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We combine the unimodular gravity and mimetic gravity theories into a unified theoretical frame-
work, which is proposed to provide a suggestive proposal for a framework that may assist in the
discussion and solution search of the cosmological constant problem and of the dark matter is-
sue. After providing the formulation of the unimodular mimetic gravity and investigating all the
new features that the vacuum unimodular gravity implies, by using the underlying reconstruction
method, we realize some well known cosmological evolutions, with some of these being exotic for the
ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic grav-
ity description of the de Sitter cosmology and of the perfect fluid with constant equation of state
cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular
gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmolog-
ically viable cosmologies, which are compatible with the recent observational data, can be realized
by the vacuum unimodular mimetic gravity. Since in some cases, the graceful exit from inflation
problem might exist, we provide a qualitative description of the mechanism that can potentially
generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter
solutions in the context of unimodular mimetic theories of gravity.

PACS numbers: 04.50.Kd, 95.36.+x, 98.80.-k, 98.80.Cq,11.25.-w

I. INTRODUCTION

The unimodular gravity approach [1–14], offers a consistent theoretical framework, in the context of which, one of
the most intriguing problems in theoretical physics and cosmology, finds an elegant solution, namely the cosmological
constant problem [15]. Particularly, the quantum field theory estimations of the vacuum energy originating from the
vacuum expectation value of a scalar field cosmological constant, is 60-120 orders higher in magnitude, when compared
to the observed value of the cosmological constant. The unimodular gravity framework, however, makes it possible to
generate a cosmological constant by using the corresponding mechanism, in a natural and intrinsic to the theory way,
in which case the value of the cosmological constant can suitably be adjusted to the observed value. Specifically, the
cosmological constant originates from the trace-free part of the resulting Einstein field equations, with the trace-free
part being obtained by employing the constraint that the metric determinant

√−g is a fixed function of spacetime, or
a constant number. Apart from the cosmological constant, the unimodular gravity theoretical framework can harbor
another conceptually intriguing feature of the up to present date observed Universe, the late-time acceleration (see
for example Refs. [7–9]), firstly observed in the late 90’s [14]. Moreover and interestingly enough, the cosmological
perturbations in the standard Einstein-Hilbert gravity and in unimodular gravity are quantitatively the same, when
the linear perturbation theory is used, as was explicitly demonstrated in Refs. [10, 11], with some differences occurring
however in the Sachs-Wolfe relation between gravitational potential and microwave temperature anisotropies, see [11]
for more details on this issue. Recently, as an extension of the unimodular Einstein-Hilbert general relativity, the
unimodular F (R) gravity was proposed, see [12, 13].
Since the unimodular gravity framework can potentially explain the cosmological constant problem and the late-time

acceleration of the Universe, it would be interesting to combine the unimodular gravity theory with the mimetic gravity
approach, firstly developed in [17, 18], later generalized as mimetic F (R) gravity proposed in [36]. The cosmology
of extended mimetic gravity (first of all, F (R) mimetic gravity) was investigated in Refs. [18, 23–33, 36–39]. The
reason to attempt this kind of theoretical unification of mimetic and unimodular gravity, is that mimetic gravity can
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consistently explain dark matter in a geometrical manner, without the need of using cold dark matter to address this
issue. The dark matter issue is one of the great questions posed to theoretical physicists, even up to date, and it
is believed to govern the evolution of our Universe in a percentage of 26.8%, since the corresponding density of the
Universe is ΩDM ∼ 26.8%. In the literature there exist many possible candidates for dark matter, which describe dark
matter as a particle [34, 35], but since no clear verification for this claim exist, all possible theories should be taken
seriously and studied thoroughly. Actually, in the context of mimetic F (R) gravity, late and early-time acceleration
can be explained, as was demonstrated in Refs. [36–39], and also it is possible to achieve concordance with the recent
Planck [41, 42] and BICEP2/Keck-Array data [43], as was explicitly demonstrated in [37–39].
Conceptually, in order to combine the two theories and to solve in a unified geometrical way, the cosmological

constant problem and the dark matter issue, we shall use the Lagrange multiplier approach [44–46], in which case,
the unimodular and mimetic constraints shall be realized by introducing in the action some appropriately chosen
Lagrange multipliers. Then, by varying the action with respect to these Lagrange multipliers, the unimodular and
mimetic constraints naturally arise in the theory as parts of the equations of motion. We need to note that the
unimodular constraint is just a constraint on the allowed metric in the theory, while the mimetic approach makes
use of the internal conformal degrees of freedom of the metric, with these being quantified in terms of a scalar field
φ, which we call mimetic scalar field hereafter. This scalar field is an auxiliary degree of freedom, with only its first
derivatives appearing in the action. Consequently, in order to keep the two theoretical concepts clear in our unified
mimetic unimodular approach, we will make use of the Lagrange multipliers method, since this will keep the two
concepts clear and it is more easy to extract the physical information from the gravitation action. The mimetic
theory we shall use will be inspired by the mimetic theory of Ref. [17] in which case, a potential term of the auxiliary
scalar field V (φ) and a Lagrange multiplier was used too.
The purpose of this paper is to introduce the theoretical framework of unimodular-mimetic (shortened to U-M

