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Toward the practical use of the bias factor method for actual light water reactor core analyses, 

the bias factor method using the random sampling technique is newly proposed. The bias 

factor method is one of correction methods using information of 𝐸/𝐶 values in existing 

measurable systems, to reduce biases and uncertainties of predicted core characteristics 

parameters. By the aid of the random sampling technique, our proposed bias factor method 

can be carried out using only forward calculations without any adjoint calculations, and can 

easily take into account burnup and thermal-hydraulic feedback effects, which are difficult 

points in the practical application to actual core analyses. Although the statistical error due to 

the random sampling technique is inevitable in the proposed method, the statistical error can 

be simply quantified by the resampling technique such as the bootstrap method. As one of the 

feasibility studies, effectiveness of the proposed method is verified through a numerical 

experiment which virtually simulates a typical equilibrium pressurized water reactor core. In 
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this verification problem, it is clarified that 𝐸/𝐶 values of control rod worth at the beginning 

of cycle under the hot zero power condition are useful information to reduce biases and 

uncertainties of predicted assembly-wise power distributions during operation of hot full 

power. 

 

Keywords; bias factor method; random sampling; bootstrap method; bias; uncertainty; 

covariance; correlation; numerical analysis 



 3 

1. Introduction 

In the core design for an advanced reactor and the design of fuel loading pattern in an 

existing reactor, safety of nuclear reactor is ensured in advance by the core analysis, where 

core characteristics parameters (CCP) (e.g. excess reactivity, control rod worth (CRW), 

reactivity coefficients, and peaking factor) are numerically predicted. Thus, accuracy and 

precision of predicted CCPs are important to ensure the safety of designed reactor. 

Improvement of evaluated nuclear data (e.g. JENDL-4.0 [1,2] and ENDF/B-VII.1 [3]), 

numerical analysis methods (e.g. MOC assembly calculation [4] followed by the pin-by-pin 

core analysis [5]), and computer performance contribute to more accurate and precise 

prediction. Nevertheless, numerical results of core analysis have biases and uncertainties due 

to various factors: One of factors is the analytical modeling error (e.g. discretizing error in the 

deterministic code; and statistical error and insufficient modeling in the Monte Carlo code); 

and another factor is the uncertainty of input parameters (e.g. fabrication tolerance of density, 

nuclide composition, and size; and uncertainty of nuclear data). Among of these factors, the 

uncertainty of nuclear data (i.e. the covariance data of evaluated nuclear data library) could be 

a major factor. 

In order to reduce biases and uncertainties of predicted CCPs in the light water reactor 

(LWR) core analysis, authors proposed the cross-section adjustment technique on the basis of 

the random sampling (RS) technique [6,7]. Generally, a complicated two-step calculation 

scheme (e.g. lattice physics calculation followed by core calculation) is adapted in the recent 

LWR core analysis, thus the treatment of burnup and thermal-hydraulic feedback effects is 

one of the challenging issues in the practical application of the cross-section adjustment 

technique to the actual LWR core analysis. The use of the RS technique enables us to easily 

take into account the burnup and thermal-hydraulic feedback effects, compared with an 

adjoint-based approach [8,9]. In the case of cross-section adjustment technique, the input 

parameters of nuclear data are updated to reproduce measured CCPs in existing measurable 
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systems (e.g. criticality experimental facility, mockup core, and existing commercial reactor). 

As another approach to reduce biases and uncertainties of predicted CCPs, the bias factor 

method has been also investigated by many researchers [10-13]. In the case of bias factor 

method, the outputs of predicted CCPs in designed cores are corrected using the information 

of 𝐸/𝐶  values (i.e. the ratio of experimental results to calculation results) in existing 

measurable systems. Here, the 𝐸/𝐶 value is called as the “bias factor”, which represents the 

correction factor in the bias factor method. In comparison with the cross-section adjustment 

technique, the bias factor method is a correction technique for outputs, and does not require 

further recalculation of core analysis. However, the applicability of RS technique to the bias 

factor method is not fully investigated so far. 

In the present paper, we aim to propose the bias factor method using the RS technique. 

Features of our proposed method are briefly described as follows: 

1. Any adjoint calculations are not necessary. Existing core analysis code system can be used 

without major modification. 

