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We propose a covariant ghost-free unimodular F (R) gravity theory, which contains a three-form
field and study its structure using the analogy of the proposed theory with a quantum system which
describes a charged particle in uniform magnetic field. Newton’s law in non-covariant unimodular
F (R) gravity as well as in unimodular Einstein gravity is derived and it is shown to be just the same
as in General Relativity. The derivation of Newton’s law in covariant unimodular F (R) gravity shows
that it is modified precisely in the same way as in the ordinary F (R) theory. We also demonstrate
that the cosmology of a Friedmann-Robertson-Walker background, is equivalent in the non-covariant
and covariant formulations of unimodular F (R) theory.
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I. INTRODUCTION

The (non-covariant) unimodular Einstein gravity is supposed to solve the cosmological constant problem in a
geometrical way (see for example Ref. [1] for an introduction). At the same time, in some sense such a theory is
less dynamical than General Relativity with cosmological constant. Recently, the unimodular F (R) gravity has been
proposed [2], which is quite rich dynamically and successfully describes inflationary or bouncing cosmology. However,
its further development, refinement and better understanding of its physical properties is quite desirable. The present
paper is devoted to the construction of a covariant formulation of unimodular F (R) gravity, as well as to the study of
the most important physical implications, like study of Newton’s law and the Friedmann-Robertson-Walker (FRW)
cosmology of such theory.
Our first aim with this letter, is to study Newton’s law in unimodular F (R) gravity, focusing on the possible

modifications that the unimodular formalism may bring along. An exciting new result that we obtain is that Newton’s
law in unimodular F (R) gravity does not receive any new corrections, so basically it is the same as in General Relativity.
Also as a second task, we formulate a covariant unimodular F (R) gravity theory and we analyze its dynamical structure
by using the analogy of the covariant unimodular F (R) theory with a simple quantum mechanical system of a charged
particle in a uniform magnetic field. For the covariant unimodular F (R) theory, we derive Newton’s law and we
demonstrate that it is modified in the same way as in ordinary F (R) gravity, and this result is quite different from
the non-covariant unimodular theory. We also demonstrate that the equations of motion for the covariant unimodular
F (R) theory for a FRW background are equivalent to the equations of motion corresponding to the non-covariant
theory. Finally, we discuss possible generalizations of the covariant formulation.
This letter is organized as follows: In section II we discuss Newton’s law in the context of unimodular F (R) gravity,

while in section III we introduce the covariant version of unimodular F (R) gravity, and also we study Newton’s law
and its modifications due to the covariant theory. The concluding remarks with a brief critical discussion follow in
the end of the paper.
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II. NEWTON LAW IN THE UNIMODULAR F (R) GRAVITY

In this section we study Newton’s law in unimodular F (R) gravity, with the unimodular constraint being equal to,

√
−g = 1 . (1)

The constraint can be realized by using a Lagrange multiplier field λ, so that the unimodular F (R) gravity action is
the following,

S =

∫
d4x

{√
−g

(
F (R)

2κ2
− λ

)
+ λ

}
+ Smatter (gµν ,Ψ) , (2)

where Smatter denotes action of the matter fluids present, and Ψ denotes the matter fluids. It is known that the above
theory is ghost-free, as was discussed in Ref. [2]. It can be generalized by multiplying second λ function in Eq. (2) by
(
√
−g)

q
, with q being an arbitrary non-vanishing constant. As in the standard F (R) gravity theory, we may rewrite

the action (2) in the scalar-tensor form,

S =

∫
d4x

{√
−g

(
1

2κ2

(
R− 3

2
gµν∂µϕ∂νϕ− V (ϕ)

)
− λe2ϕ

)
+ λ

}
+ Smatter

(
eϕgµν ,Ψ

)
, (3)

where the potential V (ϕ) is given by,

V (ϕ) =
A(ϕ)

F ′ (A (ϕ))
− F (A (ϕ))

F ′ (A (ϕ))
2 , (4)

and the function A(ϕ) is defined by solving the equation ϕ = − lnF ′(A). The unimodular constraint (1) is now
modified to be e2ϕ

