1	Revised submisson to FEBS Journal		
2			
3	Title		
4	A cis-prenyltransferase from Methanosarcina acetivorans catalyzes both head-to-tail		
5	and non-head-to-tail prenyl condensation		
6			
7	Authors		
8	Takuya Ogawa, Koh-ichi Emi, Kazushi Koga, Tohru Yoshimura, and Hisashi Hemmi		
9			
10	Affiliation		
11	Department of Applied Molecular Bioscience, Graduate School of Bioagricultural		
12	Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 460-8601, Japan		
13			
14	Corresponding author		
15	Hisashi Hemmi		
16	Address: Department of Applied Molecular Bioscience, Graduate School of		
17	Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi		
18	464-8601, Japan		
19	Phone: +81-52-789-4134		
20	Fax: +81-52-789-4120		
21	E-mail: hhemmi@agr.nagoya-u.ac.jp		
22			
23	Running title		
24	Irregular side reaction of a cis-prenyltransferase		

26 Abbreviations

- 27 DMAPP, dimethylallyl diphosphate; FPP, farnesyl diphosphate; GGPP, geranylgeranyl
- diphosphate; GPP, geranyl diphosphate; HMBC, hetero-nuclear multiple-bond
- 29 connectivity; HSQC, hetero-nuclear single quantum coherence; IPP, isopentenyl
- 30 diphosphate; MOPS, 3-morpholinopropanesulfonic acid
- 31

25

32 Keywords

33 cis-prenyltransferase; archaea; glycosyl carrier lipid; isoprenoid; diterpenoid

35 Abstract

36 Cis-prenyltransferase usually consecutively catalyzes the head-to-tail condensation reactions of isopentenyl diphosphate to allylic prenyl diphosphate in the production of 37 38 (*E*,*Z*-mixed) polyprenyl diphosphate, which is the precursor of glycosyl carrier lipids. Some recently discovered homologs of the enzyme, however, catalyze the 39 non-head-to-tail condensation reactions between allylic prenyl diphosphates. In the 4041 present study, we characterize a *cis*-prenyltransferase homolog from a methanogenic archaeon, Methanosarcina acetivorans, to obtain information on the biosynthesis of the 4243glycosyl carrier lipids within it. This enzyme catalyzes both head-to-tail and 44non-head-to-tail condensation reactions. The kinetic analysis shows that the main 45reaction of the enzyme is consecutive head-to-tail prenyl condensation reactions yielding polyprenyl diphosphates, while the chain lengths of the major products seem 4647shorter than expected for the precursor of glycosyl carrier lipids. On the other hand, a subsidiary reaction of the enzyme, i.e., non-head-to-tail condensation between 4849dimethylallyl diphosphate and farnesyl diphosphate, gives a novel diterpenoid compound, geranyllavandulyl diphosphate. 50

51

53 Introduction

Cis-prenyltransferases [1] catalyze consecutive head-to-tail condensation reactions of 54isopentenyl diphosphate (IPP) to allylic prenyl diphosphate to produce the precursor of 55glycosyl carrier lipids such as dolichol for eukaryotes and undecaprenol for bacteria, 5657which are required for N-linked protein glycosylation and peptide glycan biosynthesis, 58respectively (Fig. 1). The intermediates and the final product of the reaction, i.e., 59(poly)prenyl diphosphates, are the oligomers/polymers of C₅ prenyl moieties, and the prenyl moieties that are newly condensed by the action of the enzyme have a double 60 61 bond with Z-configuration. The primer substrate of the enzyme is usually (all-E) prenyl 62diphosphate such as (E,E)-farnesyl diphosphate (FPP), in which case the intermediate of 63 the condensation reaction should be (E,Z-mixed) prenyl diphosphate. The intermediate is used as an allylic substrate for the next condensation step with IPP to provide a longer 64 65 intermediate, and the condensation is repeated until the carbon chain of the product finally reaches the required length, which can be anticipated from the chain lengths of 66 67 the glycosyl carrier lipids, e.g., C₈₅₋₁₀₅ for human and C₅₅ for general bacteria. Recently, a few homologs of *cis*-prenyltransferase were shown to catalyze the 68 69 non-head-to-tail condensation between allylic prenyl diphosphates (Fig. 1). For example, 70lavandulyl diphosphate synthase from lavender uses two dimethylallyl diphosphate 71(DMAPP) molecules to yield a non-allylic product, lavandulyl diphosphate, which is a 72precursor of a monoterpene alcohol, lavandulol [2]. Cyclolavandulyl diphosphate 73synthase from Streptomyces sp. CL190 catalyzes both the same condensation between 74two DMAPPs and an additional cyclization of the intermediate lavandulyl diphosphate to give a non-standard allylic prenyl diphosphate, which is used for the modification of 75a secondary metabolite to form lavanducyanin [3]. Another non-standard allylic prenyl 76

 $\mathbf{4}$

diphosphate, isosesquilavandulyl diphosphate, is synthesized from geranyl diphosphate
(GPP) and DMAPP by the action of a *cis*-prenyltransferase homolog from *Streptomyces*sp. strain CNH-189 [4]. That compound is used for the biosynthesis of meroterpenoid
antibiotics, merochlorins. The substrate specificities of these enzymes are high: They do
not catalyze a standard head-to-tail condensation between allylic prenyl diphosphate and
IPP.

83 With the exception of a few previous characterization studies on the enzymes from 84 Sulfolobus acidocaldarius [5], Aeropyrum pernix [6], and Thermococcus kodakarensis [7], which yield polyprenyl diphosphates with carbon chains up to C_{55-65} , archaeal 85 86 cis-prenyltransferases have not been sufficiently elucidated. The structures of glycosyl 87 carrier lipids also remain unclear in most archaeal species. The detailed structures have been determined only for the lipids from Halobacterium halobium [8], Haloferax 88 89 volcanii [9, 10], S. acidocaldarius [11], and Pyrococcus furiosus [12] (Fig. 1). The chain lengths of the lipids are C₄₅₋₆₀, which approximates their bacterial C₅₅ counterpart. The 90 91archaeal lipids, however, are classified as dolichols because their α -terminal prenyl moiety is reduced. Interestingly, some of them also have reduced prenyl moieties at 9293 their ω -termini [9-12]. On the other hand, older reports concerning glycosyl carrier lipids from methanogenic archaea have suggested that both dolichol and polyprenol are 94 95used in some species [13-15]. A methanogenic archaeon, Methanosarcina acetivorans, 96 possesses three cis-prenyltransferase homologs, which is exceptional. This situation 97 motivated us to characterize the homologs from M. acetivorans in the present study, and 98 in the process we encountered a cis-prenyltransferase that catalyzes both head-to-tail 99 and non-head-to-tail prenyl condensations.