2. Burnup and thermal-hydraulic feedback effects can be easily taken into account. 

3. Any number and kind of CCPs �⃗� (1) can be used for the information of 𝐸/𝐶 values in 

existing measurable systems. 

4. Any number and kind of CCPs �⃗� (2) in the designed cores can be corrected. Note that it 

requires strong correlations between �⃗� (2) and �⃗� (1) to effectively reduce uncertainties of 

corrected �⃗� (2), as discussed in Sec 3.  

5. Total calculation time depends only on the total number of random sampling and does not 

depend on number of input parameters and CCPs for correction. Here, the statistical error 

can be estimated by the resampling technique such as the bootstrap method [14-16]. 

 

The contents of the present paper are as follows: In section 2, methodology of the bias 

factor method using the RS technique are explained. Section 3 shows verification through a 
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virtual equilibrium core analysis for a typical four loop pressurized water reactor (PWR). 

Finally, concluding remarks are summarized in section 4. 

 

2. Methodology 

First of all, in order to derive the bias factor method using the RS technique, it is 

assumed that CCPs �⃗� exp
(1) = {𝑟exp,1

(1) , 𝑟exp,2
(1) ,⋯ , 𝑟exp,𝑛1

(1) }
𝑇

 are obtained in measurable systems, 

where �⃗� exp
(1)

 is a 𝑛1-dimensional column vector which consists of various kind of CCPs, i.e. 

total number of experimental results is 𝑛1. By numerical analysis for these experiments with 

an evaluated nuclear data, we can obtain the corresponding numerical results, denoted as 

�⃗� calc
(1)

. In addition, CCPs �⃗� calc
(2) = {𝑟calc,1

(2) , 𝑟calc,2
(2) , ⋯ , 𝑟calc,𝑛2

(2) }
𝑇

 in designed cores can be also 

calculated with the same nuclear data, where 𝑛2 means total number of calculation results in 

the design cores. 

Now, let us assume that a priori probabilities of �⃗� exp
(1)

 and �⃗� (2) are expressed by 

multivariate normal distributions 𝒩(�⃗� exp
(1) |�⃗� calc

(1) , 𝚺11)  and 𝒩(�⃗� (2)|�⃗� calc
(2) , 𝚺22) ; where 

𝒩(𝑥 |𝜇 , 𝚺) means a normal distribution with mean 𝜇  and covariance matrix 𝚺 for a random 

variable vector 𝑥 , and 𝚺𝑖𝑖  is a covariance matrix among �⃗� (𝑖) . Then, a conditional 

probability (or a posteriori probability) 𝑝(�⃗� (2)|�⃗� exp
(1) ) can be derived as a multivariate normal 

distribution 𝒩(�⃗� (2)|�⃗� 2|1
(2), 𝚺2|1) , where a posteriori mean �⃗� 2|1

(2)
 and covariance 𝚺2|1  are 

evaluated as follows [17]: 

�⃗� 2|1
(2) = �⃗� calc

(2) + 𝚺21𝚺11
−1(�⃗� exp

(1) − �⃗� calc
(1) ), (1) 

𝚺2|1 = 𝚺22 − 𝚺21𝚺11
−1𝚺12, (2) 

where 𝚺12  indicates covariance matrix between �⃗� exp
(1)

 and �⃗� (2) ; 𝚺21  is the transposed 

matrix of 𝚺12 , i.e. 𝚺21 = 𝚺12
𝑇 ; and 𝚺11

−1  means the inverse matrix of 𝚺11 . To further 

transform Eqs. (1) and (2), following uncertainties are assumed: 

1. Uncertainties of calculated results for �⃗� (1) and �⃗� (2) due to the covariance of evaluated 

nuclear data: 𝐕XS
(11)

, 𝐕XS
(22)

, and 𝐕XS
(12)

. 
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2. Experimental errors for �⃗� exp
(1)

: 𝐕exp
(11)

. 

3. Analytical modeling errors for �⃗� (1) and �⃗� (2): 𝐕model
(11)

, 𝐕model
(22)

, and 𝐕model
(12)

. 