hereafter) gravity and study some simple cosmological implications of this theory. Particularly, we will generalize
mimetic gravity with Lagrange multipliers action, by introducing a unimodular Lagrange multiplier, in terms of
which, the unimodular constraint on the metric, shall be realized. After discussing some fundamental issues about
the U-M gravity approach, we describe in detail the reconstruction method underlying the formalism. By using this
reconstruction method we will realize various cosmological scenarios, some of which however, being exotic for the
standard Einstein-Hilbert gravity. Hence, as we demonstrate, the U-M gravity proves to be a useful tool for the
realization of various cosmologies. Also, in order to further support the utility of our results, We will use the perfect
fluid approach developed in Ref. [40], aiming in realizing cosmologies compatible with the recent observational data of
Planck [41, 42] and BICEP2/Keck-Array [43]. We will be interested in realizing inflationary models [47–52], for which
we compute the spectral index of primordial curvature perturbations [47, 53–55] and also the scalar-to-tensor index.
As we demonstrate, concordance with both the Planck [41, 42] and BICEP2/Keck-Array [43] data can be achieved.
Finally, we investigate how graceful exit can be achieved in the context of U-M gravity, and as we show, graceful exit
can occur if the unstable de Sitter solution exists in the U-M theory [56]. Then graceful exit can be triggered by
unstable curvature perturbations which grow in time [56]. In fact, this is an alternative mechanism to the standard
slow-roll approach in scalar-tensor theories, although some qualitative difference exists between these two approaches,
since in both cases the de Sitter final attractor ceases to be the final attractor solution. In the unstable curvature
perturbations case, this is owing to the fact that the unstable de Sitter solution occurs, while in the slow-roll case,
this is owing to the breakdown of the perturbative slow-roll expansion (for a thorough and informative account on
the slow-roll expansion, see [57–59]).
We need to stress that the findings of this paper do not provide the ultimate solution to the cosmological constant

and dark matter issue. Our purpose is to provide a new suggestive proposal for a theoretical framework that may assist
in the discussion and solution search of two significant problems, and of course our framework is not the ultimate
theory, but just another solution that provides results compatible with observations. Also our framework makes
possible the realization of two cosmologies, in the absence of any matter fluids or cosmological constant. Particularly,
in the case of the standard Einstein-Hilbert gravity, the de Sitter cosmology could be realized only by the presence
of a cosmological constant and the perfect fluid cosmology, in which case the scale factor as a function of the cosmic
time behaves as a(t) ∼ t2/(3(1+w)), could be realized if a perfect fluid with energy density ρ ∼ a−3(1+w) was present.
In the mimetic unimodular case, these two cosmologies can be realized by the vacuum theory, without any matter
fluids being present. This is one novelty of the present formalism, which however also occurred in the mimetic gravity
theory, in which case dark matter occurred as an outcome of the hidden conformal degrees of freedom of the metric,
and hence it has a purely geometric origin and no source generated such an evolution. Hence our formalism is aligned
more or less with the mimetic gravity line of research, which generates cosmologies that were realized in the standard
Einstein-Hilbert gravity only if matter fluid sources were present.
Naturally by combining the mimetic and unimodular formalisms, one ends up in two constraint equations, one of

which is non-covariant, namely the one corresponding to the unimodular constraint. In order to remedy this issue, we
also provide an alternative covariant version of our theoretical framework and we discuss how the equations of motion
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of the resulting theory are affected.
This paper is organized as follows: In section II we present the unimodular mimetic gravity with potential formalism

and explain in detail how the underlying reconstruction technique works. In section III we demonstrate how some
quite well known cosmologies can be realized from the vacuum theory of unimodular mimetic gravity, and we compare
our findings to the mimetic gravity results in order to see the differences and new insights that the unimodular mimetic
gravity approach brings along. In section IV we use the perfect fluid approach in order to calculate the observational
indices for some inflationary models which are in concordance with the observational data, and we investigate how
these cosmologies can be realized in the context of unimodular mimetic gravity theory. In section V we address the
graceful exit issue by investigating whether the unstable de Sitter solutions exist in the U-M gravity theory. Finally,
in section VI we provide a covariant version of the mimetic unimodular theory. The conclusions follow at the end of
the paper.

II. THE UNIMODULAR-MIMETIC GRAVITY FORMALISM

In this section we present the formalism of U-M gravity, which will enable us to realize various cosmological scenarios.
This formalism constitutes a reconstruction method, and we now present the essential features of this method. The
standard Einstein-Hilbert gravity approach [1–11], is based on the assumption that the determinant of the metric
tensor is fixed, so that the metric satisfies gµνδg

µν = 0, which implies that the components of the metric tensor can
be adjusted in such a way, so that the determinant of the metric

√−g is a fixed function of spacetime, in the most
general case. Hence, hereafter we assume that the metric satisfies,

√
−g = 1 , (1)

to which we shall refer to as the “unimodular constraint”. In order to realize the unimodular constraint, we shall
use the Lagrange multiplier method, so the constraint appears as part of the corresponding equations of motion.
Having this in mind, a direct generalization of the mimetic gravity with potential V (φ) and Lagrange multiplier η(φ)
of Ref. [18], that takes into account the unimodular constraint of Eq. (1), is the following,

S =

∫

d4x

{√
−g

(

R

2κ2
+ f(R)− V (φ)− η (∂µφ∂

µφ+ 1)− λ

)

+ λ

}

+ Smatter , (2)

where φ is the real mimetic scalar field, R denotes as usual the Ricci scalar, and also Smatter represents the action for
the matter fields present. Note that the action (2) describes the F (R) = R + f(R) gravitational action, but in this
paper for simplicity we take f(R) = 0, and the F (R) case will be studied elsewhere. In addition, the functions η and
λ are the Lagrange multiplier fields, with η being the one directly related to the mimetic gravity, while λ is introduced
in order the unimodular constraint is realized. Indeed, upon variation of the action of Eq. (2), with respect to the
function η, we obtain the following constraint,

∂µφ∂
µφ = −1 , (3)

which is the mimetic constraint, also found in [17, 18]. In addition, by varying the action (2), with respect to the
function λ this time, we easily obtain the unimodular constraint of Eq. (1). As we demonstrate shortly, both the
functions η and λ are functions of the cosmic time t, which will be identified to the auxiliary scalar field φ, which
holds true owing to the mimetic constraint and also by assuming that the auxiliary field is a function of the cosmic
time t. The resulting Einstein field equations can be obtained by varying the action of Eq. (2) with respect to the
metric, and we obtain the following sets of equations,

0 =
1

2
gµν

(

R

2κ2
− V (φ) − η (∂µφ∂

µφ+ 1)− λ

)

− 1

2κ2
Rµν + η∂µφ∂νφ+

1

2
Tµν , (4)

with Tµν denoting the energy-momentum tensor of the perfect matter fluids present. Also, by varying the action (2)
with respect to the auxiliary scalar field φ, yields the following equation,