√
−g = 1. Eliminating the scalar field ϕ, the action (3) can be rewritten as follows,

S =

∫
d4x

√
−g

(
1

2κ2

(
R− 3

32g2
gµν∂µg∂νg − V

(
1

4
ln (−g)

)))
+ Smatter

(
(−g)

1
4 gµν ,Ψ

)
. (5)

We consider the perturbation of the metric gµν around the background metric g
(0)
µν , as follows, gµν = g

(0)
µν + hµν . By

assuming that the background metric is flat, that is, g
(0)
µν = ηµν , we finally find that,

√
−gR ∼ −1

2
∂λhµν∂

λhµν + ∂λh
λ
µ∂νh

µν − ∂µh
µν∂νh+

1

2
∂λh∂

λh , (6)

where h is the trace of the tensor field hµν , h ≡ ηρσhρσ. Because of the flat background choice, we find V (0) =
V ′(0) = 0, and one may write down the potential V as V ∼ 1

2m
2h2. The linearized action has the following form

S =
1

2κ2

∫
d4x

{
−1

2
∂λhµν∂

λhµν + ∂λh
λ
µ∂νh

µν − ∂µh
µν∂νh+

1

2
∂λh∂

λh− 3

32
∂µh∂

µh− 1

2
m2h2

}
+ Smatter

(
ηµν + hµν − 1

4
ηµνh,Ψ

)
. (7)

Then by varying with respect to hµν , we obtain the following equations,

∂λ∂
λhµν − ∂µ∂

λhλν − ∂ν∂
λhλµ + ∂µ∂νh+ ηµν∂

ρ∂σhρσ − 13

16
ηµν∂λ∂

λh−m2ηµνh = κ2

(
Tµν − 1

4
ηµνT

)
, (8)

where Tµν stands for the energy-momentum tensor of the matter fluids, and T is the trace of Tµν , T ≡ ηρσTρσ. By
multiplying Eq. (8) by ηµν , we obtain,

0 = −5

4
∂λ∂

λh− 4m2h+ 2∂µ∂νhµν . (9)

In order to investigate Newton’s law, we consider a point source at the origin, so that the energy-momentum tensor
has the following components, T00 = Mδ (r), Tij = 0 (i, j = 1, 2, 3), and we look for a static solution of Eq. (8). The
(0, 0), (i, j), and (0, i) components of Eq. (8) and Eq. (9) have the following form:

∂i∂
ih00 − ∂i∂jhij +

13

16
∂i∂

ih+m2h =
3κ2

4
Mδ (r) , (10)
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∂k∂
khij − ∂i∂

khkj − ∂j∂
khki + ∂i∂jh+ δij∂

k∂lhkl −
13

16
δij∂k∂

kh−m2δijh =
κ2

4
Mδ (r) , (11)

∂j∂
jh0i − ∂i∂

khk0 = 0 , (12)

− 5

4
∂k∂

kh− 4m2h+ 2∂i∂jhij = 0 . (13)

In the Einstein-Hilbert gravity case, there exist four gauge degrees of freedom, but in case of the unimodular F (R)
gravity, there exist only three gauge degrees of freedom, due to the unimodular constraint (1). Then we now impose
three gauge conditions, ∂ihij = 0, in which case Eq. (13) reduces to,

−5

4
∂k∂

kh− 4m2h = 0 , (14)

and under a proper boundary condition, we obtain h = 0. By using the three gauge conditions ∂ihij = 0 and the
equation h = 0, we can rewrite Eqs. (10), (11), and (12) as follows,

∂i∂
ih00 =

3κ2

4
Mδ (r) , ∂k∂

khij =
κ2

4
Mδ (r) , ∂j∂

jh0i − ∂i∂
khk0 = 0 . (15)

Under a proper boundary condition, the above equations and the equation h = 0, yield the following,

h0i = 0 , hij =
1

3
δijh00 . (16)