Here, 𝐕(𝑖𝑗) indicates covariance matrix between �⃗� (𝑖) and �⃗� (𝑗); and it is assumed that there 

are no correlations among uncertainties due to nuclear data, experimental errors, and 

analytical modeling errors. Then, covariance matrices 𝚺11 , 𝚺22  and 𝚺12  can be 

decomposed into the following expressions: 

𝚺11 = 𝐕XS
(11)

+ 𝐕exp
(11)

+ 𝐕model
(11)

, (3) 

𝚺22 = 𝐕XS
(22)

+ 𝐕model
(22)

, (4) 

𝚺12 = 𝐕XS
(12)

+ 𝐕model
(12) . (5) 

By using the RS technique based on the covariance of nuclear data, 𝐕XS
(𝑖𝑗)

 is estimated as 

follows: 

𝐕XS
(𝑖𝑗)

≈ cov (�⃗� calc
(𝑖) , �⃗� calc

(𝑗)
) ≡

1

𝑁 − 1
∑(�⃗� calc,𝑘

(𝑖) − �⃗� ave
(𝑖) ) (�⃗� calc,𝑘

(𝑗)
− �⃗� ave

(𝑗)
)
𝑇

𝑁

𝑘=1

, (6) 

�⃗� ave
(𝑖) =

1

𝑁
∑�⃗� calc,𝑘

(𝑖)

𝑁

𝑘=1

, (7) 

where �⃗� calc,𝑘
(𝑖)

 is a vector of CCPs for 𝑘th sampled nuclear data, and 𝑁 is total number of 

random samples. Finally, by substituting Eqs. (3), (4), and (5) into Eqs. (1) and (2), theoretical 

formula for the bias factor method using the RS technique can be derived as follows: 

�⃗� 2|1
(2)

= �⃗� calc
(2)

+ 𝐊(�⃗� exp
(1)

− �⃗� calc
(1)

), (8) 

𝚺2|1 = cov(�⃗� calc
(2) , �⃗� calc

(2) ) + 𝐕model
(22)

− 𝐊(cov(�⃗� calc
(1) , �⃗� calc

(2) ) + 𝐕model
(12)

) , (9) 

𝐊 ≡ (cov(�⃗� calc
(2) , �⃗� calc

(1) ) + 𝐕model
(21) ) (cov(�⃗� calc

(1) , �⃗� calc
(1) ) + 𝐕exp

(11) + 𝐕model
(11) )

−1

. (10) 

Equations (8)-(10) are identical to the formulae which are utilized in the derivation process 

for the extended cross-section adjustment method [18]. Namely, our proposed bias factor 

method provides essentially the same results of �⃗� 2|1
(2)

 as the extended cross-section 

adjustment method. Using Eqs. (8)-(10), a priori predicted values of �⃗� calc
(2)

 can be updated to 

the corrected values of �⃗� 2|1
(2)

 with the reduced covariance matrices of 𝚺2|1.  

In order to clarify the relationship with 𝐸/𝐶 values of �⃗� (1) (denoted as 𝑓 (1)), let us 

transform Eq. (8) into Eq. (11): 
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𝑓 2|1 = 1⃗ 𝑛2
+ 𝐊′(𝑓 (1) − 1⃗ 𝑛1

), (11) 

𝑓 2|1 ≡ diag−1(�⃗� calc
(2) ) �⃗� 2|1

(2), (12) 

𝑓 (1) ≡ diag−1(�⃗� calc
(1) ) �⃗� exp

(1) = {𝑟exp,1
(1) 𝑟calc,1

(1)⁄ ,⋯ , 𝑟exp,𝑛1

(1) 𝑟calc,𝑛1

(1)⁄ }
𝑇

, (13) 

𝐊′ ≡ diag−1(�⃗� calc
(2) )𝐊 diag(�⃗� calc

(1) ), (14) 

diag(𝑥 ) ≡ [
𝑥1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑥𝑛

] , (15) 

diag−1(𝑥 ) ≡ [
1/𝑥1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1/𝑥𝑛

] , (16) 

where 𝑥 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}
𝑇, and 1⃗ 𝑛 is the 𝑛-dimensional column vector where all elements 

are unity, i.e. 1⃗ 𝑛 = {1, 1,⋯ ,1}𝑇. In Eq. (13), each element of 𝑓 (1) represents the “individual 

bias factor” for �⃗� calc
(1)

 [11,12]. In addition, 𝑓 2|1 means a vector of bias factors for �⃗� calc
(2)

, i.e. 