100

 $\mathbf{5}$

101 **Results**

102 By searching databases such as KEGG (http://www.kegg.jp), we found three 103 cis-prenyltransferase homologs, MA1831, MA3723 and MA4402, encoded in the 104genome sequence of *M. acetivorans*. Among them, MA3723 is the closest relative of the 105previously characterized archaeal *cis*-prenyltransferases from *S. acidocaldarius* and *T.* 106 kodakarensis, while MA1831 is closest to the enzyme from A. pernix. A phylogenetic 107 analysis of *cis*-prenyltransferase homologs led to the construction of a phylogenetic tree (Fig. 2) with three distinct (but not always monophyletic) clusters of the hypothetical 108 109proteins from Euryarchaeota. A cluster colored in yellow, to which MA3723 belongs, 110 contains one homolog from each species of Euryarchaeota including T. kodakarensis, 111 suggesting that it is composed of the orthologs of the essential enzyme required for 112glycosyl carrier lipid biosynthesis. Another cluster colored in light blue contains 113MA4402 and its supposed orthologs found in the genomes of some limited 114Euryarchaeota species. The third cluster forming an isolated, beige-colored branch is 115composed of the orthologs of MA1831, which exist only in Methanosarcina spp. The 116 cis-prenyltransferases from Saccharomyces cerevisiae, Escherichia coli, and the two 117species of Crenarchaeota, S. acidocaldarius and A. pernix, independently take deeply 118 branched positions. 119 We constructed the pET32a-based E. coli expression system of each homolog

from *M. acetivorans* to obtain recombinant proteins as the fusion with an N-terminal Thioredoxin-His₆-S-tag. MA1831 and MA4402 were efficiently expressed in *E. coli* and were purified using a polyhistidine tag, while the major portion of MA3723 seemingly formed an inclusion body even with the coexpression of chaperons, leaving only a small portion in the purified fraction (Fig. 3A-C). In a prenyltransferase assay

using ¹⁴C-labeled IPP and an allylic prenyl diphosphate [DMAPP, GPP, FPP or 125126 geranylgeranyl diphosphate (GGPP)], only MA1831 catalyzed the condensation of IPP 127with prenyl diphosphates longer than C_5 . Although the purified MA1831 fraction 128contained some protein contaminants, the affinity-purified fraction from the mock cells, 129which contained similar contaminants and was used as the negative control, did not 130 show prenyltransferase activity. The enzyme did not accept DMAPP as an allylic 131substrate, which resembles the substrate specificity of *cis*-prenyltransferases that are responsible for glycosyl carrier lipid biosynthesis [1]. MA3723 and MA4402 were 132133completely inactive, even when they were mixed or coexpressed. We cannot exclude the 134possibility that the addition of the long (>160 a.a.) N-terminal tag inactivates MA3723 135and MA4402, while such N-terminal tagging was utilized in our previous study on 136 cis-prenyltransferase (and also for MA1831 in the present work) without causing 137inactivation [6]. Given these conditions, we started the characterization of the 138recombinant MA1831 in order to obtain information on the biosynthesis of the glycosyl 139carrier lipid in M. acetivorans.

140 Reversed phase TLC analyses of the products from the prenyltransferase 141 reactions with MA1831 were performed after the acid phosphatase treatment of them. It 142should be noted that Triton X-100 was at first added in these reactions because a 143detergent is sometimes required as the activator of *cis*-prenyltransferases [16, 17]. The 144major products from these standard prenyl condensation reactions using the allylic 145substrate (GPP, FPP or GGPP) and IPP with the same concentration had a chain length 146 of C_{30} (Fig. 4A). The chain lengths of the products were, however, still shorter than those of the glycosyl carrier lipids from *M. acetivorans*. As mentioned in our previous 147148paper [18], we detected undecaprenol and dihydroundecaprenol (though the position of

149	the double bond reduction was unclear) via LC-MS analysis of the lipid that was		
150	extracted from <i>M. acetivorans</i> and then treated with phosphatase (Fig. 5). These C_{55}		
151	polyprenols are considered to be the glycosyl carrier lipids of the archaeon because the		
152	lipid from a relative species, Methanosarcina barkeri, also has been reported as		
153	undecaprenol [15]. To establish the chain length of the final product of MA1831, we		
154	raised the ratio of IPP against the allylic substrate to 10, and removed Triton X-100,		
155	which generally activates cis-prenyltransferases by enhancing turnover, but at the same		
156	time causes the production of shorter products [19, 20]. As a result, the chain lengths of		
157	the major products increased to C_{35-45} (Fig. 4B), which was still shorter than C_{55} .		
158	Moreover, we tried the removal of the N-terminal tag from the recombinant MA1831 to		
159	investigate its effect on product chain length. Enterokinase treatment at 22°C of the		
160	fusion enzyme, however, resulted in inactivation of the prenyltransferase. Therefore, the		
161	gene of MA1831 was subcloned into a pET48b(+) vector because the fusion protein		
162	obtained from the system can be cleaved by human rhinovirus 3C protease at 4°C. By		
163	the treatment with the protease (Fig. 3D), an N-terminal Thioredoxin-His ₆ -tag was		
164	removed without a significant loss of MA1831 activity. The tag-free MA1831 was		
165	purified and used for prenyltransferase assay under the same conditions, i.e., 10 times		
166	larger amount of IPP against that of an allylic substrate, without Triton X-100, and so on.		
167	The removal of the tag slightly elongated the chain lengths of major products to C_{35-50}		
168	(Fig. 4C). The formation of a C_{55} product, i.e., undecaprenyl diphosphate, was observed		
169	only when GPP was used as the allylic substrate. The longest products, however, were		
170	shorter than C_{55} when FPP and GGPP were the allylic substrate.		
171	Next, as a trial, we examined the activity of MA1831 to catalyze non-standard		

172 reactions that included a non-head-to-tail prenyl condensation between allylic prenyl

173	diphosphates. First, ¹⁴ C-labeled FPP was reacted with the same amount of an allylic
174	substrate using either DMAPP, GPP, FPP, or GGPP in the absence of Triton X-100.
175	Only the combination of FPP and DMAPP gave a new product with a chain length that
176	was estimated to be C_{20} because its R_f value approximated that of geranylgeraniol in the
177	reversed-phase TLC analysis (Fig. 6A). The chain length did not change when the ratio
178	of DMAPP against FPP was increased to 10 (Fig. 6B). The product from FPP and
179	DMAPP was also analyzed via normal-phase TLC. A new major product migrated
180	slightly farther than FPP, but was distinctly separated from prenyl alcohols and prenyl
181	monophosphates, suggesting that the product had a diphosphate group (Fig. 6C).
182	When ¹⁴ C-labeled GGPP was used, faint spots of new products were observed when
183	DMAPP or GPP was used as the counter substrate (Fig. 6D). These results demonstrated
184	that MA1831 accepts DMAPP as the prenyl acceptor substrate alternative to IPP, when
185	FPP is the prenyl donor substrate. It should be noted that the activity of non-head-to-tail
186	prenyl condensation between FPP and DMAPP was also observed with the tag-free
187	MA1831 derived from the pET48b-based system (data not shown), while all the data
188	shown above were obtained using the fusion enzyme from the pET32a-based system.
189	To establish the compatibility of the non-standard reaction with a standard
190	head-to-tail condensation, kinetic analyses of the N-terminal tagged MA1831 were
191	performed in the absence of Triton X-100. To assay the standard reaction, we quantified
192	the radioactivity incorporated from $[^{14}C]$ IPP into the mixture of hydrophobic products.
193	The $K_{\rm m}$ for IPP was 7.21 µM when the concentration of FPP was maintained at 100 µM,
194	while the V_{max} was 4.71 nmol IPP·min ⁻¹ ·mg protein ⁻¹ . We also observed the inhibitory
195	effect of DMAPP against the standard reaction to roughly estimate the affinity of the
196	enzyme to DMAPP, which acts as a mixed inhibitor, as shown in Fig. 7, not just as a

