
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(ur.m.s2Luu2 )/ (U2M
2 )
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Figure 3.22: Streamwise variation in normalised u2r.m.sL

2
uu. For symbols, see Table

3.1.
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Figure 3.23: Streamwise variation in normalised v2r.m.sL

2
vv. For symbols, see Table

3.1.
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ined ReM . In addition, it is shown that for the same grid geometry and same

ReM (i.e. comparison of Sq15b and Sq25a), normalised u2r.m.sL
3
uu and v

2
r.m.sL

3
vv are

larger for small M . In contrast, for different grid geometries and the same ReM

(i.e. comparisons of Cy25a and Sq25a, Cy25a and Sq25b), normalised u2r.m.sL
3
uu

and v2r.m.sL
3
vv for the cylindrical grids are smaller than those for the square grids.

For the sameM and grid geometry (i.e. comparisons of Sq15a and Sq15b, Cy25a

and Cy25b, Sq25a and Sq25b), normalised u2r.m.sL
3
uu and v2r.m.sL

3
vv are larger for

large ReM .

Then, it is suggested from TKE decay that the region where u2r.m.sL
3
uu and

v2r.m.sL
3
vv become constant is farther for the cylindrical grids than that for the

square grids. This is probably due to the difference in the wake development

processes of these grids, and it is considered that the turbulence generated by

square grids is better mixed than that generated by the cylindrical grids. Saffman

(1967) predicted that the linear impulse would be zero if the turbulent wake of

the grids were to retain a periodic structure. Although turbulent flows generated

by grids have a periodic structure near the grids, mixing takes place gradually,

and the flows change to fully developed turbulent fields. Thus, it is possible

that periodic structures do not exist permanently in the ReM range used herein.

Therefore, this presents the possibility that grid turbulence at moderateReλ could

be Saffman turbulence. In contrast, figures 3.20 and 3.21 show that Loitsianskii’s

integrals do not become invariant.

Finally, the invariants u2r.m.sL
2
uu and v2r.m.sL

2
vv, which correspond to complete

self-similarity of the energy spectrum and ⟨u2⟩ ∼ t−1, are shown in figures 3.22

and 3.23, respectively. From these figures, it is shown that u2r.m.sL
2
uu and v

2
r.m.sL

2
vv

are not constant in the decay region.

These results are consistent with the conclusions of Krogstad & Davidson

(2010). In this study, the same conclusion as that of Krogstad & Davidson (2010)

was obtained for a wide range of M and ReM values for both the cylindrical and

square grid bars. These results support the hypothesis that grid turbulence is a

type of Saffman turbulence at moderate Reλ.
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3.5 Conclusions

The energy decay characteristics and invariants of grid turbulence were investi-

gated for five grids (square bars with mesh sizes M = 15, 25 and 50 mm and

cylindrical bars with mesh sizes M = 10 and 25 mm) and four mesh Reynolds

numbers (ReM = 6700, 9600, 16000 and 33000). The main results of this study

are as follows.

1. Decay exponents of TKE in grid turbulence are close to Saffman’s theoret-

ical value of 6
5
(for the M = 10 mm grid, 6

5
(1 + p) ∼ 1.32) in all cases.

There are almost no differences in the TKE decay exponents of different

grid geometries (i.e. square, cylindrical). However, turbulence generated

by cylindrical grids tends to develop fully at further distances than that

generated by square grids.

2. In the fully developed region, the integral length scales Luu and Lvv grow

according to Luu ∼ 2Lvv ∝ (x/M − x0/M)2/5 (for the M = 10 mm grid,

Luu ∝ (x/M − x0/M)
2
5
(1+p) ∼ (x/M − x0/M)0.44), and the Taylor mi-

croscale λ grows according to λ ∝ (x/M − x0/M)
1
2 .

3. u2r.m.sL
3
uu and v

2
r.m.sL

3
vv, which correspond to Saffman’s integral, become con-

stant in the energy decay region in all cases, regardless of grid geometry.

However, the region where u2r.m.sL
3
uu and v2r.m.sL

3
vv become constant is far-

ther for the cylindrical grids than that for the square grids. Then, u2r.m.sL
3
uu

and v2r.m.sL
3
vv are conserved. In contrast, u2r.m.sL

5
uu and v2r.m.sL

5
vv, which cor-

respond to Loitsianskii’s integral, and u2r.m.sL
2
uu and v2r.m.sL

2
vv, which corre-

spond to the complete self-similarity of the energy spectrum, do not become

constant at moderate Reynolds numbers.

These results suggest that the grid turbulence generated by a square or a

cylindrical grid is a type of Saffman turbulence for the ReM range of 6700–33000

(Reλ = 27–112).
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Chapter 4

Changes in grid turbulence

interacting with a weak shock

wave

4.1 Introduction

A lot of efforts have been devoted to clarify the mechanism of the interaction

between turbulence and a shock wave. However, the physical mechanism for each

change in physical quantities has not been well understood because of the complex

linear and nonlinear effects, in which turbulence has an impact on a shock wave,

and vice versa.

Previous studies (see §1.1.2.1 and §1.1.2.2) have reached an agreement that

the shock wave amplifies turbulence kinetic energy (TKE). However, further in-

vestigation is required with regard to the changes in the length scales because

previous results are not consistent. In addition, previous studies mainly focus

on the interaction between high–Mach–number turbulence and a shock wave and

few studies focus on the interaction between low-Mach-number turbulence and a

shock wave. The former studies are important in advances in combustion pro-

cess and space physics, whereas the latter is directly related with a sonic boom

problem, in which a shock wave propagates in the atmosphere. In addition, it

is expected that the difference in turbulent Mach-number yields the different

changes in turbulent characteristics after the interaction. In fact, Briassulis et al.
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4.2 Experiments

(2001) concluded that the growth rate of shear layers in a high-Mach-number flow

is different from that in a low-Mach-number flow. Wang et al. (2012) showed by

DNS that the magnitude of the derivative skewness is larger than 1 in high-

Mach-number turbulence, and this is much larger than that in low-Mach-number

turbulence. This indicates that the impact of a shock wave on other turbulence

characteristics can be different between in high- and low-Mach-number turbu-

lence. In other words, the turbulent Mach-number plays an important role on

the turbulence-shock wave interaction.

In this study, changes in turbulence characteristics after the interaction with

a weak shock wave are experimentally investigated in low-Mach-number (i.e.

divergence-free) turbulence. To the best of my knowledge, there is no study on

the changes in divergence-free turbulence interacting with a shock wave. The pur-

pose of the present study is to obtain reliable experimental data in divergence-free

grid turbulence after the interaction. Furthermore, we try to explain the change

in turbulence from the viewpoint of initial turbulent Mach number (i.e. initially

divergence-free or curl-free turbulence).

4.2 Experiments

4.2.1 Experimental apparatus

The experiments were conducted in a closed-loop wind tunnel at Nagoya Univer-

sity, the same as that used in §3. A shock wave is generated by a diaphragm-less

shock tube using a quick piston valve and emitted from the open end of the shock

tube, which is located at (x, y, z) = (1500 mm, 0, 275 mm) and directed vertically

downward across the turbulent flow (figure 4.1 (a). This shock tube was modified

from the previous study (Sasoh et al., 2014) and is redesigned to generate stronger

shock wave. The deriven section of the shock tube which is with an atmospheric

pressure has a total length of 3565 mm and 21.3 mm in inner diameter. Dry air

is charged into the driver air reservoir to avoid freezing of water.

The differential pressure between low and high pressure rooms is set to 900

kPa. Shock Mach-number in the shock tube is calculated by Ms = D/∆t/C0,

where ∆t is the time concerning a shock wave passing the distance D and C0
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x

(b)(a)
R

y
z

D D

Figure 4.1: Schematic view of (a) the experimental apparatus combining the wind

tunnel and shock wave generator and (b) the square grid. Here, R = 600 mm is

the distance from the open end of the shock wave generator to the hot–wire.

is the sound speed. In the present study, ∆t is estimated from pressure signals

measured by two piezoelectric pressure tranducers (H112A21, PCB Piezotronics

Inc., the sensitivity is 7.25 mV/kPa and rise time is less than 2.0 µs), which are

set up in the shock tube with a distance D = 430 mm. The results after 100

measurements show that the average shock Mach-number MsAve is 1.617 with a

standard deviation of 0.002, while theoretical value is 1.608. Thus the present

experimental system has quantitatively sufficient reliability and repeatability.

Turbulence was generated by grids (figure 4.1 (b)) installed at the entrance of

the test section shown in figure 4.1 (a). Here,M is the grid mesh size and d is the

thickness of the grid. The grid solidity is σ = 0.36 for all the grids. Coordinates

x, y and z refer to the downstream, spanwise and vertical directions, respectively,

with the origin being at the base of the test section’s entrance.

4.2.2 Experimental conditions and methods

The experimental conditions of grid turbulence are summarized in Table 4.1. The

mesh Reynolds numbers were set to ReM = UmeanM/ν = 9600, 16700, 20000,

33000, 60000 and 66700, where Umean is the mean velocity and ν is the kinematic

viscosity. Here, MU ( = Umean/C0) and Mt ( = ur.m.s/C0) are the Mach num-
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ber based on the mean velocity and the turbulent Mach number, respectively.

Reλ = ur.m.sλ/ν is the Reynolds number based on the Taylor microscale λ and

L is the streamwise integral length scale defined by the integration of autocor-

relation function. Here, the Taylor’s frozen hypothesis was used for calculating

λ and L. The characteristics of the shock wave were investigated by using three

piezoelectric pressure tranducers with acceleration compensation (113B28, PCB

Piezotronics Inc., the sensitivity is 14.5 mV/kPa and the rise time is 1 µs.), lo-

cated at (x, y, z) = (925 mm, 0, 0), (1025 mm, 0, 0) and (1130 mm, 0, 0). The

hot wire was placed at (x, y, z) = (900 mm, 0, 275 mm). A shock wave prop-

agates spherically from the open end. The shock Mach-number at the probe

location estimated from the geometrical condition is about 1.05 and it is fixed

in all flows. We also confirmed the propagation of the shock wave by means of

Schlieren photography.

Instantaneous streamwise velocity is measured by using hot wire anemometry

(DANTEC Streamline) with an I-type hot wire probe (DANTEC 55P11). The

diameter of the wire was 5 µm and its length was 1.25 mm. The wire was

calibrated in the wind tunnel and the instantaneous streamwise velocity was

calculated by King’s law. The sampling rate was set to 100 kHz. The frequency

response of the single wire was found to be approximately 60 kHz and 100 kHz

for Umean ∼ 10 ms−1 and 20 ms−1, respectively. The experiments were performed

250 times for each condition in order to obtain reliable statistics.

4.3 Results and Discussion

4.3.1 The characteristics of the shock wave

Figure 4.2 shows several examples of overpressure histories without a flow in 200

trials at different locations. When the shock wave reflects the pressure trans-

ducer, the overpressure is suddenly increased. Then, the overpressure decreases

due to the expansion fan and further decreases down to a negative value. The

overpressure starts to recover toward the atmospheric value. This tendency was

also similar to the overpressure history of laser induced blast wave (Liang et al.,

2001). It is confirmed that there is no device oscillation as seen in the previous
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Table 4.1: Experimental Conditions of the initial turbulent fields, also included

are the lowest Mach number conditions in the experiments of Keller & Merzkirch

(1990) and Agui et al. (2005). Note that L and λ in Keller & Merzkirch (1990)

are the length scales for scalar. The grid used by Keller & Merzkirch (1990) is

a punched plate and different from ours. Therefore the mesh size written in this

table is the effective mesh size, which is equivalent to the squared mesh size.

M [mm] x/M ReM Reλ MU L/M λ/M Mt × 103

Case 1 15 60 9600 49 0.029 0.583 0.205 0.709

Case 2 15 60 20000 70 0.051 0.864 0.157 1.330

Case 3 25 36 16700 64 0.029 0.450 0.125 0.910

Case 4 25 36 33300 92 0.051 0.520 0.087 1.874

Case 5 50 18 33300 105 0.029 0.250 0.057 1.617

Case 6 50 18 60000 148 0.051 0.367 0.047 2.803

Case 7 100 9 66700 159 0.029 0.162 0.026 2.660

Keller & Merzkirch (1990) 7.1 – 35000 – 0.181 0.465 0.338 –

Agui et al. (2005) 3.18 – 37000 162 0.371 – – –
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Figure 4.2: Examples of pressure waveforms without a flow at locations (a)

(x, y, z) = (1130 mm, 0, 0), (b) (x, y, z) = (1025 mm, 0, 0) and (c) (x, y, z) =

(925 mm, 0, 0). These figures include the four randomly selected overpressure

histories in 200 experiments.

study (Sasoh et al., 2014) in the overpressure histories. This is due to the in-

crease of overpressure strength. Figures 4.3 and 4.4 show overpressure histories

with turbulence in the strongest and weakest shock waves for cases 1 and 7, re-

spectively. The difference of the peak value in the strongest and weakest cases is

more significant at x = 1025 and 925 mm, where turbulence is stronger (larger

Reλ), than that at x = 1130 mm. Furthermore, we cannot see clear difference in

the arrival time in spite of the fact that there are clear differences in the peak of

overpressure and turbulence characteristics such as Reλ.

Figure 4.5 shows the variation of peak values of the overpressure in 200 exper-

iments. It increases with Reλ, indicating that stronger turbulence causes larger

impact on the pressure history behind the shock wave.

4.3.2 The variations of turbulence quantities

Figure 4.6 shows the instantaneous velocity signal before and after the interaction

for cases 1 and 7. The velocity signal after the interaction exhibits drastic changes

characterized by bursts of highly intermittent events. Similar results can be seen

in the experiments of Agui et al. (2005). The instantaneous velocity signals have

discontinuity when the shock wave passed the probe. This tendency was seen in
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Figure 4.3: Examples of pressure waveforms interacting with grid turbulence for

case 1 at locations (a) (x, y, z) = (1130 mm, 0, 0), (b) (x, y, z) = (1025 mm,

0, 0) and (c) (x, y, z) = (925 mm, 0, 0). Black line corresponds to the pressure

waveform without a flow, and red and blue lines correspond to pressure waveform

in the strongest and weakest cases, respectively.
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Figure 4.4: Same as figure 4.3 but for case 7.
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Figure 4.5: Variation of peak value of the overpressure in the case (a) without

a flow, (b) case 1, and (c) case 7. Black, red and blue circles correspond to the

overpressures at locations (x, y, z) = (1130 mm, 0, 0), (x, y, z) = (1025 mm, 0,

0), and (x, y, z) = (925 mm, 0, 0), respectively.
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Figure 4.6: Examples of instantaneous velocity signal before and after the shock

wave passage in (a) case 1 and (b) case 7 at the 600 mm upstream measurement

from the open end of the shock wave generator. Here, BS and AS represent the

analysis region before and after the interaction with the shock wave, respectively.
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Figure 4.7: Probability density function (pdf) of streamwise velocity fluctuation

u′, P (u′), for case 1 (a) and case 7 (b). The blue and red circles are the pdfs

of u′ before and after the interaction, respectively. The blue and red solid lines

represent Gaussian fit for P (u′) before and after the interactions, respectively.

all cases.

Figure 4.7 shows the probability density function (pdf) of the streamwise

velocity fluctuation u′. The both pdfs are close to Gaussian regardless of the

interaction.

