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In various multiorbital systems, the emergence of the orbital fluctuations and their role on the pairing
mechanism attract increasing attention. To achieve deep understanding on these issues, we perform a functional
renormalization group (fRG) study for the two-orbital Hubbard model. The vertex corrections for the
electron-boson coupling (U -VC), which are dropped in the Migdal-Eliashberg gap equation, are obtained by
solving the RG equation. We reveal that the dressed electron-boson coupling for the charge channel Û c

eff becomes
much larger than the bare Coulomb interaction Û 0 due to the U -VC in the presence of moderate spin fluctuations.
For this reason, the attractive pairing interaction due to the charge or orbital fluctuations is enlarged by the
factor (Û c

eff/Û
0)2 � 1. In contrast, the spin fluctuation pairing interaction is suppressed by the spin-channel

U -VC, because of the relation Û s
eff � Û 0. The present study demonstrates that the orbital or charge fluctuation

pairing mechanism can be realized in various multiorbital systems thanks to the U -VC, such as in Fe-based
superconductors.
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I. INTRODUCTION

Motivated by recent discoveries of interesting multiorbital
superconductors, unconventional pairing mechanisms driven
by the orbital degrees of freedom have attracted increasing
attention. For example, in FeSe families and some heavy
fermion superconductors, the superconductivity (SC) appears
next to the nonmagnetic orbital order phase. Such a phase
diagram indicates a significant role of the orbital fluctuations
on the pairing mechanism.

From a theoretical point of view, it has been a big challenge
to explain the emergence of the orbital order/fluctuations based
on realistic multiorbital Hubbard models microscopically. In
fact, only the spin fluctuations develop whereas the orbital
fluctuations remain small within the conventional mean-field-
level approximations, such as the random phase approximation
(RPA) and the fluctuation-exchange (FLEX) approximation
[1]. Thus nonmagnetic orbital order cannot be explained based
on the mean-field-level approximations. The reason for this
failure would be that the interplay between orbital and spin
fluctuations, which is described by the vertex correction (VC),
is totally neglected in the RPA and FLEX. Recently, the
orbital order in Fe-based superconductors has been naturally
explained by taking the Aslamazov-Larkin VC (AL-VC) into
account [2–4].

In order to study the VCs, the functional-renormalization-
group (fRG) is a very powerful and reliable theoretical method.
Both the charge-channel and spin-channel VCs are calculated
in an unbiased way by solving the RG equation, since the
particle-particle and particle-hole channels are included on
the same footing without violating the Pauli principle. Using
the fRG theory, strong orbital fluctuation emerges in two-
orbital Hubbard models in the presence of moderate spin
fluctuations, as revealed in Refs. [5,6]. These fRG studies con-
firmed the validity of the orbital fluctuation mechanism driven
by the orbital-spin mode coupling due to the AL-VC [2,4].

Theoretically, it is natural to expect that the developed
orbital fluctuations mediate the pairing formation. The orbital
fluctuations can induce not only the singlet SC (SSC), but

also the triplet SC (TSC). By performing the fRG theory
for the multiorbital models for Sr2RuO4, in which the TSC
(Tc = 1.5 K) is expected to be realized [7–14], orbital
fluctuation mediated TSC has been proposed. In the frequently
used Migdal-Eliashberg (ME) approximation, the SSC pairing
interaction is 3

2 Û 0;s χ̂ s(q)Û 0;s − 1
2 Û 0;cχ̂ c(q)Û 0;c, and the TSC

pairing interaction is − 1
2 Û 0;s χ̂ s(q)Û 0;s − 1

2 Û 0;cχ̂ c(q)Û 0;c,
where Û 0;c(s) is the bare Coulomb interaction matrix for the
charge (spin) channel [2]. Within the ME approximation,
spin-fluctuation-mediated SSC is expected when χ̂ s(q) and
χ̂ c(q) are comparable, because of the factor 3

2 for χ̂ s(q) in the
SSC pairing interaction. However, this expectation is never
guaranteed beyond the ME approximation since Û 0;c may be
enlarged by the VC at low energies, which is actually realized
as we explain in the present paper.

In this paper, we analyze the two-orbital Hubbard model for
the (α,β)-bands in Sr2RuO4 by using the fRG theory. The aim
of the present study is to confirm the realization condition for
the orbital fluctuation mediated SC by going beyond the ME
approximation. For this purpose, we solve the gap equation by
including the VC for the bare electron-boson coupling (EBC),
which we call the U -VC. Due to the U -VC, the effective EBC
for the charge (spin) channel, Û c(s)(k,k′), deviates from the
bare Coulomb interaction Û 0;c(s). By applying the fRG theory,
we find the relation |Û c(k,k′)| � |Û 0;c| due to the charge-
channel U -VC in the presence of moderate spin fluctuations.
In contrast, Û s(k,k′) is significantly suppressed by the spin
channel U -VC at low energies. For these reasons, orbital
fluctuation mediated SC will be realized in various multiorbital
systems, such as in Fe-based superconductors and Sr2RuO4.
We stress that the phonon-mediated attractive pairing is also
enlarged by the factor (Û c(k,k′)/Û 0;c)2.

The Fermi liquid theory tells that the same U -VC
causes (i) the enhancement of the orbital susceptibility and
(ii) that of the orbital fluctuation mediated pairing interaction.
This fact means that (i) and (ii) are realized simultaneously.
This expectation will be confirmed by the present fRG
study.
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II. U-VC FOR THE SUSCEPTIBILITIES
AND GAP EQUATION

First, we introduce the dressed EBC due to the U -VC,
and formulate the susceptibilities χ̂ c,s(q) and the gap equation
in the presence of the same U -VC. Figure 1(a) shows the
definition of the dressed EBC for the charge and spin channels,
Û c(k,k′) and Û s(k,k′), which are irreducible with respect to
bare Coulomb interactions Û 0;c and Û 0;s : the definitions of
Û 0;c and Û 0;s in the orbital basis are given in a later section,
and they were introduced in Refs. [2,15]. We put k = (k,εn) =
(k,(2n + 1)πT ) and q = (q,ωl) = (q,2lπT ) hereafter. The
solid and wavy lines represent the electron Green function
Ĝ(k) and χ̂ x(q) (x = c,s), respectively. The rectangle (�I (U ),x)
is the VC for the bare EBC Û 0;x , which we call the U -VC.
�I (U ),x is irreducible with respect to Û 0;x to avoid the double
counting of the RPA-type diagrams. In the present fRG
study, the U -VC is automatically obtained in solving the RG
equation. In a later section, we also calculate U -VC due
to the Aslamazov-Larkin term perturbatively, which is the
second-order term with respect to χ̂ x(q).