197	competitor against IPP. DMAPP itself is not a preferred prenyl donor substrate for		
198	MA1831 and thus unlikely to compete with FPP, but it is conceivable that the product of		
199	the non-head-to-tail condensation between FPP and DMAPP competes with FPP. In the		
200	interest of simplification, however, the K_i of DMAPP was calculated using an equation		
201	for competitive inhibition against IPP. In the presence of 150 μM DMAPP (and 100 μM		
202	FPP), the $K_{\rm m}$ ' for IPP was increased to 12.2 μ M, while the $V_{\rm max}$ ' was decreased to 2.92		
203	nmol IPP·min ⁻¹ ·mg protein ⁻¹ . The calculated K_i of DMAPP was 217 μ M, which was		
204	much larger than the K_m and K_m ' for IPP. Moreover, the specific activity of MA1831		
205	was measured using 5 μM $^{14}C\text{-labeled}$ FPP. When 100 μM IPP was used as the counter		
206	substrate, the specific activity was 4.77 nmol IPP·min ⁻¹ ·mg protein ⁻¹ , which almost		
207	approximated the V_{max} of the standard reaction. This result suggested that the		
208	concentration of FPP was sufficiently higher than its K_m , which seemed below 1 μ M but		
209	could not be determined accurately because the radioactivity of the products		
210	incorporated from ¹⁴ C-labeled IPP was too low when FPP was added at lower		
211	concentrations where a Michaels and Menten curve would be given. When the counter		
212	substrate was changed to 400 μ M DMAPP, the concentration exceeding its K_i , the		
213	specific activity of the non-standard reaction was 0.477 nmol DMAPP·min ⁻¹ ·mg		
214	protein ⁻¹ , which was 10-fold smaller than the standard reaction. These data clearly		
215	showed that the non-standard reaction between FPP and DMAPP was a side reaction,		
216	and that the main reaction of MA1831 was the standard head-to-tail condensation		
217	between the allylic substrates and IPP.		
218	Such substrate specificity, however, has never been reported for usual		
219	cis-prenyltransferases, nor for their homologs that catalyze only non-head-to-tail prenyl		
220	condensations. Thus, the structure of the irregular product of MA1831 obtained from		

- the subsidiary non-standard reaction between FPP and DMAPP attracted our interest.
- 222 The LC-ESI-MS analysis of the product gave a negative ion with an m/z value that was
- 223 equal to that of GGPP, while the retention time of the product was slightly different
- from that of GGPP (Fig. 8). This demonstrated that the product was an isomer of GGPP.
- 225 Then we hydrolyzed the product with acid phosphatase and purified the resultant
- alcohol using HPLC. As outlined in Figs. 9-11 and Table 1, ¹H
- and ¹³C-NMR, ¹H-¹H-COSY, ¹H-¹³C-edited-hetero-nuclear single quantum coherence
- 228 (HSQC), and ¹H-¹³C-hetero-nuclear multiple-bond connectivity (HMBC) analyses gave
- structural information that was sufficient to allow us to determine that the alcohol was
- 230 geranyllavandulol. Therefore, we concluded that the irregular product of MA1831 is
- 231 geranyllavandulyl diphosphate. The structure suggests that the reaction mechanism of
- the non-head-to-tail condensation between FPP and DMAPP that is catalyzed by
- 233 MA1831 (Fig. 12) resembles that of lavandulyl diphosphate synthase.
- 234

236 **Discussion**

237Among the three *cis*-prenyltransferase homologs from *M. acetivorans*, only 238MA1831 showed enzymatic activity. This result suggests that MA1831 is responsible 239for the biosynthesis of glycosyl carrier lipids in *M. acetivorans*. Nevertheless, the major 240products from the standard head-to-tail prenyl condensation reactions catalyzed by 241MA1831 were, under all reaction conditions we used for the *in vitro* assays, shorter than 242undecaprenyl diphosphate, which is the supposed precursor of C₅₅ glycosyl carrier 243lipids in *M. acetivorans*. A slight amount of the C₅₅ product was produced only when 244GPP was used as the allylic substrate against a 10-fold larger amount of IPP, but was not 245produced when the allylic substrate was either FPP or GGPP, which are general 246precursors for glycosyl carrier lipids. Furthermore, the probable orthologs of MA1831 are possessed only by some species of genus Methanosarcina among the archaea, and 247248also by bacterial species of class Clostridia, which implies that the ancestral gene of the archaeal MA1831 orthologs might have emerged by horizontal gene transfer. Under 249250these circumstances, we cannot exclude the possibility that one of the other cis-prenyltransferase homologs, i.e., MA3723 or MA4402, is responsible for the 251252biosynthesis of glycosyl carrier lipids, whereas neither of them showed activity in the 253present study for unknown reasons. Recently, the heteromer formation of 254cis-prenyltransferase in animals and yeast was reported [21]. The heteromeric enzymes 255are composed of a subunit similar to the usual homodimeric cis-prenyltransferases and 256another subunit that is homologous to Nogo-B receptor, which is a transmembrane 257protein containing a cis-prenyltransferase-like domain. Such a heteromeric enzyme 258system also exists in some higher plants and is involved in dolichol and rubber biosynthesis [22, 23]. Our phylogenetic analysis revealed that the organisms possessing 259

260the probable ortholog of MA3723 always have a probable MA4402 ortholog and that 261the cluster containing MA4402 is somewhat related to S. cerevisiae NUS1, the Nogo-B 262receptor-like subunit of dehydrodolichyl diphosphate synthase. Based on the notion that 263MA4402 and MA3723 might also form a heteromer to exert enzyme activity, we mixed 264the separately purified proteins and also constructed their co-expression system, in 265which each protein was expressed in *E. coli* as a fusion with the N-terminal tag. Both of 266these trials, however, did not yield active *cis*-prenyltransferase (data not shown). 267MA1831 also catalyzes the non-head-to-tail prenyl condensation between FPP 268and DMAPP, probably as a side reaction. To our knowledge, the product 269geranyllavandulyl diphosphate is a novel compound, and the geranyllavandulyl 270structure has never been observed in natural compounds. It should be mentioned, 271however, that geranyllavandulyltoluquinol has been reported as the hypothetical 272precursor of irregular diterpenoid toluquinols, i.e., neobalearone and epineobalearone, 273from the brown alga *Custoseira amentacea* var. stricta [24, 25]. Geranyllavandulyl 274diphosphate is, however, unlikely to be the precursor of these natural compounds because it does not possess the allylic diphosphate structure needed for prenyl donor 275276substrates. Instead, the precursor could be geranylisolavandulyl diphosphate if the 277prenyltransfer reaction to toluquinol occurs singly, unlike the biosynthesis of 278sophoraflavanone G that requires two dimethylallyltransferases to yield a lavandulyl 279group [26]. The fact that geranyllavandulyl diphosphate cannot be a prenyl donor 280suggests that the non-head-to-tail prenyl condensation catalyzed by MA1831 probably 281has no physiological meaning. Such irregular prenyl chains, however, can extend the 282structural variety of natural isoprenoids by substituting their regular prenyl groups, and 283thus will be valuable for the synthesis of novel compounds. The characteristic amino

