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Applicability of the bootstrap method is investigated to estimate the statistical error of the 

Feynman-𝛼 method, which is one of the subcritical measurement techniques on the basis of 

reactor noise analysis. In the Feynman-𝛼 method, the statistical error can be simply estimated 

from multiple measurements of reactor noise, however it requires additional measurement 

time to repeat the multiple times of measurements. Using the resampling technique such as 

the bootstrap method, the statistical error (standard deviation and confidence interval) of 

measurement results obtained by the Feynman-𝛼 method can be estimated from a single 

measurement of reactor noise. In order to validate our proposed technique, we carried out a 

passive measurement of reactor noise without any external source, i.e. with only inherent 
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neutron source by spontaneous fission and (𝛼,n) reactions in nuclear fuels at the Kyoto 

University Criticality Assembly. Through the actual measurement, it is confirmed that the 

bootstrap method is applicable to approximately estimate the statistical error of measurement 

results obtained by the Feynman-𝛼 method. 

 

Keywords; Feynman-𝜶 method; reactor noise; subcriticality; bootstrap method; KUCA; 

measurement; statistical error 
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1. Introduction 

In the present paper, statistical error estimation for the Feynman-α method [1], or the 

variance-to-mean ratio method, is proposed using the bootstrap method [2]. Our proposed 

method is validated by an actual reactor noise measurement, which was carried out at the 

Kyoto University Criticality Assembly (KUCA) [3]. 

Subcriticality monitoring contributes safe and efficient operation and management in 

nuclear fuel related-facilities. The subcriticality monitoring is also important for the 

accelerator driven subcritical reactor [4-6], since the reactor must be kept in the subcritical 

state in operation. Furthermore, in the retrieval of fuel debris from Fukushima Dai-ichi units 

1-3 with the submersion condition, there are potentials to bring a positive reactivity due to the 

change of moderation ratio, thus the subcriticality monitoring to prevent the recriticality is 

one of the important issues [7]. 

The Feynman-α method is one of the practical subcriticality measurement techniques 

on the basis of reactor noise analysis. In the Feynman-α method, firstly, time-series data of 

neutron counts (so-called “reactor noise”) are measured for a steady-state subcritical system. 

The measured time-series data are utilized to evaluate the variation of variance-to-mean ratio 

𝑌(𝑇) for various counting gate width 𝑇. Here, 𝑌 value is an index to investigate the 

neutron-correlation due to fission reaction. By analyzing the variation of 𝑌(𝑇), the prompt 

neutron decay constant 𝛼 can be primarily obtained. Finally, the measurement value of 𝛼 is 

converted to the subcriticality (– 𝜌). Here, the quantification of measurement error is also 

important to ensure the margin of subcriticality to the critical state. In the present paper, we 

focus on the statistical error of the Feynman-α method as one of the measurement errors. A 

simple way to evaluate the statistical error is multiple measurements of reactor noise, however 

it requires additional measurement time to repeat the multiple times of measurements. In 

addition, the statistical theory for probability distributions of the 𝑌(𝑇) and 𝛼 has not yet 

been sufficiently established to evaluate these statistical errors only from a single 
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measurement of reactor noise. 

In order to address this problem, the purpose of the present paper is to investigate the 

applicability of the bootstrap method [2] to evaluate the statistical error of the Feynman-α 

method without multiple measurements. The bootstrap method enables to practically estimate 

variance and confidence interval for a sample estimate (e.g. mean, variance, median) by a 

large number of resamples obtained from an original data. In the case of present study, sample 

estimates correspond to 𝑌(𝑇) and 𝛼, and these statistical error (standard deviation and 

confidence interval) are estimated using the bootstrap method for a single measurement of 

reactor noise. Assuming a passive measurement at a deep subcritical system (e.g. effective 

neutron multiplication factor 𝑘eff ≲ 0.95), our aim is the order-of-magnitude estimate of 

statistical error in 1 significant figure, from a single measurement under a condition of low 

neutron count rate without any external neutron source, i.e. with only inherent neutron source 

by spontaneous fission and (𝛼,n) reactions in nuclear fuels. In order to validate our proposed 

technique, an actual reactor noise measurement was carried out at the KUCA. 