�⃗� calc
(2)

 is modified to �⃗� 2|1
(2)

 by multiplying the diagonal matrix diag(𝑓 2|1). As shown in Eq. 

(11), the bias factors 𝑓 2|1 can be acquired using the individual bias factors 𝑓 (1) with the 

matrix 𝐊′ which is related to the correlation between �⃗� (1) and �⃗� (2). 

 

The RS technique is based on the sampling technique, thus the statistical error is 

inevitable. However, analytical estimation of the statistical error is difficult, since the 

calculation procedures of �⃗� 2|1
(2)

 and 𝚺2|1 are complicated as shown in Eqs. (8)-(10). In order 

to easily estimate the statistical errors of �⃗� 2|1
(2)

 and 𝚺2|1, the bootstrap method can be utilized 

[14-16]. In the case of the uncertainty quantification using the RS technique, the estimation 

procedure and the verification of statistical error using the bootstrap method were previously 

reported by authors [16]. Detailed procedures in the bias factor method are described below: 

1. An original dataset of CCPs 𝑋 = {(�⃗� calc,1
(1) , �⃗� calc,1

(2) ),⋯ , (�⃗� calc,𝑁
(1) , �⃗� calc,𝑁

(2) )} is provided by 

the RS technique. Here, a pair (�⃗� calc,𝑘
(1) , �⃗� calc,𝑘

(2) ) is calculated on the basis of 𝑘th sampled 

nuclear data (1 ≤ 𝑘 ≤ 𝑁). 

2. By “random sampling with replacement” from the original dataset 𝑋 , a resample 

(so-called “bootstrap sample”) is newly generated as 𝑋∗ =
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{(�⃗� calc,1
(1)∗ , �⃗� calc,1

(2)∗ ),⋯ , (�⃗� calc,𝑁
(1)∗ , �⃗� calc,𝑁

(2)∗ )}, where the superscript * represents the bootstrap 

sample. Here, it is noted that “random sampling with replacement” is one of the technical 

terms in statistics, i.e. each element in the original data has an equal probability to be 

selected and it is permissible to be redundantly selected. Namely, each element 

(�⃗� calc,𝑟
(1)∗ , �⃗� calc,𝑟

(2)∗ ) is randomly selected from all elements of 𝑋, using an uniform random 

number within the range of [1, 𝑁]. In other words, 𝑟 is determined as 𝑟 = 𝜉, where 𝜉 

means a uniform random integer number (1 ≤ 𝜉 ≤ 𝑁). 

3. The bootstrap samples 𝑋∗𝑏 are repeatedly resampled (𝑏 = 1, 2,⋯ , 𝐵), where 𝐵 is the 

total number of bootstrap samples. 

4. For each bootstrap sample 𝑋∗𝑏 , the “bootstrap replicates” of �⃗� 2|1
(2)∗𝑏

 and 𝚺2|1
∗𝑏  are 

evaluated as follows: 

�⃗� 2|1
(2)∗𝑏 = �⃗� calc

(2) + 𝐊∗𝑏(�⃗� exp
(1) − �⃗� calc

(1) ), (17) 

𝚺2|1
∗𝑏 = cov(�⃗� calc

(2)∗𝑏 , �⃗� calc
(2)∗𝑏) + 𝐕model

(22)
− 𝐊∗𝑏 (cov(�⃗� calc

(1)∗𝑏 , �⃗� calc
(2)∗𝑏) + 𝐕model

(12)
), (18) 

𝐊∗𝑏 ≡ (cov(�⃗� calc
(2)∗𝑏 , �⃗� calc

(1)∗𝑏) + 𝐕model
(21) ) (cov(�⃗� calc

(1)∗𝑏 , �⃗� calc
(1)∗𝑏) + 𝐕exp

(11) + 𝐕model
(11) )

−1

. (19) 

Consequently, 𝐵 bootstrap replicates �⃗� 2|1
(2)∗1, ⋯ , �⃗� 2|1

(2)∗𝐵
 and 𝚺2|1

∗1 , ⋯ , 𝚺2|1
∗𝐵  are obtained 

to estimate statistical errors of �⃗� 2|1
(2)

 and 𝚺2|1. 