- acid sequence of MA1831 that causes the low specificity toward prenyl acceptor
- substrates, i.e., IPP for head-to-tail condensation and DMAPP for non-head-to-tail
- 286 condensation, remains unclear. In the future, however, mutagenic and structural studies
- should uncover the specific traits of the *cis*-prenyltransferase homologs that catalyze
- 288 non-head-to-tail prenyl condensations such as lavandulyl diphosphate synthase,
- 289 cyclolavandulyl diphosphate synthase, isosesquilavandulyl diphosphate synthase, and
- 290 MA1831. Moreover, it seems important to determine whether the previously reported
- 291 *cis*-prenyltransferases also catalyze such non-standard reactions.
- 292

293 Materials and Methods

294 Materials

- 295 Precoated reversed-phase thin-layer chromatography (TLC) plates, RP18, and
- 296 normal-phase TLC plates, Silica gel 60, were purchased from Merck Millipore,
- 297 Germany. [1-¹⁴C]IPP was purchased from GE Healthcare, UK. Non-labeled IPP,
- 298 DMAPP and FPP were donated by Dr. Chikara Ohto, Toyota Motor Co. GPP was

299 donated by Drs. Kyozo Ogura and Tanetoshi Koyama, Tohoku University. GGPP was

300 purchased from Larodan fine chemicals, Sweden.

301

302 Database search and phylogenic analysis

303 A database search for the homologs of known *cis*-prenyltransferases was performed

using a web service provided by KEGG. The multiple alignment of archaeal

cis-prenyltransferase homologs was performed using the Clustal Omega program [27]

306 provided at the EMBL-EBI website (http://www.ebi.ac.uk/). The phylogenetic tree was

307 constructed via the neighbor joining method using the CLC Sequence Viewer, ver. 7.5

308 (CLC bio, Denmark).

309

310 Expression of recombinant *cis*-prenyltransferase homologs from *M. acetivorans*

311 The genes of the *cis*-prenyltransferase homologs from *M. acetivorans, ma1831*,

312 *ma3723* and *ma4402*, were amplified from genomic DNA using KOD DNA polymerase

313 (TOYOBO, Japan), and the primer pairs are listed below (the recognition sequences of

the restriction enzymes are underlined): for *ma1831*,

315 5'-gt<u>ccatgg</u>acatggatacacctaaatttaaaagac-3' and 5'-atg<u>ctcgag</u>ttatccgcccaatgtaatatcttg-3';

316 for *ma3723*, 5'-at<u>ccatgg</u>acatggtaccgtggaataaaggagc-3' and

- 317 5'-gac<u>ctcgag</u>agacttcaggccactccctg-3'; and, for *ma4402*,
- 318 5'-gt<u>ccatgg</u>acatggacctgctttcttttggtc-3' and 5'-agt<u>ctcgag</u>tcactttccgtaccttctctgc-3'. The
- amplified DNA fragments were digested with *NcoI* and *XhoI*, and each of the digested
- 320 fragments was ligated with an *NcoI/XhoI*-digested pET32a(+) expression vector
- 321 (Novagen, USA) to construct pET32a-MA1831, pET32a-MA3723, and
- 322 pET32a-MA4402, respectively. For the subcloning of *ma1831* into pET48b(+)
- 323 (Novagen), the gene was amplified from the pET32a-MA1831 plasmid using the
- 324 primers 5'-ctctttcagggacccatggatacacctaaatttaaaagac-3' and
- 325 5'-cggatcctggtacccttatccgcccaatgtaatat-3'. The amplified DNA fragment was ligated
- with an *Sma*I-digested pET48b(+) vector to construct pET48b-MA1831 using an
- 327 In-Fusion advantage PCR cloning kit (TaKaRa, Japan) following the manufacturer's
- instructions. For the construction of the coexpression system of MA3723 and MA4402,
- 329 the *ma3723* gene, with the gene region encoding the N-terminal
- 330 Thioredoxin-His₆-S-fusion tag and containing the upstream ribosome-binding site, was
- amplified from pET32a-MA3723 using the primer pair
- 332 5'-cggaaagtgactcgaaaggagatatacatatgagcg-3' and
- 333 5'-ggtggtggtgctcgatcaggccactccctgcttttttaac-3'. The amplified DNA and *Xho*I-digested
- pET32a-MA4402 were ligated to construct pET32a-MA4402/3723, in which *ma4402*
- and *ma3723* compose an artificial operon, using an In-Fusion advantage PCR cloning
- kit. After construction of the plasmids, the sequences of the inserted genes were verified
- 337 by DNA sequencing.
- 338 The plasmids constructed as described above were introduced into adequate *E. coli*
- host strains such as BL21(DE3), BL21(DE3) transformed with a chaperon-expression
- 340 plasmid pG-KJE8 (Clontech, Japan), and KRX (Promega, USA). BL21(DE3) was

341 transformed with pET32a-MA1831 or pET48b-MA1831 and cultured in 300 mL LB 342 medium supplemented with 100 mg/L ampicillin at 37°C until formation of the log phase, which was followed by overnight cultivation at 25°C after the addition of 0.2 343 344mM IPTG. BL21(DE3)/pG-KJE8 was transformed with pET32a-MA3723 and cultured 345in 300 mL LB medium containing 100 mg/L ampicillin, 20 mg/L chloramphenicol, 0.4 g/L L-arabinose, and 5 μ g/L tetracycline. The culture was grown at 37°C until log phase, 346 347 and additional cultivation was performed at 22°C overnight after the addition of 0.1 mM IPTG. KRX was transformed with pET32a-MA4402 and cultured in 300 mL LB 348 349 medium supplemented with 100 mg/L ampicillin at 37°C until log phase, and then at 350 22°C overnight after the addition of 0.1% L-rhamnose. The cultivation of KRX 351transformed with pET32a-MA3723/4402 was performed under the same conditions used for KRX/pET32a-MA4402. 352353 The cells harvested from the culture were disrupted by sonication using a UP200S ultrasonic homogenizer (Hielscher Ultrasonics, Germany) in a HisTrap binding buffer 354355(20 mM sodium phosphate, 0.5 M NaCl, 20 mM imidazole, pH7.4). The homogenate was centrifuged at 24,000 g for 30 min, and the supernatant was recovered as a crude 356 357extract. The crude extract was loaded onto a 1 mL HisTrap crude FF column (GE 358Healthcare). The column was washed with 10 mL of the HisTrap binding buffer 359 (imidazole concentration was raised to 60 mM as needed), and the recombinant proteins 360 were eluted from the column with 5 mL of a HisTrap elution buffer (20 mM sodium 361phosphate, 0.5 M NaCl, 500 mM imidazole, pH7.4). For the cleavage of a 362 Thioredoxin-His₆-tag, which was fused at the N-terminal of MA1831 purified from BL21(DE3)/pET48b-MA1831, 300 µg of the purified fusion enzyme was reacted with 5 363 364 units of polyhistidine-tagged human rhinovirus 3C protease (Funakoshi, Japan)

overnight at 4°C, after buffer exchange into 50 mM Tris-HCl, pH8.0, containing 150
mM NaCl. The solution of the protease reaction was loaded on a 1 mL HisTrap crude
FF column equilibrated with the HisTrap binding buffer, and the flow-through fraction
was used as the solution of purified tag-free MA1831. The level of purification was
confirmed via SDS-PAGE.