In Fig. 1(b), we explain the VC for the irreducible suscepti-
bility. The bare susceptibility without the VC is χ0

l,l′,m,m′ (q) =
−T

∑
n Gl,m(k + q)Gm′,l′ (k), where Gl,m(k) is the Green

function in the orbital basis. Then, the RPA susceptibility is
χ̂ x

RPA(q) = χ̂0(q)[1̂ − Û 0;xχ̂0(q)]−1. By using the three-point
vertex 	̂x = Û x{Û 0;x}−1, the dressed irreducible susceptibil-
ity is given as 
x(q) = −T

∑
n G(k + q)G(k)	x(k + q,k),

where the orbital indices are omitted for simplicity. Then,
the susceptibility with full VCs is obtained as χ̂ x

with-VC(q) =

̂x(q)[1̂ − Û 0;x
̂x(q)]−1.
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FIG. 1. (a) The effective interaction Û x for x = c (+) and x = s

(−), which we call the dressed EBC. The filled circle represents the
Coulomb interaction Û 0;x , and the rectangle (�I (U ),x) gives the U -VC.
�I (U ),x is irreducible with respect to Û 0;x to avoid the double counting
of the RPA-type diagrams. (b) Beyond the RPA: the irreducible
susceptibility with the VC, where 	̂x = Û x{Û 0;x}−1. (c) Beyond the
ME approximation: the gap equation with the three-point VCs for
the coupling constant (U -VC). Only the single fluctuation exchange
term is shown.

Figure 1(c) shows the gap equation due to the
single-fluctuation-exchange term in the presence of the
U -VC for the EBC. Within the RPA and the ME
approximation, the pairing interaction for the singlet
state is V̂s,RPA(k,k′) = 3

2 Î s
RPA(k − k′) − 1

2 Î c
RPA(k − k′) − Û 0;s ,

where Î x
RPA(q) = Û 0;x(χ̂ x

RPA(q) + {Û 0;x}−1)Û 0;x . By includ-
ing the VCs for both χ̂ x

RPA and the coupling constant
Û 0;x , the pairing interaction with full VCs is given as
V̂s,with-VC(k,k′) = 3

2 Î s
with-VC(k,k′) − 1

2 Î c
with-VC(k,k′) − Û 0;s ,

where Î x
with-VC(k,k′) = Û x(k,k′)(χ̂ x

with-VC(k − k′) + {Û 0;x}−1)
Û x(−k,−k′).

Therefore the enhancement of the pairing interaction due
to the charge-channel U -VC is naturally expected when the
orbital fluctuations are realized by the U -VC, in terms of the
Fermi liquid theory. For the purpose of analyzing the U -VC,
the fRG theory is very useful since the U -VC for χ̂ x(q) (x =
s,c) and that for the gap equation are generated on the same
footings in terms of the parquet approximation. This is the
great merit of the fRG theory [16]. In the present study, we
use the RG+cRPA method, which enables us to perform very
accurate numerical studies [5].

III. RG+CRPA STUDY FOR THE TWO-ORBITAL
HUBBARD MODEL

In this section, we analyze the two-orbital (dxz, dyz)
Hubbard model, as a canonical simple multiorbital system.
We apply the renormalization-group plus constrained-RPA
(RG+cRPA) method, which was developed in Refs. [5,6,17].
By solving the RG differential equation, we obtain the renor-
malized four-point vertex �̂x

RG (x = s,c) and susceptibilities
χc(s)(q) by taking account of the U -VC in a systematic and in
an unbiased way. The superconducting state and the transition
temperature (Tc) are obtained by calculating the SSC and TSC
susceptibilities, as formalized and performed in Ref. [6].

A. Model Hamiltonian and the four-point vertex given by the
RG+cRPA

First, we introduce the two-orbital square lattice Hubbard
model, which describes the (dxz, dyz)-orbital band structure in
Sr2RuO4. We set the kinetic term of the Hamiltonian as

H0 =
∑
k,σ

∑
l,m

ξ
l,m
k c

†
k,l,σ ck,m,σ , (1)

where l,m takes 1 or 2, which corresponds to dxz or dyz.
ξ

l,m
k is defined as ξ

1,1
k = −2t cos kx − 2t

′′
cos ky , ξ

2,2
k =

−2t cos ky − 2t
′′

cos kx , ξ
1,2
k = ξ

2,1
k = −4t

′
sin kx sin ky .

Hereafter, we set the hopping parameters (t , t
′
,

t
′′
) = (1,0.1,0.1): the unit of energy in the present

study is t = 1. The number of electrons is fixed as
n = nxz + nyz = 4 × (2/3) = 2.67. The obtained band
dispersion and Fermi surfaces (FSs) are shown in Figs. 2(a)
and 2(b), which reproduce FSα and FSβ in Sr2RuO4. This
model has been analyzed as a canonical multiorbital model in
various theoretical studies, such as the anomalous Hall effect
[18].

In the RG+cRPA method, each band is divided into
the higher-energy part (|εu,k| > 	0) and the lower-energy
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FIG. 2. (a) Band dispersion of the two-orbital Hubbard model
and (b) FSs composed of the dxz orbital (green) and dyz orbital (red).
(c) The center of patches (1 ∼ 64) on the FSs. The arrows represent
the nesting vector. The tip and the tail of each arrow correspond to
(iα,iβ ) = (6,37), (8,38), (10,39). (d) Definition of the full four-point

vertex �
σσ ′ρρ′
ll′mm′ (k + q,k; k′ + q,k′) in the microscopic Fermi liquid

theory.

part (|εu,k| < 	0). In order to perform the renormalization
procedure, the lower-energy part is divided into Np/2 patches.
Figure 2(c) shows the contours for |εu,k| = 	0 = 1 and the
center of patches 1 ∼ 64.