0 = 2∇µ (λ∂µφ)− V ′(φ) . (5)

We assume that the background metric is a flat Friedman-Robertson-Walker (FRW) metric with the line element
being of the form,

ds2 = −dt2 + a(t)2
3
∑

i=1

(

dxi
)2

. (6)
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Owing to the fact that this metric does not satisfy the unimodular constraint of Eq. (1), we redefine the cosmic time
variable t of the FRW metric, in such a way so that the unimodular constraint (1) is satisfied, as follows, dτ = a(t)3dt.
Correspondingly, the FRW metric of Eq. (6) can be rewritten in the following way,

ds2 = −a (t (τ))
−6

dτ2 + a (t (τ))
2

3
∑

i=1

(

dxi
)2

. (7)

In the following we shall refer to the metric of Eq. (7) as the unimodular FRW metric. For the unimodular metric
Eq. (7), the non-vanishing components of the Levi-Civita connection and of the Ricci tensor are given by,

Γt
tt = −3K , Γt

ij = a8Kδij , Γi
jt = Γi

tj = Kδ i
j ,

Rtt = −3
dK

dτ
− 12K2 , Rij = a8

(

dK

dτ
+ 6K2

)

δij . (8)

In Eq. (8), the function of τ is a direct generalization of the Hubble rate in terms of the τ variable, that is, K ≡ 1
a
da
dτ .

Moreover, the Ricci scalar R in terms of the τ variable is equal to,

R = a6
(

6
dK

dτ
+ 30K2

)

. (9)

Since we assumed that the auxiliary scalar φ depends on the time coordinate t (or equivalently τ), the mimetic
constraint of Eq. (3) can be cast in the following way,

a−6

(

dφ

dτ

)2

= 1 , (10)

which can be rewritten in terms of the cosmological time t by using dτ = a(t)3dt, as follows,

(

dφ

dt

)2

= 1 . (11)

Hence we may identify the auxiliary field φ with the cosmological time t, that is φ = t. The (τ, τ) and (i, j) components
of the equations (4) yield the following equations,

0 =− 3a6

2κ2
K2 +

V (φ)

2
+

λ

2
+ η +

ρ

2
, (12)

0 =
a6

2κ2

(

2
dK

dτ
+ 9K2

)

− V (φ)

2
− λ

2
+

p

2
, (13)

where ρ and p denote the energy density and the pressure of the matter fluids present. Note that in order to obtain
Eqs. (12) and (13), we made use of the constraint of Eq. (10). We can rewrite Eqs. (12) and (13) by using the
cosmological time t variable, in the following way,

0 =− 3H2

2κ2
+

V (φ)

2
+

λ

2
+ η +

ρ

2
, (14)

0 =
1

2κ2

(

3H2 + 2
dH

dt

)

− V (φ)

2
− λ

2
+

p

2
. (15)

Moreover, Eq. (5) can be written as follows,

0 = −6Hλ− 2
dλ

dt
− V ′(φ) . (16)

Then by making use of Eqs. (15) and (16), we may delete λ from the equations of motion, and we obtain,

0 = 6HV (φ) − 3V ′(φ) − 6Hp− 2
dp

dt
+

1

κ2

(

−18H3 − 6H
dH

dt
+ 4

d2H

dt2

)

. (17)
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Since the auxiliary scalar field is identified with the cosmic time φ = t, we can easily integrate Eq. (18) and obtain
the potential V (φ),

V (φ) =
a (t = φ)

2

3

∫ φ

dt a(t)−2

{

−6H(t)p(t)− 2
dp(t)

dt
+

1

κ2

(

−18H(t)3 − 6H(t)
dH(t)

dt
+ 4

d2H(t)

dt2

)}

. (18)

Hence, for a specific cosmology with scale factor a(t), and if the time dependence of the energy density and pressure in
terms of the scale factor are given, by using Eq. (18) we can obtain the exact form of the mimetic potential V (φ = t),
which can realize the cosmological evolution with scale factor a(t). Having that at hand, by using Eqs. (15) and
(14), we may solve with respect to the functions λ(t) and η(t), and therefore determine completely the unimodular
mimetic gravity with potential that realizes the cosmological evolution with scale factor a(t). Basically, the resulting
Eqs. (18), (15) and (14), constitute the unimodular mimetic reconstruction method, and in the next sections we will
make extensive use of these, in order to realize various well known cosmological scenarios. Before proceeding to the
examples, in the next section we shall demonstrate that the unimodular mimetic gravity can be described by a perfect
fluid.

A. Perfect Fluid Description of the Unimodular-Mimetic Gravity

As we now demonstrate, it is possible to describe the effect of unimodular mimetic gravity with potential in terms
of a perfect fluid. This was also possible in mimetic gravity with scalar potential, as was shown in Ref. [18]. We start
off with taking the trace of the equation of motion appearing in Eq. (4), and the result is,

η(t) =
1

κ2

(

G− 4κ2Ṽ (t)− κ2
)

, (19)

where G and T stand for the trace of the Einstein tensor and of the energy momentum tensor respectively. In addition,
we introduced the potential term Ṽ , which is equal to,

Ṽ (t) = −λ(t)− V (t) . (20)

The perfect fluid describing the unimodular mimetic gravity is described by the energy density ρ̃ and the effective
pressure p̃, which are given below,

ρ̃ = G− κ2T − 4κ2Ṽ , p̃ = −Ṽ κ2 . (21)

As we now demonstrate, the effective energy density and effective pressure satisfy a conservation law. By acting on
Eq. (4) with the covariant derivative ∇ν and also by taking into account that ∇ρ (gµν∂µφ∂νφ) = 2gµν(∇µ∂

ρφ)∂νφ = 0
(see also [18]), we obtain the following equation,

∇µ
(

(G− κ2T − 4κ2Ṽ )∂νφ
)

= −κ2 ˙̃V . (22)

Since the Christoffel symbols Γ2
2 1, Γ

3
3 1 and Γ4

4 1 for the FRW metric of Eq. (6) are equal to,

Γ2
2 1 = Γ3

3 1 = Γ4
4 1 =

ȧ

a
, (23)

and by using the definitions of Eq. (21), then Eq. (22) takes the following form,

˙̃ρ+ 3H (ρ̃+ p̃) = 0 , (24)

which describes a perfect fluid with the energy density and pressure being functions of the mimetic potential V (t) and
of the unimodular Lagrange multiplier λ(t), as these appear in Eq. (21). In the following sections we demonstrate
how various well known cosmological scenarios can be realized by U-M gravity.