370

371 Prenyltransferase assay and radio-TLC analysis of the products

A reaction mixture typically contains, in a total volume of 200 µL, 0.5 or 5 nmol 372¹⁴C]IPP (2.04 GBq/mmol or 81.4 MBq/mmol, respectively), 0.5 nmol allylic prenyl 373 374diphosphate (DMAPP, GPP, FPP or GGPP), 20 µmol 3-morpholinopropanesulfonic 375acid (MOPS)-NaOH, pH7.0, 1 µmol MgCl₂, 0 or 0.1% Triton X-100, and 30-1,000 376 pmol of the purified *cis*-prenyltransferase homolog. After incubation at 40°C for 1 hr, 377the reaction was stopped by chilling. After the addition of 200 µL water saturated with 378 NaCl, the hydrophobic products were extracted from the mixture with 600 µL 1-butanol 379 equilibrated against saturated saline. Exclusively for the kinetic analyses, the butanol 380 layer was washed with the same volume of saturated saline equilibrated against 3811-butanol. Radioactivity in an aliquot of the butanol layer was measured using an 382 LSC-5100 liquid scintillation counter (Aloka, Japan). An unusual unit, nmol IPP·min⁻¹·mg protein⁻¹, was used to express the specific activity of *cis*-prenyltransferase 383 384 because this assay method gives the amount of IPP incorporated into the mixture of 385hydrophobic products rather than the amount of the products. Kinetic parameters were 386 obtained via Lineweaver-Burk linear regression analysis. The remainder of the butanol extract was provided for product analysis via the radio-TLC method described below. 387 388 The non-head-to-tail prenyl condensation catalyzed by MA1831 was assayed

using ¹⁴C-labeled FPP and GGPP, which were synthesized using FPP synthase from

390 *Geobacillus stearothermophilus* and GGPP synthase from *S. acidocaldarius*,

391 respectively, as described elsewhere [18]. The assay mixture typically contained, in a

total volume of 200 μ L, ~0.15 nmol of the ¹⁴C-labeled allylic prenyl diphosphate (FPP

393 or GGPP), 0.15 nmol of non-labeled allylic prenyl diphosphate (DMAPP, GPP, FPP or

GGPP), 20 μmol MOPS-NaOH, pH7.0, 1 μmol MgCl₂, and 30-400 pmol of purified

395 MA1831 fused with the N-terminal tag. After 1 hr incubation at 40°C, the hydrophobic

products and substrates were extracted with 1-butanol as described above to be used inradio-TLC analysis.

398 For reversed-phase TLC analysis, the butanol extract containing radiolabeled 399 products/substrates was treated overnight with 2 mg of potato acid phosphatase (Sigma 400 Aldrich, USA) in a 2:1 mixture of methanol and 1 M sodium acetate buffer, pH4.6, 401 following a method developed by Fujii et al. [28]. The resultant prenyl alcohols were 402 extracted with *n*-pentane and analyzed with a RP18 reversed-phase TLC plate 403 developed with acetone/H₂O (9:1). For normal-phase TLC analysis, the butanol extract 404 was evaporated without phosphatase treatment, and then the residue was dissolved to methanol and analyzed with a Silica gel 60 normal-phase TLC plate developed with 405406 methanol/chloroform/5 mM NH₄HCO₃ (4:6:0.9). The distribution of radioactivity on 407the plate was visualized with a Typhoon FLA7000 multifunctional scanner (GE 408 Healthcare) and, if required, quantified using the attached software Image Quant TL to 409 calculate the specific activities based on the consumption of the prenyl-donor substrates, 410 either IPP or DMAPP.

411

412 LC-ESI-MS analysis of the product from a non-standard MA1831 reaction

413	The reaction mixture for the preparation of a non-head-to-tail condensation product
414	of MA1831 contained, in a final volume of 300 μ L, 20 nmol DMAPP, 20 nmol FPP, 30
415	μ mol MOPS-NaOH, pH7.0, 0.3 μ mol MgCl ₂ , and 0.4 nmol purified MA1831 fused
416	with the N-terminal tag. After incubation for 1 hr at 40°C, the reaction was stopped by
417	chilling. After the addition of 300 μ L water saturated with NH ₄ HCO ₃ , the hydrophobic
418	products/substrates were extracted with 600 μ L 1-butanol equilibrated against water.
419	The butanol layer was evaporated under a N2 stream, and the residue was dissolved
420	with methanol/acetonitrile (1:1) to be used in LC-ESI-MS analysis.
421	LC-ESI-MS analysis was performed with an Esquire 3000 ion trap system (Bruker
422	Daltonics, USA) connected to an Agilent 1100 Series HPLC (Agilent Technologies,
423	USA). The compounds eluted from a COSMOSIL packed column 5C $_{\rm 18}\text{-}AR\text{-}II$ (2.0ID \times
424	150 mm, Nacalai, Japan) were detected via UV absorption at 210 nm and ESI-MS in the
425	negative mode. The mobile phase used for the analysis was made up of a mixture of
426	solution A (25 mM NH ₄ HCO ₃) and B (acetonitrile) at a flow rate of 0.2 mL·min ⁻¹ .
427	Sample elution was performed with the program as follows: the ratio of B was 10% for
428	the initial 3 min; a linear gradient from 10 to 100% B for the next 15 min; and, 100% B
429	for an additional 10 min. After each analysis, the column was equilibrated with 10% B.
430	The MS parameters were the same as those used in our previous work [29]: sheath gas,
431	N ₂ of 30 psi; dry gas, N ₂ of 7.0 L·min-1, 320°C; scanning range, 50-1,000 m/z ; scan
432	speed, 13,000 m/z ·sec ⁻¹ ; ion charge control target, 20,000; maximum accumulation time,
433	100 ms; averages, 10; and, rolling averaging, 2.
191	