The contents of the present paper are as follows: In section 2, methodology of the 

statistical error estimation using the bootstrap methods are described. Section 3 shows 

validation through the actual reactor noise experiment at the KUCA. In order to confirm 

reliability of the proposed method, a short-time single noise measurement is repeatedly 

carried out and statistical errors of 𝑌(𝑇) and 𝛼 are estimated by the bootstrap method for 

each measurement. Then, each of the estimated statistical error is compared to the reference 

value obtained through repetition short-time measurements, to confirm the confidence interval 

estimated by the bootstrap method. Finally, concluding remarks are summarized in section 4. 

 

2. Methodology 

Let us assume a steady-state subcritical system with some kind of neutron source (e.g. 

spontaneous fission and (𝛼, n) reactions in nuclear fuel, or external neutron source such as an 
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Am-Be source). In this subcritical system, successive time-series data of neutron counts 

𝐶𝑖(𝑇0) (𝑖 = 1~𝑁) are measured, where 𝑇0 is a basic counting gate width and 𝑁 is the 

number of count data. Then, 𝑌 value is evaluated using the ratio of variance to mean [1]: 

𝑌(𝑇0) =
𝜎2(𝑇0)

𝜇(𝑇0)
− 1, (1) 

where 𝜇(𝑇0) and 𝜎2(𝑇0) are the sample mean and the unbiased variance of neutron counts 

𝐶𝑖(𝑇0), respectively. If neutron counts follow the Poisson distribution, the 𝑌 value is zero, 

since the variance is equal to the mean in the case of Poisson distribution. However, in a 

subcritical neutron multiplication system, measured neutron counts do not follow the Poisson 

distribution, i.e. the variance is larger than the mean. This phenomena results from the 

neutron-correlation due to fission chain reaction. 

In order to measure the gate-width dependence of 𝑌 value, the bunching method is 

conventionally employed [8]. Using the bunching method, 𝑌 values can be estimated for a 

bunching gate width 𝑘𝑇0: 

𝑌(𝑘𝑇0) =
𝜎2(𝑘𝑇0)

𝜇(𝑘𝑇0)
− 1, (2) 

where 𝑘 is the number of bunching (see later, Figs.1-(a) and 1-(b)). As a result, the variation 

of 𝑌 is measured with respect to counting gate width 𝑇 = 𝑘𝑇0. After that, the prompt 

neutron decay constant 𝛼 can be obtained by fitting the following practical formula to 

measured 𝑌 values: 

𝑌(𝑇) ≈ 𝑌∞ (1 −
1 − exp(−𝛼𝑇)

𝛼𝑇
) + 𝐴 𝑇 + 𝐵, (3) 

where 𝑌∞ is the saturation value which is inversely proportional to 𝛼2, and 𝐴 and 𝐵 are 

supplemental fitting coefficients to correct the delayed neutron and the dead-time effects, 

respectively [9]. 

Now, let us consider the statistical errors of 𝑌 value and prompt neutron decay 

constant 𝛼. One of the difficulties lies in a fact that the statistical distribution of 𝑌 value is 

theoretically unknown. Furthermore, the fitting error of 𝛼 does not necessarily correspond to 
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the statistical error of 𝛼 even if the statistical distribution of 𝑌 is approximated as the 

Gaussian distribution, since it is difficult to estimate true covariance, or experimental 

uncertainty and correlation, of 𝑌 among different gate widths. A simple alternative solution 

is multiple measurements of 𝑌 and 𝛼, thereby the statistical errors can be estimated by 

standard errors of them. Note, however, that it inevitably requires longer measurement time 

for multiple measurements. 

In the present study, the bootstrap method [2] is applied to estimate the statistical 

errors of 𝑌 and 𝛼 for a single measurement. The bootstrap method is one of the resampling 

techniques. In the bootstrap method, a histogram of original neutron count data is utilized as 

an experimentally-based probability distribution in the resampling to evaluate the statistical 

errors of Y and 𝛼. Detail procedures are described as follows: 

1. Original time-series data of neutron counts 𝐶𝑖(𝑇0) are provided by a single measurement 

of reactor noise. This histogram of neutron count data is utilized as a probability 

distribution in the bootstrap resampling procedure. 