In addition, we introduce the on-site Coulomb interaction
term, which contains the intraorbital and interorbital Coulomb
interactions U and U ′, the Hund’s coupling J , and the pair
hopping interaction J ′. The bare Coulomb interaction term is
expressed as

Hint = 1

4

∑
i

∑
ll′mm′

∑
σσ ′ρρ ′

U
0;σσ ′ρρ ′
ll′mm′ c

†
ilσ cil′σ ′cimρc

†
im′ρ ′ , (2)

U
0;σσ ′ρρ ′
ll′mm′ = 1

2
U

0;s
ll′mm′ �σσσ ′ · �σρ ′ρ + 1

2
U

0;c
ll′mm′δσ,σ ′δρ ′,ρ, (3)

where U
0;c
ll′mm′ = (−U,U ′ − 2J,−2U ′ + J,−J ′,0) and

U
0;s
ll′mm′ = (U,U ′,J,J ′,0) in the cases of (l = l′ = m = m′,

l = m �= l′ = m′, l = l′ �= m = m′, l = m′ �= l′ = m and
otherwise). Hereafter, we assume the relation J = J ′ =
(U − U ′)/2.

The antisymmetrized full four-point vertex �̂(k + q,k; k′ +
q,k′), which is the dressed vertex of the bare vertex Û 0

in Eq. (3) in the microscopic Fermi liquid theory [19], is
depicted in Fig. 2(d). Reflecting the SU(2) symmetry of the
present model, �̂ is uniquely decomposed into the spin-channel
and charge-channel four-point vertices by using the following
relation:

�
σσ ′ρρ ′
ll′mm′ (k + q,k; k′ + q,k′)

= 1
2�s

ll′mm′ (k + q,k; k′ + q,k′)�σσσ ′ · �σρ ′ρ

+ 1
2�c

ll′mm′(k + q,k; k′ + q,k′)δσ,σ ′δρ ′,ρ, (4)

where σ, σ ′, ρ, and ρ ′ are spin indices. We stress that
�̂c,s are fully antisymmetrized, so the requirement by the
Pauli principle is satisfied. We note that �̂↑↑↑↑ = 1

2 �̂c + 1
2 �̂s ,

�̂↑↑↓↓ = 1
2 �̂c − 1

2 �̂s , and �̂↑↓↑↓ = �̂s .

B. RG+cRPA Theory

We analyze the present model by using the RG+cRPA
method, which was introduced in our previous papers [5,6,17]
in detail. In this method, we introduce the original cutoff
energy 	0 in order to divide each band into the higher- and
the lower-energy regions: (1) the higher-energy scattering
processes are calculated by using the cRPA and (2) the
lower-energy scattering processes are analyzed by solving the
RG equation, in which the initial vertices in the differential
equation are given by the cRPA. The lower-energy region is
divided into Np/2 patches for each band as shown in Fig. 2(c).

In the RG formalism, the four-point vertex function is
determined by solving the differential equations, called the
RG equations. In the band representation basis, the explicit
form of the RG equations is given by

d

d	
�RG(k1,k2; k3,k4)

= − T

N

∑
k,k′

[
d

d	
G(k) G(k′)

]

× [�RG(k1,k2; k,k′) �RG(k,k′; k3,k4)

−�RG(k1,k3; k,k′) �RG(k,k′; k2,k4)

− 1

2
�RG(k1,k; k′,k4) �RG(k,k2; k3,k

′)], (5)

where G(k) is the Green function multiplied by the Heaviside
step function θ (|εu,k| − 	), and k is the compact notation of
the momentum, band, and spin index: k = (k,εn,u,σ ). The
diagrammatic representation of the RG equations is shown
in Fig. 3. The first two contributions in the rhs represent the
particle-hole channels and the last contribution is the particle-
particle channel.

= + +

FIG. 3. The one-loop RG equation for the four-point vertex. The
crossed lines represent the electron Green function with cutoff 	. The
slashed lines represent the electron propagations having the energy
shell 	.
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The four-point vertex �RG(k1,k2; k3,k4) is obtained by
solving the above RG differential equation from 	0 to the
lower cutoff energy ωc. In a conventional fRG method, 	0

is set larger than the bandwidth Wband, and the initial value
is given by the bare Coulomb interaction in Eq. (3). In the
RG+cRPA method, we set 	0 < Wband, and the initial value
is given by the constraint RPA to include the higher-energy
processes without over-counting of diagrams [5].

The merits of the RG+cRPA method are listed as (i) the
higher-energy processes are accurately calculated within the
cRPA by introducing the fine (such as 128 × 128) k meshes.
This method is justified since the VCs are less important at
higher energies. In the conventional Np-patch fRG method,
numerical errors due to the violation of the momentum-
conservation becomes serious at higher-energy processes. (ii)
The scattering processes contributed by the valence bands
(=Van-Vleck processes), which are important in multiorbital
systems to derive the physical orbital susceptibility, are taken
into account in the RG+cRPA method. Especially, the Van-
Vleck processes are crucial to obtain the orbital susceptibilities
without unphysical behavior.

The full four-point vertex in Fig. 2(d) is expressed in the
band basis. On the other hand, we solve the four-point vertex
in the orbital basis in the present RG+cRPA study, expressed
as �

σσ ′ρρ ′
uu′vv′ (k1,k2; k3,k4). These expressions are transformed to

each other by using the unitary matrix ul,u(k) = 〈l,k|u,k〉. In
the present RG+cRPA study, we assume that each ki is on the
FSs, so we are allowed to drop four band indices u,u′,v,v′.

In this paper, we set 	0 = 1.0 (< band width) and Np =
64, and introduce the logarithmic energy scaling parameter
	l = 	0e

−l (l � 0) in solving the RG equation. We verified
that reliable results are obtained by setting 	0 ∼ Wband/2.