435 NMR analysis of the MA1831 product

The reaction mixture contained, in a final volume of 20 mL, 8 µmol DMAPP, 2

437	μmol FPP, 1 mmol MOPS-NaOH, pH7.0, 20 μmol MgCl_2, and 42 nmol purified			
438	MA1831 fused with the N-terminal tag. After 3 hr incubation at 40°C, 20 mL of 1 M			
439	sodium acetate buffer, pH4.6, containing 40 mg potato acid phosphatase was added.			
440	The same reaction was performed in a total of 6 tubes at 37°C overnight. The			
441	hydrolyzed product was extracted from the mixture with the same volume, and then			
442	again with a half volume of <i>n</i> -pentane. The pentane layer was merged, and evaporated			
443	under a N_2 stream. The residue was dissolved with 2 mL methanol. Typically, 100 μL			
444	of the methanol solution was provided for HPLC separation performed with a Shimadzu			
445	HPLC system equipped with a COSMOSIL Packed Column 5C $_{18}\text{-}AR\text{-}II$ (10ID \times 150			
446	mm, Nacalai, Japan). The mobile phase was methanol/ H_2O (9:1), and the flow rate was			
447	3 mL·min ⁻¹ . The column temperature was kept at 40°C. The UV absorption of			
448	carbon-carbon double bonds was monitored at 210 nm, and a peak fraction was			
449	recovered. This separation process was repeated ~20 times, and the recovered fractions			
450	were merged. The fraction was evaporated, and the residue was dissolved with 500 μL			
451	CD ₃ OD. This evaporation-dissolution process was repeated twice for complete			
452	substitution of the solvent with CD ₃ OD. ¹ H and ¹³ C NMR, ¹ H- ¹ H-COSY,			
453	¹ H- ¹³ C-edited-HSQC, and ¹ H- ¹³ C-HMBC analyses of the sample were performed with			
454	an AVANCE III HD 600 NMR spectrometer equipped with a cryoprobe (600 MHz,			
455	Bruker).			
456				
457	Structural investigation of glycosyl carrier lipids from M. acetivorans			
458	Total lipids were extracted via a method established by Bligh and Dyer [30]			

- 459 from ~3 g of *M. acetivorans* cells cultivated as described elsewhere [18]. The cells were
- 460 suspended in 15 mL of water, and 70 mL of methanol and 37.5 mL of chloroform were

461	added. The mixture was stirred for 2 hr, and then 37.5 mL each of chloroform and water		
462	were added. After being stirred briefly, the mixture was allowed to settle and separate		
463	into two phases. The aqueous layer was extracted again with 10 mL each of chloroform		
464	and water. To the combined organic layer, an equivalent volume of methanol and an		
465	80% volume of water were added and stirred, and the mixture was separated into two		
466	phases. After the organic layer was evaporated to dryness at 55		
467	nitrogen gas, the residual was dissolved with 4 mL of methanol/chloroform (1:1) and		
468	mixed with an excess volume of cold acetone to be placed in the dark at 4 \Box C for 3 hr		
469	The insoluble matter collected by centrifugation and decantation was dissolved with 0.5		
470	mL of 1-butanol and subjected to a phosphatase treatment as described above. The		
471	hydrolysate was extracted with <i>n</i> -pentane, evaporated to dryness, and again subjected to		
472	acetone precipitation. After centrifugation to remove insoluble matter, the supernatant		
473	was evaporated and dissolved to methanol/2-propanol (1:1) for LC-ESI/MS analysis.		
474	The analysis was performed under the same conditions described above, with the		
475	exception of the mobile phase being replaced with methanol/2-propanol/100 mg \cdot L ⁻¹		
476	sodium acetate (9:10:1).		
477			

478	Acknowledgements
-----	------------------

479	This work was supported in part by JSPS KAKENHI Grant Number 25108712 and
480	26660060 for H.H. and 245479 for T.O.
481	
482	Author contributions
483	TO and HH planned the experiments; TO, KE and KK performed the experiments;
484	TO, KE, KK, TY and HH analyzed the data; and, HH wrote the paper.
485	
486	

487 **References**

- Takahashi, S. & Koyama, T. (2006) Structure and function of *cis*-prenyl chain elongating
 enzymes, *Chem. Rec.* 6, 194-205.
- 490 2. Demissie, Z. A., Erland, L. A. E., Rheault, M. R. & Mahmoud, S. S. (2013) The
- 491 biosynthetic origin of irregular monoterpenes in *Lavandula*: Isolation and biochemical
 492 characterization of a novel *cis*-prenyl diphosphate synthase gene, lavanduryl
- 492 characterization of a novel *cis*-prenyl diphosphate synthase gene, lavanduryl
- 493 diphosphate synthase, J. Biol. Chem. 288, 6333-6341.
- 494 3. Ozaki, T., Zhao, P., Shinada, T., Nishiyama, M. & Kuzuyama, T. (2014) Cyclolavandulyl
 495 skeleton biosynthesis via both condensation and cyclization catalyzed by an
 496 unprecedented member of the *cis*-isoprenyl diphosphate synthase superfamily, *J. Am.*
- 497 *Chem. Soc.* **136**, 4837-4840.
- Teufel, R., Kaysser, L., Villaume, M. T., Diethelm, S., Carbullido, M. K., Baran, P. S. &
 Moore, B. S. (2014) One-pot enzymatic synthesis of merochlorin A and B, *Angew. Chem. Int. Ed. Engl.* 53, 11019-22.
- 501 5. Hemmi, H., Yamashita, S., Shimoyama, T., Nakayama, T. & Nishino, T. (2001) Cloning,
 502 expression, and characterization of *cis*-polyprenyl diphosphate synthase from the
 503 thermoacidophilic archaeon *Sulfolobus acidocaldarius*, *J. Bacteriol.* 183, 401-4.
- Mori, T., Ogawa, T., Yoshimura, T. & Hemmi, H. (2013) Substrate specificity of
 undecaprenyl diphosphate synthase from the hyperthermophilic archaeon *Aeropyrum pernix, Biochem. Biophys. Res. Commun.* 436, 230-234.
- 507 7. Yamada, Y., Fukuda, W., Hirooka, K., Hiromoto, T., Nakayama, J., Imanaka, T.,
- Fukusaki, E. & Fujiwara, S. (2009) Efficient in vitro synthesis of *cis*-polyisoprenes using
 a thermostable *cis*-prenyltransferase from a hyperthermophilic archaeon *Thermococcus kodakaraensis, J. Biotechnol.* 143, 151-156.
- 511 8. Lechner, J., Wieland, F. & Sumper, M. (1985) Biosynthesis of sulfated saccharides
- 512 *N*-glycosidically linked to the protein via glucose. Purification and identification of
- sulfated dolichyl monophosphoryl tetrasaccharides from halobacteria, *J. Biol. Chem.* 260,
 860-6.
- 515 9. Guan, Z. Q., Naparstek, S., Kaminski, L., Konrad, Z. & Eichler, J. (2010) Distinct
- 516 glycan-charged phosphodolichol carriers are required for the assembly of the
- 517 pentasaccharide N linked to the Haloferax volcanii S-layer glycoprotein, Mol. Microbiol.
 518 78, 1294-1303.
- 519 10. Kuntz, C., Sonnenbichler, J., Sonnenbichler, I., Sumper, M. & Zeitler, R. (1997)
- Isolation and characterization of dolichol-linked oligosaccharides from *Haloferax volcanii, Glycobiol,* 7, 897-904.
- 522 11. Guan, Z. Q., Meyer, B. H., Albers, S. V. & Eichler, J. (2011) The thermoacidophilic