The root mean square value of streamwise velocity fluctuation ur.m.s was eval-

uated as an ensemble average of time series data as follows:

u2r.m.s =
1

N

N∑ 1

t2 − t1

∫ t2

t1

[u (t)− UENS]
2 dt, UENS (t) =

1

N

N∑
u (t) (4.1)

where UENS is the ensemble averaged velocity over 250 ( = N) experiments, t1

and t2 are starting and ending times of the analyzed signal, respectively. Here,

t2 − t1 = 0.01024 s, which is longer than the turbulent characteristic time scale,

e.g. L/Umean and see table 4.1. Note that for Umean ∼ 10 ms−1, turbulence

travels about 0.1 m during the period. Using the linear extrapolation, shock-

Mach-number at an upstream location by 0.1 m is approximately Ms ≈ 1.04,

which is a 1% reduction compared to Ms ≈ 1.05 at the probe location. The

relationship between the ratio of ur.m.s before (subscript BS) and after (subscript
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Figure 4.8: The ratio of ur.m.s before and after the interaction against Reλ.

AS) the interaction and Reλ is shown in figure 4.8. It is found that ur.m.s increases

and the amplification is larger for small Reλ.

The ratio of the streamwise integral length scales L before and after the inter-

action is plotted against Reλ in figure 4.9. L decreases after the interaction and

the reduction is more significant for small Reλ. The result is consistent with Agui

et al. (2005), Barre et al. (1996) and the results of DNS (Hannappel & Friedrich,

1995; Lee et al., 1993), but is different from Keller & Merzkirch (1990) for in-

tegral length scale of density fluctuations. As to this difference, further studies

including the changes in scalar will be needed.

4.3.3 Continuous wavelet analysis

Wavelet transform is a powerful tool to investigate phenomena involving changes

in time and frequency (scale or wavenumber) such as turbulence-shock wave in-

teraction. Continuous wavelet transform is defined as

T (a, b) =
1√
a

∫ ∞

−∞
dt u (t)ψ∗

(
t− b

a

)
, (4.2)
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Figure 4.9: The ratio of L before and after the interaction against Reλ.

(b)(a)

Figure 4.10: Continuous wavelet analysis for case 1 (a) before and (b) after the

interaction. The real part of Morlet wavelet is shown. Here, we cannot see

outstanding difference for imaginary part.
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(b)(a)

Figure 4.11: Same as figure 4.10 but for case 7.

where a and b are the dilation and location parameters, respectively. The super-

script ∗ indicates the complex conjugate and ψ (t) is a wavelet function. In this

study, Morlet wavelet,

ψ (t) =
1

(2π)
1
4

exp

(
−t

2

2

)
exp (ıkψt) , (4.3)

is used. In an exact sense, Morlet wavelet does not satisfy the admissibility

condition. However, by taking an adaptive value of kψ, the admissibility condition

is approximately satisfied, and kψ = 5.3 was chosen in this study. In Morlet

wavelet analysis, frequency can be converted by f = kψfs/ (2πa), where fs is a

sampling frequency. In the wavelet analysis with complex wavelet such as Morlet,

(4.2) can be written as T (a, b) = TRe (a, b) + ıT Im (a, b), so that thick colors in

figures 4.10 and 4.11 express the relative strong energy.

Figures 4.10 and 4.11 show the real part of continuous wavelet transform for

cases 1 and 7, respectively. In fully developed grid turbulence, energy exhibits

mainly in low frequency region and positive and negative values with almost the

same magnitude appear periodically in time. On the other hand, there are re-

markable changes in the distribution after the interaction and the energy exhibits

both low and high frequency regions. This fact means that small scale eddies are
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generated just behind the shock wave, which is also observed in the DNS study

(Larsson et al., 2013).

4.3.4 Spectral analysis

The discrete wavelet transform is used to calculate the power spectrum for the

short time series data instead of the fast Fourier transform (FFT) since Fourier

transform requires the long time series data. In the orthogonal discrete wavelet

transform, a = 2m and b = n× 2m in (4.2). Wavelet power spectrum is given by

(Shin & Nakano, 2005)

Ew,11 (fm) =
1

2l
2m∆t

ln 2

2l−m−1∑
n=0

(Tm,n)
2 ∆t, (4.4)

where 2l is the data number, ∆t is the sampling time, and m and n correspond

to the scale and translation, respectively. Tm,n is the wavelet coefficient related

to the discrete wavelet and expressed as Tm,n =
∫∞
−∞ dt u (t)ψm,n (t), where the

wavelet function ψm,n (t) = 2−m/2π (2−mt− n) satisfies the compact support.

One-dimensional power spectrum with the use of Taylor’s frozen hypothesis

is given by

Ew,11 (k1,m) =
U∆t

2π2l−m ln 2

2l−m−1∑
n=0

(Tm,n)
2 , (4.5)

where k1,m is the m-th streamwise direction wavenumber. In this study, the

Daubechies family with an index of 6 was used.

Figure 4.12 shows the one-dimensional power spectra. Good agreements are

obtained between the wavelet power spectrum before the interaction and that

calculated from the FFT of previous measurements in grid turbulence. As shown

in figure 4.12, the energy at high wavenumbers increases after the interaction.

Thus, the change in the r.m.s value of streamwise velocity fluctuation shown in

figure 4.8 is due to the increase in energy at high wavenumbers.

4.3.5 The effects of initial turbulent Mach number

When we focus on the initially homogeneous isotropic turbulence, the velocity

variance ⟨u2⟩ is given by ⟨u2⟩ =
⟨
(us)2

⟩
+
⟨(

ud
)2⟩

, where us and ud are the
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Figure 4.12: Discrete wavelet power spectra for case 1 (left) and case 7 (right).

solenoidal (divergence-free) and dilatational (curl-free) velocity components, re-

spectively. Note that the present study focuses low-Mach-number turbulence,

meaning turbulence before the interaction has no ud component unlike previ-

ous studies, in which high-Mach-number turbulence has been mainly discussed

(Agui et al., 2005; Briassulis et al., 1996; Honkan & Andreopoulos, 1992). Putting⟨(
ud
)2⟩

= 0
(⟨
(us)2

⟩
= 0
)
, the initial velocity field consists only of the solenoidal

(dilatational) velocity component. Turbulecne consisting of solenoidal velocity

component is similar to the Kolmogorov turbulence while turbulence consisting

of dilatational velocity component is similar to the Burgulence. We will discuss

the effects of initial turbulent Mach number on the changes in turbulence after

the interaction. Here we consider the vorticity equation

∂ωi
∂t

=
∂ωjui
∂xj

−
∂ωiu

s
j

∂xj
−udj

∂ωi
∂xj

−ωidivud−
(
∇1

ρ
×∇p

)
i

+ϵijk∇j

(
1

ρ

∂σkl
∂xl

)
. (4.6)
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convergent flow

Figure 4.13: (a) Schematic of a shock wave and change in velocity vector at the

reference frame, where ui and ub are the velocity vector in front (upstream) of

a shock wave and that behind (downstream of) a shock wave, respectively. Here

the subscripts t and n indicate the tangential and normal components against the

shock wave front with the infinitesimal control volume, which is the shaded region,

respectively. The blue curve represents a shock wave and black curves represent

infinitesimal control volume surrounding a shock wave. (b) The magnified view of

the shaded region in (a) and the axisymmetric convergent (or divergent) flow in

front of a shock wave. Here, the velocity relation across the shock wave is given

by Rankine-Hugoniot relation for an oblique shock wave. The points colored by

red and green are the particles with the infinitesimal separation. u and u′ are

arbitrary random velocity components.
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By integrating the above equation within the control volume surrounding a shock

wave front shown in the shaded region in figure 4.13 (a), we obtain

d

dt

∫
V

ωidV ≈
[∮

Sout

ωnuidS −
∮
Sin

ωnuidS

]
−
[∮

Sout

ωiu
s
ndS −

∮
Sin

ωiu
s
ndS

]
−
∫
V

udj
∂ωi
∂xj

dV −
∫
V

ωidivu
ddV −

∫
V

(
∇1

ρ
×∇p

)
i

dV.

(4.7)

Note that we neglected the last term in (4.6) because it only plays a minor role.

We also neglect the contribution from the infinitesimal sides notmal to the shock

wave front because the shock thickness is negligibly small. The subscript n in-

dicates the normal component, Sin and Sout are the surfaces of the inflow and

outflow normal to the shock wave front. Thus,
∫
Sout

ϕdS
(∫

Sin
ϕdS

)
repre-

sents the outflow (inflow) amount of the physical quantity ϕ after (before) the

interaction. We now expand ωi within the control volume in terms of the shock

thickness δs as ωi = ω
(0)
i + δsω

(1)
i + O (δ2s), where ω

(0)
i is the inflow vorticity. Let

u
s(0)
i and u

d(0)
i be the inflow solenoidal and dilatational velocity. Substitution of

the perturbation series into the above equation and permutation of the above

equation lead to∫
Sout

(ωnui − ωiu
s
n) dS

≈
∮
Sin

(
ω(0)
n

(
u
s(0)
i + u

d(0)
i

)
− ω

(0)
i us(0)n

)
dS +

∫
V

udj
∂ω

(0)
i

∂xj
dV

+

∫
V

ω
(0)
i divuddV +

∫
V

(
∇1

ρ
×∇p

)
+
d

dt

∫
V

ω
(0)
i dV

+ δs

[∫
V

udj
∂ω

(1)
i

∂xj
dV +

∫
V

ω
(1)
i divuddV +

d

dt

∫
V

ω
(1)
i dV

]
+O

(
δ2s
)
.

(4.8)

The 3rd term represents the shock-induced compression as explained by rapid

distortion theory (Jacquin et al., 1993) and is equivalent to the jump condi-

tion or the Rankine–Hugoniot relation since divud ≈ ∂udn/∂xn using ∂udi /∂xj ≈
δinδjn∂u

d
n/∂xn. The 4th term is known as the baloclinic term. Grube et al. (2011)

showed by DNS that the baroclinic term is smaller than the shock-induced com-

pression term. The 5th and 6th terms can also be neglected since shock wave
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thickness is negligibly small. Therefore, (ωnui − ωiu
s
n) after the interaction is

mainly determined by the 1st, 2nd and 3rd terms in the present study. Fur-

thermore, taking account of the large value of divud, it is expected that the

contribution of the 3rd term is the largest. It is clear from (4.8) that the initial

vorticity field ω
(0)
i , which appears in the 1st, 2nd and 3rd terms, strongly influ-

ences on the turbulence characteristics after the interaction. If the initial velocity

field is completely curl-free turbulence, i.e.
⟨(

us(0)
)2⟩

= 0, there is no contribu-

tion from ω
(0)
i -related terms. In other words, (ωnui − ωiu

s
n) after the interaction

for completely divergence-free turbulence, i.e.
⟨(

ud(0)
)2⟩

= 0, is larger than that

for completely curl-free turbulence, since the contribution from the shock-induced

compression increases with
⟨(

us(0)
)2⟩

. The increase in vorticity causes the in-

crease in energy at high wavenumber as shown in figure 4.12. In fact, the increase

in energy at high wavenumber obtained in the present study is larger than that

in previous studies on high-Mach-number turbulence (Agui et al., 2005; Honkan

& Andreopoulos, 1992).

Next, we discuss the physical mechanism for the changes in turbulence after

the interaction from a different perspective. Let us consider the motions of the two

particles with the infinitesimal separation in front of a shock wave. Figure 4.13

(b) shows schematic for an axisymmetric convergent and divergent flow in front

of a shock wave. After the particles passed a shock wave, the distance between

the particles gradually increases because of the Rankine-Hugoniot relation. In

such a situation, the Lyapunov exponent is positive, i.e. the structure expressed

by the Lyapunov vectors deforms from a spherical shape to an ellipsoidal shape,

and therefore, the velocity fluctuation increases. Furthermore, the length scales

perpendicular to the shock wavefront decrease, whereas the length scales parallel

to the shock wavefront increase as shown in figure 4.13 (b). This explanation

is consistent with the alignment of eddies behind a planar shock wave(Larsson

et al., 2013).

Finally, we comment on the difference between the normal shock wave and the

blast-like shock wave against the changes in turbulence. The main characteristic

of a blast-like shock wave is that the shock wave is continuously followed by the

expansion fan, i.e. it has two different density gradients: drastic compression due

to the shock wave and expansion due to an expansion fan as shown in figures
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4.2–4.4. Taking into account of the facts that turbulence has a pressure gradient,

typically seen as a vortex tube, and a mean density gradient due to the expansion

fan, the vorticity fluctuations are generated via the baroclinic effect. Thus, the

turbulent field after the interaction with a blast-like shock wave is more complex

and has messy field compared with that interacting with a normal shock wave.

4.4 Conclusions

Characteristics of divergence-free grid turbulence interacting with a weak shock

wave (Ms = 1.05) are experimentally investigated. The main results are as fol-

lows.

1. The r.m.s value of the streamwise velocity fluctuation, ur.m.s, increases after

the interaction. The changes in ur.m.s become small with the increase of Reλ

for the same strength of the shock wave.

2. The streamwise integral length scale, L, decreases after the interaction. The

changes in L become small with the increase of Reλ for the same strength

of the shock wave.

3. The continuous wavelet analysis shows that energy exhibits mainly in low

frequency region and positive and negative values appear periodically in

time before the interaction, whereas it exhibits both low and high frequency

regions after the interaction. Furthermore, small scale eddies are generated

just behind a shock wave. The spectral analysis also shows that the energy

at high wavenumbers increases after the interaction. Thus, the increase in

velocity fluctuation is caused by the increase in energy at high wavenumbers.

4. The increase in energy at high wavenumbers is interpreted from the view-

point of initial turbulent Mach number and the increase for initially divergence-

free turbulence is larger than that for initially high-Mach number (highly

curl-free) turbulence.
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Chapter 5

Rapid distortion analysis theory

analysis on the interaction

between homogeneous turbulence

and a planar shock wave

5.1 Introduction

As described in chapter 4, the interaction between turbulence and a shock wave

is very important in engineering and space physics. This interaction is observed

in supersonic transport (SST) in the generation of sonic booms and in the flow

of a combustor in engineering. Turbulence–shock interactions are observed in

space physics, such as in star formation, with supernovas, and in the interaction

between solar wind and bow shock around the earth.

With fluids in space, the characteristics of Burgulence, in which the velocity

spectrum exhibits E (k) ∼ k−2, have been observed in the Ursa Major interstellar

cloud (Miville-Deschenes et al., 2003), where k is the wavenumber. On the other

hand, the characteristics of Kolmogorov turbulence, the spectrum of electron

density fluctuations which satisfies k2N
(e)
k (k) ∼ k−

5
3 has been observed in the

local interstellar medium (Armstrong et al., 1995). Here, N
(e)
k (k) is an electron

density power spectrum. The former is considered as a characteristic that the

dilatational mode dominates the velocity field, whereas the latter corresponds to
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the case in which the solenoidal mode dominates the velocity field. The changes

in turbulence interacting with a shock wave is assumed to depend on which mode

dominated before the interaction.