2. Set 𝑘 be an arbitrary number of bunching. Note that 1 ≤ 𝑘 < 𝑁. 

3. The “resampling position 𝑟” is determined as 𝑟 = 𝜉, where 𝜉 means a uniform random 

integer number 𝜉 ∈ [1, (𝑁 − 𝑘 + 1)]. Then, neutron count 𝐶∗(𝑘𝑇0)  is resampled by 

bunching the successive count data as follows: 

𝐶∗(𝑘𝑇0) = ∑ 𝐶𝑖(𝑇0)

𝑟+𝑘−1

𝑖=𝑟

. (4) 

4. By repeating 𝐾(= ⌊𝑁/𝑘⌋)  times of random-resampling described in step 3, then 

“bootstrap sample” of count data is newly generated as follows: 

𝐶∗(𝑘𝑇0) ≡ {𝐶1
∗(𝑘𝑇0), 𝐶2

∗(𝑘𝑇0), ⋯ , 𝐶𝐾
∗ (𝑘𝑇0)}. (5) 

5. Using Eq. (2) for 𝐶∗(𝑘𝑇0), “bootstrap replicate 𝑌∗(𝑘𝑇0)” is evaluated for the bunching 

gate width 𝑘𝑇0. 

6. Repeat steps 2 through 5 by varying 𝑘 to obtain the variation of 𝑌∗ with respect to 

counting gate width. 
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7. In order to estimate standard deviation of the bootstrap replicate 𝑌∗, repeat steps 2 through 

6 several times. Consequently, many number of bootstrap replicates 𝑌∗𝑏 are obtained for 

𝑏 = 1,2, ⋯ , 𝐵. Here, 𝐵 is the number of bootstrap replicates. To estimate the bootstrap 

confidence interval, 𝐵 is typically set to 𝐵 ≈ 103. 

8. Using dataset of 𝑌∗𝑏 in step 7, standard deviation of 𝑌∗ (denoted as 𝜎𝑌∗) is calculated 

for each counting gate width 𝑘𝑇0: 

𝜎𝑌∗(𝑘𝑇0) = √
1

𝐵 − 1
∑ (𝑌∗𝑏(𝑘𝑇0) −

1

𝐵
∑ 𝑌∗𝑏′

(𝑘𝑇0)

𝐵

𝑏′=1

)

2𝐵

𝑏=1

 . (6) 

Figure 1-(c) shows an example of the bootstrap method to estimate the bootstrap standard 

deviation 𝜎𝑌∗(3𝑇0) as the statistical error for 𝑌(3𝑇0). As will be discussed later in 

Section 3.3, estimated 𝜎𝑌∗ is a good approximation of the statistical error of 𝑌 for a 

single measurement. 

9. Using an inverse of the estimated 𝜎𝑌∗, i.e. 1 𝜎𝑌∗⁄ , as the weight in the least square fitting 

process, the prompt neutron decay constant 𝛼∗𝑏 is evaluated by fitting Eq. (3) to each of 

𝑌∗𝑏. Here, it is important to take account of the weight 1 𝜎𝑌∗⁄ , since the statistical error of 

𝑌 differs depending on the counting gate width 𝑘𝑇0. Consequently, bootstrap replicates 

𝛼∗𝑏 are obtained for 𝑏 = 1,2, ⋯ , 𝐵. 

10. As the result of step 9, a frequency distribution of 𝛼∗ is obtained. Based on this 

“bootstrap frequency distribution”, the statistical error of 𝛼 can be estimated as the 

standard deviation and the confidence interval. Namely, the “bootstrap standard deviation 

𝜎𝛼∗” is estimated as follows: 

𝜎𝛼∗ = √
1

𝐵 − 1
∑ (𝛼∗𝑏 −

1

𝐵
∑ 𝛼∗𝑏′

𝐵

𝑏′=1

)

2𝐵

𝑏=1

 . (7) 

In the present paper, the “bootstrap confidence interval 𝐶𝐼𝛼∗” is simply estimated by the 

percentile method. Firstly, the 𝐵 bootstrap replicates 𝛼∗𝑏 are sorted in ascending order. 