- archaeon *Sulfolobus acidocaldarius* contains an unsually short, highly reduced dolichyl
 phosphate, *Biochim. Biophys. Acta-Mol. Cell Biol. Lipid.* 1811, 607-616.
- 525 12. Chang, M. M., Imperiali, B., Eichler, J. & Guan, Z. Q. (2015) N-linked glycans are
 526 assembled on highly reduced dolichol phosphate carriers in the hyperthermophilic
 527 archaea *Pyrococcus furiosus*, *PLOS ONE*. 10.
- 13. Hartmann, E. & Konig, H. (1989) Uridine and dolichyl diphosphate activated
 oligosaccharides are intermediates in the biosynthesis of the S-layer glycoprotein of *Methanothermus fervidus, Arch. Microbiol.* 151, 274-281.
- 14. Hartmann, E. & Konig, H. (1990) Isolation of lipid activated pseudomurein precursors
 from *Methanobacterium thermoautotrophicum*, *Arch. Microbiol.* 153, 444-447.
- 533 15. Hartmann, E. & Konig, H. (1991) Nucleotide-activated oligosaccharides are
- intermediates of the cell-wall polysaccharide of *Methanosarcina barkeri*, *Biol. Chem. Hoppe-Seyler.* 372, 971-974.
- 16. Koyama, T., Yoshida, I. & Ogura, K. (1988) Undecaprenyl diphosphate synthase from *Micrococcus luteus* B-P 26: essential factors for the enzymatic activity, *J. Biochem.* 103,
 867-71.
- 539 17. Apfel, C. M., Takacs, B., Fountoulakis, M., Stieger, M. & Keck, W. (1999) Use of
 540 genomics to identify bacterial undecaprenyl pyrophosphate synthetase: Cloning,
 541 expression, and characterization of the essential uppS gene, J. Bacteriol. 181, 483-92.
- 542 18. Ogawa, T., Isobe, K., Mori, T., Asakawa, S., Yoshimura, T. & Hemmi, H. (2014) A novel
 543 geranylgeranyl reductase from the methanogenic archaeon *Methanosarcina acetivorans*544 displays unique regiospecificity, *FEBS J.* 281, 3165-3176.
- 545 19. Ko, T. P., Chen, Y. K., Robinson, H., Tsai, P. C., Gao, Y. G., Chen, A. P., Wang, A. H. &
- Liang, P. H. (2001) Mechanism of product chain length determination and the role of a
 flexible loop in *Escherichia coli* undecaprenyl-pyrophosphate synthase catalysis, *J. Biol. Chem.* 276, 47474-82.
- 549 20. Pan, J. J., Chiou, S. T. & Liang, P. H. (2000) Product distribution and pre-steady-state
 550 kinetic analysis of *Escherichia coli* undecaprenyl pyrophosphate synthase reaction,
 551 *Biochemistry.* 39, 10936-42.
- 21. Park, E. J., Grabinska, K. A., Guan, Z. Q., Stranecky, V., Hartmannova, H., Hodanova,
 K., Baresova, V., Sovova, J., Jozsef, L., Ondruskova, N., Hansikova, H., Honzik, T.,
- Zeman, J., Hulkova, H., Wen, R., Kmoch, S. & Sessa, W. C. (2014) Mutation of Nogo-B
- receptor, a subunit of *cis*-prenyltransferase, causes a congenital disorder of glycosylation, *Cell Metab.* 20, 448-457.
- 557 22. Brasher, M. I., Surmacz, L., Leong, B., Pitcher, J., Swiezewska, E., Pichersky, E. &
- 558 Akhtar, T. A. (2015) A two-component enzyme complex is required for dolichol

- biosynthesis in tomato, *Plant J.* 82, 903-914.
- 560 23. Qu, Y., Chakrabarty, R., Iran, H. T., Kwon, E. J. G., Kwon, M., Nguyen, T. D. & Ro, D. K.
- (2015) A lettuce (*Lactuca sativa*) homolog of human Nogo-B receptor interacts with
 cis prenyltransferase and is necessary for natural rubber biosynthesis, *J. Biol. Chem.*

563 **290**, 1898-1914.

- 564 24. Amico, V., Piattelli, M., Bizzini, M. & Neri, P. (1997) Absolute configuration of some
 565 marine metabolites from *Cystoseira* spp., *J. Nat. Prod.* 60, 1088-1093.
- 566 25. Amico, V., Piattelli, M., Cunsolo, F., Neri, P. & Ruberto, G. (1989) Two epimeric,
 567 irregular diterpenoid toluquinols from the brown alga *Cystoseira stricta, J. Nat. Prod.*568 52, 962-969.
- 26. Zhao, P., Inoue, K., Kouno, I. & Yamamoto, H. (2003) Characterization of leachianone G
 2"-dimethylallyltransferase, a novel prenyl side-chain elongation enzyme for the
- formation of the lavandulyl group of sophoraflavanone G in *Sophora flavescens* Ait. cell
 suspension cultures, *Plant Physiol.* 133, 1306-1313.
- 573 27. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W. Z., Lopez, R.,
- McWilliam, H., Remmert, M., Soding, J., Thompson, J. D. & Higgins, D. G. (2011) Fast,
 scalable generation of high-quality protein multiple sequence alignments using Clustal
 Omega, *Mol. Syst. Biol.* 7, 539.
- 577 28. Fujii, H., Koyama, T. & Ogura, K. (1982) Efficient enzymatic hydrolysis of polyprenyl
 578 pyrophosphates, *Biochim. Biophys. Acta.* 712, 716-8.
- 579 29. Yokoi, T., Isobe, K., Yoshimura, T. & Hemmi, H. (2012) Archaeal phospholipid
- 580 biosynthetic pathway reconstructed in *Escherichia coli, Archaea.* 2012, 438931.
- 581 30. Bligh, E. G. & Dyer, W. J. (1959) A rapid method of total lipid extraction and
- 582 purification, *Can. J. Biochem. Physiol.* **37**, 911-917.

position	δ_c	$\delta_{\rm H}$ (multiplicity, J in Hz)
1	63.7	3.52 (dd, 10.8, 18.5), 3.53 (dd, 10.8, 19.8)
2	49.9	2.25 (m)
3	27.9	2.04 (m), 2.21 (m)
4	122.4	~5.12 (m)
5	135.3	
6	39.4	~2.00 (m)
7	~26	~2.10 (m)
8	124.0	~5.12 (m)
9	134.4	
10	39.4	~2.00 (m)
11	~26	~2.10 (m)
12	124.0	~5.12 (m)
13	130.7	
5-methyl	14.8	1.63 (s)
9-methyl	14.7	1.61 (s)
ω- <i>cis</i>	16.3	1.62 (s)
w-trans	24.5	1.69 (s)
1'	145.6	
2'	111.31	4.75 (m), 4.84 (m)
1'-methyl	18.65	1.70 (s)
ОН		4.64 (broad)

Table 1. ¹³C and ¹H NMR assignments for geranyllavandulol

587 Figure legends

588

589 Figure 1. Reactions catalyzed by *cis*-prenyltransferase and its homologs

- Some natural compounds biosynthesized from the products of the enzymes are alsoexemplified.
- 592

593 Figure 2. Phylogenetic tree of *cis*-prenyltransferase homologs

594 The enzymes reported to have activity as listed below are colored in red: ApeUPS,

595 cis-prenyltransferase from A. pernix; SacUPS, from S. acidocaldarius; TkoUPS, from T.