Fundamental understanding of such physics is essential for the development of

next generation SSTs, improvement of combustion processes and high-speed rotor

flows, and further understanding of space physics. However, it is difficult to clarify

the relationships between turbulence and a shock wave because it involves com-

plex linear and nonlinear mechanisms, which can considerably change turbulence

structure and its statistical properties, and the dynamics of the shock wave mo-

tion (Andreopoulos et al., 2000). As shown in chapter 4, amplification of velocity

fluctuations and substantial changes in turbulence characteristic length scales are

the most recognized outcomes from the studies on turbulence interacting with a

shock wave. However, there have been qualitative and quantitative disagreements

between experimental results and direct numerical simulation (DNS) results in

previous studies. Also the lack of a theory on the interaction between turbulence

and shock waves has been identified.

Andreopoulos et al. (2000) documented the following unanswered questions

regarding the interaction between turbulence and shock waves from the perspec-

tive of turbulence research.

1. How much of the amplification of turbulence interacted with a shock wave

is caused entirely by the Rankine–Hugoniot conditions?

2. Why are vorticity fluctuations amplified more than velocity fluctuations?

3. Why is the energy of small eddies amplified more than that of large eddies?

4. Are the length scales of the incoming turbulence reduced or amplified

through these interactions?

5. Is the TKE dissipation rate reduced?

This chapter attempts to provide analytical answers to the above five questions

using rapid distortion theory (RDT) analysis.

More specifically, I investigate the changes in TKE, enstrophy, and turbulence

characteristic lengths, and show that the amplifications of TKE and enstrophy
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depend on the initial degree of anisotropy. Furthermore, we attempt to answer

the unsolved questions in the report by Andreopoulos et al. (2000) within the

linear theoretical framework.

5.2 Rapid Distortion Theory

5.2.1 Basic equations

The starting point of this study is the continuity equation (2.1) and momentum

equation in a compressible fluid without any gravity effects.

ρ
∂

∂t
vi + ρvj

∂

∂xj
vi = − ∂p

∂xi
+

∂

∂xi
µ′divv +

∂

∂xj
µ

(
∂vi
∂xj

+
∂vj
∂xi

)
, (5.1)

where µ′ is the second coefficient of viscosity (under the Stokes assumption, µ′ =

−2
3
µ), respectively. We now divide the density, velocity, and pressure fields into

mean and fluctuating components, i.e. vi = Ui + ui, ρ = ρ + ρ′, and p = p + p′,

where Ui, ρ, and p are the mean components and ui, ρ
′, and p′ are the fluctuating

components. In the Reynolds averaged equation, we assume ρ′ ≪ ρ and neglect

ρ′ when ρ exists, and the density is linearized. This preserves the triad resonant

condition in Fourier space as seen in the incompressible turbulence (Marion et al.,

1988).

5.2.1.1 Mean flow

In a compressible flow, the homogeneity requires that the mean flow gradients

and mean pressure be spatially uniform; in an incompressible flow, mean pres-

sure need not be uniform (Durbin & Zeman, 1992). In the former case, the

requirement of a uniform mean velocity gradient indicates that U is expressed

as U = x · S (t), and that of a uniform pressure shows that the velocity satisfies

DU/Dt = 0 by substituting the Euler equation, because in turbulence–shock

wave interactions, the mean field satisfies the Rankine–Hugoniot relation. From

the continuity equation, the mean of a density and an adiabatic sound speed are

given by

ρ = ρ0Det (J) , c2 = c20 [Det (J)]
κ−1 , (5.2)
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where the subscript 0 indicates the initial state and κ is the ratio of specific heats.

The matrix J is given by

J =

 1
1+S1t

0 0

0 1
1+S2t

0

0 0 1
1+S3t

 , (5.3)

where Si is an arbitrary constant. In phenomena such as turbulence–shock

wave interactions, turbulence is assumed to be strongly compressed in a one-

dimensional direction, as confirmed by experiments (e.g. Honkan & Andreopou-

los 1992; Agui et al. 2005) and DNSs (e.g. Lee et al. 1993; Larsson & Lele 2009).

For one-dimensional compression, S1 is negative and S2 = S3 = 0. Here, the mag-

nitude of S1 is the strength of compression. In RDT analysis, the shock-induced

compression is approximated as a homogeneous compression. The mean den-

sity, determined by continuity, the mean pressure, determined by the isentropic

formula, and the adiabatic sound speed are given, respectively, by

ρ (t) = ρ0
1

1 + S1t
, p (t) = p0

1

(1 + S1t)
κ , c2 (t) = c20

1

(1 + S1t)
κ−1 . (5.4)

Using the ideal gas law, the kinematic viscosity ν (t) is given by

ν (t) =
µ

ρ
=
µ0

ρ

(
T

T0

)n
=

ν0

(1 + S1t)
n(κ−1)−1

, (5.5)

where the viscosity is given by the power law of temperature T , and the exponent

n is taken to be 3/4, as in Larsson & Lele (2009); Grube et al. 2011. Here κ is

taken to be κ = 7/5.

5.2.1.2 Fluctuations

Owing to the assumption that the mean density is spatially uniform, and given

that DU/Dt = 0 and Dρ/Dt = −ρ∇ ·U , linearized continuity and momentum

equations are given by
D

Dt

(
p′

κp (t)

)
= −divu, (5.6)

∂

∂t
ui + Uj

∂ui
∂xj

+ uj
∂Ui
∂xj

= −c2 (t) ∂

∂xi

(
p′

κp (t)

)
+ ν

∂2ui
∂xj∂xj

+
ν

3

∂

∂xi
divu. (5.7)
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Here, the conservation of entropy is used. Note that the assumption ρ′ ≪ ρ

requires a turbulent Mach number Mt ≪ 1; this requirement is satisfied when

the initial velocity fields consist only of solenoidal modes. Using the Helmholtz

decomposition, the velocity fields can be split into irrotational and rotational

components:

u = ∇ϕ+∇× a = ud + us, (5.8)

where ϕ is the scalar potential and a is the vector potential. Note that the

dilatational component ud is irrotational, i.e. ∇×ud = 0, and that the solenoidal

component us satisfies ∇·us = 0. Turbulence fluctuations are represented as the

superposition of plane waves using Fourier transforms:

ui (x, t) =

∫
dχ ûi (χ, t) exp (ıχ · x) , (5.9)

p (x, t) =

∫
dχ p̂ (χ, t) exp (ıχ · x) , (5.10)

where χ is the wavenumber vector. Because the system under consideration

is treated as homogeneous turbulence, the wavenumber vectors vary in time as

follows:
dχi
dt

= −∂Uj
∂xi

χj = −Sjiχj. (5.11)

Taking the Fourier transform of (5.6) and (5.7) and using (5.11), we obtain

d

dt

p̂ (χ, t)

κp (t)
= −ıχûd (χ, t) , (5.12)

(
d

dt
+ νχ2

)
ûj (χ, t) = −Sjn (t) ûn (χ, t)− ıc2 (t)χj

p̂ (χ, t)

κp (t)
− ν

3
χjχnûn (χ, t) .

(5.13)

It is convenient to introduce two projectors, Πij (χ) and Pij (χ, t), which are

expressions in Fourier space of the velocity field against (5.8):

Πij (χ) =
χiχj
χ2

, Pij (χ) = δij −
χiχj
χ2

, (5.14)

where δij is the Kronecker delta. Using these projectors, the velocity field can be

split into dilatational and solenoidal parts:

ûi (χ, t) = ûdi (χ, t) + ûsi (χ, t) = Πij (χ) ûj (χ, t) + Pij (χ, t) ûj (χ, t) , (5.15)
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5.2 Rapid Distortion Theory

and using (5.15), it is obvious that the solenoidal mode satisfies

χ · us (χ, t) = 0. (5.16)

We then consider the evolution of the dilatational and the solenoidal modes.

Multiplying χi by (5.13) and dividing by χ, we obtain(
d

dt
+

4

3
ν (t)χ2

)
ûd (χ, t) = −Sij (t)Πij (χ) û

d (χ, t)− 2Sij
χi
χ
Pjn (χ, t) û

s
n (χ, t)

− ıχc2 (t)
p̂ (χ, t)

κp (t)
,

(5.17)

where ûd (χ, t) = χj/χû
d
j (χ, t). Multiplying χ2Pij (χ) by (5.13) and dividing by

χ2, we obtain(
d

dt
+ ν (t)χ2

)
ûsi (χ, t) =

χl
χ
Pij (χ) [Slj (t)− Sjl (t)] û

d (χ, t)

+

(
χiχlSlj (t) δjn

χ2
− Pij (χ)Sjn (t)

)
ûsn (χ, t) .

(5.18)

Note that there is a slight difference in the viscous terms in (5.17) and (5.18).

Equations (5.17) and (5.18) are the same as the basis equations of Marion et al.

(1988) for S1 = 0. The solution to (5.11) can be easily obtained by means of

separation of variables. The wavenumber vector χ (t) is given by

χ = [χ1 (t) , χ2 (t) , χ3 (t)] =

[
k1

1 + S1t
, k2, k3

]
, (5.19)

where k = [k1, k2, k3] is an initial wavenumber vector and χ2 = 1
(1+S1t)

2

[
k21 + k223 (1 + S1t)

2],
where k223 = k22 + k23.

5.2.2 RDT assumptions for the turbulence-shock wave in-

teraction

RDT is a method for solving linearized governing equations under rapid defor-

mation using a statistical technique; RDT solutions are exact solutions of the

Navier–Stokes equations if the initial flow is a single plane wave because the non-

linear terms are exactly zero throughout the triad interaction (Craik & Criminale
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Figure 5.1: (a) Mean density and pressure profiles via the Rankine–Hugoniot

relation, where the subscript 1 denotes the front of the planar shock wave and

the subscript 2 denotes the back of the planar shock wave. (b) Schematic of

interaction between turbulence and a shock wave. (c) Schematic of the RDT

analysis region.

1986; Kevlahan & Hunt 1997). RDT equations are obtained by neglecting the

nonlinear terms in (5.17) and (5.18) which linearize the equations; this allows

analytical solutions for a number of cases. For the details of RDT, refer to Hunt

& Carruthers (1990), Hunt & Kevlahan (1993), and Kevlahan & Hunt (1997).

Figure 5.1 shows a schematic of the turbulence–shock wave interaction. The

time scale of the turbulence–shock wave interaction, TSW , is found to be small,

relative to the turbulence characteristic time scale τ (l) ∼ l/u (l), where l is

the turbulence characteristic length scale and u (l) is a turbulence characteristic

velocity. In addition, if the linear effects of the compression (e.g. ∼| S1 | (u (l) /l)
for a compressing distortion) on vorticity ω are much stronger than the nonlinear

self-induced compression by the turbulence (∼ (u (l) /l)2), the nonlinear terms do

not play an important role. When turbulence is compressed by a planar shock

wave, the strength of the characteristic compression can be given by

| S1 |=
USW − u0
δSW

, (5.20)

87



5.2 Rapid Distortion Theory

where δSW is the thickness of the region influenced by the shock–induced com-

pression, USW is the speed of a shock wave and u0 is the mean velocity in front

of a shock. Thus, the following relations are assumed for the interaction between

turbulence and the shock wave:

TSW ≪ τ (l) ∼ l

u (l)
or | S1 |≫

u (l)

l
. (5.21)

The first relation in (5.21) is valid for small values of TSW , whereas the second

relation in (5.21) is valid for large values of | S1 |. An overall criterion for the

validity of RDT for calculating the statistics of the energy-containing eddies in

a given turbulent flow can be derived from (5.21) in terms of the r.m.s. velocity

ur.m.s and the integral length scale L (Kevlahan & Hunt, 1997). This leads to

TSW ≪ TL ∼ L

ur.m.s
or

ur.m.s
L

1

| S1 |
≡ δ ≪ 1, (5.22)

where TL is the integral time scale. This can be re-expressed as

1

TL
≪ max

(
| S1 |,

1

TSW

)
. (5.23)

This criterion should be valid at the start of the distortion. Kevlahan (1997)

showed that the vorticity jump is connected with a shock curvature, baroclinic

effect, and the conservation of angular momentum. In RDT analysis, vorticity

amplification is interpreted as caused by the angular momentum created by com-

pression of the flow in the direction normal to the shock wave front. Therefore,

one must note that the present analysis is limited to the case in which the defor-

mation of the shock wave can be ignored. The bases of inviscid RDT equations

are (5.12),

d

dt
ûd (χ, t) = −Sij (t)Πij (χ) û

d (χ, t)−2Sij
χi
χ
Pjn (χ, t) û

s
n (χ, t)−ıχc2 (t)

p̂ (χ, t)

κp (t)
,

(5.24)

d

dt
ûsi (χ, t) =

χl
χ
Pij (χ) [Slj (t)− Sjl (t)] û

d (χ, t)

+

(
χiχlSlj (t) δjn

χ2
− Pij (χ)Sjn (t)

)
ûsn (χ, t) .

(5.25)
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Note that the dilatational mode in (5.25) disappears because of the symmetrical

form of Slj (t) = δl1S11 (t) δj1. For one-dimensional compression, (5.25) is the

same as in Mahesh et al. (1994) without shear. However, they did not obtain the

analytical solutions and only performed a numerical analysis. The solutions to

the system are expected to have the form

ûsi (χ, t) = Gs
ij (χ, t) û

s
j (k, 0) , (5.26)

ûdi (χ, t) = Gd
ij (χ, t) ûj (k, 0) +Gp (χ, t) p̂ (k, 0) , (5.27)

where G are Green functions.

5.2.3 ODEs and analytical solution for inviscid RDT

We consider the analytical solution of the inviscid RDT equations. From (5.25)

and the solenoidal condition (5.16), we obtain

d

dt

 ûs1 (χ, t)ûs2 (χ, t)
ûs3 (χ, t)


︸ ︷︷ ︸

ûs

=
S1

k21 + k223 (1 + S1t)
2

−k223 (1 + S1t) −k1k2 −k1k3
k1k2 −k22 (1 + S1t) −k2k3 (1 + S1t)
k1k3 −k2k3 (1 + S1t) −k23 (1 + S1t)


︸ ︷︷ ︸

A

 ûs1 (χ, t)ûs2 (χ, t)
ûs3 (χ, t)


︸ ︷︷ ︸

ûs

,

(5.28)

Here, the method for solving the ODEs is described briefly, because cumbersome

calculations are required to solve them analytically (see Appendix A for details).

The ODE will be set to
dûsi (χ,t)

dt
= Aij (t) û

s
j (χ, t) if the tensor notation of (5.28)

is utilized. We then determine the eigenvalues of Aij (t). After some algebra, the

eigenvalues of Aij (t) are as follows:

λ = 0,−S1k
2
23 (1 + S1t) + ıS1k1k23

k21 + k223 (1 + S1t)
2 ,−S1k

2
23 (1 + S1t)− ıS1k1k23

k21 + k223 (1 + S1t)
2 . (5.29)

Each eigenvector can be obtained for the acquired eigenvalues. Let Bij be the

transformation matrix which consists of eigenvectors. A diagonal matrix Dαβ (t)
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5.2 Rapid Distortion Theory

can be expressed as Dαβ (t) = B−1
αi Aij (t)Bjβ. Multiplying B−1

ij to (5.28) from

the left side, we obtain dyi(χ,t)
dt

= Dij (t) yj (χ, t), where yi (χ, t) = B−1
ij û

s
i (χ, t).