III. COSMOLOGICAL EVOLUTION WITH VACUUM UNIMODULAR-MIMETIC GRAVITY

Having the reconstruction method for U-M gravity at hand, in this section we demonstrate how certain cosmological
scenarios can be realized by using the U-M formalism. Note that in some cases, these scenarios were in some sense
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exotic for the standard Einstein Hilbert gravity, since these could not be realized by the known matter fluids. However,
as we demonstrate in this section, even the vacuum U-M theory can consistently and elegantly describe these scenarios.
Throughout this section we shall assume that no matter fluid is present, therefore we consider the vacuum U-M theory.
We start our analysis by studying the de Sitter cosmology.
Before we start we need to discuss the main features of the theoretical framework we propose. In the standard

Einstein-Hilbert gravity, the de Sitter solution could be realized only by the presence of a cosmological constant and
also a perfect fluid cosmology, in which case the scale factor as a function of time behaves as a(t) ∼ t2/(3(1+w)), could
only be realized if a perfect fluid with constant equation of state parameter w, was present, in which case the energy
density as a function of the scale factor is ρ ∼ a−3(1+w). The novel feature of the formalism we propose is that
these two cosmologies can be realized by the vacuum theory without the presence of perfect fluids. This feature is
also a feature of the mimetic theory, since dark matter appears in the resulting FRW equations of motion, without
a matter fluid with w = 0 being present, so dark matter has a purely geometric origin. Hence the framework we
propose combines two geometric theories and enables us to realize various cosmologies without the need of any matter
fluids. The presence of the potential and of the Lagrange multipliers is what makes the theory able to realize these
cosmologies.
With regards to the potential, in the mimetic gravity case the choice of the potential plays a crucial role in the

realization of a specific cosmology, see for example Ref. [18]. As was demonstrated in Ref. [18], the potential
V (t) ∼ t−2 produces a quintessence cosmology, see [18] for details. In our case, the mimetic unimodular framework
provides more freedom owing to the presence of the unimodular and mimetic Lagrange multipliers. Hence, even if the
potential is fixed, by appropriately choosing the unimodular and mimetic Lagrange multipliers, a specific cosmology
can be realized. Of course the potential and also the two Lagrange multipliers are constrained by the equations of
motion, but still there is more freedom in comparison to the mimetic gravity or unimodular gravity. This was our
initial motivation for working this theory in the first place, however by no means should our theoretical proposal
be considered as the ultimate theory of everything for cosmology. It is just another successful modified gravity
description, which provides an alternative approach to cosmological problems. Having discussed these issues, let us
now demonstrate how easily two well known cosmologies can be realized in the context of unimodular mimetic gravity.

A. Realization of de Sitter Cosmology from vacuum U-M Gravity

Consider that the Universe is described by the de Sitter cosmological evolution, in which case the scale factor and
the Hubble rate in terms of the cosmic time t, are equal to,

a(t) = eH0 t , H(t) = H0 (25)

with H0 being some positive real parameter. Then, by taking into account that we assumed the vacuum U-M theory,
the energy density and pressure are equal to zero, that is ρ(t) = p(t) = 0, and therefore, by using Eq. (18), the
mimetic potential V (t) reads,

V (t = φ) = −6e2H0tH3
0 t

κ2
, (26)

and hence, by substituting in Eq. (15), the unimodular function λ(t) can be easily found, and the resulting expression
for it is,

λ(t) =
3H2

0

(

1 + 2e2H0tH0t
)

κ2
. (27)

Correspondingly, by substituting the resulting expressions for the Lagrange multiplier function λ(t) and for the
mimetic potential V (t) from Eqs. (26) and (27) into Eq. (14), we can easily obtain the mimetic Lagrange multiplier
function η(t), which reads,

η(t) =
3H2

0

2κ2
, (28)

so the mimetic Lagrange multiplier is a positive constant number for the de Sitter cosmology. A direct comparison of
the resulting picture in the context of U-M gravity, with the standard Einstein-Hilbert gravity and also with ordinary
mimetic gravity [18] shows that the U-M gravity result is different, as was probably expected.
In the present description the presence of a cosmological constant is not required by the theory, since the Lagrange

multipliers and the potential appropriately realize the de Sitter cosmology.
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B. Perfect Fluid Cosmology with Constant Equation of State from U-M Gravity

In the context of the ordinary Einstein-Hilbert gravity, if a perfect fluid with equation of state p = wρ is present,
then the resulting scale factor and the corresponding Hubble rate are equal to,

a(t) = t
2

3(1+w) , H(t) =
2

3t(1 + w)
, (29)

with w being the constant equation of state parameter. We now demonstrate how to realize the cosmological evolution
described by (29), by using the vacuum U-M gravity theory. By using Eq. (18), and substituting the scale factor a(t)
and the Hubble rate H(t) from Eq. (29), the mimetic potential in this case reads,

V (t = φ) = −
4t−2+ 4

3(1+w)
(

1 + 5w + 2w2
)

9(1 + w)3κ2
, (30)

and therefore, by substituting in Eq. (15), the unimodular Lagrange multiplier function λ(t) in this case is equal to,

λ(t) =
4
(

−3w(1 + w) + t
4

3(1+w)
(

1 + 5w + 2w2
)

)

9t2(1 + w)3κ2
. (31)

Finally, by using Eqs. (30) and (31), we can easily compute the mimetic Lagrange multiplier function η(t) of Eq. (14),
which reads,