596 kodakarensis; EcoUPS, undecaprenyl diphosphate synthase from E. coli; SceRER2 and

597 SceSRT1, dehydrodolichyl diphosphate synthases from *Saccharomyces cerevisiae*; and,

598 SceNUS1, a heteromer subunit of *S. cerevisiae* dehydrodolichyl diphosphate synthase.

599 Only SceNUS1 did not show enzyme activity independently. All other proteins colored

600 in blue are *cis*-prenyltransferase homologs from Euryarchaeota: AF0707 and AF1219

601 (nowadays, AF_RS03590 and AF_RS06170, respectively), from Archaeoglobus

602 fulgidus; Hvo_2315 and Hvo_2318, from Haloferax volcanii; MM_0014, MM_0618

and MM_1083, from *Methanosarcina mazei*; MBUR_0041, from *Methanococcoides*

604 burtonii; MCP_1817 and MCP_2939, from Methanocella paludicola; MTHE_0589 and

605 MTHE_1499, from *Methanosaeta thermophila*; MJ_1372, from *Methanocaldococcus*

- 606 jannaschii; MTH232, from Methanothermobacter thermautotrophicus; and, PH1590,
- from *Pyrococcus horikoshii*. The homologs from *M. acetivorans*, MA1831, MA3723
- and MA4402, are colored in green. Bootstrap values over 70% were indicated at each
- 609 node.
- 610

Figure 3. SDS-PAGE analysis of the purified recombinant proteins from *E. coli* cells

- (A) MA1831 expressed in BL21(DE3)/pET32a-MA1831. (B) MA3723 expressed in
- 614 BL21(DE3)/pG-KJE8/pET32a-MA3723. (C) MA4402 expressed in
- 615 KRX/pET32a-MA4402. (A-C) Lanes 1 and 2, pellet and soluble fractions from the
- 616 centrifugation of lysed *E. coli* cells, respectively; lanes 3-5, flow-through, wash and
- 617 elution fractions from a HisTrap affinity column, respectively. The expected band of the
- 618 recombinant protein in the elution fraction (and also that in the pellet fraction if
- necessary) is indicated with an asterisk. (D) The cleavage of fusion MA1831. Lane 1,
- 620 MA1831 fused with the N-terminal Thioredoxin-His₆-tag, which was purified from in
- 621 BL21(DE3)/pET48b-MA1831; lane 2, MA1831 solution after reaction with human
- rhinovirus 3C protease; lane 3, flow-through fraction from a HisTrap affinity column,

623 containing tag-free MA1831 indicated with an asterisk.

624

Figure 4. Radio-TLC analysis of the products from standard reactions of MA1831

- 626 Reversed-phase TLC analyses were performed for the hydrolyzed products from
- 627 head-to-tail prenyl condensation reactions. The enzymes used were: for (A and B),
- 628 MA1831 fused with an N-terminal Thioredoxin-His₆-S-tag, obtained from the
- 629 pET32a-based expression system; and for (C), MA1831 purified after the removal of an
- 630 N-terminal Thioredoxin-His₆-tag, obtained from the pET48b-based system. The allylic
- 631 substrates shown below the figures were reacted with the same amount (A) or with a
- 632 10-fold larger amount (B and C) of ¹⁴C-labeled IPP, in the presence (A) and absence (B
- and C) of 0.1% Triton X-100. s.f., solvent front; ori., origin
- 634

635 Figure 5. LC-ESI-MS analysis of glycosyl carrier lipids from *M. acetivorans*

- 636 The UV chromatograms of (A) authentic polyprenols mainly containing undecaprenol
- 637 (C_{55} , open triangle) and dodecaprenol (C_{60}) and (B) the phosphatase-treated total lipid
- 638 extracted from *M. acetivorans*. The peak co-eluted with authentic undecaprenol and an
- 639 ion with m/z of 790.1 is indicated by an open triangle, and another peak co-eluted with
- 640 an ion with m/z of 792.1 is indicated by a closed triangle. (C and D) Extracted ion

641 chromatograms with indicated m/z ranges. The m/z values of 790.1 and 792.1

- 642 correspond to [M+Na]⁺ of undecaprenol and dihydroundecaprenol, respectively.
- 643

644 Figure 6. Radio-TLC analysis of the products from non-standard reactions of645 MA1831

645 **MA1831**

646 (A) Reversed-phase TLC analysis for the hydrolyzed products from non-head-to-tail

647 prenyl condensation between ¹⁴C-labeled FPP and the same amount of a non-labeled

- 648 allylic substrate shown in the figure. An arrowhead indicates the spot of a new product
- 649 from a non-head-to-tail condensation between FPP and DMAPP. (B) Reversed-phase
- TLC analysis of the hydrolyzed products from the reaction between ¹⁴C-labeled FPP
- and DMAPP with various ratios shown in the figure. (C) Normal-phase TLC analysis of
- the products from the reaction between ¹⁴C-labeled FPP and DMAPP, without
- 653 phosphatase treatment. An arrowhead indicates the spot of the new product. (D)
- 654 Reversed-phase TLC analysis of the hydrolyzed products from the reaction
- between ¹⁴C-labeled GGPP and the same amount of a non-labeled allylic substrate
- 656 shown in the figure. Arrowheads emphasize the faint spots of probable reaction products.
- 657 s.f., solvent front; ori., origin
- 658

659	Figure 7. Lineweaver-Burk plots for the determination of $K_{\rm m}$ for IPP and $V_{\rm max}$	
660	Head-to-tail condensation reactions against 100 μ M FPP were performed in the absence	
661	and presence of 150 µM DMAPP.	
662		
663	Figure 8. LC-ESI-MS analysis of the product from MA1831-catalyzed	
664	non-head-to-tail prenyl condensation between FPP and DMAPP	
665	(A) UV chromatograms at 210 nm of the hydrophobic substrates/products extracted	
666	with 1-butanol from the reaction mixture containing MA1831 (upper panel) or not	
667	(middle panel), and that of authentic GGPP (lower panel). An arrowhead indicates the	
668	peak of a new product. (B) Full scan mass spectrum of the new product. The analysis	
669	was performed in the negative-ion mode.	
670		
671	Figure 9. NMR analyses of the hydrolyzed product from MA1831-catalyzed	
672	non-head-to-tail prenyl condensation between FPP and DMAPP	
673	(upper panel) ¹ H-NMR spectrum. (lower panel) ¹³ C-NMR spectrum. The atom	
674	numbering is shown in Figure 11.	
675		
676	Figure 10. 2D-NMR analyses of the hydrolyzed product from MA1831-catalyzed	
677	non-head-to-tail prenyl condensation between FPP and DMAPP	
678	(upper panel) ¹ H- ¹ H-COSY spectrum. (lower panel) ¹ H- ¹³ C-edited-HSQC spectrum.	
679	The atom numbering is shown in Figure 11.	
680		
681	Figure 11. 2D-NMR analyses of the hydrolyzed product from MA1831-catalyzed	

683 (upper panel) ¹H-¹³C-HMBC spectrum. (lower panel) Selected COSY (red) and HMBC

- 684 (blue) data of the hydrolyzed product geranyllavandulol, with the numbering of the
- atoms.
- 686
- 687 Figure 12. Hypothetical reaction mechanism of a non-head-to-tail condensation
- 688 **between FPP and DMAPP catalyzed by MA1831**
- 689 The specificity of proton abstraction by a base from the *E* or *Z*-methyl group of
- 690 DMAPP is unclear now.
- 691