Because Dij (t) is a symmetrical tensor, which has only diagonal components, the

solution to yi (χ, t) is obtained using separation of variables. If the relationship

of ûsi (χ, t) = Bijyj (χ, t) and the initial conditions of yi (k, 0) = Bijû
s
j (k, 0) are

used, analytical solutions are given by

ûs1 (χ, t) = Pûs1 (k , 0)−
k2Q

k23
ûs2 (k , 0)−

k3Q

k23
ûs3 (k , 0)

=
k2 (1 + S1t)

k21 + k223 (1 + S1t)
2 û

s
1 (k, 0) ,

(5.30)

ûs2 (χ, t) =
k2Q

k23
ûs1 (k , 0) +

k23 + k22P

k223
ûs2 (k , 0) +

k2k3
k223

(P − 1) ûs3 (k , 0)

=
k1k2S1t (2 + S1t)

k21 + k223 (1 + S1t)
2 û

s
1 (k, 0) + ûs2 (k, 0) ,

(5.31)

ûs3 (χ, t) =
k3Q

k23
ûs1 (k , 0) +

k2k3
k223

(P − 1) ûs2 (k , 0) +
k22 + k23P

k223
ûs3 (k , 0)

=
k1k3S1t (2 + S1t)

k21 + k223 (1 + S1t)
2 û

s
1 (k, 0) + ûs3 (k, 0) ,

(5.32)

where

P =
k21 + k223 (1 + S1t)

k21 + k223 (1 + S1t)
2 , (5.33)

Q =
k1k23S1t

k21 + k223 (1 + S1t)
2 . (5.34)

For convenience in later discussions, the analytical solutions in the Craya–Herring

decomposition are given by

û(1) (χ, t) =
ı

k23
ω̂s1 (χ, t) =

[
k3
k23

ûs2 (k, 0)−
k2
k23

ûs3 (k, 0)

]
, (5.35)

û(2) (χ, t) = − χ

χ23

ûs1 (χ, t) = − k2

k23

ûs1 (k, 0)√
k21 + k223 (1 + S1t)

2
. (5.36)

Interestingly, the vortex mode, û(1) (χ, t), is not affected by the rapid one-dimensional

compression, whereas the wave mode, û(2) (χ, t), is strongly affected. Thus, vortic-

ity in the one-dimensional compressed direction does not change throughout the
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5.3 Homogeneous axisymmetric turbulence

turbulence–shock wave interaction in the limiting case, as discussed later. This

situation is similar to that in stratified turbulence (Hanazaki & Hunt, 1996). The

fact that the vorticity does not change in the compressed direction is a direct

result of the jump conditions for vorticity. Kevlahan (1997) also showed that

vorticity only increases in the plane tangent to a shock wave.

After some algebra, the inviscid RDT equation for the dilatational mode be-

comes

d

dt

[
(1 + S1t)

κ+1

k21 + k223 (1 + S1t)
2

dûd (χ, t)

dt

]
+

(1 + S1t)
κ+1

k21 + k223 (1 + S1t)
2χc

2 (t)R (t) ûd (t)

= − (1 + S1t)
κ+1

k21 + k223 (1 + S1t)
2χc

2 (t)
d

dt

(
2S1k

2k1 (1 + S1t)
κ

c20
[
k21 + k223 (1 + S1t)

2]2
)
ûs1 (k, 0) ,

(5.37)

where R (t) is given by

R (t) =
d

dt

(
S11 (t)Π11 (χ)

χc2 (t)

)
+ χ, (5.38)

and the left-hand side (denoted hereafter as l.h.s.) of (5.37) is a typical Sturm–

Liouville equation. Thus, the analytical solution is assumed to be a special func-

tion such as a Legendre function (e.g. Hanazaki & Hunt 2004). In general, the

analytical solution will take the form ûd (χ, t) = u0 (t)+C1u1 (t)+C1u2 (t), where

u0 is a particular solution, and u1 (t) and u2 (t) are basis solutions. If one basis

solution is found, the analytical solution of the dilatational mode can be obtained.

When S1 = 0, the analytical solutions are expressed by trigonometric functions

(Marion et al., 1988). Unfortunately, we could not find any analytical solutions

for the dilatational mode. Thus, hereinafter we only discuss the RDT solutions of

the solenoidal mode. Note that Jacquin et al. (1993) found the analytical solution

for the case in which the second term of (5.37) is neglected.

5.3 Homogeneous axisymmetric turbulence

Homogeneous axisymmetrical tensors in Cartesian coordinates have been devel-

oped by Batchelor (1946, 1953) and Chandrasekhar (1950). The general second-
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order two-point correlation has the form

Φij (k) = A1kikj + A2ninj + A3δij + A4nikj + A5njki, (5.39)

where A1 ∼ A5 are functions (not all independent) of k2 and k cos θ = k · n,
where n is a unit vector in the direction of the symmetry axis.

We obtain the relation A4 = A5 from the reflection invariant, Φij (k) =

Φij (−k), which implies the symmetry condition Φij (k) = Φji (k)．Then, we ob-

tain the following relation from the solenoidal condition kiΦij (k) = kjΦij (k) = 0:

Φij (k) = −k2Pij (k)A1 (k, cos θ) +Hij (k)A2 (k, cos θ) (5.40)

Hij (k) = ninj +
(k · n)2

k2
δij − (k · n) nikj + njki

k2

= cos2 θe
(1)
i (k) e

(1)
j (k) + e

(2)
i (k) e

(2)
j (k) ,

(5.41)

where e(1) (χ) and e(2) (χ) are the basis unit vectors of the Craya–Herring de-

composition defined as

e(1) (χ) =
χ× n

| χ× n |
, e(2) (χ) =

χ

χ
× e(1) (χ) . (5.42)

For homogeneous isotropic turbulence, A1 (k, cos θ) = −E(k)
4πk4

and A2 (k, cos θ) = 0

are satisfied. In the Craya-Herring frame, Φij (χ, t) is given by

Φij (k) = e
(1)
i (k) e

(1)
j (k)

[
−k2A1 (k) + cos2 θA2 (k)

]︸ ︷︷ ︸
Q(1)(k)

+ e
(2)
i (k) e

(2)
j (k)

[
−k2A1 (k) + A2 (k)

]︸ ︷︷ ︸
Q(2)(k)

.
(5.43)

From the obtained analytical solutions (5.30) – (5.32), the energy spectral tensors

are given by

Φ∥ (χ, t) = Φ11 (χ, t) = Q(2) (k, 0)
k2k223 (1 + S1t)

2[
k21 + k223 (1 + S1t)

2]2 , (5.44)

Φ22 (χ, t) =
k23
k223

Q(1) (k, 0) +
Q(2) (k, 0) k22

k2

(
k21
k223

P 2 +Q2 − 2
k1
k23

PQ

)
, (5.45)
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Φ33 (χ, t) =
k22
k223

Q(1) (k, 0) +
Q(2) (k, 0) k23

k2

(
k21
k223

P 2 +Q2 − 2
k1
k23

PQ

)
, (5.46)

Φ⊥ (χ, t) =
1

2
[Φ22 (χ, t) + Φ33 (χ, t)]

=
1

2

[
Q(1) (k, 0) +Q(2) (k, 0)

k2k21[
k21 + k223 (1 + S1t)

2]2
]
,

(5.47)

Φii (χ, t) = Φ∥ (χ, t) + 2Φ⊥ (χ, t) = Q(1) (k, 0) +Q(2) (k, 0)
(
P 2 +Q2

)
, (5.48)

where Q(1) (k, 0) = Q(11) (k, 0) and Q(2) (k, 0) = Q(22) (k, 0) for simplicity, and

Q(1) (k, 0) = Q(2) (k, 0) = E(k,0)
4πk2

when the initial turbulence is homogeneous

isotropic turbulence, where E (k, 0) is the energy spectrum. Note that the energy

spectral tensor in the compressed direction, Φ11 (χ, t), is related only to the wave

mode, Q(2) (k); it is not related to the vortex mode, Q(1) (k). Therefore, we can

interpret the change in variance of u1 as a direct consequence of the initial distri-

bution of the wave mode with no dependence of the initial vortex mode. Thus,

the obtained results depend on the initial complexity of the energy distribution.

In homogeneous turbulence, we have the following relation between the energy

spectral tensor, Φij (χ, t), and the enstrophy spectral tensor Ωij (χ, t) (Batchelor,

1953):

Ωij (χ, t) =
⟨
ω̂i (χ, t) ω̂

∗
j (χ, t)

⟩
= χ2Pij (χ, t) Φll (χ, t)− χ2Φji (χ, t) , (5.49)

where ω̂i (χ, t) = ıϵijkχjûk (χ, t). Thus, from the obtained analytical solutions

(5.30)–(5.32), the enstrophy spectral tensors are given by

Ω∥ (χ, t) = Ω11 (χ, t) = ⟨ω̂1 (χ, t) ω̂
∗
1 (χ, t)⟩

= Ω11 (k, 0) = k223Q
(1) (k, 0) ,

(5.50)

Ω⊥ (χ, t) =
1

2
[Ω22 (χ, t) + Ω33 (χ, t)]

=
1

2

[
k21

(1 + S1t)
2Q

(1) (k, 0) +
k21 + k223 (1 + S1t)

2

(1 + S1t)
2 Q(2) (k, 0)

(
P 2 +Q2

)]
,

(5.51)
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Ωll (χ, t) = χ2Φll (χ, t) =

[
k21

(1 + S1t)
2 + k223

]
Φll (χ, t)

=
k21 + k223 (1 + S1t)

2

(1 + S1t)
2

[
Q(1) (k, 0) +Q(2) (k, 0)

(
P 2 +Q2

)]
.

(5.52)

As shown in (5.50), it is obvious that the parallel enstrophy spectral tensor is

independent of rapid one-dimensional compression.

5.4 Model spectra

In general, there is no precise analytical expression for experimental turbulent

energy spectra. To discuss Reynolds number dependency for non-zero viscosity

and energy distribution for homogeneous axisymmetric turbulence as an initial

state, we used five energy spectra.

5.4.1 Model spectra for homogeneous isotropic turbulence

(model spectrum A)

The following model spectrum describes the different forms of energy over a wide

range of wavenumbers (Davidson, 2004):

E (k) =
K0ϵ

2
3k−

5
3[

1 + 3K0

2
(kL)−

2
3

]m exp

[
−3K0

2
(kη)

4
3

]
, (5.53)

where K0 corresponds to the Kolmogorov constant, which was set to 1.52 in this

study andm corresponds to the parameter that determines the slope of the energy

spectrum at low wavenumbers: E (k → 0) ∼ k2 form = 11/2 and E (k → 0) ∼ k4

for m = 17/2. In this study, we adopted a Saffman-type energy spectrum as an

initial condition because there is experimental evidence of Saffman turbulence in

grid turbulence (see chapter 3). In this study, the model spectrum (5.53) was

transformed as a function of Reλ to investigate the dependency on turbulence of

Reynolds number based on the Taylor microscale for the non-zero-viscosity RDT

solutions. Using Taylor–Kolmogorov scaling, η/L ≈ 15
3
4Re

− 3
2

λ , the transformed

94



5.4 Model spectra

model spectrum is described by

E (k) =
K0ϵ

2
3k−

5
3[

1 + 3K0

2
(kL)−

2
3

] 11
2

exp
[
−15K0Re

−2
λ (kL)

4
3

]
. (5.54)

In this study, we investigated Reλ dependencies for non-zero-viscosity RDT (i)

Reλ = 102 and (ii) Reλ = 104. The turbulent flow at Reλ = 102 is a typical flow

such as grid turbulence, whereas the turbulent flow at Reλ = 104 is a typical flow

such as atmospheric turbulence.

5.4.2 Model spectra for homogeneous axisymmetric tur-

bulence

Sreenivasan & Narasimha (1978) proposed that a homogeneous axisymmetrical

tensor can be described by the expansion in zonal harmonics of the two indepen-

dent scalar functions. A1 and A2 can be expanded in zonal harmonics with the

Legendre polynominal P2m (cos θ) as a basis function.

−k2A1 (k , θ) + A2 (k , θ) =
∞∑
m=0

F2m (k)P2m (cosθ) , (5.55)

A2 (k , θ) =
∞∑
m=0

G2m (k)P2m (cosθ) . (5.56)

The expansion in terms of spherical harmonics was generalized by Cambon &

Teissèdre (1985) for arbitrary anisotropy. This expansion is consistent with that

of Sreenivasan & Narasimha (1978) for axisymmetry.

Postulating that some pair of functions Ai, (i = 1, . . . , 4) depends only on k

and not on cos θ, and using (5.55) and (5.56), a more concrete form of the energy

spectral tensor can be obtained. Sreenivasan & Narasimha (1978) proposed the

following three ansatzes for homogeneous axisymmetric turbulence:

1. Ansatz 1: A1 and A2 depend only on k．

2. Ansatz 2: A2 and A3 depend only on k．

3. Ansatz 3: A1 and A3 depend only on k．
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In these three ansatzes, Ansatz 1 is the simplest model because the angular de-

pendence appears throughout Pij (k) and Hij (k). Ansatz 2 is the more harmonic

form (as compared with Ansatz 1) because it contains higher-order Legendre

polynominals, e.g. F2 (k)P2 (cos θ). In Ansatz 3, A2 (k, cos θ) can be expressed

as A2 (k, cos θ) =
1

cos2 θ
[A3 − k2A1], where A3 and A1 are functions of k. As men-

tioned by Sreenivasan & Narasimha (1978), A1 (k, cos θ) and A2 (k, cos θ) do not

depend on the angular dependence when k2A1 = −A3; therefore, they become

isotropic forms. On the other hand, A2 (k, cos θ) exhibits singularity for cos θ = 0

when k2A1 ̸= −A3.

From the above-mentioned background for the three ansatzes, we used Ansatzes

1 and 2 for the model spectra.

5.4.2.1 Model spectra for Ansatz 1 (model spectrum B)

Ansatz 1 represents what is likely the simplest model for anisotropic turbulence

(Nagata et al., 2006). Because A1 and A2 are functions of only k in Ansatz 1,

the form of Φij (k) is obtained using the following simple relation:

F2m (k) = G2m (k) = 0, m = 1, 2, . . . . (5.57)

Thus, the energy spectral tensor is given by

Φij (k) = Pij (k) (F0 (k)−G0 (k)) +Hij (k)G0 (k)

= −k2Pij (k)A1 (k) +Hij (k)A2 (k) .
(5.58)

In the expression of the Craya-Herring decomposition, the energy spectral tensor

is expressed by

Φij (k) =
[
−k2A1 (k) + cos2 θA2 (k)

]︸ ︷︷ ︸
Q(1)(k)

e
(1)
i (k) e

(1)
j (k)

+
[
−k2A1 (k) + A2 (k)

]︸ ︷︷ ︸
Q(2)(k)

e
(2)
i (k) e

(2)
j (k) .

(5.59)

From the restrictions of the real functions of Q(1) (k) and Q(2) (k), A1 (k) is neg-

ative and −k2A1 (k) +A2 (k) > 0. In their model spectrum, the forms of A1 and

A2 are taken to be the exponential forms

A1 = −B1exp
(
−R1k

2
)
, A2 = B2k

2exp
(
−R2k

2
)
, (5.60)
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where B1 and B2 are constants and 1/R1/2
1 and 1/R1/2

2 are proportional to

the length scales of the isotropic and anisotropic components, respectively. For

isotropic turbulence, B2 = 0, B1 = 1/π4, and R1 = 1/π.