5. In the case of percentile method, the confidence intervals of �⃗� 2|1
(2)

 and 𝚺2|1 are simply 

estimated by percentile points for the 𝐵  bootstrap replicates �⃗� 2|1
(2)∗𝑏

 and 𝚺2|1
∗𝑏 . Or, 

statistical errors (1𝜎) of �⃗� 2|1
(2)

 and 𝚺2|1 are estimated as standard deviations for �⃗� 2|1
(2)∗𝑏

 

and 𝚺2|1
∗𝑏 . 

 

3. Verification 

3.1. Calculation Condition 

In the present study, our proposed bias factor method is verified by a virtual numerical 

experiment, which simulates a typical operation of PWR core under a realistic condition 

considering thermal hydraulics feedback and cycle burnup effects. In this numerical 
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experiment, virtual true values of CCPs of �⃗� (1) and �⃗� (2) are artificially produced using a 

core analysis code with a certain set of input parameters such as perturbed nuclear data. Then, 

virtual measurement values of �⃗� exp
(1)

 are also numerically simulated by adding experimental 

errors to the virtual true values of of �⃗� (1). By utilizing these virtual true and measurement 

values of CCPs, we investigate whether biases and uncertainties of target CCPs �⃗� (2)can be 

effectively reduced by the proposed bias factor methods. For this purpose, 

CASMO4/SIMULATE3 with L-library is used as an example of the licensing grade simulator 

for LWR core analysis [19,20]. Here, the L-library is a 70 energy group microscopic 

cross-section library for CASMO4. 

As the target of bias factor method, we focused on a typical four loop 17×17 PWR 

equilibrium core with the 15.9 GWd/t operating cycle. Figure 1 shows the core loading 

pattern, which satisfies octant core symmetry although the core analysis itself was carried out 

by full core calculation. Two types of fuel assemblies were loaded in the core: One consists of 

264 fuel rods of 4.8wt%-UO2 where the 235U enrichment is 4.8wt% (denoted as U), and 

another consists of 240 fuel rods of 4.8wt%-UO2 and 24 fuel rods of 10wt% Gadolinia 

bearing 3.2wt%-UO2 (denoted as Gd). In order to obtain the equilibrium core, burnup 

calculations for 9 successive cycles with the same loading pattern were carried out, followed 

by the burnup calculation for the target cycle 10. 

 

<Figure 1> 

 

In order to evaluate cov (�⃗� calc
(𝑖) , �⃗� calc

(𝑗)
) in Eqs. (8)-(10), the RS technique was applied 

to generate 200 perturbed L-libraries on the basis the covariance data in JENDL-4.0(u) [1,2]. 

In the present study, we used the covariance data of capture, fission, and elastic scattering (𝜎c, 

𝜎f, 𝜎s), and number of neutrons emitted per fission (�̅�) only for 18 heavy nuclides (234U, 235U, 

236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 242Am, 243Am, 242Cm, 243Cm, 244Cm, 
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245Cm, 246Cm), which are considered as major contributors for uncertainties of core 

characteristics in LWR analyses. Note that cross-section uncertainty of fission products and 

other nuclides are not taken into account since covariance data for many of these nuclides 

have not been evaluated. The detailed procedure of the RS technique has been already 

reported by authors [7,16]. By a sequence of depletion calculations for cycles 1 (initial core) 

through 10 (target core) with 𝑘th perturbed L-libraries, the corresponding CCPs �⃗� calc,𝑘
(𝑖)

 were 

evaluated. Namely depletion calculations for cycles 1-10 were carried out for 200 times. 

We aimed to reduce biases and uncertainties of CCPs at the cycle 10 under the hot full 

power (HFP) condition. Following CCPs, which correspond to �⃗� (2) in Eqs. (8)-(10), were 

the target of the bias factor method: 

1. HFP critical boron concentration (CBC) from the beginning of cycle (BOC) to the end of 

cycle (EOC), i.e. 0 through 15.9 GWd/t. 

2. HFP assembly-wise power distribution at the BOC, the middle of cycle (MOC) 7 GWd/t, 

and the EOC. 

In this verification problem, �⃗� (2) represents CCPs during HFP operation, which can be 

predicted by the core burnup calculation using CASMO4/SIMULATE3. In the present 

numerical experiment, numerical results �⃗� calc,𝑇
(2)

 obtained by another randomly sampled 

L-library (denoted as 𝑇th perturbed L-libraries) were regarded as the virtual true values of 

�⃗� (2). 