Let 𝑝 be a positive real number within the range of 0 < 𝑝 < 1. Then the 𝑝𝐵th smallest 
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values in the sorted 𝛼∗𝑏 are denoted as 𝛼∗(𝑝𝐵). Finally, in the case of 95% confidence 

interval level, the lower and upper limits of 𝐶𝐼𝛼∗  are estimated as 𝛼∗(0.025𝐵)  and 

𝛼∗(0.975𝐵), respectively. It is noted that, if the value of 𝑝𝐵 is not integer, 𝛼∗(𝑝𝐵)  is 

numerically calculated by the linear interpolation of two adjacent neighboring points in the 

sorted 𝛼∗𝑏. 

 

<Figure 1> 

 

3. Validation 

3.1. Experimental Procedure 

At the KUCA [3,4,10], the reactor noise experiments were carried out in the A-core 

(A3/8”p36EU-NU) shown in Fig. 2. Configuration of fuel assembly is shown in Fig. 3. The 

detail information about size and nuclide density is reported in the reference [10]. The 

core-average 235U enrichment was 5.4wt%. The moderation ratio of H/235U is approximately 

270. As shown in Fig. 2, four 3He detectors (#1~#4) were placed at the axially center positions 

of excore reflector assemblies, which have holes of 3cm in diameter to insert detectors. Using 

these detectors, the time-series data of neutron counts were successively measured. The 

measurement core was just shutdown state, i.e. all safety and control rods were fully inserted, 

and 3×3 assemblies were withdrawn as shown in Fig. 2. It is noted that the reactor noise was 

measured without any external neutron source (e.g. Am-Be or Cf source), namely, using only 

inherent neutron source which mainly consists of spontaneous fission of 238U and (𝛼,n) 

reactions of 27Al due to 𝛼-decay of uranium isotopes [11]. Neutron counts rate of each 

detector is about 5 [count/sec] and detector dead-time is about or less than 10 [μsec], thus the 

dead-time effect is negligibly small.  

In order to measure the reference values of 𝑌 and prompt neutron decay constant 𝛼, 

93 times of reactor noise measurements were performed. In each of reactor noise 
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measurement, the measurement time (length of time-series data) was 10 minutes and 𝑇0 =

10−4  [sec]. Using the conventional bunching method [8], the variation of 𝑌  was 

individually evaluated for each measurement, after that the corresponding 𝛼 value was also 

estimated by fitting Eq. (3). Namely, 𝑌𝑚(𝑘𝑇0) and 𝛼𝑚  are obtained for 1 ≤  𝑚 ≤  93, 

where 𝑚 indicates the trial number. Using 93 sets of 𝑌𝑚(𝑘𝑇0) and 𝛼𝑚, their sample mean 

and standard deviation, i.e. square root of unbiased variance, of 𝑌 and 𝛼 were calculated: 

𝑌̅(𝑘𝑇0) =
1

93
∑ 𝑌𝑚(𝑘𝑇0)

93

𝑚=1

, (8) 

𝜎𝑌,ref(𝑘𝑇0) = √
1

92
∑ (𝑌𝑚(𝑘𝑇0) − 𝑌̅(𝑘𝑇0))

2
93

𝑚=1

, (9) 

𝛼̅ =
1

93
∑ 𝛼𝑚

93

𝑚=1

, (10) 

𝜎𝛼,ref = √
1

92
∑ (𝛼𝑚 − 𝛼̅)2

93

𝑚=1

. (11) 

It is reasonable to regard these calculated values as the reference values of their mean and 

standard deviation, because the number of multiple measurements is sufficiently large. 

The bootstrap method was applied for each of single 10-minutes measurements. In the 

estimation of statistical errors of 𝑌∗ and 𝛼∗, the number of bootstrap replicates was set to 

𝐵 = 1000. In order to check the effectiveness of bootstrap method, following values were 

evaluated for each of 10-minutes measurements: (1) standard deviation of 𝑌∗ (denoted as 

𝜎𝑌∗,𝑚), and (2) standard deviation of 𝛼∗ (denoted as 𝜎𝛼∗,𝑚) and 95% confidence interval of 

𝛼∗ (denoted as 𝐶𝐼𝛼∗,𝑚), where 𝑚 is the trial number (1 ≤  𝑚 ≤  93). These values of 𝜎𝑌∗,𝑚, 

𝜎𝛼∗,𝑚, and 𝐶𝐼𝛼∗,𝑚 were calculated using only 𝑚th trial of single 10-minutes measurement. 