To determine the unknown coefficients, they prescribed the strength of anisotropy∫
dk Φii (k)∫
dk Φ11 (k)

=
⟨u2i ⟩
⟨u21⟩

=

[
1,

1

Ru

,
1

Ru

]
(no summation with respect to i) ,

(5.61)

where Ru = ⟨u21⟩ / ⟨u2i ⟩ represents the anisotropy strength and the relation of

one-dimensional spectrum Θ11 (k1) at k1 = 0 as

Θ11 (0) =
u21
2π

∫ ∞

−∞
dr ⟨u1 (x)u1 (x+ re1)⟩ =

⟨u21⟩
π
L11. (5.62)

The coefficients in (5.60) are given in Appendix B. Note that Ru is restricted to

lie within the range 1 ≤ Ru < 2 so as to satisfy the non-negative Hermitian form

of Φij (k). When Ru = 2, the integral length scale L22,1 (= L33,1) becomes zero,

which is unphysical. For more detail, refer to their paper. Their model spectrum

is for low-Reynolds-number flow, as seen in the grid turbulence. In the model

spectrum for the high-Reynolds-number flow, the forms of A1 and A2 are taken

to be the von Kármán spectral type as follows:

A1 (k) = −B1
1[

1 + (R1k)
2] 17

6

, A2 (k) = B2
k2[

1 + (R2k)
2] 17

6

(5.63)

In a similar way to Nagata et al. (2006), the unknown coefficients are obtained

and given in Appendix B. In the case of inviscid RDT (as described later), there

is no dependency of the forms of A1 and A2 on the change in TKE. When the

von Kármán forms are adopted, enstrophy is seen to diverge because of the power

law form.

5.4.2.2 Model spectra for Ansatz 2 (model spectrum C)

In Ansatz 2, A2 and A3 are functions of k. Thus, G2m (k) = 0 for m = 1, 2, . . .. In

addition, the relation A2 (k) = G0 (k) = −3
2
F2 (k) is obtained using P2 (cos θ) =

1
2
(3 cos2 θ − 1). Finally, the following relations are obtained:

G0 (k) = −3

2
F2 (k) , F2m+2 (k) = 0 = G2m (k) , m = 1, 2, . . . . (5.64)
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Thus, the energy spectral tensor is given by

Φij (k) = Pij (k)F0 (k) +

[
Pij (k)

(
3

2
cos2 θ + 1

)
− 3

2
Hij (k)

]
F2 (k) . (5.65)

Unlike the form of the energy spectral tensor in Ansatz 1, the angular dependency

appears in A1 (k). In the expression of the Craya–Herring decomposition, the

energy spectral tensor is given by

Φij (k) = [F0 (k) + F2 (k)]︸ ︷︷ ︸
Q(1)(k)

e
(1)
i (k) e

(1)
j (k)

+

[
F0 (k) +

(
3

2
cos2 θ − 1

2

)
F2 (k)

]
︸ ︷︷ ︸

Q(2)(k)

e
(2)
i (k) e

(2)
j (k) .

(5.66)

From the restriction of the real functions of Q(1) (k) and Q(2) (k), F0 (k)+F2 (k) >

0 and F0 (k) >
1
2
F2 (k). When F2 (k) is negative, A2 (k) is positive. In this case,

the magnitude of F0 (k) must be larger than that of F2 (k), regardless of θ.

Similar to Ansatz 1, the exponential forms for F0 (k) and F2 (k)

F0 (k) = F0k
2 exp

(
−L0k

2
)
, F2 (k) = F2k

2 exp
(
−L2k

2
)
, (5.67)

and the von Kármán forms

F0 (k) = F0
k2[

1 + (L0k)
2] 17

6

, F2 (k) = F2
k2[

1 + (L2k)
2] 17

6

, (5.68)

have been adopted, in which the coefficients L0, L2, F0, and F2 are determined

using a similar to the method used for Ansatz 1; they are given in Appendices

B.3 and B.4 for the exponential and von Kármán type, respectively.

5.5 Results and Discussions for inviscid RDT

5.5.1 Angular distribution of energy spectral tensor

In homogeneous anisotropic turbulence, there is an angular dependency forQ(1) (χ, t)

and Q(2) (χ, t). When we discuss the departure from isotropy, it is convenient to
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5.5 Results and Discussions for inviscid RDT

introduce e–z decomposition (Sagaut & Cambon, 2008). For instance, the angu-

lar dependency of anisotropic turbulence has been discussed by Cambon et al.

(1997). However, in this study, the angular distribution of parallel and perpen-

dicular energy spectral tensors are discussed to better understand the phenomena

in turbulence-shock wave interactions.

Figures 5.2 and 5.3 show the changes in angular dependency of energy spec-

tral tensors, Φ∥ (χ, t) and Φ⊥ (χ, t), for model spectra A and B, respectively. In

model spectrum A, the spectral tensor has energy at low wavenumbers, and this

is caused by the Saffman form at low wavenumbers, whereas in model spectrum

B (and C, not shown), the spectral tensor has energy near the inverse of the

integral length scale, and this is due to the Batchelor form at low wavenumbers.

When initial isotropic conditions are considered, there is a slight change in the

angular distribution of Φ∥ (χ, t), whereas energy concentrates to approximately

θ = π/4 in the angular distribution of Φ⊥ (χ, t). As shown in figures 5.2 and

5.3, the shock-induced one-dimensional compression (hereinafter simply ‘com-

pression’) transfers energy to high wavenumbers. This energy transfer was seen

in Φ⊥ (χ, t), regardless of the choice of Ansatz 1 or 2. On the other hand, there

was a slight difference in Φ∥ (χ, t) between Ansatzes 1 and 2. These different

changes contribute to the changes in one-dimensional spectra at low wavenum-

bers. As discussed later, the energy changes at π/2 in Φ⊥ (χ, t) yield large changes

at low wavenumbers in the compressed direction, whereas there are no changes

in longitudinal one-dimensional spectra at low wavenumbers because the energy

remains at π/2 in Φ∥ (χ, t).

As shown in figures 5.2 and 5.3, the changes in the energy spectral tensors

strongly depend on the initial distributions of the energy spectral tensors. Thus,

we can interpret the change in the angular distribution as the effect of the ini-

tial anisotropy. When the initial anisotropy is strong, as discussed later, the

amplifications of velocity variances are larger than in the case of homogeneous

isotropic turbulence. These results suggest that the change in turbulence after

compression is different for the near and far regions of the grid turbulence. In

fact, these differences have been reported by Agui et al. (2005). Regardless of the

initial energy spectral tensors, the distribution of Φ∥ (χ, t) tends to concentrate

at θ = π/2, whereas that of Φ⊥ (χ, t) tends to concentrate at θ = π/4.
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5.5 Results and Discussions for inviscid RDT

Figure 5.2: The angular distribution of energy spectral tensors in homogeneous

isotropic turbulence for model spectrum A (the Saffman-Pao model spectrum,

Reλ = 102) as an initial condition (logχ–θ plot). The left-side figure shows

the angular distribution of Φ∥ (χ, t). The right-side figures show the angular

distribution of Φ⊥ (χ, t). The upper, middle, and lower figures correspond to

ρ/ρ0 = 1, ρ/ρ0 = 2, and ρ/ρ0 = 4, respectively. Note that each colour contour is

normalized by the maximum value in each figure.
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Figure 5.3: The same data as figure 5.2 but for model spectrum B with exponen-

tial form and Ru = 7/4.
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5.5.2 Velocity variances

When isotropic initial conditions are considered, Q(1) (k) = Q(2) (k) = E(k)
4πk2

. From

(5.44), (5.47), and (5.48), the energy spectral tensors are given by

Φ∥ (χ, t) =
E (k)

4πk2
[
P 2 sin2 θ +Q2 cos2 θ + 2PQ sin 2θ

]
, (5.69)

Φ⊥ (χ, t) =
E (k)

8πk2
[
1 + P 2 cos2 θ +Q2 sin2 θ − 2PQ sin 2θ

]
, (5.70)

Φll (χ, t) =
E (k)

4πk2
[
1 + P 2 +Q2

]
, (5.71)

where

Ks (0) =

∫ ∞

0

dk E (k) (5.72)

is the initial TKE of the solenoidal mode. The variances of the parallel and

perpendicular velocity fluctuations are given by⟨
u2∥ (t)

⟩
=

∫
dχ Φ∥ (χ, t) =

1

1 + S1t

∫
dk Φ∥ (χ, t)

=
Ks (0)

2

C3

C2 − 1

[
1 +

(
C2 − 2

) tan−1
√
C2 − 1√

C2 − 1

]
,

(5.73)

⟨
u2⊥ (t)

⟩
=

∫
dχ Φ⊥ (χ, t)

=
CKs (0)

2

[
1 +

C2

2 (C2 − 1)

(
−1 + C2 tan

−1
√
C2 − 1√

C2 − 1

)]
,

(5.74)

and the TKE of the solenoidal mode is given by

Ks (t) =
1

2

∫
dχ Φll (χ, t) =

1

1 + S1t

∫
dk Φll (χ, t)

=
Ks (0)

2

[
C + C3 tan

−1
√
C2 − 1√

C2 − 1

]
,

(5.75)

where C = ρ/ρ0. The limiting cases for (5.73) and (5.74) have been derived by

Ribner & Tucker (1953). For Ansatzes 1 and 2, the changes in each velocity

variance and TKE value are described in Appendix C. As confirmed by Larsson

& Lele (2009) using DNS, the maximum wavenumber, which corresponds to the
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5.5 Results and Discussions for inviscid RDT

resolution in the physical space, is important in turbulence–shock wave interac-

tions. Using RDT analysis, Jacquin et al. (1993) obtained the TKE after the

compression using the integration range [k0,min : k0,max] for the initial homoge-

neous isotropic turbulence. However, as shown in the experiment of Barre et al.

(1996), the TKE at high wavenumbers increases behind a shock wave. Further-

more, Larsson & Lele (2009) showed that different numerical resolutions yielded

different amplification ratios of velocity variance, and that their DNS results

were different from those of Lee et al. (1997) and LIA. Therefore, the maximum

wavenumber, which corresponds to the resolution in the physical space, plays an

important role in the statistical quantities of turbulence. In homogeneous turbu-

lence, TKE dissipation of the solenoidal mode is expressed by ϵs = ν ⟨ω2⟩. Thus,

the Kolmogorov length scale is expressed by η =
(

ν2

⟨ω2⟩

) 1
4
=
(

µ2

ρ2⟨ω2⟩

) 1
4
, and the

ratio between the Kolmogorov length scale after and before the interaction with

a shock wave can be written as follows using
√

⟨ω2⟩/
√

⟨ω2
0⟩ ∼ ρ/ρ0 (Mahesh

et al., 1997):

k0,max
kmax

=
η

η0
=

(
µ2ρ40
µ2
0ρ

4

) 1
4

=

(
ρ40
ρ4
f
(
T
)) 1

4

, (5.76)

where (µ/µ0)
2 = f

(
T
)
indicates that µ is an increasing function of temperature

T . Larsson & Lele (2009) proposed the maximum wavenumber of kmax/k0,max =

(ρ/ρ0)
(
T0/T

) 3
8 . Here, we adopted the maximum wavenumber of kmax >

ρ
ρ0
k0,max

in the numerical calculation. Figures 5.4 (a) and (b) show the changes in TKE and

the changes in η/η0 (= k0,max/kmax). When we set the the maximum wavenumber

to kmax >
ρ
ρ0
k0,max, the obtained results agreed with the exact solution (5.75).

On the other hand, when we set the maximum wavenumber to kmax/k0,max =

(ρ/ρ0)
(
T0/T

) 3
8 as used in Larsson & Lele (2009) and Larsson et al. (2013), the

TKE amplification is underestimated in the RDT analysis. As confirmed by

high-resolution DNS of Larsson & Lele (2009), the obtained results depend on

the resolution. Furthermore, our RDT results suggest that the dependence on the

resolution for the statistical quantities becomes remarkable with the increase of

Mach number. Thus, RDT analysis strongly suggests that high-resolution DNS is

needed to obtain the accurate results for the turbulence-shock wave interactions,

especially for high Mach number flows. Of course, RDT is based on a linear

theory and requirements of grid resolution for high Mach number flows should
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be carefully examined using DNS in the future study. TKE amplification of the

DNS results of Grube et al. (2011) is shown in figure 5.4; their result is in good

agreement with the RDT analysis. LIA result in the near field (Jacquin et al.,

1993) is also included in figure 5.4. Based on this result, kmax >
ρ
ρ0
k0,max is used

for the RDT analysis with non-zero viscosity in §5.6.
Figure 5.5 (a) shows the amplification of TKE for the initial homogeneous ax-

isymmetric turbulence. The amplification of TKE depends on the initial degree

of anisotropy; however, there is almost no dependency on the difference between

Ansatzes 1 and 2. As discussed later, the amplification of ⟨u2⊥ (t)⟩ contributes to
the amplification of TKE for the initial homogeneous axisymmetric turbulence.

Figure 5.5 (b) shows the changes in velocity anisotropy
⟨
u2∥ (t)

⟩
/
⟨
u2∥ (0)

⟩
/ (⟨u2⊥ (t)⟩/⟨u2⊥ (0)⟩).

The results of Larsson et al. (2013) for the far region are also included for ref-

erence. The changes in anisotropy against ρ/ρ0 for RDT are closer to the DNS

results rather than the LIA result. Here, it is worth mentioning the difference

between RDT and LIA. First, the changes in the TKE in the near regions are

associated with the energy transfer from the acoustic potential energy in LIA.

However, such changes are not incorporated into RDT. Thus, the predictive ca-

pabilities of the RDT analysis for turbulence-shock interaction are limited only for

the vicinity of the shock wave. In the vicinity of the shock wave, RDT result qual-

itatively agrees with the DNS result (Larsson & Lele, 2009) in that the parallel

component of the velocity fluctuations are amplified more than the perpendicu-

lar component. However, LIA result shows the opposite result for Ms = 2.0 (Lee

et al., 1997). This means that RDT is more accurate in the vicinity of the shock

wave, whereas it cannot predict the statistical quantities for the far field. Then,

RDT does not take into account of the entropy fluctuations. It is known that

the entropy fluctuations are more significant than acoustic fluctuations for high

Mach number flows. Thus, the present RDT analysis is no longer valid for the

inflow having the entropy fluctuations.

Figure 5.6 shows the changes in
⟨
u2∥ (t)

⟩
and ⟨u2⊥ (t)⟩. As shown in figure

5.6, the changes in the variance of each velocity component depend on the initial

degree of anisotropy, For the changes in ⟨u2⊥ (t)⟩, Ansatzes 1 and 2 yield dif-

ferent amplifications. When the isotropic initial conditions are considered, the

anisotropy of the velocity components is significant; however, the anisotropy of
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-(a) (b)
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‐‐

Figure 5.4: The amplification of TKE versus the inviscid RDT solution for the

initial homogeneous isotropic turbulence. Also included are the changes in TKE

from the LIA (near field) result of Jacquin et al. (1993) and the DNS result

of Grube et al. (2011) with the initial conditions Reλ = 26, Mt = 0.52, and

M1 = 3.46, and Larsson et al. (2013) with the initial condition Reλ ≈ 40, where

M1 is the Mach number of the upstream of a shock wave.

the velocity components is not significant when the initial anisotropy is strong.