η(t) =
2(2 + w)

3t2(1 + w)2κ2
. (32)

The cosmology described by the scale factor and the Hubble rate of Eq. (29), was also studied in the context of
ordinary mimetic gravity with potential in Ref. [18], and the mimetic potential which generated this cosmology was
found to be equal to,

V (t) =
C
t2

, (33)

with C some arbitrary constant parameter. Notice that for the case that the equation of state parameter is w → ∞,
the mimetic potential of the U-M gravity given in Eq. (30), becomes approximately equal to, V (t) ∼ t−2, so in this
case there might be overlap with the ordinary mimetic gravity result. In general, however, as in the de Sitter case,
the resulting physical picture of the U-M gravity theory is different in comparison to the ordinary mimetic gravity.
This is a new feature of our theoretical construction, which we need to report.
Also, note that the presence of a perfect fluid is not necessary in order to produce the perfect fluid cosmology of

Eq. (29). In the standard Einstein-Hilbert gravity, the cosmology (29), could be realized if a perfect fluid with energy
density ρ ∼ a−3(1+w) and pressure p = wρ was present, but in our case this cosmology is realized only by the vacuum
theory. This behavior is also a feature of the mimetic gravity with Lagrange multiplier approach, hence our framework
provides an alternative to the unimodular and mimetic theories.

IV. UNIMODULAR-MIMETIC GRAVITY SLOW-ROLL INFLATION: THE PERFECT FLUID

APPROACH

As we demonstrated in the previous sections, the U-M gravity theoretical framework makes possible the realization
of various cosmological scenarios, some of which were rather exotic for the ordinary Einstein-Hilbert gravity. In this
section we demonstrate that it is possible to realize cosmologies which are compatible with the observational data.
Specifically, we demonstrate that compatibility with the latest Planck data [41, 42] and with the recent BICEP2/Keck-
Array data [43] can be achieved. Note that according to the recent Planck data [41, 42] the spectral index ns and the
scalar-to-tensor ratio, satisfy the following constraints,

ns = 0.9644± 0.0049 , r < 0.10 , (34)

while according to the recent BICEP2/Keck-Array data [43], the scalar to tensor ratio is further constrained to satisfy

r < 0.07 . (35)
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In order to calculate the observational indices corresponding to the power spectrum of primordial curvature pertur-
bations and to the scalar-to-tensor ratio, we will make use of a very useful technique that treats the modified gravity
as a perfect fluid, which was firstly developed in Ref. [40]. This technique holds true when slow-roll evolution takes
place, and as was shown in Ref. [40] (see also [60]), if the slow-roll condition is satisfied, both the slow-roll indices
and the observational indices can be written in terms of the Hubble rate in a convenient and model-independent way.
We assume that the Hubble rate is a function of the e-foldings number N , which is related to the scale factor a(t)
as follows, eN = a/a0, with a0 the value of the scale factor at some initial time instance. Then, following Ref. [40],
given the cosmological evolution H(N), the slow-roll inflationary indices ǫ, η, are expressed in terms of the Hubble
rate H(N) as follows,

ǫ =− H(N)

4H ′(N)







6H′(N)
H(N) + H′′(N)

H(N) +
(

H′(N)
H(N)

)2

3 + H′(N)
H(N)







2

,

η =− 1

2

(

3 +
H ′(N)

H(N)

)

−1
(

9
H ′(N)

H(N)
+ 3

H ′′(N)

H(N)
+

1

2

(

H ′(N)

H(N)

)2

− 1

2

(

H ′′(N)

H ′(N)

)2

+ 3
H ′′(N)

H ′(N)
+

H ′′′(N)

H ′(N)

)

. (36)

As was demonstrated in Ref. [40], in the context of the perfect fluid approach, the spectral index of primordial
curvature perturbations ns can be written in terms of the slow-roll parameters of Eq. (36), in the following way,

ns ≃ 1− 6ǫ+ 2η , (37)

while the scalar to tensor ratio r is equal to,

r = 16ǫ , (38)

with both the relations (37) and (38) holding true when the slow-roll indices of Eq. (36) satisfy the constraint ǫ, η ≪ 1,
with the latter constraint materializing the slow-roll approximation.
Consider the following cosmological evolution,

H(N) =
(

−α eβN + γ
)

. (39)

with α, β, γ positive numbers appropriately chosen so that the Hubble rate does not become negative. Particularly,
as we show shortly, a convenient set of values for the parameters α, β and γ,is the following,

α = 0.2 , γ = 6.8 , β =
1

42
, (40)

and also we assume that the e-foldings number N takes the values 0 ≤ N ≤ 60, so practically inflation ends in
approximately 60 e- foldings. The question how the inflationary evolution might come to a graceful exit is addressed
appropriately in the next section. For the values of the parameters as chosen in Eq. (40), in Fig. 1, we plot the Hubble
rate H(N) as a function of N , and as it can be seen, it is always positive from N = 60 up to N = 0 where inflation is
supposed to end. By substituting the Hubble rate of Eq. (39) into the slow-roll parameters of Eq. (36), the slow-roll

0 10 20 30 40 50 60
0

2

4

6

8

10

12

N

H
HN
L

FIG. 1: The Hubble rate H(N) as a function of the e-foldings number N , for the cosmological evolution H(N) =
(

−α eβN + γ
)

,

for α = 0.2, γ = 6.8 and β = 1
42
.
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parameters take the following form,

ǫ =−
eNβαβ

(

−2eNβα(3 + β) + (6 + β)γ
)2

4 (eNβα(3 + β)− 3γ)
2
(eNβα− γ)

, (41)

η =−
β
(

8e2Nβα2(3 + β)− 2eNβα(15 + 4β)γ + (6 + β)γ2
)

4 (eNβα(3 + β)− 3γ) (eNβα− γ)
. (42)

Accordingly, by substituting the slow-roll parameters ǫ and η from Eqs. (41) and (42), into Eq. (37), the spectral
index ns becomes equal to,

ns =
2e3Nβα3(3 + β)2(1 + 2β)− 2e2Nβα2

(

27 + 39β + 16β2 + 2β3
)