C. Phase diagram obtained by the RG+cRPA

First, we calculate the spin/charge susceptibilities and
SSC/TSC susceptibilities at T = 5 × 10−4 by performing the
RG+cRPA analysis. The renormalization is fulfilled till 	l

reaches 	lc = 10−2T (i.e., lc = ln(	0/10−2T )). The charge
(spin) susceptibilities in the multiorbital model is

χ
c(s)
ll′mm′ (q) =

∫ β

0
dτ

1

2

〈
A

c(s)
ll′ (q,τ )Ac(s)

m′m(−q,0)
〉
eiωlτ , (6)

where

A
c(s)
l l′ (q) =

∑
k

(c†kl′↑ck+ql↑ + (−)c†kl′↓ck+ql↓). (7)

The obtained susceptibilities are shown in Figs. 4(a) and 4(b):
χc

x2−y2 (q) = ∑
l,m(−1)l+mχc

l,l,m,m(q) is the orbital suscepti-
bility with respect to the orbital polarization nxz − nyz, and
χs(q) = ∑

l,m χs
l,l,m,m(q) is the total spin susceptibility. We

set the parameters (U,J/U ) = (3.10,0.08) and T = 5 × 10−4,
which corresponds to the black circle in the phase diagram
in Fig. 4(c). Both χs(q) and χc

x2−y2 (q) has the maximum
around the nesting vector Q = (2π/3,2π/3), and the relation
χs( Q) ≈ χc

x2−y2 ( Q) is realized. The strong peak in χs( Q) has
been observed by the neutron inelastic scattering study for
Sr2RuO4 [20]. In addition to this result, the STM study [21]
indicates that the TSC in Sr2RuO4 mainly originates from the

(a) (b)

(c)

<

<

0.04 0.08 0.12

2.8

3

3.2

orbita
l o

rder

magnetic 
    ordersinglettrip

let

FIG. 4. (a) q dependence of obtained total spin susceptibility
χs(q) enlarged at q ≈ (2π/3,2π/3). (b) Obtained quadrupole sus-
ceptibility χc

x2−y2 (q). (c) SC phase diagram obtained by RG+cRPA
method.

electronic correlation in the (α,β) bands. We stress that the
strong enhancement of χc

x2−y2 cannot be obtained in the RPA.
This fact means that the strong orbital fluctuations originate
from the U -VC, shown in Fig. 1(b), calculated by the RG
method appropriately.

Secondly, we calculate the TSC (SSC) susceptibilities χSC
t(s)

by the RG+cRPA method. It is defined as

χSC
t(s) = 1

2

∫ β

0
dτ 〈B†

t(s)(τ )Bt(s)(0)〉, (8)

where

Bt(s) =
∑
k∈FS

�t(s)(k)ck,↑c−k,↑(↓). (9)

The gap function �t(s)(q) in Eq. (9) is uniquely determined by
maximizing the SC susceptibilities [6].

The obtained numerical results for T = 5 × 10−4 and 	lc =
10−2T are summarized as the phase diagram in Fig. 4(c). The
boundary of the orbital and magnetic orders are shown by
the broken lines, and the relation χs( Q) = χc

x2−y2 ( Q) holds
on the dotted line. The boundaries for the TSC and SSC
transition are shown by the solid lines. Thus the TSC and
SSC states are respectively realized below the orbital and
magnetic order boundaries, for wide range of parameters. We
stress that the strong orbital fluctuations and the TSC state
is obtained for J/U � O(0.1), which is comparable to the
ratio J/U = 0.0945 in FeSe derived from the first-principles
study. The present result is substantially improved compared
to the previous phase diagram for 	0 = 1 in Ref. [6], in which
the strong orbital fluctuations appear only for J/U < 0.03.
The reason for this improvement is that four-point vertex in
Ref. [6] is underestimated since we included only the processes
that rigorously satisfy the momentum conservation in solving
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the RG equation. In the present study, we allow the scattering
processes if the momentum conservation is satisfied within the
patch resolution, according to a similar manner explained in
Refs. [16,22,23]. This improved method was utilized in the
study of the charge density wave in curate superconductors
[17].

The obtained TSC gap function belongs to the Eu represen-
tation, and approximately follows the following k dependence:
(�t,x(k),�t,y(k)) ∝ (sin 3kx, sin 3ky). The SSC gap function
belongs to A1g or B1g symmetry in the phase diagram in
Fig. 4(c), similarly to our previous study in Ref. [6].

Until now, many theoretical studies on the mechanism of
the TSC in Sr2RuO4 have been performed. They are roughly
classified into the following two scenarios. One of them is that
the TSC is realized mainly in a two-dimensional (2D) FSγ

composed by the dxy-orbital [11,12]. Nomura and Yamada
explained the TSC state by using the higher-order perturbation
theory [11]. In addition, Wang et al. performed the 2D RG and
discussed that the TSC is realized on the FSγ in the presence
of spin fluctuations at q = (0.19π,0.19π ). On the other hand,
the TSC originating from the q1D (quasi-one-dimensional )
FSs had been discussed by applying the perturbation theory
[13,14] and the RPA [15]. Takimoto proposed the orbital
fluctuation mediated TSC in the RPA [15]. However, under
the realistic condition U ′ < U , the TSC could not overwhelm
the SSC in the RPA. In contrast to the RPA, the present
authors obtained the TSC state in a wide parameter range with
realistic condition U ′ < U by using the RG+cRPA theory. As
shown in the following section, these results originate from
the important roles of the U -VC, which is neglected in the
RPA.

From the experimental aspect, many efforts have been
devoted to reveal the electronic state and the gap structure
in Sr2RuO4. For example, strong AFM fluctuations at Q
by the nesting of α and β bands were observed by neutron
scattering spectroscopy [20]. In addition, a large SC gap
with 2|�| ≈ 5Tc was observed by the scanning tunneling
microscopy measurement [21]. The authors expected that the
observed large gap appears on the q1D FSs, since the tunneling
will be dominated by the (dxz,dyz) orbitals that stand along the
z axis. These experiments indicate that the active band of the
TSC in Sr2RuO4 is q1D FSs.

IV. ORIGIN OF ORBITAL FLUCTUATION MEDIATED SC:
SIGNIFICANT ROLE OF THE U-VC

In the previous section, we explained that the orbital
fluctuation mediated TSC state is obtained for a realistic
parameter range by using the improved RG+cRPA method. In
this section, we reveal the microscopic reason why the orbital
fluctuation mediated pairing interaction becomes superior to
the spin fluctuation mediated one in the case that χ̂ s(q) and
χ̂ c(q) are comparable. This is the main aim of the present
paper.