However, this strong anisotropy cannot be seen in fully developed grid turbulence,

as already shown in figure 5.5 (b). Thus, the anisotropy of the velocity compo-

nents may be a general consequence of homogeneous isotropic turbulence–shock

wave interactions.

As shown in the DNS of Grube et al. (2011), there is a slight contribution

from the nonlinear term in the energy budget; however, note that the compressible

contribution is much larger than the nonlinear effect. In addition, there is a slight

contribution of baroclinic effect. Following Kevlahan & Hunt (1997), we simply

evaluate the evolution of the nonlinear term of the solenoidal mode by means

of the primitive perturbation method. Non-dimensionalizing the equation for

ûsi (χ, t), and χ by the initial integral scale and the initial r.m.s. velocity u0,
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Figure 5.5: (a) The amplification of TKE versus the inviscid RDT solution

for the initial homogeneous axisymmetric turbulence. (b) The changes in⟨
u2∥ (t)

⟩
/
⟨
u2∥ (0)

⟩
/ (⟨u2⊥ (t)⟩ / ⟨u2⊥ (0)⟩). The symbols are taken from the DNS

of Larsson et al. (2013); their results correspond to the post-shock turbulence

anisotropy in the far field.
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Ru HIT Ansatz 2 (Ru=1.5) Ansatz 2 (Ru=2.0) Ansatz 2 (Ru=2.5)
(a)
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Ru HIT Ansatz 1 (Ru=1.25) Ansatz 1 (Ru=1.50) Ansatz 1 (Ru=1.75) Ansatz 2 (Ru=1.5) Ansatz 2 (Ru=2.0) Ansatz 2 (Ru=2.5)
(b)

Figure 5.6: The amplification of velocity variances versus the inviscid RDT solu-

tion. (a) The variance of parallel velocity components,
⟨
u2∥ (t)

⟩
/
⟨
u2∥ (0)

⟩
, and

(b) the variance in perpendicular velocity components, ⟨u2⊥ (t)⟩ / ⟨u2⊥ (0)⟩. Note

that the changes in variance of the parallel velocity components for Ansatz 1 are

the same as those for the initial homogeneous isotropic turbulence, regardless of

the initial anisotropy.
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(5.18) and (5.19) become

dûsi (χ, t)

dt
= − χ2

ReL
(
1− t

δ

)n(κ−1)−1
ûsi (χ, t)

+ [Πi1 (χ)− Pi1 (χ)]
−1

δ
(
1− t

δ

) ûs1 (χ, t) +N s
i (û (χ, t) ,χ, t) ,

(5.77)

χ1 (t) =
k1

1− t
δ

, χ2 (t) = k2, χ3 (t) = k3, (5.78)

where δ = (u0/L) / | S1 |≪ 1 is the ratio of the strain rate of the energy-

containing eddies to the strength of compression, and ReL = u0L/ν is the

Reynolds number. N s
i (û (χ, t) ,χ, t) is the nonlinear term. Furthermore, we

change the variable τ = t/δ in the dimensionless equations, and the RDT equa-

tions become

dûsi (χ, τ)

dτ
= − δχ2

ReL (1− τ)n(κ−1)−1
ûsi (χ, τ)

+ [Πi1 (χ)− Pi1 (χ)]
−1

(1− τ)
ûs1 (χ, τ) + δPij (χ)Nj (û (χ, t) ,χ, τ) ,

(5.79)

χ1 (τ) =
k1

1− τ
, χ2 (τ) = k2, χ3 (τ) = k3. (5.80)

Expanding ûi (χ, t) as a perturbation series in the ordering parameter δ, we obtain

ûi (χ, t) = û
(0)
i (χ, t) + δû

(1)
i (χ, t) +O

(
δ2
)
. (5.81)

Equating the powers of δ, the zeroth-order equation implies neglecting the non-

linear terms, which are of order δ (while retaining the viscous terms), which leads

to the following solutions:

û
s(0)
1 (χ, τ) = β1 (k, τ) û

s
1 (k, 0) fv (k, τ) , (5.82)

û
s(0)
2 (χ, τ) = β2 (k, τ) û

s
1 (k, 0) fv (k, τ) + ûs2 (k, 0) fv (k, τ) , (5.83)

û
s(0)
3 (χ, τ) = β3 (k, τ) û

s
1 (k, 0) fv (k, τ) + ûs3 (k, 0) fv (k, τ) , (5.84)
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where βi (k, τ) are given by

β1 (k, τ) =
k2 (1− τ)

k21 + k223 (1− τ)2
, (5.85)

βi (k, τ) = − k1kiτ (2− τ)

k21 + k223 (1− τ)2
(i = 2 or 3) , (5.86)

and fv (k, τ) is the viscous decay factor, which is given by

fv (k, τ) = exp

 1

ReL

k21
(
(1− τ)n(1−κ) − 1

)
n (1− κ)

+
k223

(
(1− τ)n(1−κ)+2 − 1

)
n (1− κ) + 2

 .
(5.87)

The nonlinear terms of the solenoidal mode are expanded in terms of û(0) (χ, t)

as

N s
i (χ, τ) = −ıPij (χ)

∫
χ=p+q

dp qnûn (p, τ) ûj (q, τ)

= Pij (χ)N
(0)
j

(
û(0) (χ, τ) ,χ, τ

)
+O (δ) ,

(5.88)

where χ = p + q is called a resonant triad condition, which is the hallmark

of incompressible fluids, whereas χ = p + q + r appears in compressible fluids

without the assumption of ρ ≫ ρ′. Here, the zeroth- and first-order nonlinear

terms are shown in figure 5.7 using the diagram representation. In the diagram

representation of the perturbation series, the nonlinear terms can be written by

representing the main constituents such as û(0), G(0) and the projectors (5.14).

As shown in figure 5.7, there are four convolutions in the zeroth-order nonlinear

term. The first-order correction û
s(1)
i (χ, τ) to the RDT approximation is the

solution to the equations

dû
s(1)
i (χ, τ)

dτ
= − δχ2

ReL (1− τ)n(κ−1)−1
û
s(1)
i (χ, τ)

+ [Πi1 (χ)− Pi1 (χ)]
−1

(1− τ)
û
s(1)
1 (χ, τ) + Pij (χ)N

(0)
j (û (χ, t) ,χ, τ) ,

(5.89)

where

û
s(1)
i (χ, τ) =

∫ τ

0

ds G
s(0)
im (χ, τ, s)Pmj (χ)N

(0)
j

(
û(0) (χ, s) ,χ, s

)
(5.90)
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χ(  )(0 ) =s +n jni,j n jni,j + n jni,j + n jni,j
χ(  )(1 ) =s

Ni k jki,j n mnl,m

= =χ^ (  )(0 )s χ^ (  )(0 )d χ^ (  )(0 )s =∫ dχ  p  q =  + p==p(  )(0 )s =iu iji i jii^ juqi i j p(  )(0 )d^ juqi i jGu -i χ(  )ijP
l + k jki,j n mnl,ml +Ni 6 terms

Figure 5.7: Diagram representation of the nonlinear terms. Blue lines correspond

to the solenoidal mode. Red lines correspond to the dilatational mode. ûs(0)

correspond to the RDT solutions (5.82), (5.83) and (5.84).

where

G
s(0)
1m (χ, τ, s) = β1 (k, τ) β

−1
1 (k, s) fv (k, τ) f

−1
v (k, s)P1m (χ) , (5.91)

G
s(0)
im (χ, τ, s) = (βi (k, τ)− βi (k, s)) β

−1
1 (k, s) fv (k, τ) f

−1
v (k, s)P1m (χ)

+ fv (k, τ) f
−1
v (k, s)Pim (χ) , (i = 2 or 3) .

(5.92)

In the zeroth nonlinear term, the largest contribution to the first-order correction

û
s(1)
i (χ, τ) to the RDT approximations is the convolution of the solenoidal modes

when the initial conditions consist of the solenoidal mode. In fact, the contri-

bution of the dilatational mode to the amplification of TKE is less than that

of the solenoidal mode (Jacquin et al., 1993). Thus, the evolutions of both the

solenoidal mode and the dilatational mode are primarily caused by the change in

the solenoidal mode (blue lines in figure 5.7), and the contribution of the first-

order correction can be interpreted as an indirect effect of the Rankine-Hugoniot

relation throughout the perturbation manner.

Regarding the answer to the first question of Andreopoulos et al. (2000), in

this study, we cannot concretely determine how much of the TKE amplification

after the interaction is caused solely by the Rankine–Hugoniot relation, because

some causes of TKE amplification were neglected, e.g. the curved shock effect,
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the baroclinic effect, and so on. However, present RDT analysis implies that the

amplification of TKE after the interaction is a direct consequence of the Rankine–

Hugoniot relation, because the RDT governing equations for one-dimensional

compression satisfy the Rankine–Hugoniot relation as to the mean density and

mean pressure, and the effect of the nonlinear term contributes to the amplifica-

tion of TKE through the perturbation manner. Thus, the effect of the nonlinear

term can be interpreted as an indirect consequence via the Rankine–Hugoniot

relation.

5.5.3 Vorticity variances

When the isotropic initial conditions are considered, the variances of parallel and

perpendicular vorticity after compression are given by⟨
ω2
∥ (t)

⟩
=

∫
dχ Ω∥ (χ, t) = C

⟨
ω2
∥ (0)

⟩
=
C

3

⟨
ω2 (0)

⟩
, (5.93)

⟨
ω2
⊥ (t)

⟩
=

∫
dχ Ω⊥ (χ, t) =

C3

3

⟨
ω2 (0)

⟩
, (5.94)

and the enstrophy is given by

⟨
ω2 (t)

⟩
=

∫
dχ χ2Φll (χ, t) =

C (2C2 + 1)

3

⟨
ω2 (0)

⟩
. (5.95)

Regarding Ansatzes 1 and 2, the changes in each vorticity variance and enstro-

phy are described in Appendix C. As shown in figure 5.8, the variance of the

perpendicular vorticity, ⟨ω2
⊥⟩, is amplified more than that of the parallel vorticity,⟨

ω2
∥

⟩
. Similar results have been obtained in the DNSs of Lee et al. (1993, 1997),

Larsson & Lele (2009), and Grube et al. (2011). Regarding the limiting case of

inviscid RDT analysis,
⟨
ω2
∥

⟩
does not change throughout the interaction. In the

experiments of Agui et al. (2005), they showed that
⟨
ω2
∥

⟩
was slightly reduced

after the interaction. Using RDT analysis, their results may be interpreted as

being caused by the lack of the resolution (which may correspond to the limiting

case in the RDT analysis). In fact, high-resolution DNS of Grube et al. (2011)

showed slight amplification of
⟨
ω2
∥

⟩
.
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Figure 5.8: The amplification of vorticity variances in inviscid RDT. The black

solid, dashed, and dotted lines correspond to the changes in ⟨ω2 (t)⟩ / ⟨ω2 (0)⟩,⟨
ω2
∥ (t)

⟩
/
⟨
ω2
∥ (0)

⟩
and ⟨ω2

⊥ (t)⟩ / ⟨ω2
⊥ (0)⟩, respectively, for the initial homoge-

neous isotropic turbulence. The blue and red lines correspond to the changes

in ⟨ω2 (t)⟩ / ⟨ω2 (0)⟩ for the initial homogeneous axisymmetric turbulence of

Ansatzes 1 and 2, respectively.
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Figure 5.9: The change in vorticity anisotropy ⟨ω2
⊥⟩ /

⟨
ω2
∥

⟩
. We also present the

DNS results of Larsson & Lele (2009), Larsson et al. (2013) and Grube et al.

(2011). The black and white diamonds correspond to the DNS results of the

initial conditions Ms = 1.87 and Mt = 0.22, and grids with 1040 × 3842 and

174 × 642, respectively (Larsson & Lele, 2009). The black and white circles

correspond to the DNS results of the initial conditions Reλ = 40 and Reλ = 74

with Ms = 3.5 and Mt = 0.16, respectively (Larsson et al., 2013). The initial

conditions of Grube et al. (2011) are the same as those in figure 5.4 (a).
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Figure 5.9 shows the change in vorticity anisotropy. The results of Larsson &

Lele (2009), Larsson et al. (2013), and Grube et al. (2011) are also shown. As

discussed by Larsson & Lele (2009), the effect of resolution yields different results

in the process of the return to isotropy behind a shock wave. In fact, the vorticity

anisotropy of high-resolution DNS is closer to the RDT result than that of low

resolution DNS. Compared to the anisotropy of the velocity field, the anisotropy

of the vorticity fields is significant. This phenomenon is due to the anisotropy at

small scales after the interaction.

For the answer to the second question of Andreopoulos et al. (2000), the

amplification of vorticity relates to the changes in wavenumber and the amplifi-

cation of energy at high wavenumbers. Because the enstrophy can be calculated

from (5.95), the integrand is given by χ2Φii (χ, t), which can be approximated

by C2k21Φii (χ, t) by neglecting the related term k223. Thus, the vorticity fluctua-

tions are amplified more than the velocity fluctuations with order C2
(
= (ρ/ρ0)

2).
Then, as described later, the shock-induced compression transfers energy to the

fluctuating components, and redistributes energy in the Fourier space. As a con-

sequence of these effects, the energy at small eddies is amplified and contributes

to the amplification of vorticity fluctuations.

5.5.4 Spectra

The one-dimensional energy spectrum for the χ1 direction is given by

Θij (χ1, t) =

∫ ∞

0

∫ ∞

0

Φij (χ, t) dχ2dχ3 =

∫ ∞

χ1

∫ 2π

0

Φij (χ, t)χdχdϕ. (5.96)

Although one-dimensional energy spectra can be calculated analytically, we inves-

tigated them numerically because of the cumbersome algebra. Figure 5.10 shows

the one-dimensional energy spectra in exponential form for initial conditions with

Ru = 7/4 for Ansatz 1. We confirmed that the main differences between the ex-

ponential form and the von Kármán form are apparent at high wavenumbers.

Similar results are obtained for Ansatz 2, although differences between Ansatzes

1 and 2 are apparent at low wavenumbers.

Regardless of the initial forms of the energy spectra, the energy at high

wavenumbers is amplified more than that at low wavenumbers. Regarding the
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changes in energy spectra at low wavenumbers, the changes in Θ⊥
(
χ|, t

)
are larger

than those in Θ∥
(
χ|, t

)
. These results correspond to the changes in the integral

length scales, as described later.

Regarding the changes in the normalized one-dimensional energy spectrum

Θ∥
(
χ|, t

)
/
⟨
u2∥ (t)

⟩
, RDT results qualitatively agree with the experimental results

of Barre et al. (1996), and Agui et al. (2005); however, note that these results are

different from the experimental results of Honkan & Andreopoulos (1992), who

showed that the energy of large eddies is amplified more than that of small eddies.

In RDT analysis, although turbulence is treated as homogeneous turbulence,

inhomogeneous effects will appear in large eddy structures after interaction with

a shock wave. However, RDT analysis may yield good results for changes in

small eddies, because the local homogeneities can be assumed for high-Reynolds-

number flows.

For the answer to the third question of Andreopoulos et al. (2000), the ampli-

fication of energy at high wavenumbers is due to the extension of wavenumber.