γ

2 (e2Nβα(3 + β)− 3γ)
2
(eNβα− γ)

+
e2Nβα

(

54 + 12β + 3β2 + 2β3
)

γ2 + 3
(

−6 + 6β + β2
)

γ3

2 (e2Nβα(3 + β)− 3γ)
2
(eNβα− γ)

, (43)

and correspondingly, the scalar-to-tensor ratio r receives the following form,

r = −
4eNβαβ

(

−2eNβα(3 + β) + (6 + β)γ
)2

(eNβα(3 + β)− 3γ)
2
(eNβα− γ)

. (44)

So by substituting the values of the parameters as chosen in Eq. (40), the spectral index of primordial curvature
perturbations ns and the scalar-to-tensor ratio r become equal to,

ns ≃ 0.965984 , r = 0.0537777 , (45)

which are in concordance with both the latest Planck data [41, 42] and with the BICEP2/Keck-Array data [43], as it
can be seen by looking the constraints in Eqs. (34) and (35).
Now we demonstrate how the viable cosmology of Eq. (39) can be realized in the context of U-M gravity. Before

getting started, it is more convenient for the reconstruction technique we use, to express the cosmological evolution
of Eq. (39) in terms of the cosmic time t. By using the relations H = ȧ/a, eN = a/a0, the scale factor corresponding
to the Hubble rate of Eq. (39) is equal to,

a(t) =
e(c1+t)βγγ

1 + a−β
0 e(c1+t)βγα

, (46)

where c1 is an arbitrary integration constant. By substituting the scale factor and the corresponding Hubble rate in
Eq. (18), we obtain the mimetic potential which is,

V (t = φ) = −
2aβ0e

2(c1+t)βγβ3γ5

(

9a−β
0 t+

4aβ
0

(aβ
0+e(c1+t)βγα)

2
βγ

+ 11

aβ
0βγ+ec1βγ+tβγαβγ

− 9a−β
0 ln(aβ

0+e(c1+t)βγα)
βγ

)

3
(

κ+ a−β
0 e(c1+t)βγακ

)2 . (47)

Accordingly, by substituting the mimetic potential of Eq. (47) in Eq. (15), we obtain the unimodular Lagrange
multiplier function λ(t), which is,

λ(t) =
1

3
(

aβ0 + e(c1+t)βγα
)4

κ2

aβ0β
2γ2

(

−6e3(c1+t)βγα3 + 3aβ0e
2(c1+t)βγα2

(

−1 + 6e2(c1+t)βγtβγ3
)

3a3β0

(

3 + 2e2(c1+t)βγγ2(5 + 3tβγ)
)

+ 2a2β0 e(c1+t)βγα
(

6 + e2(c1+t)βγγ2(11 + 18tβγ)
)

−18aβ0e
2(c1+t)βγ

(

aβ0 + e(c1+t)βγα
)2

γ2 ln
(

aβ0 + e(c1+t)βγα
)

)

. (48)

Finally, by combining Eqs. (47), (48) and (14), we obtain the mimetic Lagrange multiplier function η(t), which is,

η(t) =
aβ0

(

3aβ0 + 2e(c1+t)βγα
)

β2γ2

2
(

aβ0 + e(c1+t)βγα
)2

κ2

. (49)
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In principle, less complicated expressions for the resulting U-M theory, can be found if the viable cosmology is
appropriately chosen. But our aim in this section was to simply demonstrate how a viable cosmology can be described
in terms of U-M gravity, and to demonstrate that complicated cosmological evolutions can be realized in the context
of U-M gravity. However, a critical issue that should be addressed by every viable inflationary cosmology, is the
graceful exit problem, which we address in the next section.

V. GRACEFUL EXIT FROM INFLATION VIA UNSTABLE DE SITTER SOLUTIONS

Apart from being compatible with the observational data, a viable inflationary cosmology should appropriately
address the graceful exit issue. Indeed the graceful exit problem, can be a serious issue for many cosmological
scenarios, and a consistent solution to this is required, in order for the inflationary cosmology to be considered as a
successful description of the Universe at early times.
In the standard descriptions of most inflationary cosmologies, which use the slow-roll expansion technique, the

graceful exit comes when the slow-roll indices become of order one, and this is sufficient. From another point of view,
this description could be insufficient if the slow-roll expansion breaks at a higher order in the slow-roll parameters
[57–59]. The slow-roll expansion is a powerful tool for determining if the final attractor theorem holds true [61], and
the slow-roll parameters ǫ and η are nothing but the first order terms in this expansion. However, there are higher
order terms in this expansion which might become of order one, much earlier than the first order slow-roll parameters.
In this case, graceful exit occurs at the instance that the slow-roll expansion breaks, even at higher order. Since the
manipulation of the full slow-roll expansion for complicated cosmologies, like the one we presented in this section, is
rather cumbersome, in this section we shall adopt another approach in order to determine whether the graceful exit
from inflation takes place. In addition, the standard slow-roll breakdown argument does not hold true in the case
of the cosmological evolution given in Eq. (39), since the first order slow-roll indices ǫ and η never become of order
one, as we now explicitly demonstrate. This, however, does not mean that inflation never ends, but it means that the
slow-roll expansion does not provide enough information about graceful exit, at least in this case. In order to be sure,
higher order terms should be calculated and then a more concise answer could be given. However, we will use another
theoretical tool shortly to address the graceful exit issue. Before going into that, let us show that the slow-roll indices
for the cosmology (39), never actually become of order one, for the values of the parameters chosen as in Eq. (40). In
Fig. 2, we plotted the N -dependence of the first order slow-roll parameters ǫ and η, for the parameter values chosen
as in Eq. (40), and for 0 ≤ N ≤ 60. As we can see, both the first order slow-roll indices ǫ and η, take values well
below unity for all the values of the e-foldings number N . Moreover in Table I we present the values of the slow-roll