A. Gap equation beyond the ME scheme

Here, we study the SC state by analyzing the linearized
gap equation based on the pairing interaction obtained by the
RG equation [24]. The gap equation in the band basis is given

as

λt(s)�t(s)(k)

= −
∫

FS

dk′

vk′
V

ωc

t(s)(k,k′)�t(s)(k′) ln
1.13ωc

T
, (10)

where �t(s)(k) is the TSC (SSC) gap function on the FSs,
which has odd (even) parity. In Eq. (10), k and k′ are the
momenta on the FSα and FSβ, λt(s) is the eigenvalue of
the gap equation, and V

ωc

t(s) is the pairing interaction given
by the RG equation, by setting the lower-energy cutoff as
	lc = ωc [i.e., lc = ln(	0/ωc)]. The expression of the pairing
interaction is given below. We choose the cutoff ωc so as
to satisfy ωc � T , and assume that the renormalization of
the susceptibilities χ̂ s,c(q) saturates for 	l < ωc. In deriving
Eq. (10), we used the relation

∫ ωc

−ωc
dεk′ 1

2εk′ th(εk′/2T ) =
ln(1.13ωc/T ).

In the present RG study, the pairing interaction in the band
is directly given by solving the RG equation for the four-point
vertex �RG, till the lower-energy cutoff 	lc = ωc. We set ωc =
12T = 6 × 10−3.

By using the four-point vertex given by the RG+cRPA in
the band basis representation, the pairing interaction in Eq. (10)
with the U -VC is given as

Vt,RG(k,k′) = − 1
4�s

RG(k,k′; −k′,−k)

− 1
4�c

RG(k,k′; −k′,−k), (11)

Vs,RG(k,k′) = 3
4�s

RG(k,k′; −k′,−k)

− 1
4�c

RG(k,k′; −k′,−k). (12)

In Vt(s),RG(k,k′), the U -VC for the pairing interaction shown
in Fig. 1(c) is automatically included. In Fig. 5, we show
the typical diagrams included in �RG: the bare Coulomb
interaction term is given in Fig. 5(a). The single- and crossing-
fluctuation-exchange terms are shown in Figs. 5(b) and 5(c),
respectively. The particle-particle ladder term is shown in
Fig. 5(d), which is expected to be small when ωc � Tc. The
typical diagrams for the U -VC are shown in Fig. 5(e).

In order to verify the importance of the U -VC, we also
introduce the pairing interaction within the ME scheme: for
this purpose, we solve the RG equation for χ̂

c(s)
RG till the lower

cutoff 	lc = ωc. We set ωc = 12T = 6 × 10−3. Using the
obtained χ̂

c(s)
RG , the antisymmetrized four-point vertex in the

single-fluctuation-exchange approximation is expressed in the
orbital basis as follows:

�s
χ,12,34 = Û

0;s
12,34 + (Û 0;s χ̂ s(1 − 2)Û 0;s)12,34

− 1
2 (Û 0;cχ̂ c(1 − 3)Û 0;c)13,24

+ 1
2 (Û 0;s χ̂ s(1 − 3)Û 0;s)13,24, (13)

�c
χ,12,34 = Û

0;c
12,34 + (Û 0;cχ̂ c(1 − 2)Û 0;c)12,34

− 1
2 (Û 0;cχ̂ c(1 − 3)Û 0;c)13,24

− 3
2 (Û 0;s χ̂ s(1 − 3)Û 0;s)13,24. (14)
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'q k k= −
(e)

k k' 0;xU

1
2+

U3-terms

k,l

- k,l'

k',m

-k',m'

(b)

k,l

-k,l'

k',m

-k',m'
=

-k',m'-k,l'

(c)

k,l k',m

+

= +

AL-terms

+ + ...

...
(d)

+

+
0Ul

l'

m

m'

(a)

+
k,l k',m

-k',m'-k,l'

2 x

xU

-k',m'-k,l'

k,l k',m

+

MT-term

FIG. 5. (a) The bare interaction, (b) single-fluctuation-exchange
term, (c) crossing-fluctuation-exchange term, and (d) the lowest
particle-particle term. Here, V ll′,mm′

y (k,k′) = ay

4 �s
mll′m′ (k′,k; −k, −

k′) − 1
4 �c

mll′m′ (k′,k; −k, − k′) (at = −1,as = 3). (e) Typical dia-
grams for the U -VC. For the charge sector, the Maki-Thompson
(MT) term is negligibly smaller than the AL term in the presence of
moderate spin fluctuations. The O({U 0}3) terms in MT and AL terms
are dropped to avoid the double counting. In (a)–(e), spin indices are
not written explicitly.

Here, Û 0;c(s) is the bare Coulomb interaction in Eq. (3),
and χ̂

c(s)
RG is the (2 × 2) × (2 × 2) matrix. The diagrammatic

expression for V̂t(s),χ is given by dropping the U -VC in
Fig. 5(b).

The pairing interaction Vt,χ (k,k′) [Vs,χ (k,k′)] in the ab-
sence of the U -VCs are obtained by inputting Eqs. (13) and
(14) into Eq. (11) [Eq. (12)], respectively, after performing
the unitary transformation by using ul,u(k). Then, χ̂ s,c(1 − 2)
[χ̂ s,c(1 − 3)] in Eqs. (13) and (14) is replaced with χ̂ s,c(k − k′)
[χ̂ s,c(k + k′)].

B. Analysis of the U-VC based on the RG+cRPA method

Hereafter, we show the numerical results for the parameters
(U = 3.10, J/U = 0.08, ωc = 12T = 6 × 10−3), which cor-
responds to the black circle in the phase diagram in Fig. 4(c).
The renormalization of χ̂ s,c(q) saturates for 	l < ωc. First, we
solve the gap equation (10) using the pairing interaction V̂t,RG

and V̂s,RG in Eqs. (11)–(12). Figures 6(a) and 6(b) show the
obtained gap functions for the TSC state �t,x(θ ) and the SSC
state �s(θ ), respectively, The eigenvalues are λt = 0.47 and
λs = 0.26, respectively. The obtained E1u TSC gap and A1g

SSC gap are essentially equivalent to the gap structures derived
from the SC susceptibilities in Eq. (8) by the RG+cRPA: see
Ref. [6]. Thus the present gap equation analysis is essentially
equivalent to the RG study for the SC state, in which the
SC gap function is uniquely obtained by maximizing the SC
susceptibility.