In terms of energy exchange, the shock-induced compression transfers energy to

the fluctuating components, and redistributes energy in the Fourier space. These

energy transfers are seen at high wavenumbers; as a consequence, the distant

triad interactions, max (k, p, q) /min (k, p, q) ≫ 1, will be more dominant than

the local triad interactions, max (k, p, q) /min (k, p, q) ∼ 1, in the small eddies

when nonlinear effects are considered. These conclusions are based on the basic

principles of RDT analysis.

5.5.5 Turbulence characteristic length scales

The integral length scale Lij,n is defined by the integration of the cross-correlation

coefficient rij (ξen) from zero to infinity; it is given by

Lij,n (t) =

∫ ∞

0

dξ rij (ξen) =
1

⟨uiuj⟩

∫ ∞

0

dξ ⟨ui (x)uj (x+ ξen)⟩ . (5.97)

In homogeneous turbulence,

Lij,n (t) =
π

⟨uiuj⟩

∫ ∞

−∞
dχm

∫ ∞

−∞
dχl Φij (χ, t) |χn=0, (5.98)
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Figure 5.10: Normalized one-dimensional power spectra in the exponential form

(left) Θ∥
(
χ|, t

)
/
⟨
u2∥ (t)

⟩
and (right) Θ⊥

(
χ|, t

)
/ ⟨u2⊥ (t)⟩ for Ansatz 1 with Ru =

7/4 as an initial condition.

where χm (= χmem) is the vector orthogonal to χn (= χnen) and χl (= χlel) is

the vector orthogonal to both χm and χn. Therefore, the integral length scale

can be calculated from the planar integral.

When the isotropic initial conditions are considered, the longitudinal integral

length scale (e.g. L11,1 = L22,2 = L33,3) is defined as (Batchelor, 1953)

Lf =
3π

4Ks

∫ ∞

0

E (k)

k
dk, (5.99)

where the lateral integral length scale is Lg =
1
2
Lf .

The analytical solutions of the integral length scales are presented in Appendix

C. Figure 5.11 shows the changes in the integral length scales for the initial

homogeneous isotropic turbulence. As shown in figure 5.11, most integral length

scales [e.g. L11,1, L22,2 (= L33,3), and L22,1 (= L33,1), L11,2 (= L11,3)] decrease after

the compression, whereas L22,3 (= L33,2) increases. In these integral length scales,

L22,1 (= L33,1) is significantly reduced after the compression. When the initial

isotropic conditions are considered, there are no differences between L11,1 and

L11,2 (= L11,3); however, one can see the differences between them for the initial

homogeneous axisymmetric turbulence.
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Figure 5.11: Changes in integral length scale in the inviscid RDT analysis.

The Taylor microscale λii,j is defined by

λii,j (t) =

√√√√√ ⟨u2i ⟩⟨(
∂ui
∂xj

)2⟩ =

√ ∫
dχ Φii (χ, t)∫
dχ χ2

jΦii (χ, t)
(no summation with respect to i) .

(5.100)

When the isotropic initial conditions are considered, the square of the longitudinal

Taylor microscale λ2f is given by

λ2f = 5
⟨u2⟩
⟨ω2⟩

, (5.101)

and the square of the lateral Taylor microscale is λ2g = λ2f/2. The analytical so-

lutions of the Taylor microscales are described in Appendix C. Figure 5.12 shows

the changes in Taylor microscales for the initial homogeneous isotropic turbu-

lence. As shown in figure 5.12, most Taylor microscales [e.g. λ11,1, λ22,2 (= λ33,3),

λ22,1 (= λ33,1) and λ11,2 (= λ11,3)] decrease after the compression, whereas λ22,3 (= λ33,2)

increases. Unlike the changes in the integral length scales, there is a difference

between the changes in λ11,1 and λ22,1 (= λ33,1). Regarding the length scales re-

lated to the parallel velocity components and the parallel direction, the reduction
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Figure 5.12: Changes in Taylor microscale in the inviscid RDT analysis.

of Taylor microscales is larger than that of the integral length scales. On the

other hand, regarding the length scales related to the perpendicular components,

the changes in the integral length scales are larger than those of the Taylor mi-

croscales.

To our knowledge, the issue of whether L22,3 (= L33,2) and λ22,3 (= λ33,2) are

reduced or amplified has not been investigated in previous studies. In RDT

analysis, these length scales are amplified after the compression. The other length

scales are reduced after the compression. These results qualitatively agree with

those of previous experiments (e.g. Agui et al. 2005) and DNSs (e.g. Lee et al.

1993; Hannappel & Friedrich 1995; Grube et al. 2011). The above-mentioned

results are a part of the answer to the fourth question of Andreopoulos et al.

(2000) related to the changes in the turbulent length scales. The changes in the

dissipation length will be discussed later.
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5.6 Results and Discussion for RDT analysis with

non-zero viscosity

We investigated the changes in TKE dissipation and dissipation length scale using

model spectra A (Reλ = 102 and 104).

The non-zero viscous solutions take the form (Hanazaki & Hunt, 2004)

ûsi (χ, t) = D (t) ûs inv
i (χ, t) , (5.102)

where the superscript ‘inv’ denotes the inviscid solutions (5.30), (5.31) and (5.32).

Here D (t) is a function that satisfies(
d

dt
+ ν (t)χ2

)
D (t) = 0. (5.103)

With an initial condition D (0) = 1.

D (t) = exp

(
−
∫ t

0

ds ν (s)χ2 (s)

)
= exp

[
− ν0
S1

[
k21

n (1− κ)

(
(1 + S1t)

n(1−κ) − 1
)

+
k223

n (1− κ) + 2

(
(1 + S1t)

n(1−κ)+2 − 1
)]]

.

(5.104)

Rapid shock-induced compression does not break the symmetry of the statistical

quantities of turbulence, as shown in RDT analysis and as confirmed by DNS

(Lee et al., 1993, 1997). The energy spectral tensors with non-zero viscosity after

the compression are expressed by

Φ∥ (χ, t) = D2 (t) Φinv
∥ (χ, t) , (5.105)

Φ⊥ (χ, t) = D2 (t) Φinv
⊥ (χ, t) . (5.106)

5.6.1 TKE dissipation rate

The ensemble averaged TKE dissipation rate in a homogeneous compressible flow

can be decomposed into the solenoidal mode, ϵs, and the dilatational mode, ϵd

(Bertoglio et al., 2001),

ϵs = ν
⟨
ω2
⟩
, (5.107)
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Figure 5.13: The amplification of TKE dissipation rate of the solenoidal mode.

ϵd =
4

3
ν

⟨(
∂udi
∂xi

)2
⟩
. (5.108)

In weakly compressible homogeneous isotropic turbulence, Bertoglio et al. (2001)

showed that ϵd is related to ϵs via ϵd = α1M
2
t ϵ
s, where α1 ≈ 0.5. Thus, the

evolution of the dilatational TKE dissipation rate is assumed to be weak for

one-dimensional compression when the initial velocity fields consist only of the

solenoidal mode.

Figure 5.13 shows the changes in the TKE dissipation rate of the solenoidal

mode. After the compression, the TKE dissipation rate of the solenoidal mode is

amplified and there is a slight Reynolds dependency. These results qualitatively

agree with the experiments of Agui et al. (2005).

For the answer to the fifth question of Andreopoulos et al. (2000), the TKE

dissipation rate of the solenodal mode is amplified after the compression. The

TKE dissipation rate of the dilatational mode is also amplified after the compres-

sion because it is related to the amplification of the velocity fluctuation of the

dilatational mode.
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Figure 5.14: Changes in the dissipation scale.

5.6.2 Dissipation length scale

The dissipation length scale is defined by

Lϵ =
K

3
2

ϵ
. (5.109)

Figure 5.14 shows the changes in Lϵ. Lϵ is amplified after the compression, and

there is a slight Reynolds number dependency. The obtained results qualitatively

agree with the experiments of Honkan & Andreopoulos (1992) and the DNS of

Lee et al. (1997); however, Hannappel & Friedrich (1995) showed the opposite

results. Because the dissipation length scale is a ratio of the amplification of the

TKE and the amplification of the TKE dissipation rate, the changes in Lϵ may be

related to both the initial strength of the turbulent Mach number and the initial

Reynolds number.

5.7 Conclusions

The interactions between turbulence and a shock wave were analytically investi-

gated by means of RDT analysis for initial homogeneous isotropic and axisym-

metric turbulence.
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We attempted to answer the questions identified by Andreopoulos et al. (2000)

within the linear theoretical framework. The main results are as follows:

1. How much of the amplification of turbulence interacted with a shock wave

is caused entirely by the Rankine–Hugoniot conditions?

Because the obtained results in RDT are based on the Rankine-Hugoniot

relation, the effect of shock-induced compression can be interpreted as a

direct consequence of the Rankine-Hugoniot relation. Nonlinear effects may

have appeared as an indirect consequence of the Rankine–Hugoniot relation

via the perturbation manner. The convolution of the solenoidal modes are

dominant when the initial solenoidal velocity fields are given. Although

RDT analysis does not consider the baroclinic effects and curved shock

effects, these effects are considered to be smaller than those of the shock-

induced compression and nonlinear effects. Thus, the amplifications of TKE

are caused primarily by the Rankine-Hugoniot relation.

2. Why are vorticity fluctuations amplified more than velocity fluctuations?

The amplification of vorticity relates to changes in wavenumber and the

amplification of energy at high wavenumbers. Because the enstrophy can

be calculated from the integral 1
2
⟨ω2 (t)⟩ = 1

2

∫
dχ Ωii (χ, t), the inte-

grand is given by Ωii (χ, t) = χ2Φii (χ, t), which can be approximated by

C2k21Φii (χ, t) by neglecting the related term k223. Thus, vorticity fluctua-

tions are more amplified than velocity fluctuations with order C2
(
= (ρ/ρ0)

2).
3. Why is the energy of small eddies amplified more than that of large eddies?

The amplification of energy at high wavenumbers is due to the extension

of wavenumber. Then, the forms of energy spectra may be important.

The main difference is seen in the region of the exponential form at high

wavenumbers (unlike the power law form).

4. Are the length scales of the incoming turbulence reduced or amplified

through such interactions?

The integral length scales and the Taylor microscales are reduced for most

cases. However, L22,3 (= L33,2) and λ22,3 (= λ33,2) are amplified. After the

compression, the dissipation length scale is amplified and there is a slight
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Reynolds number dependency. Because the dissipation length scales are

the ratio of the amplification of TKE to the amplification of the TKE dis-

sipation rate, the changes of dissipation length scale may be related to the

initial strength of the turbulent Mach number and initial Reynolds number.

5. Is the TKE dissipation rate reduced?

The TKE dissipation rate of the solenoidal mode is amplified after com-

pression, and there is a slight Reynolds number dependency. Although

kinematic viscosity is a decreasing function of ρ/ρ0, the increase in the

enstrophy is larger than the decrease in the kinematic viscosity.

When the initial velocity fields are given by the homogeneous axisymmetric

turbulence, the amplifications of the velocity and vorticity variances depend on

both the initial degree of anisotropy and the angular distribution of the energy

spectral tensor. The changes in parallel velocity variances depend on the energy

distribution of the wave mode. Thus, different results are obtained between

Ansatzes 1 and 2. Regardless of the initial energy spectra, the energies at high

wavenumber are amplified more than those at low wavenumbers.

Finally, we summarize quantitative and qualitative comparison between the

RDT and results of experiments and DNSs. The TKE is amplified after the

interaction for RDT, experiments and DNSs. The r.m.s value of shock-induced

compression direction increases and is qualitatively consistent with experiments

including the present experiment and DNSs. As to the quantitative assessment,

as the grid resolution increases, the changes in turbulence (e.g. TKE and vor-

ticity variances) in DNSs (Grube et al., 2011; Larsson et al., 2013) become close

to the RDT result. Then, the energy at high wavenumbers amplified , so that

the increase in velocity fuctuation is caused by the increase in energy at high

wavenumbers. This is qualitatively consistent with the present experiment, ex-

periment of Barre et al. (1996) and DNS of Grube et al. (2011). However, needless

to say, the detailed changes in turbulence is necessary since RDT is linear theory.
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Chapter 6

Conclusions

Since the detailed conclusion is described in each chapter, this chapter summarizes

briefly the main conclusions, assignments and the required future works.

Turbulence kinetic energy decay law and invariants in grid turbulence were dis-

cussed in chapter 3. The main results are as follows: For the moderate Reynolds

numbers, grid turbulence behaves like Saffman turbulence, i.e. TKE exponent is

close to Saffman’s theoretical value 5/6 and the invariants u2r.m.sL
3
uu and v

2
r.m.sL

3
vv

are constant for x/M > 50. There are no differences in the TKE decay expo-

nents for different grid geometries. However, turbulence generated by cylindrical

grids tends to develop fully at further distances than that generated by square

grids. Then, u2r.m.sL
5
uu and v2r.m.sL

5
vv, which correspond to Loitsianskii’s integral,

and u2r.m.sL
2
uu and v2r.m.sL

2
vv, which correspond to the complete self-similarity of

the energy spectrum, do not become constant at moderate Reynolds numbers.

Sinhuber et al. (2015) conducted experiments of grid turbulence for higher ReM

and also argued that the TKE decay law is Saffman turbulence. However, their

experiments were limited in the region x/M ≤ 30. Thus, further experiments will

be important, as mentioned by Djenidi et al. (2015).

Characteristics of divergence-free grid turbulence interacting with a shock

wave was discussed in chapter 4. The originality is the present experiment is in

the first experiment on the low-Mach number grid turbulence interacting with

a shock wave. To the best of my knowledge, there is no study on the changes

in divergence-free turbulence interacting with a shock wave. In the previous

studies, the interaction with turbulence of MU ≫ 0.3 have been carried out
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(Agui et al., 2005). However, as pointed by Yoshizawa (1993), the changes in

turbulence depend on the flow properties. Therefore, it is important to perform

the interaction between a shock wave and divergence-free grid turbulence. The

main results are as follows: The r.m.s value of the streamwise velocity fluctuations

increases after the interaction and the streamwise integral length scale decreases

after the interaction. Furthermore, the spectral analysis also shows that the

energy at high wavenumbers increases after the interaction. As an important

future work, the study on the interaction between divergence-free turbulence and

a planar shock wave is necessary to deepen its mechanism.

In the present experiment as mentined in chapter 4, a spherical shock wave

follows an expansion fan and therefore it is difficult to understand pure interaction

between turbulence and a planar shock wave since there are additional effects on

changes in turbulence due to the expansion fan. To begin with, there are a lot of

open questions with regard to turbulence-shock wave interaction (Andreopoulos

et al., 2000). To deepen the mechanism of the interaction, the rapid distortion

theory (RDT) analysis was carried out. The interactions between homogeneous

turbulence and a planar shock wave were analytically investigated using rapid

distortion theory (RDT) and were discussed in chapter 5. Here, I attempted to

answer the questions identified by Andreopoulos et al. (2000) within the linear

theoretical framework. The main results are as follows: TKE increases after the

interaction and RDT results imply that its increase depends on the grid resolu-

tion. As the grid resolution increases, the changes in turbulence in DNSs (Grube

et al., 2011; Larsson et al., 2013) become close to the RDT result. The effects

of shock-induced compression can be interpreted as a direct consequence of the

Rankine-Hugoniot relation because the obtained results in RDT are based on the

Rankine-Hugoniot relation. Nonlinear effects may have appeared as an indirect

consequence of the Rankine-Hugoniot relation via the perturbation manner. The

results suggest that the amplification of TKE is caused primarily by the Rankine-

Hugoniot relation. The vorticity fluctuations increase and its amplifications relate

to changes in wavenumber and the amplification of energy at high wavenumbers.