0 10 20 30 40 50 60
0.000

0.001

0.002

0.003

0.004

N

Ε

0 10 20 30 40 50 60

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

N

Η

FIG. 2: The slow-roll parameters ǫ and η, for the Hubble rate H(N) =
(

−α eβN + γ
)

, and for α = 0.2, γ = 6.8, β = 1
42

and
0 ≤ N ≤ 60.

parameters ǫ and η for various values of the e-foldings number N . As it can be seen, the values of the slow-roll
parameters are never close to one. Therefore, the graceful exit for the cosmology of Eq. (39) cannot be triggered
by the breakdown of the slow-roll expansion, at least at leading order, with the leading order terms being actually
the slow-roll parameters ǫ and η. Hence, our aim in this section is to demonstrate that graceful exit from inflation

TABLE I: Values of the slow-roll parameters ǫ and η for various N and for α = 0.2, γ = 6.8, β = 1
42

Slow-roll Parameter N = 0 N = 30 N = 50 N = 60

ǫ 0.000727414 0.0015348 0.00257205 0.00336111

|η| 0.0108638 0.0096561 0.00810471 0.00692465
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can actually occur for the inflationary cosmology of Eq. (39). Our theoretical argument is based on the approach
adopted in Ref. [56], in which case the exit from inflation is triggered by growing curvature perturbations, caused
by R2 correction terms. Particularly, as was shown in [56] (see also [37–39]), if the cosmological dynamical system
reaches an unstable attractor, then the curvature perturbations grow at a sufficient rate to generate the graceful
exit. Note that an unstable attractor in our case could be the unstable de Sitter attractor and also the appearance
of the mimetic potential, instead of the R2 correction terms, so our aim in this section is to show that there exist
the unstable de Sitter vacua in the context of U-M gravity. Before getting into details, let us further support the
theoretical argument of graceful exit from inflation via unstable final attractors. To this end, we make use of the
Hamilton-Jacobi formulation of single field inflation models [61], since the resulting picture is qualitatively more or
less the same. In the Hamilton-Jacobi formulation, the final attractor theorem states that all possible inflationary
trajectories of the cosmological equations, quickly converge to a common attractor solution, if they are sufficiently
close to each other initially. Quantitatively this means that if the final attractor solution, sayHf , is linearly perturbed,
that is Hf +∆H , then the perturbation is decaying exponentially, in which case the final attractor solution is reached.
In this case, the final attractor solution is stable towards linear perturbations. However, if the perturbations grow in
time, then the final attractor solution is unstable, and this indicates that graceful exit is triggered for the inflationary
solution. Practically, in single field inflation, this happens at the time instance that the slow-roll approximation breaks
down and this is an indication of graceful exit. In the case at hand, the qualitative picture is the same, so we shall
investigate if the de Sitter inflationary solutions of U-M gravity are unstable towards linear perturbations. In section
III we already demonstrated how the de Sitter cosmology can be realized in terms of the U-M gravity, so we use the
results of this section. Therefore, we linearly perturb the differential equation (17), by choosing the solution H(t) to
be of the form,

H(t) = H0 +∆H(t) , (50)

with H0 the de Sitter solution we presented in section III. For the de Sitter case, the mimetic potential of the U-M
gravity appears in Eq. (26), so by substituting Eqs. (26) and (50) in the differential equation (17), and by keeping
linear terms and higher derivatives of the linear perturbation term ∆H(t), the differential equation (17) becomes
approximately,

36 H3
0 t

κ2
∆H(t)− 6H0

κ2
∆Ḣ(t) +

4

κ2
∆Ḧ(t) = 0 . (51)

Note that we kept leading order terms in the small t limit, since we are interested in early times. The differential

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-60

-40

-20

0

20

40

60

t � 10-20 HsecL

˜
H
Ht
L

FIG. 3: Evolution of linear perturbations for the de Sitter solution of U-M gravity.

equation (51) can easily be solved and the solution is,

∆H(t) = e
3H0t

4 Ai

(

9H2
0

16 − 9H3
0 t

3 31/3 (H3
0 )

2/3

)

C1 + e
3H0t

4 Bi

(

9H2
0

16 − 9H3
0 t

3 31/3 (H3
0 )

2/3

)

C2 , (52)

with C1, C2 being arbitrary integration constants, while the functions Ai(z) and Bi(z) stand for the Airy functions.
From the solution (52) we can see that the perturbations grow in an oscillating way, which can also be seen in Fig. 3,
where we plotted ∆H(t) as a function of the cosmic time t. Hence, since the linear perturbations of the de Sitter
point H0 of the form given in Eq. (50) grow in time, the de Sitter point is unstable and therefore if the de Sitter
attractor is reached, graceful exit from inflation is triggered via the curvature perturbation mechanism of Ref. [56].
Notice that the cosmological evolution (39), or in terms of the cosmic time (46) can be brought into the de Sitter
form, if a0 ≪ 1 and the parameter c1 is chosen to be c1 = 0. Then, the scale factor of Eq. (46) becomes approximately
a(t) ∼ eH0 t, with H0 = β γ. Hence, our argument for the graceful exit holds true for the cosmological evolution (46),
or equivalently for (39), which is also compatible with observations, as we evinced in the previous section.
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VI. A COVARIANT APPROACH

The presence of the unimodular constraint makes the unimodular mimetic gravity non-covariant, hence in this
section we shall investigate how to construct a covariant unimodular mimetic gravity [62, 63]. This can be achieved
by the following covariant Lagrangian,

S =

∫

d4x

{√
−g

(

R

2κ2
− η (∂µφ∂

µφ+ 1)− λ

)

+ λǫµνρσ∂µaνρσ

}

+ Smatter (gµν ,Ψ) , (53)

where aνρσ is a three-form field. The variation of the action (53) with respect to the three-form field aνρσ gives the
equation 0 = ∂µλ, which implies that λ is a constant. On the other hand, the variation of the action (53) with respect
to λ gives,

√
−g = ǫµνρσ∂µaνρσ , (54)

which is actually a covariant version of the unimodular constraint (1). Owing to the fact that Eq. (54) can be solved
with respect to aµνρ, there is no constraint on the metric gµν . Then by varying the action (53), with respect to the
metric tensor gµν , we obtain,