Defining the Newtonian potential Φ by h00 = 2Φ, Eq. (15) gives the Poisson equation for the Newtonian potential Φ,

∂i∂
iΦ = 3κ2

8 Mδ (r). Hence, by redefining the gravitational constant κ by 3κ2

4 → κ2 = 8πG, we obtain the standard

Poisson equation for the Newtonian potential U , ∂i∂
iΦ = 4πGMδ (r), whose solution is given by,

Φ = −GM

r
. (17)

The above result is quite different from the case of the standard F (R) gravity (for review, see [3–6]), where the
propagation of the scalar mode ϕ = − lnF ′(A) gives a non-trivial correction to Newton’s law of gravity. In the
case of unimodular F (R) gravity, owing to the fact that the unimodular condition (1) can be rewritten as follows,
e2ϕ

√
−g = 1, the degree of the freedom in the scalar mode ϕ is actually eliminated from the field equations, and

therefore ϕ does not propagate. Therefore, as a result no correction to Newton’s law of gravity appears.
Let us compare the above situation with Newton’s law of gravity in the context of unimodular Einstein gravity,

in which case F (R) = R. In the unimodular Einstein gravity, there exists a solution describing the flat space-time,
gµν = ηµν , λ = 0. By considering the perturbation gµν = ηµν + hµν , we find that the linearized action has the
following form,

S =
1

2κ2

∫
d4x

{
−1

2
∂λhµν∂

λhµν + ∂λh
λ
µ∂νh

µν − ∂µh
µν∂νh+

1

2
∂λh∂

λh− 1

2
λh

}
+ Smatter (ηµν + hµν ,Ψ) . (18)

By varying with respect to hµν , we obtain the following equations,

∂λ∂
λhµν − ∂µ∂

λhλν − ∂ν∂
λhλµ + ∂µ∂νh+ ηµν∂

ρ∂σhρσ − ηµν∂λ∂
λh− 1

2
ηµνλ = κ2Tµν . (19)

The unimodular constraint (1), which can be obtained by the variation of the action with respect to λ, has the form of
h = 0. We now obtain h = 0 by the unimodular constraint but in case of F (R) gravity in the scalar-tensor form (3),
the constraint e2ϕ

√
−g = 1 is solved with respect to the scalar field ϕ, therefore the metric itself is not constrained.

Multiplying Eq. (19) by ηµν and using (20), we obtain,

−2∂λ∂
λh+ 2∂ρ∂σhρσ − 2λ = κ2T . (20)

By solving Eq. (20) with respect to λ we get, λ = −∂λ∂
λh+ ∂ρ∂σhρσ − κ2

2 T . Then by deleting λ and taking account
of Eq. (20), we may rewrite Eq. (19) as follows,

∂λ∂
λhµν − ∂µ∂

λhλν − ∂ν∂
λhλµ + ∂µ∂νh+

1

2
ηµν∂

ρ∂σhρσ − 1

2
ηµν∂λ∂

λh = κ2

(
Tµν − 1

4
ηµνT

)
. (21)
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In order to investigate Newton’s law of gravity, we consider a point source at the origin, with the components of
the energy-momentum tensor being, T00 = Mδ (r), Tij = 0 (i, j = 1, 2, 3) and we look for a static solution of Eq.
(21).Then the (0, 0), (i, j), and (0, i) components of Eq. (21) are:

∂i∂
ih00 −

1

2
∂i∂jhij +

1

2
∂i∂

ih =
3κ2

4
Mδ (r) , (22)

∂k∂
khij − ∂i∂

khkj − ∂j∂
khki +

1

2
δij∂

k∂lhkl −
1

2
δij∂k∂

kh =
κ2

4
Mδ (r) , (23)

∂j∂
jh0i − ∂i∂

khk0 = 0 . (24)

By imposing the gauge conditions ∂ihij = 0, Eqs. (22), (23), and (24) reduce to (15), again. Therefore by the

redefinition of the gravitational constant κ, 3κ2

4 → κ2 = 8πG, we obtain Newtonian potential of Eq. (17).
Hence, although there are some differences between the unimodular F (R) gravity and the unimodular Einstein grav-

ity, especially in the degrees of freedom, an identical Newtonian potential is produced. The differences in the number
of degrees of freedom however, may affect the cosmological perturbations, and therefore the structure formation in
the Universe.
Let us now briefly review the FRW cosmology in the unimodular F (R) gravity of Eq. (2) based on [2, 7, 8].