 

<Figure 2> 

<Figure 3> 
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3.2. Numerical Analysis 

Prompt neutron decay constant 𝛼 in the fundamental mode is expressed as  

𝛼 ≈
𝛽 − 𝜌

Λ
, (12) 

−𝜌 ≈
1 − 𝑘eff

𝑘eff
, (13) 

where – 𝜌 means the subcriticality, 𝑘eff the effective neutron multiplication factor, 𝛽 the 

effective delayed neutron fraction, and Λ the neutron generation time. Based on the Eq. (12), 

measured 𝛼 value can be converted to the subcriticality – 𝜌. In order to evaluate 𝛽 and Λ 

in this experimental core, numerical analysis was performed by the continuous energy Monte 

Carlo code MCNP6.1 [12] with the JENDL-4 library [13]. The number of history per cycle is 

40000, and total number of cycle is 4100 where the number of skip cycle is 100. 

Furthermore, the uncertainty quantification of 𝑘eff  due to the nuclear data, or 

covariance of evaluated cross-section data, was conducted by the 

SCALE6.1.3/TSUNAMI-3D with the use of the covariance data (44groupcov) [14].  

 

3.3. Results and Discussion 

The numerical results of 𝛽 and Λ are 𝛽 = 0.00751 ± 0.00024, and Λ = 41.97 ±

 0.16 [𝜇sec], respectively. The effective neutron multiplication factor 𝑘eff is evaluated as 

0.94100 ± 0.00012, i.e. the subcriticality is 6.270 ± 0.014 [%Δ𝑘/𝑘]. It is noted that these 

statistical errors are 2σ. Based on the numerical results of TSUNAMI-3D, the uncertainty of 

𝑘eff due to the nuclear data is 0.6474 ± 0.0001 [%Δ𝑘/𝑘]. Although there are differences 

between MCNP6.1 and TSUNAMI-3D, the uncertainty of subcriticality due to the nuclear 

data is estimated to be about 600 [pcm]. 

As an example, the experimental results of 3He detector #2 are shown and discussed. 

The reference mean and standard deviation of 𝛼 are estimated as 𝛼̅ = 1753 [1/sec] and 

𝜎𝛼,ref = 299 [1/sec], respectively. In order to evaluate the statistical error for the reference 

sample mean 𝛼̅, the central limit theorem was employed. According to the central limit 
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theorem, the 95% confidence interval of the mean is estimated as ranging between 1693 and 

1814 [1/sec], i.e. the Standard Error of the Mean (SEM) of 𝛼 is 𝜎𝛼,ref √93⁄ = 31.0 [1/sec]. 

Using Eq. (12), the measurement value of subcriticality is estimated as 6.61 ± 0.26 [%Δ𝑘/𝑘], 

where the propagated error is 2σ. There is a bias of about 0.3 [%Δ𝑘/𝑘] = 300 [pcm] 

between the experimental and numerical results. Considering the statistical error of 

measurement and the numerical uncertainty due to the nuclear data, it is confirmed that the 

measured subcriticality agrees well with the numerical results. 

Before discussing results of 𝛼 , the bootstrap standard deviation 𝜎𝑌∗,𝑚  is firstly 

investigated and compared with the reference standard deviation 𝜎𝑌,ref, in order to check 

whether the each trial of 𝜎𝑌∗,𝑚 can be utilized as the order estimation for the reference 

standard deviation 𝜎𝑌,ref. Figure 4 shows the variation of standard deviation of 𝑌 with 

respect to the counting gate width 𝑇. In Fig. 4, black circles indicate reference value 𝜎𝑌,ref, 

and other plots show representative examples of 𝜎𝑌∗,𝑚 obtained from different 10-minutes 

measurements, e.g. “bootstrap trial-30” means results of 𝜎𝑌∗,30 which is obtained by Eq. (6) 

for 30th trial of 10-minutes measurement (𝑚 = 30). As the counting gate width increases, the 

statistical error of 𝑌 tends to become larger, because the number of count data decreases 

inversely proportional to the number of bunching. As shown in Fig. 4, it is confirmed that 

each trial of bootstrap standard deviation 𝜎𝑌∗,𝑚 is nearly equal to the reference value 𝜎𝑌,ref. 