0 =
1

2
gµν

(

R− 2κ2λ
)

−Rµν + 2κ2η∂µφ∂νφ+
κ2

2
Tµν , (55)

where we have used the constraint given by the variation of the Lagrange multiplier η,

0 = ∂µφ∂
µφ+ 1 . (56)

By multiplying Eq. (55) with gµν and using this constraint, we find an equation which determines η, which is,

2κ2η = R− 4κ2λ+
κ2

2
T . (57)

On the other hand, by varying again action(53) with respect to φ, we obtain,

0 = ∇µ (η∂µφ) . (58)

In the unimodular form of the FRW metric (7), the non-zero components of the Ricci tensor are given in (8), while
the Ricci scalar R is given by (9). We now assume that φ only depends on the time valuables, and in effect, the
constraint (56) yields,

φ (τ) =

∫ τ dτ ′

a (τ ′)
3 . (59)

On the other hand, Because Eq. (57) tells that η only depends on τ , Eq. (58) takes the following form,

0 =
d

dτ

(

a (τ)
3
η
)

, (60)

or equivalently,

η = η0a (τ)
−3

, (61)

where η0 is a constant. Then the (t, t) and (i, j) components of (55) have the following forms,

0 =− 3K2 + κ2λa (τ)
−6

+ 2κ2η0a (τ)
−9

+ κ2ρa (τ)
−6

, (62)

0 =a (τ)
8
(

2K̇ + 9K2
)

− κ2λa (τ)
2
+ κ2pa (τ)

2
, (63)

where ρ is p are the energy density and the pressure of matter fluids present. If we use the cosmological time t,
because we have

H = a3K ,
dH

dt
= a6K̇ + 3a6K2 , (64)
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we can rewrite Eqs. (62) and (63) as follows,

0 =− 3H2 + κ2λ+ 2κ2η0a (τ)
−3 + κ2ρ , (65)

0 =2Ḣ + 3H2 − κ2λ+ κ2p . (66)

Eqs. (65) and (66) are nothing but the standard FRW equations with the cosmological constant κ2λ and dark matter

2κ2η0a (τ)
−3.

Note that in order to realize an inflationary cosmology with graceful exit, as well as consistent with observational
data, we need to add a scalar potential in the theory. Also we need to stress that the same FRW equations are
obtained from our original non-covariant unimodular mimetic gravity formalism.

VII. CONCLUSIONS

In this work we combined two conceptually different approaches of the Einstein-Hilbert gravity, the unimodular
gravity and mimetic gravity theories, in order to solve the cosmological constant problem and the dark matter problem
in a unified geometrical way. By using the Lagrange multiplier method, we were able to materialize the unimodular
and mimetic constraints at the Lagrangian level, and we used two Lagrange multipliers in order to achieve this. As
we demonstrated, in the context of the unified theory of the two disciplines, which we called unimodular mimetic
gravity, it is possible to realize a quite large number of cosmological evolutions, with some of them being exotic for
the standard Einstein-Hilbert gravity. The equations of motion of the unimodular mimetic gravity theory constitute
a reconstruction method, which when the Hubble rate is given, can be used to realize quite arbitrary cosmological
scenarios. To this end we investigated how some well known cosmologies can be generated by unimodular mimetic
gravity. Specifically, we realized the de Sitter cosmology, the Type IV singular cosmology, the R2 inflation cosmology
and also the cosmological evolution which corresponds to the standard Einstein-Hilbert cosmological evolution of
a perfect fluid with constant equation of state. Also, by using the perfect fluid description, firstly introduced and
employed in [40], we investigated how cosmologically viable cosmologies can be realized in the context of unimodular
mimetic gravity. As we showed, cosmologies compatible with the latest Planck [41, 42] and even the BICEP2/Keck-
Array data [43], can be generated by the unimodular mimetic gravity framework. However, it is possible that in some
cases, the graceful exit from inflation problem might exist. To this end, by using some qualitative arguments related
to the final attractor theorem, we demonstrated that the graceful exit in the unimodular mimetic gravity can be
triggered by curvature perturbations of the unstable de Sitter solutions. Specifically, as we showed, the unimodular
mimetic theoretical framework leads to the unstable de Sitter solutions, which can generate the graceful exit from
inflation. Finally, a covariant version of our theory was presented too.
A direct generalization of the unimodular mimetic gravity formalism, is to extend it in the context of modified

gravity theories, for example the unimodular mimetic F (R) gravity case, or even the unimodular mimetic F (G)
gravity case. In addition, it would be interesting to study solutions corresponding to compact objects, like relativistic
stars or black holes, and check whether deviations from the predictions of general relativity exist. Also, in the
unimodular case, the cosmological perturbations of unimodular gravity and the ordinary Einstein-Hilbert gravity are
the same, at least when linear perturbations are considered, as was demonstrated in Refs. [10, 11]. The question is
whether this behavior persists in the case of the unimodular mimetic gravity. We hope to address some of these issues
in detail in a future work.
In addition, a question that can be asked is why we did not use any matter fluids and we investigated the vacuum

case of unimodular mimetic gravity? As we clearly explained in the text, the novel feature of our approach is that no
matter fluids are required in order to realize various cosmological scenarios of the ordinary Einstein-Hilbert gravity,
in which case their presence is compulsory. This is the new feature of our approach, that matter fluids are mimicked
by the vacuum unimodular mimetic gravity, hence the geometry of the theory plays the role of the matter fluids.
This feature of our theory, was also a feature of the mimetic gravity approach, and it is actually what justifies the
terminology “mimetic”, which means it mimics a cosmological behavior. The new feature of our theoretical framework
is that we have more freedom in comparison to the standard mimetic approach. In principle, one could add a scalar
field in the formalism, however, this could make things more complicated, since the presence of a scalar field would
simply alter the functional form of the potential and the two Lagrange multipliers, in such a way so that the given
cosmological evolution is realized.
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