In terms of the cosmological time t, the metric of the FRW universe with a flat spatial part, does not satisfy the
unimodular constraint (1). This problem is solved by defining “unimodular cosmological time” τ instead of the
standard cosmological time t, which satisfies dτ = a(t)3dt. By using the unimodular cosmological time τ , the FRW
metric can be rewritten in the unimodular form:

ds2 = −a (t (τ))
−6

dτ2 + a (t (τ))
2

3∑
i=1

(
dxi
)2

, (25)

and hence the unimodular constraint is satisfied. Using the unimodular metric of Eq. (25), and by making use of the
Lagrange multiplier method [9, 10], the vacuum Jordan frame unimodular F (R) gravity action is given in Eq. (2).
Then by varying with respect to the metric, we obtain the following equations of motion,

0 =
1

2
gµν

(
F (R)− 2κ2λ

)
−RµνF

′(R) +∇µ∇νF
′(R)− gµν∇2F ′(R) +

κ2

2
Tµν . (26)

and the FRW equations take the following form,

0 =− a−6

2

(
F (R)− 2κ2λ

)
+
(
3K̇ + 12K2

)
F ′(R)− 3K

dF ′(R)

dτ
+

κ2

a6
ρmatter , (27)

0 =
a−6

2

(
F (R)− 2κ2λ

)
−
(
K̇ + 6K2

)
F ′(R) + 5K

dF ′(R)

dτ
+

d2F ′(R)

dτ2
+

κ2

a6
pmatter , (28)

Here K is defined by K(τ) = 1
a
da
dτ and ρmatter and pmatter stand for the energy-density and pressure of the matter

fluids present, respectively. The “prime” and “dot” denote as usual differentiation with respect to the Ricci scalar
and with respect to τ . Equations (27) and (28) can be further combined to yield

0 =
(
2K̇ + 6K2

)
F ′(R) + 2K

dF ′(R)

dτ
+

d2F ′(R)

dτ2
+

κ2

a6
(ρmatter + pmatter) . (29)

Basically, the reconstruction method for the vacuum unimodular F (R) gravity, which we proposed in [2] is based on
Eq. (29). If we give the explicit form of a = a (τ) and therefore K (τ), Eq. (29) becomes a differential equation, which
is solved with respect to the function F ′ = F ′(τ). On the other hand, by using Eq. (??), one can obtain the function
R = R(τ), which can be solved with respect to τ , τ = τ (R). Substituting the form of F ′ = F ′(τ), we obtain F ′ as a
function of R, that is, F ′ = F ′(R).

III. NEWTON’S LAW IN COVARIANT UNIMODULAR F (R) GRAVITY

Due to the unimodular constraint (1), the unimodular gravity does not have full covariance. The covariant formu-
lation of the unimodular Einstein gravity has been proposed in Ref. [11]. By using such a formulation, we may start
from the following action,

S =

∫
d4x

{√
−g (Lgravity − λ) + λϵµνρσ∂µaνρσ

}
+ Smatter (gµν ,Ψ) , (30)
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where L is the Lagrangian density of any gravity theory, and aνρσ is a three-form field. By varying with respect to
aνρσ, gives the equation 0 = ∂µλ, that is, λ is a constant. On the other hand, the variation with respect to λ gives,