It is noted that 𝜎𝑌∗,𝑚 fluctuates statistically between trials, because the neutron count rate is 

low in the 10 minutes measurement time. In order to check the statistical fluctuation of 𝜎𝑌∗,𝑚, 

Fig. 5 shows the two-sided 95 percentile interval of 𝜎𝑌∗,𝑚, which is calculated using 93 sets 

of 𝜎𝑌∗,𝑚. As shown in Fig. 5, even after taking into consideration of the statistical fluctuation, 

it is confirmed that 𝜎𝑌∗,𝑚 is same order as the reference value 𝜎𝑌,ref. Thus, it is reasonable to 

utilize each trial of 𝜎𝑌∗,𝑚 instead of 𝜎𝑌,ref in the least square fitting process (see step 9 in 

the bootstrap procedures, as described in Section 2). 

 



 12 

<Figure 4> 

<Figure 5> 

 

Next, Fig. 6 shows an example of the bootstrap distribution of 𝛼∗ for a single 

10-minutes measurement (48th trial, 𝑚 = 48). As shown in Fig. 6, the bootstrap distribution 

of 𝛼∗ is slightly skew. Based on the bootstrap distribution of 𝛼∗ such as Fig. 6, the standard 

deviation and the confidence interval can be estimated. For example, in the case of 48th trial, 

the bootstrap standard deviation 𝜎𝛼∗,48 is estimated as 275 [1/sec] by Eq. (7). And, using the 

percentile method, the 95% bootstrap confidence interval 𝐶𝐼𝛼∗,48 is simply estimated as 

(1164, 2253) [1/sec], as shown in Fig. 6. As in the case of 𝜎𝑌∗,𝑚, each trial of 𝜎𝛼∗,𝑚 also 

fluctuates statistically, and the sample mean and the standard deviation of 𝜎𝛼∗,𝑚 are about 

230 and 50 [1/sec], respectively. As a result, it is confirmed that the bootstrap standard 

deviation 𝜎𝛼∗,𝑚  is same order as the reference value  𝜎𝛼,ref . Furthermore, in order to 

quantify the coverage probability of the 95% bootstrap confidence interval 𝐶𝐼𝛼∗,𝑚, Fig. 7 

summarizes 𝐶𝐼𝛼∗,𝑚 for each of 10-minute measurements. In Fig. 7, the straight line shows the 

reference value 𝛼̅, the gray error bar (marked circle) indicates that 𝐶𝐼𝛼∗,𝑚 contains 𝛼̅, and 

the black error bar (marked ×) indicates that 𝛼̅ exists out of the 𝐶𝐼𝛼∗,𝑚. In order to quantify 

the statistical error of subcriticality by Eq. (12), right vertical axis indicates the corresponding 

subcriticality value, which is estimated using the numerical results of 𝛽 and Λ. As shown in 

Fig. 7, the reference value 𝛼̅ is within the error bar, i.e. the bootstrap confidence interval 

𝐶𝐼𝛼∗,𝑚, in most cases. The coverage probability of bootstrap confidence interval 𝐶𝐼𝛼∗,𝑚 is 

estimated as 81/93 ≈ 87% and the probability is comparatively close to 95%. It is noted 

that 𝐶𝐼𝛼∗,𝑚 tends to slightly underestimate the coverage probability in the present technique, 

thus the improvement of method for estimating 𝐶𝐼𝛼∗,𝑚 is one of the future subjects. For 

example, the coverage probability of 𝐶𝐼𝛼∗,𝑚 can be improved by other complicated method 

(e.g. the BCa method [15,16]). 
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In conclusion, it is confirmed that the bootstrap standard deviation 𝜎𝛼∗,𝑚 and the 

bootstrap confidence interval 𝐶𝐼𝛼∗,𝑚 can be utilized as approximately good measures of the 

statistical error of 𝛼. 