This is qualitatively consistent with the present experiment, experiment of Barre

et al. (1996) and DNS of Grube et al. (2011). As to the changes in length scales,

124



the most length scales are reduced, but L22,3 (= L33,2) and λ22,3 (= λ33,2) are am-

plified. The TKE dissipation rate of the solenoidal mode is amplified and there is

a slight Reynolds number dependency. For the initial axisymmetric turbulence,

the amplifications of the velocity and vorticity variances depend on both the

initial degree of anisotropy and the angular distribution of the energy spectral

tensor. The analytical results qualitatively agree with the present experiments.

Since RDT is based on a linear theory, the detailed changes in turbulence after

the interaction should be carefully examined using DNS in the future.
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Appendix A

Here, we describe how to solve ODEs. This calculation method is valid for almost

all RDT equations (e.g. stratified turbulence, rotational turbulence, pure shear

strain and axisymmetric strain) and for the first step for closures such as DIA

families (e.g. weakly compressible homogeneous isotropic turbulence, stratified

turbulence, low Rem MHD turbulence and so on); however, this method is not

valid for solving the dilatational mode RDT solution.

Using the eigenvalues, the transformation matrix B is given by

B =

 0 k23
k2
ı −k23

k3
ı

−k3
k2

1 k2
k3

1 k3
k2

1

 , (1)

and the determinant of B is given by

DetB =
2k323ı

k22k3
. (2)

The inverse transformation matrix is given by

B−1 =
1

k23

 0 −k2k3
k23

k22
k23

−k2
2
ı

k22
2k23

k2k3
2k23

k3
2
ı k2k3

2k23

k23
2k23

 . (3)

The diagonal matrix D consisting of the eigenvalues is given by

D =
S1

k21 + k223 (1 + S1t)
2

 0 0 0
0 −k223 (1 + S1t) + ık1k23 0
0 0 −k223 (1 + S1t)− ık1k23

 .
(4)
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Because B−1 is not a function of t, after multiplying B−1 by (5.28) from the left

side, one obtains

d

dt
B−1
αi û

s
i︸ ︷︷ ︸

yα

= B−1
αi Aiβ BβγB

−1
γj︸ ︷︷ ︸

δβj

ûsj = Dαγ B
−1
γj û

s
j︸ ︷︷ ︸

yγ

. (5)

For each component, we have

dy1 (χ, t)

dt
= 0, (6)

dy2 (χ, t)

dt
=

S1

k21 + k223 (1 + S1t)
2

(
−k223 (1 + S1t) + ık1k23

)
y2 (χ, t) , (7)

dy3 (χ, t)

dt
=

S1

k21 + k223 (1 + S1t)
2

(
−k223 (1 + S1t)− ık1k23

)
y3 (χ, t) . (8)

The solution of y can be obtained after some algebra using the separation of

variables:  y1 (χ, t)y2 (χ, t)
y3 (χ, t)

 =


y1 (k, 0)

y2 (k, 0)
k21+k

2
23(1+S1t)+ık1k23S1t

k21+k
2
23(1+S1t)

2

y3 (k, 0)
k21+k

2
23(1+S1t)+ık1k23S1t

k21+k
2
23(1+S1t)

2

 . (9)

Initial components y (k, 0) can be obtained via y (k, 0) = B−1ûs (k, 0), which

are given by y1 (k, 0)y2 (k, 0)
y3 (k, 0)

 =


−k2k3

k223
û2 (k, 0) +

k22
k223
û3 (k, 0)

− k2ı
2k23

û1 (k, 0) +
k22
2k223

û2 (k, 0) +
k2k3
2k223

û3 (k, 0)

− k3ı
2k23

û1 (k, 0) +
k2k3
2k223

û2 (k, 0) +
k23
2k223

û3 (k, 0)

 . (10)

From the relation ûs (χ, t) = By (χ, t), we obtain

 ûs1 (χ, t)ûs2 (χ, t)
ûs3 (χ, t)

 =


Pûs1 (k, 0)−

k2Q
k23
ûs2 (k, 0)−

k3Q
k23
ûs3 (k, 0)

k2Q
k23
ûs1 (k, 0) +

k23+k
2
2P

k223
ûs2 (k, 0) +

k2k3
k223

(P − 1) ûs3 (k, 0)
k3Q
k23
ûs1 (k, 0) +

k2k3
k223

(P − 1) ûs2 (k, 0) +
k22+k

2
3P

k223
ûs3 (k, 0)



=


k2(1+S1t)

k21+k
2
23(1+S1t)

2 ûs1 (k, 0)
k1k2S1t(2+S1t)

k21+k
2
23(1+S1t)

2 ûs1 (k, 0) + ûs2 (k, 0)
k1k2S1t(2+S1t)

k21+k
2
23(1+S1t)

2 ûs1 (k, 0) + ûs3 (k, 0)

 ,
(11)

where P and Q are defined by (5.33) and (5.34), respectively.
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Appendix B

The coefficients in (5.60)

R1 =
1

π
Fn−2 (Ru, β) (12)

R2 =
β

π
Fn−2 (Ru, β) (13)

B1 =
1

π4

(
−1 +

2

Ru

)
Fn−5 (Ru, β) (14)

B2 =
2β

5
2

π4

(
1− 1

Ru

)
Fn−5 (Ru, β) (15)

where the function Fn (Ru, β) is

Fn (Ru, β) =

(
−1 +

2

Ru

)
+ 2β

1
2

(
1− 1

Ru

)
. (16)

The coefficients in (5.63)

R1 =
1√
π

Γ
(
1
3

)
Γ
(
5
6

)Fn−1 (Ru, β) , (17)

R2 =

√
β

π

Γ
(
1
3

)
Γ
(
5
6

)Fn−1 (Ru, β) , (18)
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B1 =
55

36π4

Γ4
(
1
3

)
Γ4
(
5
6

) (−1 +
2

Ru

)
Fn−5 (Ru, β) , (19)

B2 =
55β

5
2

18π4

Γ4
(
1
3

)
Γ4
(
5
6

) (1− 1

Ru

)
Fn−5 (Ru, β) . (20)

where Γ (t) is the gamma function.

The coefficients in (5.67)

L0 =
212

π
Gn−2 (Ru, β) , (21)

L2 =
212β

π
Gn−2 (Ru, β) , (22)

F0 =
214

π4

(
17 +

4

Ru

)
Gn−5 (Ru, β) , (23)

F2 =
20× 214β

5
2

π4

(
1

Ru

− 1

)
Gn−5 (Ru, β) , (24)

where the function Gn (Ru, β) is

Gn (Ru, β) = 4

(
1

Ru

+
17

4

)
+ 10β

1
2

(
1− 1

Ru

)
. (25)

Unlike Ansatz 1, one must pay attention to the values of β and Ru so as to satisfy

the non–negative Hermitian form of Φij (k). In this study, we chose β = 1 for

simplicity.

The coefficients in (5.68)

In the von Kármán type, the four coefficients are given by

L0 =
21√
π

Γ
(
1
3

)
Γ
(
5
6

)Gn (Ru, β)
−1 , (26)
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L2 =
21
√
β√
π

Γ
(
1
3

)
Γ
(
5
6

)Gn (Ru, β)
−1 , (27)

F0 =
1188495

π4

Γ4
(
1
3

)
Γ4
(
5
6

) ( 1

Ru

+
17

4

)
Gn−5 (Ru, β) , (28)

F2 =
1188495β

5
2

π4

Γ4
(
1
3

)
Γ4
(
5
6

) ( 5

Ru

− 5

)
Gn−5 (Ru, β) . (29)
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Appendix C

Velocity variances

When the initial velocity fields are in homogeneous axisymmetric turbulence of

Ansatz 1 (model spectrum B), the variances of perpendicular and parallel com-

ponents,
⟨
u2∥

⟩
and ⟨u2⊥⟩, are given by

⟨
u2∥ (t)

⟩
=

3π
3
2

4

(
B1

R
5
2
1

+
B2

R
5
2
2

)
C3

C2 − 1

[
1 +

(
C2 − 2

) tan−1
√
C2 − 1√

C2 − 1

]
, (30)

⟨
u2⊥ (t)

⟩
=
Cπ

3
2

4

(
3B1

R
5
2
1

+
B2

R
5
2
2

)
+
3π

3
2

8

(
B1

R
5
2
1

+
B2

R
5
2
2

)
C3

C2 − 1

[
−1 + C2 tan

−1
√
C2 − 1√

C2 − 1

]
,

(31)

and TKE is given by

Ks (t) =
Cπ

3
2

4

(
3B1

R
5
2
1

+
B2

R
5
2
2

)
+

3π
3
2

4

(
B1

R
5
2
1

+
B2

R
5
2
2

)
C3 tan

−1
√
C2 − 1√

C2 − 1
. (32)

When the initial velocity fields are in homogeneous axisymmetric turbulence for

Ansatz 2 (model spectrum C), the variances of perpendicular and parallel velocity

components,
⟨
u2∥

⟩
and ⟨u2⊥⟩, are given by

⟨
u2∥
⟩
=

3π
3
2

4

F0

L
5
2
0

[
C3

C2 − 1
+ C3C

2 − 2

C2 − 1

tan−1
√
C2 − 1√

C2 − 1

]

+
3π

3
2

8

F2

L
5
2
2

[
−C3 C2 + 8

(C2 − 1)2
+ C35− C2

C2 − 1

tan−1
√
C2 − 1√

C2 − 1

+
9C3

(C2 − 1)2
tan−1

√
C2 − 1√

C2 − 1

]
,

(33)
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⟨
u2⊥
⟩
=

3π
3
2

8

F0

L
5
2
0

[
C3 − 2C

C2 − 1
+

C5

C2 − 1

tan−1
√
C2 − 1√

C2 − 1

]

+
3π

3
2

16

F2

L
5
2
2

[
4C +

7C5 + 2C3

(C2 − 1)2
− C5 (C2 + 8)

(C2 − 1)2
tan−1

√
C2 − 1√

C2 − 1

]
,

(34)

and TKE is given by

Ks (t) =
3π

3
2

4

(
F0

L 5
0

+
F2

L 5
2

)
C +

3π
3
2

4

F0

L 5
0

C3 tan
−1

√
C2 − 1√

C2 − 1

+
3π

3
2

16

F2

L 5
2

(
12C3

C2 − 1

tan−1
√
C2 − 1√

C2 − 1
− 7C3 + 5C

C2 − 1

)
.

(35)

Vorticity variances

When model spectrum B (the exponential form of Ansatz 1) is used as an initial

condition, the variances of perpendicular and parallel vorticity are given by

⟨
ω2
∥ (t)

⟩
=

(
5π

3
2

2

B1

R
7
2
1

+
5π

3
2

4

B2

R
7
2
2

)
C, (36)

⟨
ω2
⊥ (t)

⟩
=
π

3
2C3

8

(
5B1

R
7
2
1

+
3B2

R
7
2
2

)
+

15π
3
2C3

8

(
B1

R
7
2
1

+
B2

R
7
2
2

)
, (37)

and the enstrophy is given by

⟨
ω2 (t)

⟩
= 5π

3
2
B1

R
7
2
1

(
C3 +

C

2

)
+
π

3
2

2

B2

R
7
2
2

(
9C3 +

5

2
C

)
. (38)

When model spectrum C (the exponential form of Ansatz 2) is used as an initial

condition, the variances of perpendicular and parallel vorticity are given by

⟨
ω2
∥ (t)

⟩
=

5π
3
2C

2

(
F0

L
7
2
0

+
F2

L
7
2
2

)
, (39)

⟨
ω2
⊥ (t)

⟩
=

5π
3
2C3

2

F0

L
7
2
0

+
5π

3
2C3

8

F2

L
7
2
2

, (40)

132



and the enstrophy is given by⟨
ω2 (t)

⟩
= 5π

3
2

(
C3 +

C

2

)
F0

L
7
2
0

+
5π

3
2

4

(
C3 + 2C

) F2

L
7
2
2

. (41)

Integral length scales

When the isotropic initial conditions are considered, from (5.44), (5.47), and

(5.98), one-dimensional compressed integral length scales are given by

L∥,| (t) = L11,1 (t) =
4Lf (0)

3

C2 − 1

C
[
1 + (C2 − 2) tan−1

√
C2−1√

C2−1

] , (42)

L∥,⊥ (t) = L11,2 (t) = L11,3 (t) =
4Lg (0)

3

C2 − 1

C
[
1 + (C2 − 2) tan−1

√
C2−1√

C2−1

] , (43)

L⊥⊥,⊥ (t) = L22,2 (t) = L33,3 (t)

=
4Lf (0)

3

1[
1 + C2

2(C2−1)

(
−1 + C2 tan−1

√
C2−1√

C2−1

)] , (44)

L⊥⊥,| (t) = L22,1 (t) = L33,1 (t) =
4Lg (0)

3

1

C
[
1 + C2

2(C2−1)
tan−1

√
C2−1√

C2−1

] , (45)

L22,3 (t) = L33,2 (t) =
4Lg (0)

3

C

1 + C2

2(C2−1)
(−1 + C2) tan−1

√
C2−1√

C2−1

. (46)

Taylor microscales

When the isotropic initial conditions are considered, squared Taylor microscales

after the compression are given by

λ2∥,| (t) = λ211,1 (t) =
λ2f
5

C2 − 1

C2

1 + (C2 − 2) tan−1
√
C2−1√

C2−1

3
(
−1 + tan−1

√
C2−1√

C2−1

)
+
√
C2 − 1 tan−1

√
C2 − 1

,

(47)
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λ2∥,⊥ (t) = λ211,2 (t) = λ211,3 (t) =
4λ2g
5

(
C2 − 1

) 1 + (C2 − 2) tan−1
√
C2−1√

C2−1

C2 + 2 + C2 (C2 − 4) tan−1
√
C2−1√

C2−1

,

(48)

λ2⊥⊥,| (t) = λ222,1 (t) = λ233,1 (t) =
4λ2g
5

1 + C2

2(C2−1)

(
−1 + C2 tan−1

√
C2−1√

C2−1

)
C2
[
2
3
+ C4

(C2−1)2

(
2 + 1

C2 − 3 tan−1
√
C2−1√

C2−1

)] ,
(49)

λ2⊥⊥,⊥ (t) = λ222,2 (t) = λ233,3 (t) =
λ2f
5

1 + C2

2(C2−1)

(
−1 + C2 tan−1

√
C2−1√

C2−1

)
1
6
+ 3

8
C4

(C2−1)2

[
−3 + (C2 + 2) tan−1

√
C2−1√

C2−1

] ,
(50)

λ222,3 (t) = λ233,2 (t) =
2λ2g
5

1 + C2

2(C2−1)

(
−1 + C2 tan−1

√
C2−1√

C2−1

)
1
2
+ 1

8
C4

(C2−1)2

[
−3 + (C2 + 2) tan−1

√
C2−1√

C2−1

] . (51)
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