√
−g = ϵµνρσ∂µaνρσ , (31)

instead of the unimodular constraint. Because Eq. (31) can be solved with respect to aµνρ, there is no constraint on
the metric gµν .
We now consider aµνρ, which has apparently four degrees of freedom. The action is invariant under the gauge

transformation δaµνρ = ∂µbνρ + ∂νbρµ + ∂ρbµν . Here bµν is an anti-symmetric tensor field, that is, bµν = −bνµ, which
has apparently six degrees of freedom. We should note that the gauge transformation is invariant under another gauge
transformation, δbµν = ∂µcν − ∂νcµ. Here cµ is a vector field, which has four degrees of freedom. Again we should
note that the gauge transformation of the original gauge transformation is invariant under the gauge transformation
δcµ = ∂µφ. The field φ is a scalar field with one degree of freedom. Therefore, the number of degrees of freedom in
the gauge transformation (??) is 6− 4+ 1 = 3 and the number of degrees of freedom of aµνρ is 4− 3 = 1. Hence, one
may choose the following gauge condition,

atij (= ajti = aijt) = 0 , i, j = 1, 2, 3 . (32)

Therefore the only remaining degree of freedom is given by aijk (i, j, k = 1, 2, 3). Then we find,

Sλα =

∫
d4xλ

(
−
√
−g + ϵµνρσ∂µaνρσ

)
=

∫
d4xλ

(
−
√
−g + ∂tα

)
, (33)

where α ≡ 1
3!a123. The system described by (33) might give a correction to Newton’s law, or it might be a ghost

and generate negative norm states in the quantum theory. In order to consider the quantum system described by the
action (33), we now investigate a similar quantum mechanical system.
We start with the system, where the Lagrangian is given by,

L = Byẋ , (34)

which appears in the massless limit of the charged particle in uniform magnetic field B with Lagrangian,

L =
1

2
m
(
ẋ2 + ẏ2

)
+Byẋ . (35)

In (34) and (35), B is a constant. By using the Lagrangian (34), the equations of motion are given by

ẋ = ẏ = 0 , (36)

that is, x and y are constant. On the other hand, the momenta px and py are given by

px ≡ ∂L

∂ẋ
= By , py ≡ ∂L

∂ẏ
= 0 , (37)

and therefore we obtain two constraints,

χ1 ≡ y − px = 0 , χ2 ≡ py = 0 . (38)

In order to consider the quantization of the system, we use Dirac’s formulation. First we introduce the matrix C as
follows,

C = (Cij) ≡
(
[χi, χj ]P

)
=

(
0 B

−B 0

)
. (39)

Here [A,B]P for any physical quantities A and B, is the Poisson bracket defined by,

[A,B]P ≡ ∂A

∂x

∂B

∂px
− ∂A

∂px

∂B

∂x
+

∂A

∂y

∂B

∂py
− ∂A

∂py

∂B

∂y
. (40)

Then one can define the Dirac bracket as follows,

[A,B]D ≡ [A,B]P −
∑

i,j=1,2

[A,χi]P C−1
ij [χj , B]P . (41)
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Hence we find that,

[x, px]D = − [px, x]D = B [x, y]D = −B [y, x]D = 1 , (42)

and all the other Poisson brackets including [y, py]D vanish. The quantization can be obtained by replacing the Dirac
bracket with the commutator and 1 with i,

[x, px] = − [px, x] = B [x, y] = −B [y, x] = i , others = 0 . (43)

We also find that the Hamiltonian vanishes, that is,

H = ẋpx + ẏpy − L = 0 . (44)

Therefore, there is no time evolution, which is consistent with the classical solutions of Eq. (36). The Hamiltonian
(44) also shows that the states are infinitely degenerate but there is no transition between the states and therefore,
the states are stable and there does not appear any ghost.
By a similar treatment, we find the following commutation relations for the fields λ and α similar to (43) in (33),

which are,

[α, λ] = iδ (x) , (45)

with x =
(
x1, x2, x3

)
. However, the Hamiltonian H does not vanish, a result which is different from (44), but H is

given by,

H =

∫
S

dS
√
−gλ , (46)

where S is an arbitrary space-like surface. Then although λ is a constant, the time evolution of α is given by,

dα

dt
= i [H,α] =

√
−g , (47)

which is consistent with the classical equation given by the variation of the action (33) with respect to λ. The
eigenstate of the Hamiltonian H could be given by the eigenstate of λ. In the representation of the states by using α,
the commutation relation (45), yields λ = i δ