 

<Figure 6> 

<Figure 7> 

 

4. Conclusion 

In the present paper, based on the bootstrap method, the statistical error of the 

Feynman-α method for a single reactor noise measurement was investigated. The bootstrap 

method is one of the resampling techniques and a histogram of original neutron count data is 

utilized as an experimentally-based probability distribution in the resampling to evaluate the 

statistical errors of of 𝑌 and 𝛼. As a result, it was confirmed that the bootstrap method is a 

simple and powerful method to approximately estimate the statistical errors of 𝑌 and 𝛼, 

without multiple measurements of reactor noise. As described in Sec. 3, the bootstrap method 

enables the order-of-magnitude estimate of these statistical errors in 1 significant figure from 

a single measurement of 10 [min], where the neutron count rate was about 5 [count/sec] with 

only inherent neutron source by spontaneous fission and (𝛼,n) reactions in nuclear fuels. In 

the present technique, it is noted that the bootstrap confidence interval tends to slightly 

underestimate the coverage probability, thus the improvement of method for estimating the 

bootstrap confidence interval is one of the future subjects. 

We applied our proposed technique to the experimental results of reactor noise. Our 

proposed technique is also applicable to the numerical simulation of reactor noise by the 

Monte Carlo code such as MCNP-DSP [17] and MVP [18]. 

  



 14 

References 

[1] Feynman RP, de Hoffmann F, Serber R. Dispersion of the neutron emission in U-235 

fission. J Nucl Eng. 1956;3:64-69. 

[2] Efron B. Bootstrap methods: Another look at the Jackknife. Ann Stat. 1979;7:1-26. 

[3] Misawa T, Unesaki H, Pyeon CH. Nuclear Reactor Physics Experiments. Japan: Kyoto 

University Press, 2010. 

[4] Pyeon CH, Hervault M, Misawa T, Unesaki H, Iwasaki T, Shiroya S. Static and kinetic 

experiments on accelerator-driven system with 14MeV neutrons in Kyoto University 

Critical Assembly. J Nucl Sci Technol. 2008;45:1171-1182. 

[5] Soule R, Assal W, Chaussonnet P, Destouches C, Domergue C, Jammes C, Laurens JM, 

Lebrat JF, Mellier F, Perret G, Rimpault G, Serviere H, Imel G, Thomas GM, Villamarin 

D, Gonzalez-Romero E, Plaschy M, Chawla R, Kloosterman JL, Rugama Y, Billebaud A, 

Brissot R, Heuer D, Kerveno M, Le Brun C, Liatard E, Loiseaux JM, Méplan O, Merle E, 

Perdu F, Vollaire J, Baeten P. Neutronic studies in support of accelerator-driven systems: 

The MUSE experiments in the MASURCA facility. Nucl Sci Eng. 2004;148:124- 152. 

[6] Lebrat JF, Aliberti G, D’Angelo A, Billebaud A, Brissot R, Brockmann H, Carta M, 

Destouches C, Gabrielli F, Gonzalez E, Hogenbirk A, Klein-Meulenkamp R, Le Brun C, 

Liatard E, Mellier F, Messaoudi N, Peluso V, Plaschy M, Thomas M, Villamarín D, 

Vollaire J. Global results from deterministic and stochastic analysis of the MUSE-4 

experiments on the neutronics of the accelerator-driven systems. Nucl Sci Eng. 

2008;158:49-67.  

[7] Gunji S, Yoshioka K, Kumanomido H, Hayashi Y. Experimental study for subcriticality 

measurement of fuel debris in the Fukushima Daiichi reactor. Proc. ICNC2015; 2015 Sep 

13-17; Charlotte (USA). 

[8] Misawa T, Shiroya S, Kanda K. Measurement of prompt neutron decay constant and large 

subcriticality by the Feynman-𝛼 method. Nucl Sci Eng. 1990;104:53-65. 



 15 

[9] Hashimoto K, Ohya K, Y. Yamane Y. Experimental investigations of dead-time effect on 

Feynman- Method. Ann Nucl Energy. 1996;23:1099-1104. 

[10] Christensen J, Tonoike K, Bess JD, Unesaki H. Evaluation of the Kyoto University 

Critical Assembly erbium oxide experiments: NEA; 2012, ICSBEP, 

NEA/NSC/DOC/(95)03/IV, Volume IV, LEU-MET-THERM-005. 