 

As measureable CCPs �⃗� (1) for the bias factor method, we assumed the following 2 

cases of CCPs at the BOC of cycle 10 under the hot zero power (HZP) condition: 

Case 1: Only HZP CBC. 

Case 2: HZP CBC, and HZP CRW at 10 positions in core as shown in Fig. 1. 

Namely, in this problem, �⃗� (1) corresponds to CCPs, which can be measured by zero power 

reactor physics experiments in an actual PWR. By the aid of 𝐸/𝐶 values of �⃗� (1), predicted 
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values of �⃗� (2) during operation were updated by the bias factor method. Here, measurement 

values of �⃗� exp
(1)

 were virtually generated by adding experimental errors to the virtual true 

values �⃗� calc,𝑇
(1)

. Here, it was assumed that the experimental errors of �⃗� (1) follow normal 

distributions with standard deviations of 0.1 ppm and 0.1 pcm for HZP CBC and HZP CRW, 

respectively. Note that there were no correlation among experimental errors of HZP CBC and 

HZP CRW. Namely, 𝐕exp
(11)

 is a diagonal matrix and all of non-diagonal elements, which 

correspond to covariance between different measurement values, are zero. Furthermore, in 

this verification problem, experimental values were virtually obtained by the same core 

analysis code, thus analytical modeling errors 𝐕model
(11)

, 𝐕model
(22)

, and 𝐕model
(12)

 were assumed to 

be zero. 

 

3.2. Results and discussion 

In this section, results of reduced biases and uncertainties by the bias factor method 

are shown and discussed. Here, the bias is defined as the difference between predicted and 

true values, i.e. �⃗� calc
(2) − �⃗� calc,𝑇

(2)
 or �⃗� 2|1

(2) − �⃗� calc,𝑇
(2)

;  and the uncertainty is defined as square 

root of diagonal element of 𝚺22 or 𝚺2|1, i.e. standard deviation (1𝜎). 

Table 1 shows results of HFP CBC. In the case of no correction, bias is largest at the 

BOC, and becomes to be smaller as the cycle burnup increases. In Case 1, biases and 

uncertainties near the BOC can be reduced, since the measurement value of HZP CBC were 

used in the bias factor method. However, the bias in Case 1 tends to be large with increase of 

the cycle burnup, although the bias falls within the range of uncertainty. On the other hand, 

Case 2 utilizes additional information of 𝐸/𝐶 values of HZP CRW, which strongly correlate 

to the assembly-wise power distribution. As discussed in the latter parts of this section, Case 2 

can improve the precision and accuracy of the HFP assembly-wise power distribution. The 

power distribution has significant impact on the burnup distribution, which is dominant factor 

for the criticality, or the CBC. Thus, biases and uncertainties in Case 2 can be further 
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improved over the whole cycle burnup. 

 

<Table 1> 

 

Next, as an example of HFP assembly-wise power distributions, biases and 

uncertainties at the BOC are shown in Fig. 2 and 3, respectively. As a summary, Table 2 

shows root-mean-square and maximum values of the biases and uncertainties. As shown in 

Table 2, regardless of with or without the bias factor method, biases and uncertainties of the 

HFP assembly-wise power tends to be smaller as the cycle burnup increases; thus let us focus 

on results at the BOC to discuss the effectiveness of the bias factor method. In the case of no 

correction, it is interesting to note that the biases and uncertainties of the HFP assembly-wise 

power tend to be small in an intermediate region between the center and the periphery of core. 

The perturbations due to uncertainty of nuclear data results in excitation of spatial higher 

modes of neutron flux. The present core loading pattern has octant symmetry, thereby the 

excitation of higher modes related to the azimuthal angle direction could be drastically 

suppressed. Namely, higher order modes related to the radial direction are more likely to be 

excited, as discussed in authors’ previous research [21]. Consequently, the symmetrical 

loading pattern of PWR results in “in-out” power tilt due to the covariance data of nuclear 

data. That is why the biases and uncertainties of HFP assembly-wise power distributions are 

small at the core intermediate region, which corresponds to nodal points (zero points) of the 

higher mode related to the radial direction. Although the bias factor method of Case 1 enables 

to improve the accuracy and precision of the HFP CBC near the BOC, the biases of HFP 

assembly-wise power of Case 1 get slightly worse and its uncertainties are nearly equal to 

those in the case of no correction. Namely, the information of 𝐸/𝐶 value of HZP CBC has a 

little contribution to the improvement of accuracy and precision of HFP assembly-wise power 

distribution. On the other hand, both biases and uncertainties of HFP assembly-wise power 
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are dramatically improved over the whole core by Case 2, where additional 10 measurements 

values of HZP CRW are utilized in the bias factor method. 