δα . Then, the eigenstate Ψλ0(α) of λ with the eigenvalue λ0 is expressed
as,

Ψλ0(α) = exp

(
iλ0

∫
S

dSα (x)

)
. (48)

The eigenvalue of the Hamiltonian (46) is infinite, due to the infinite volume of S and furthermore unbounded from
below. However, note that there is no transition between the states and therefore the states are stable.
For the case of covariant unimodular F (R) gravity, in which case,

Lgravity =
F (R)

2κ2
, (49)

as in the standard F (R) gravity, we may rewrite the action in the scalar-tensor form,

S =

∫
d4x

{√
−g

(
1

2κ2

(
R− 3

2
gµν∂µϕ∂νϕ− V (ϕ)

)
− λe2ϕ

)
+ λϵµνρσ∂µaνρσ

}
+ Smatter

(
eϕgµν ,Ψ

)
. (50)

Here V (ϕ) is given by (4) and the function A(ϕ) is defined by the algebraic equation ϕ = − lnF ′(A). Note that A = R
in the original Jordan frame Lagrangian density (49). In the action (50), one obtains 0 = ∂µλ and therefore λ is a
constant in this case too. Thus, the potential V (ϕ) is effectively changed as

V (ϕ) → Ṽ (ϕ) =
A(ϕ)

F ′ (A (ϕ))
− F (A (ϕ))

F ′ (A (ϕ))
2 + 2κ2λe2ϕ , (51)

Then if the mass of ϕ, which is defined by

m2
ϕ =

3

2

d2Ṽ (ϕ)

dϕ2
, (52)
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is small, there could appear a large correction to Newton’s law of gravity. By using the equation ϕ = − lnF ′(A) and
(7), the explicit expression of m2

ϕ is given by

m2
ϕ =

3

2

{
A(ϕ)

F ′ (A (ϕ))
− 4F (A (ϕ))

F ′ (A (ϕ))
2 +

1

F ′′ (A (ϕ))
+

8κ2λ

F ′ (A (ϕ))
2

}
. (53)

The last term is a characteristic feature of the unimodular F (R) gravity. As λ is constant, the last term can be
absorbed into the redefinition of F (R), F (R) → F (R) + 2κ2λ. The expression of m2

ϕ obtained by the redefinition is

identical with the expression in the standard F (R) gravity. Thus, there is no any essential difference in the corrections
of Newton’s law, between the covariant unimodular F (R) gravity and the standard F (R) gravity [3–6]. This is quite
different from the non-covariant unimodular F (R) gravity, where standard Newton’s law is recovered.
Let us study the FRW cosmology in the covariant unimodular gravity F (R) ((30) with (49)). Due to the absence

of unimodular constraint (1) in the case of the covariant unimodular gravity, one may assume the standard FRW
metric. By the variation with respect to the metric we obtain,

0 =
1

2
gµν

(
F (R)− 2κ2λ

)
−RµνF

′(R)− gµν□F ′(R) +∇µ∇νF
′(R) +

κ2

2
Tµν . (54)

and the following FRW equations are obtained:

0 =− F (R)− 2κ2λ

2
+ 3

(
H2 +

dH

dt

)
F ′(R)− 18

(
4H2 dH

dt
+H

d2H

dt2

)
F ′′(R) + κ2ρmatter , (55)

0 =
F (R)− 2κ2λ

2
−
(
dH

dt
+ 3H2

)
F ′(R) + 6

(
8H2 dH

dt
+ 4

(
dH

dt

)2

+ 6H
d2H

dt2
+

d3H

dt3

)
F ′′(R)

+ 36

(
4H

dH

dt
+

d2H

dt2

)2

F ′′′(R) + κ2pmatter . (56)