Using the solution of the gap equation �t(s)(k), the
averaged pairing interaction λ̄t(s) = λt(s)/ln(1.13ωc/T ) is

(a) (b)

(c) (d)with U-VC without U-VC

triplet singlet

fo
r

fo
r

FIG. 6. (a) E1u-type TSC gap function �t,x(θ ) on the FSα and
FSβ as functions of θ . (b) A1g-type SSC gap function �s(θ ). (c) λ̄t(s)

for V̂t(s),RG as functions of ωc. (d) λ̄t(s) for V̂t(s),χ .

expressed as

λ̄t(s) =
∫

FS
dk
vk

∫
FS

dk′
vk′ V

ωc

t(s)(k,k′)�t(s)(k)�t(s)(k′)∫
FS

dk
vk

�t(s)(k)�t(s)(k)
. (15)

Figure 6(c) shows the obtained λ̄t and λ̄s as functions of 	l ,
where �t (k) and �s(k) are fixed to the gap structures shown in
Figs. 6(a) and 6(b), respectively. Note that the relation Tc,t(s) =
1.13ωc exp(−1/λ̄t(s)). The scaling curve of λ̄t,s saturates to a
constant when 	l is smaller than T , which is shown by the
vertical dotted lines. We find the approximate relation λ̄t ∼ 3λ̄s

in Fig. 6(c), irrespective of the relation χs( Q) ∼ χc
x2−y2 ( Q)

shown in Figs. 4(a) and 4(b).
In order to verify the importance of the U -VC, we solve the

gap equation by using V̂x,χ , in which the U -VC is absent.
Figure 6(d) shows the obtained λ̄t and λ̄s as functions of
	l . Here, �t (k) and �s(k) are fixed to Figs. 6(a) and 6(b),
respectively. (Similar result is obtained even if the solution
of the gap equation for V̂t(s),χ is used.) Thus the relation
λ̄t ∼ λ̄s/3 is obtained if the U -VC is dropped.

Therefore the relation λ̄t � λ̄s is realized when V̂t(s),RG

is used, while the opposite relation λ̄t � λ̄s is obtained for
V̂t(s),χ . Thus we can concluded that the TSC is realized by the
enhancement of the orbital fluctuation mediated pairing inter-
action by the charge-channel U -VC, and/or the suppression
of the spin-fluctuation-mediated pairing by the spin-channel
U -VC.

To understand the role of the U -VC in more detail, we
directly examine the momentum-dependence of the spin-
(charge-) channel interaction without the U -VC �̃s(c)

χ (k,k′) ≡
�s(c)

χ (k,k′; −k′,−k) in addition to those with the U -VC

�̃
s(c)
RG (k,k′) ≡ �

s(c)
RG (k,k′; −k′,−k). Figures 7(a)–7(d) show the

obtained interactions for the parameters (U = 3.10, J/U =
0.08, ωc = 12T = 6 × 10−3). Here, iα and iβ correspond to
the patches on FS-α and FS-β, respectively. In each panel,
the pairs of patches inside the solid ellipsoidal, (iα,iβ) =
(6,37),(8,38),(10,39), correspond to the nesting vector k →
k′ depicted by the arrows in Fig. 2(c).
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(a) (b)

(c) (d)

(e)

4

3

2

1

32 32

3232

16 16

1616

33 33

3333

48 64 6448

64486448

1 1

11

with U-VC

without U-VC

FIG. 7. Spin- and charge-channel pairing interactions obtained by
using the RG+cRPA method: (a) spin-channel interaction �̃s

χ (k,k′)
and (b) charge-channel one �̃c

χ (k,k′) in the absence of the U -VC. (c)
�̃s

RG(k,k′) and (d) �̃c
RG(k,k′) in the presence of the U -VC. Here, (k,k′)

is the pair of momenta for (iα,iβ ). (e) The ratios �̃c
χ (k,k′)/�̃s

χ (k,k′)
and �̃c

RG(k,k′)/�̃s
RG(k,k′) as functions of U . k and k′ are set as the

start and end positions of the nesting vector shown in Fig. 2(b). We
take the average over the ellipsoidal area.

As shown in Figs. 7(a) and 7(b), both �̃s
χ (k,k′) and

�̃c
χ (k,k′) take large positive values when (iα,iβ) is inside

the solid ellipsoidal. Here, k − k′ ≈ Q ≡ (2π/3,2π/3). These
large interactions originate from the peak structure of χs(q)
and χc

x2−y2 (q) at q ≈ Q, as shown in Figs. 4 (a) and (b).

It is found that, in the absence of the U -VC, �̃s
χ (k,k′)

becomes larger than �̃c
χ (k,k′) inside the ellipsoidal area

[(iα,iβ) ≈ (7,37)] in Figs. 7(a) and 7(b). For this reason, the
relation λ̄s � λ̄t is realized by neglecting the U -VC, shown in
Fig. 6(d).

Figures 7(c) and 7(d) show the spin- and charge-channel
interactions �̃s

RG(k,k′) and �̃c
RG(k,k′) in the presence of the

U -VC. Both �̃s
RG(k,k′) and �̃c

RG(k,k′) take large positive
values when k − k′ ≈ Q. In the presence of the U -VC,

�̃c
RG(k,k′) becomes larger than �̃s

RG(k,k′) inside the ellipsoidal
area. By making comparison between Figs. 7(a) and 7(c) [7(b)
and 7(d)], the spin-channel [charge-channel] interaction is
reduced [enlarged] by the U -VC. For this reason, λ̄t � λ̄s is
realized by taking the U -VC into account correctly, shown in
Fig. 6(c).