[11] Shiozawa T, Endo T, Yamamoto A, Pyeon CH, Yagi T. Investigation on subcriticality 

measurement using inherent neutron source in nuclear fuel. Japan: Japan Atomic Energy 

Agency; 2015, JAEA-Conf 2014-003. 

[12] Goorley T, James M, Booth T, Brown F, Bull J, Cox LJ, Durkee J, Elson J, Fensin M, 

Forster RA, Hendricks J, Hughes HG, Johns R, Kiedrowski B, Martz R, Mashnik S, 

Mckinney G, Pelowitz D, Prael R, Sweezy J, Waters L, Wilcox T, Zukaitis T. Initial 

MCNP6 release overview -MCNP6 version 1.0. USA: Los Alamos National Laboratory; 

2013, LA-UR-13-22934. 

[13] Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, 

Furutaka K, Otuka N, Ohsawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, and 

Katakura J. JENDL-4.0: A new library for nuclear science and engineering. J Nucl Sci 

Technol. 2011;48:1-30. 

[14] Scale: A comprehensive modeling and simulation suite for nuclear safety analysis and 

design. USA: Oak Ridge National Laboratory; 2011, ORNL/TM-2005/39 Ver. 6.1. 

[15] Efron B. Better bootstrap confidence intervals. J Am Stat Assoc. 1987;82:171-185. 

[16] Endo T, Watanabe T, Yamamoto A. Confidence interval estimation by bootstrap method 

for uncertainty quantification using random sampling method. J Nucl Sci Technol. 

2015;52:993-999. 

[17] Valentine T.E, MCNP-DSP Users Manual. USA: Oak Ridge National Laboratory; 2001, 

ORNL/TM-13334, R2. 

[18] Nagaya Y, Okumura K, Mori T, Nakagawa M. MVP/GMVP II: General purpose monte 



 16 

carlo codes for neutron and photon transport calculations based on continuous energy and 

multigroup methods. Japan: Japan Atomic Energy Agency; 2005, JAERI-1348. 

  



 17 

 

Figure captions 

 

Figure 1. Example of bootstrap method for standard deviation of 𝑌. 

Figure 2. Top view of experimental core (A3/8”p36EU-NU). 

Figure 3. Description of A3/8”p36EU-NU fuel assembly. 

Figure 4. Variation of standard deviation of 𝑌 with respect to counting gate width 𝑇. 

Figure 5. Comparison of two-sided 95 percentile interval of bootstrap standard deviation 

𝜎𝑌∗,𝑚 with reference standard deviation 𝜎𝑌,ref. 

Figure 6. Example of bootstrap frequency distribution of 𝛼∗ (48th trial). 

Figure 7. 95% bootstrap confidence interval of 𝛼∗. 
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Figure 1. Example of bootstrap method for standard deviation of 𝑌. 

T. Endo: 

Statistical error estimation of the Feynman-α Method using the bootstrap Method 

  

(b) conventional bunching method 

(c) bootstrap method

(a) original time-series data 
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Figure 2. Top view of experimental core (A3/8”p36EU-NU). 

T. Endo:  

Statistical error estimation of the Feynman-α Method using the bootstrap Method 
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Figure 3. Description of A3/8”p36EU-NU fuel assembly. 

T. Endo:  

Statistical error estimation of the Feynman-α Method using the bootstrap Method 
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Figure 4. Variation of standard deviation of 𝑌 with respect to counting gate width 𝑇. 

T. Endo: 

Statistical error estimation of the Feynman-α Method using the bootstrap Method 
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Figure 5. Comparison of two-sided 95 percentile interval of bootstrap standard deviation 

𝜎𝑌∗,𝑚 with reference standard deviation 𝜎𝑌,ref. 

T. Endo: 

Statistical error estimation of the Feynman-α Method using the bootstrap Method 
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Figure 6. Example of bootstrap frequency distribution of 𝛼∗ (48th trial). 

T. Endo:  

Statistical error estimation of the Feynman-α Method using the bootstrap Method 
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Figure 7. 95% bootstrap confidence interval of 𝛼∗. 

T. Endo:  

Statistical error estimation of the Feynman-α Method using the bootstrap Method 
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