Here, the Hubble rate H is defined by H = 1
a
da
dt as usually, and the scalar curvature R is given by R = 12H2 + 6dH

dt .
Rewriting Eqs. (55) and (56) as follows,

0 =− F (R)− 2κ2λ

2
+ 3

(
H2 +

dH

dt

)
F ′(R)− 3H

dF ′(R)

dt
+ κ2ρmatter , (57)

0 =
F (R)− 2κ2λ

2
−
(
3H2 +

dH

dt

)
F ′(R) + 2H

dF ′(R)

dt
+

d2F ′(R)

dt2
+ κ2pmatter . (58)

and by eliminating λ from Eqs. (57) and (58), we obtain

0 = 2H
dH

dt
F ′(R)−H

dF ′(R)

dt
+

d2F ′(R)

dt2
+ κ2 (ρmatter + pmatter) . (59)

We should note that owing to the fact that H = a3K, dH
dt = 3a6K̇ + a6K2, Eq. (59) in the covariant formulation

is identical with Eq. (29) in the non-covariant formulation. In other words, we proved the dynamical equivalence of
two formulations in the FRW background evolution level. This is, of course, not accidental because Eq. (54) in the
non-covariant formalism is identical with Eq. (26). The difference is that λ is assumed to be a constant in Eq. (54)
but λ is not always invariant in Eq. (26). Therefore the equations obtained by deleting λ can be identical with each
other. Hence, the background FRW cosmology in the covariant and the non-covariant unimodular F (R) gravity is
just the same. Nevertheless, due to possible corrections to Newton’s law in covariant theory, the Universe’s structure
formation may be different in the non-covariant and covariant unimodular F (R) gravity.

IV. SUMMARY AND DISCUSSION

In summary, we formulated the covariant unimodular F (R) gravity and demonstrated that the resulting FRW
cosmology is equivalent to the one corresponding to the non-covariant version. We also demonstrated that Newton’s
law of gravity in the non-covariant formulation does not change if compared with standard Einstein gravity result. At
the same time, Newton’s law in the context of covariant unimodular F (R) gravity is modified just in the same way
as in the ordinary F (R) gravity theory [3–6].
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One may consider some extension of the covariant formulation. The unimodular gravity was proposed in order
to solve the problem of the large vacuum energy. In the unimodular gravity, the cosmological constant Λ which
includes the large vacuum energy, can be absorbed into the constant shift of the Lagrange multiplier field λ as follows
λ → λ− Λ. Therefore, the cosmological constant Λ does not affect the dynamics.
If we consider models which have similar properties, the problem of the vacuum energy could be solved. In [12], a

new extension of the covariant unimodular gravity has been proposed. The action of the model is given by

S =

∫
d4x

√
−g

{
Lgravity − λ

(
1− 1

µ4
∇µJ

µ

)}
+ Smatter , (60)

where µ is a constant with mass dimensions, Jµ is a general vector quantity, and finally ∇µ is a covariant derivative
with respect to the vector field. Dividing the gravity Lagrangian density Lgravity into the sum of the cosmological

constant Λ and another part L(0)
gravity and redefining the Lagrange multiplier field λ by λ → λ−Λ, we can rewrite the

action (60) as follows,

S =

∫
d4x

√
−g

{
L(0)
gravity − λ

(
1− 1

µ4
∇µJ

µ

)}
+ Smatter −

Λ

µ4

∫
d4x

√
−g∇µJ

µ . (61)

Because the integrand in the last term is a total derivative, the last term does not affect the dynamics and one may
drop the last term, again. In Ref. [12], a model using the topological field theory ([13]) was studied. Here we may
propose a new class of models, whose action is given by

S =

∫
d4x

√
−g {Lgravity − λ+ Lλ (∂µ, ∂µλ, φi)}+ Smatter , (62)

where Lλ (∂µ, ∂µλ, φi) is the Lagrangian density including the derivatives of λ and other fields φi, but not including
λ without derivative. Hence, if we divide the Lagrangian density Lgravity into the sum of the cosmological constant

Λ and other part L(0)
gravity, the cosmological constant can be absorbed into the redefinition of the Lagrange multiplier

field λ, λ → λ− Λ.
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