We note that the large negative values in Figs. 7(c) and 7(d)
at (iα,iβ) = (6 + 16,37),(8 + 16,38),(10 + 16,39) originate
from χ̂ c(k + k′) for k + k′ ≈ Q, since its contribution is
enlarged by the charge-channel U -VC in �̃s,c

χ (k,k′).
Figure 7(e) shows the ratios �̃c

χ (k,k′)/�̃s
χ (k,k′) and

�̃c
RG(k,k′)/�̃s

RG(k,k′) at (iα,iβ) ≈ (8,38) [k − k′ ≈ Q] given
by the RG+cRPA as functions of U . We set ωc = 12T =
6 × 10−3 and J/U = 0.08. k and k′ are set as the start and
end positions of the nesting vector shown in Fig. 2(c). For
U → +0, both �̃c

χ/�̃s
χ and �̃c

RG/�̃s
RG are equal to −1. They

change to positive for U � 1 since �̃c
χ(RG) changes to positive.

For U � 2, �̃c
χ/�̃s

χ � 1, whereas �̃c
RG/�̃s

RG � 1. This result

means that �̃
c(s)
RG is enlarged (suppressed) by the U -VC for

wide range of U .
To summarize, the spin-channel [charge-channel] inter-

action is drastically reduced [enlarged] by the U -VC, by
making comparison between Figs. 7(a) and 7(c) [7(b) and
7(d)]. We stress that, except for the magnitude, the structure
of �̃x

RG(k,k′) and that of �̃x
χ (k,k′) (x = s,c) are very similar.

In addition, when k and k′ are on the same FS, both �̃x
RG

and �̃x
χ remain small. These facts reveal the importance

of the single-fluctuation-exchange term in Fig. 5(b), since
the multifluctuation-exchange terms such as in Fig. 5(c)
give different momentum dependence. On the basis of the
Fermi liquid theory, the same charge-channel U -VC enlarges
the charge irreducible susceptibility 
̂c(q) and the pairing
interaction, as we show in Fig. 1. Thus the orbital fluctuation
mediated pairing will be strongly magnified by the U -VC when
the orbital fluctuations are driven by the VC.

C. Analysis of the U-VC based on the perturbation theory

In the previous section, we found the significant role of
the U -VC on the pairing interaction. The orbital fluctuation
mediated pairing interaction is strongly magnified by the
charge channel U -VC. We also found the strong suppression
of the spin-fluctuation-mediated interaction due to the spin-
channel VC in multiorbital systems. In this section, we perform
the diagrammatic calculation for the U -VC shown in Fig. 5(e),
and confirm that the charge channel U -VC is strongly enlarged
by the AL-VC. In addition, the suppression by the spin channel
U -VC is mainly given by the (U 0)3 term. The charge- and
spin-channel MT terms in Fig. 5(e) are expressed as

U
c,MT
l′m′lm(k,k′) = T

2

∑
q

∑
abcd

U
0;c
l′m′bc

{
I c
aldm(q) + 3I s

aldm(q)
}

×Gab(k + q)Gcd (k′ + q), (16)

U
s,MT
l′m′lm(k,k′) = T

2

∑
q

∑
abcd

U
0;s
l′m′bc

{
I c
aldm(q) − I s

aldm(q)
}

×Gab(k + q)Gcd (k′ + q), (17)
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where Î x(q) = Û 0;x(χ̂ x
RPA(q) + {Û 0;x}−1)Û 0;x . Also, the charge- and spin-channel AL terms in Fig. 5(e) are

U
c,AL
l′m′lm(k,k′) = T

2

∑
q

∑
abcdefgh

U
0;c
l′m′af {	abcdef (k − k′,q) + 	f cbeda(k − k′,−q − k + k′)}

×{
I c
bclg(q + k − k′)I c

mhed (q) + 3I s
bclg(q + k − k′)I s

mhed (q)
}
Ggh(k′ − q), (18)

U
s,AL
l′m′lm(k,k′) = T

2

∑
q

∑
abcdefgh

U
0;s
l′m′af {	abcdef (k − k′,q) + 	f cbeda(k − k′,−q − k + k′)}

× {
I s
bclg(q + k − k′)I c

mhed (q) + I c
bclg(q + k − k′))I s

mhed (q)
}
Ggh(k′ − q) + δU

s,AL
l′m′lm(k,k′), (19)

where a ∼ h are orbital indices, and 	̂(q,q ′) is the three-point
vertex given as

	abcdef (q,q ′) = −T
∑

p

Gab(p + q)Gcd (p − q ′)Gef (p).

(20)

The last term in Eq. (19) is given as δU
s,AL
l′m′lm(k,k′) =

T
2

∑
q

∑
abcdefgh U

s,0
l′m′af {	abcdef (k − k′,q) − 	f cbeda(k − k′,

−q − k + k′)}2I s
bclg(q + k − k′)I s

mhed (q)Ggh(k′ − q), which
is found to be very small.

Figure 8(a) shows the ratios (Ux
eff/U 0)2

diagram ≡
(Ux

with-UVC(k,k′)/Ux
no-UVC(k,k′))2 (x = s,c) at (iα,iβ) ≈

Ul,m Ul,m
m,σ

l,↑l,↑

l,↑l,↑

perturbation method

RG+cRPA

charge

spin

charge

spin

(a)

(c)(b)

FIG. 8. (a) The ratios (Ux
eff/U 0)2

diagram ≡ (Ux
with-UVC(k,k′)/

Ux
no-UVC(k,k′))2 (x = c,s) given by the diagrammatic calculation as

functions of the spin Stoner factor αS . For U -VC, we perform the
diagrammatic calculation for Fig. 5(e). (b) Third-order term with
respect to U for U -VC: we put U = U ′ and J = 0 for simplicity.
This term is scaled as ∼(2Norb − 1), where Norb is the number
of d-orbital. (c) (Ux

eff/U 0)2
RG ≡ �̃x

RG/�̃x
χ given by the RG+cRPA

method for 2.0 � U � 3.1. Inset: (Us
eff/U 0)2

RG for 0 � U �
3.1.