 

<Figure 2> 

<Figure 3> 

<Table 2> 

 

In order to discuss the reason why Case 2 is superior to Case 1, Fig. 4 shows 

correlation coefficients between �⃗� (1) (HZP CBC, and HZP CRW at the positions D1 and B 

as shown in Fig. 5) and �⃗� (2). In Fig. 4, “core characteristics parameter ID” (CCP ID) of the 

x-axis is an index for CCPs of �⃗� (2), and defined as follows: 

1-12: HFP CBC from the BOC to the EOC in ascending order. 

13-43: HFP assembly-wise power at the BOC from the center to the periphery in sequential 

order as shown in Fig. 5. 

44-74: HFP assembly-wise power at the MOC, in the same order as the BOC. 

75-105: HFP assembly-wise power at the EOC, in the same order as the BOC and the 

MOC. 

As shown in Fig. 4, HZP CBC has strong correlation to HFP CBC (i.e. the correlation 

coefficient ranges from 1.00 to 0.93) but relatively weak to HFP assembly-wise power 

distribution (i.e. the correlation coefficient varies within the range of ±0.6). Thus, Case 1 

cannot improve the accuracy and precision of HFP assembly-wise power distribution. On the 

other hand, HZP CRW values at D1 and B have strong correlation to the inner and the outer 

assembly-wise powers, respectively. Combination of various measured CCPs such as Case 2 

mutually compensate the strongly correlated CCPs of �⃗� (2) to cover the entire range of the 

CCP ID. Consequently, Case 2 can more effectively reduce the biases and uncertainties than 

Case 1. As discussed above, strongly correlated CCPs between experimental and calculation 



 14 

values are useful information to accurately predict CCPs in non-measurable system with small 

uncertainties. This knowledge is consistent to authors’ previous investigation about the 

uncertainty reduction method for CCPs of which measurement values are not obtained [22]. 

Although the present verification problem is one of feasibility studies which simulate a zero 

power reactor experiment in the actual PWR, the present study implies that the zero power 

reactor experiment is very useful to reduce biases and uncertainties of predicted CCPs during 

operation. 

 

<Figure 4> 

<Figure 5> 

 

Last, Fig. 6 shows bootstrap statistical errors of the bias factor method using the RS 

technique for Case 2. In Fig. 6, x-axis indicates the reduced uncertainty of �⃗� (2) (i.e. the 

square root of diagonal element of 𝚺2|1 ) for each of CCPs, and y-axis indicates the 

corresponding statistical errors of reduced biases and uncertainties. As shown in Fig. 6, in the 

case of 𝑁 = 200, the bootstrap statistical errors of reduced biases and uncertainties are 

approximately 1/6 and 1/25 of the reduced uncertainties, respectively. In this way, the 

statistical error of the RS technique can be quantified using the bootstrap method, which is 

useful information to determine the total number of random samples 𝑁 in our proposed bias 

factor method. 

 

<Figure 6> 

 

4. Conclusion 

In the present paper, the bias factor method using the RS technique was proposed to 

avoid troublesome adjoint calculations and to easily treat the burnup and thermal-hydraulic 
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feedback effects in the actual LWR core analysis. Although the statistical error inevitably 

occurs in the case of the RS technique, the statistical error can be quantified using the 

resampling technique such as the bootstrap method. Through the numerical experiment which 

virtually simulates a typical PWR core analysis, it is verified that the bias factor method with 

various measured CCPs can further improve the accuracy and precision of predicted CCPs in 

the designed core (or the non-measurable system). In addition, it is reconfirmed that CCPs, 

which have strong correlations between experimental and calculation values, make an 

important role in the bias factor method. In the case of present verification problem, HZP 

CRW at the BOC strongly correlates to HFP assembly-wise power during operation, 

depending on the position of control rod. Thus, 𝐸/𝐶 values of HZP CRW at the BOC are 

useful information to reduce biases and uncertainties of the predicted HFP assembly power 

distribution. 

For the practical application of our proposed method to an actual LWR core, one of 

future tasks is to establish how to evaluate the experimental errors 𝐕exp
(11)

 and the analytical 

modeling errors 𝐕model
(𝑖𝑗)

. Furthermore, in order to evaluate more reliable uncertainty 𝐕XS
(𝑖𝑗)

 due 

to evaluated nuclear data, it is also necessary to properly taken into account covariance data of 

the fission product and the fission yield.  
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Table and Figure captions 

 

Table 1. Biases and uncertainties (𝜎) of HFP CBC [ppm]. 

Table 2. Biases and uncertainties (𝜎) of HFP assembly-wise power distribution [%]. 

 

Figure 1. Core loading pattern of equilibrium core. 

Figure 2. Bias of HFP assembly-wise power [%] at BOC. 

Figure 3. Uncertainty of HFP assembly-wise power [%] at BOC. 

Figure 4. Correlation coefficients between �⃗� (1) and �⃗� (2). 

Figure 5. Sequential order of assembly-wise power for CCP ID. 

Figure 6. Bootstrap statistical errors of reduced biases and uncertainties for Case 2. 

  



 20 

 

 

 

burnup No correction Case 1 Case 2 

[GWd/t] bias 𝜎 bias 𝜎 bias 𝜎 

0.0 20.5 69.0  0.1  0.4  -0.2  0.3  

0.1 19.5 68.3  -0.7  1.4  -0.5  0.6  

0.5 18.9 68.4  -1.3  1.5  -0.7  0.6  

1.0 18.3 68.6  -1.9  2.5  -0.8  0.7  

3.0 15.9 69.7  -4.6  7.4  -1.4  1.3  

5.0 13.4 70.8  -7.2  11.7  -2.2  1.9  

7.0 11.4 71.6  -9.3  15.2  -3.0  2.4  

9.0 9.7 72.3  -10.9  18.1  -3.6  3.0  

11.0 7.9 72.8  -12.7  20.7  -4.7  3.7  

13.0 6.4 73.2  -14.1  23.0  -5.6  4.7  

15.0 5.0 73.5  -15.4  25.3  -6.5  5.6  

15.9 4.6 73.6  -15.7  26.3  -6.7  5.9  

 

Table 1. Biases and uncertainties (𝜎) of HFP CBC [ppm]. 

T. Endo: 

Bias Factor Method using Random Sampling Technique 
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(a) Root-mean-square 

 No correction Case 1 Case2 

 bias 𝜎 bias 𝜎 bias 𝜎 

BOC 0.8 1.5 0.9 1.5 0.1 0.1 

MOC 0.3 0.7 0.4 0.7 0.1 0.1 

EOC 0.1 0.5 0.2 0.5 0.1 0.1 

(b) Maximum of absolute value 

 No correction Case 1 Case2 

 bias 𝜎 bias 𝜎 bias 𝜎 

BOC 1.3 2.6 1.6 2.5 0.2 0.1 

MOC 0.5 1.3 0.6 1.3 0.2 0.2 

EOC 0.3 1.0 0.4 0.9 0.2 0.2 

 

Table 2. Biases and uncertainties (𝜎) of HFP assembly-wise power distribution [%]. 

T. Endo: 

Bias Factor Method using Random Sampling Technique 
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Figure 1.  Core loading pattern of equilibrium core. 

T. Endo: 

Bias Factor Method using Random Sampling Technique 
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Figure 2. Bias of HFP assembly-wise power [%] at BOC. 

T. Endo:  

Bias Factor Method using Random Sampling Technique 
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Figure 3. Uncertainty of HFP assembly-wise power [%] at BOC. 

T. Endo:  

Bias Factor Method using Random Sampling Technique 
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Figure 4. Correlation coefficients between �⃗� (1) and �⃗� (2). 

T. Endo:  

Bias Factor Method using Random Sampling Technique 
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Figure 5. Sequential order of assembly-wise power for CCP ID. 

T. Endo:  

Bias Factor Method using Random Sampling Technique 
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Figure 6. Bootstrap statistical errors of reduced biases and uncertainties for Case 2. 

T. Endo: 

Bias Factor Method using Random Sampling Technique 
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