(8,38) [k − k′ ≈ Q] given by the diagrammatic calculation
as functions of the spin Stoner factor αS . For U -VC,
we perform the diagrammatic calculation for Fig. 5(e).
The double counting of the O({U 0}3)-terms is carefully
eliminated. Note that αS is the largest eigenvalue of
�̂s χ̂0( Q), and the relation χs( Q) ∝ (1 − αS)−1 holds.
We find that (Uc

eff/U 0)2
diagram gradually increases as the

system approaches to the magnetic quantum-critical-point
(αS → 1). The relation (Uc

eff/U 0)2
diagram � 1 originates from

the charge-channel AL term since Eq. (18) is approximately
proportional to

∑
q χs(q)χs(q + Q) ∼ (1 − αS)−1. In

contrast, (Us
eff/U 0)2

diagram is suppressed by the U -VC,
since the small spin-channel AL-term in Eq. (19) is
proportional to

∑
q χs(q)χc(q + Q). We verified that the

relation (Us
eff/U 0)2

diagram � 1 mainly originates from the
O({U 0}3)-term shown in Fig. 8(b): its negative contribution
is significant in multiorbital systems since the diagram in
Fig. 8(b) is scaled as ∼(2Norb − 1), where Norb is the number
of d-orbital.

Figure 8(c) shows (Ux
eff/U 0)2

RG ≡ �̃x
RG(k,k′)/�̃x

χ (k,k′)
(x = s,c) at (iα,iβ) ≈ (8,38) [k − k′ ≈ Q] obtained by the
RG+cRPA study as function of U . Here, ωc = 12T = 6 ×
10−3 and J/U = 0.08. This ratio is expected to give the
square of the U -VC when χ̂ s,c(q) develops strongly in
the strong-coupling region (U � 2.5), in which the single-
fluctuation-exchange term in Fig. 5(b) becomes significant.
The obtained relations (Uc

eff/U 0)2
RG � 1 and (Us

eff/U 0)2
RG �

1 in the strong-coupling region are consistent with the results
given by the perturbation theory in Fig. 8(a). The inset shows
(Us

eff/U 0)2
RG for a wide range of U : the origin of its U -linear

term for U ∼ 0 would be some U 2 diagrams dropped in �̃x
χ ,

which are less important for the strong-coupling region. [Note
that (Uc

eff/U 0)2
RG diverges at U ≈ 1.5 since �̃x

χ (k,k′) changes
its sign with U ; see in Fig. 7(e).]

In summary, the significant role of the U -VC has been
confirmed on the basis of the perturbation theory and the
RG+cRPA theory. Due to the U -VC, the orbital or charge
fluctuation mediated pairing interaction is magnified by
(Uc

eff/U 0)2 � 1 in the strong-coupling regime. In contrast,
the spin fluctuation mediated pairing interaction is suppressed
by (Us

eff/U 0)2 � 1, and this suppression is prominent in
multiorbital systems. In the strong-coupling regime, consistent
results are obtained by the different two methods shown in
Figs. 8(a) and 8(c). They do not coincide in the weak coupling
regime because of the different definitions of (Ux

eff/U 0)2 in
Figs. 8(a) and 8(c).
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g g
ph

g g

ph

0
eff( )cU U 0

eff( )cU U

FIG. 9. The gap equation due to the e-ph interaction, where
the dotted line represents the phonon propagator and g is the e-ph
coupling constant. Due to the charge-channel U -VC caused by spin
fluctuations, the phonon-mediated attractive interaction is enlarged
by the factor (Uc

eff/U 0)2 � 1.

V. DISCUSSIONS

In this paper, we analyzed the two-orbital Hubbard model
by using the RG+cRPA theory in order to confirm the
realization condition for the orbital fluctuation mediated SC.
To go beyond the ME approximation, we solved the gap
equation by including the VC for the EBC, which is called
the U -VC. Due to the U -VC, the effective EBC for the
charge (spin) channel, Û c(s), deviates from the bare Coulomb
interaction Û 0;c(s). We verified the relation |Û c| � |Û 0;c| due
to the charge-channel U -VC in the presence of moderate spin
fluctuations. In contrast, Û s is significantly suppressed by
the spin channel U -VC. For these reasons, orbital fluctuation
mediated SC will be realized in various multiorbital systems,
such as in Fe-based superconductors and Sr2RuO4.

On the basis of the Fermi liquid theory, the same charge-
channel U -VC enlarges the charge irreducible susceptibility

̂c(q) and the pairing interaction, as we show in Fig. 1. Thus
the orbital fluctuation mediated pairing interaction should be
strongly enlarged by the square of the U -VC when the orbital
fluctuations are driven by the VC in terms of the Fermi liquid
theory.

In fact, the importance of the single-fluctuation-exchange
term in Fig. 5(b) is supported by the very similar momen-
tum dependence between �̃x

RG(k,k′) and �̃x
χ (k,k′) (x = c,s)

in Figs. 7(a)–7(d), except for the magnitude. The drastic
difference in magnitude between �̃x

RG and �̃x
χ demonstrates

the significance of the U -VC. We verified that the crossing-
fluctuation-exchange term in Fig. 5(c), which should have
different momentum dependence, is small in magnitude based
on the perturbation method.

We stress that the phonon-mediated attractive pairing is also
enlarged by the factor (Uc

eff/U 0)2 � 1, as we explain in Fig. 9.
The s++-wave state in the single-layer FeSe may be given by
the electron-phonon (e-ph) attractive interaction enhanced by
the charge-channel U -VC. Note that the relation (Uc

eff/U 0)2 �
1 in the presence of moderate spin fluctuations is realized only
in two- and three-dimensional systems. If we apply the local
approximation, the charge-channel VC is proportional to the
square of

∑
q χs(q), which is less singular even for αS ≈ 1.

In multiorbital models, the spin-fluctuation-mediated
pairing interaction is strongly suppressed by the factor
(Us

eff/U 0)2 � 1. This result does not contradict to the enhance-
ment of spin susceptibility χs(q) shown in Fig. 5(a), since the
U -VC is effective only at low energies, whereas the irreducible
susceptibility 
s in Fig. 1(b) is given by the integration for
wide energy range. In the context of the fRG, χs(q) starts to
increase in the early stage of the renormalization, whereas the
U -VC develops in the later stage.
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