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A new technique to reduce discretization errors for ray tracing in the method of characteristics 

(MOC) is proposed focusing on depletion calculations of single and multi assembly 

geometries. In order to efficiently carry out depletion calculations, a calculation scheme using 

the SPH method can be used. However, the discretization errors are caused by changes of 

neutron sources and total cross sections according to a depletion. This fact means that 

improvement of accuracy cannot be expected by the calculation scheme with the SPH method 

when changes of the above parameters are significant. In order to mitigate this problem, a 

new approach is developed. In the new approach, the discretization errors are reduced by 

minimizing a variance of a certain parameter which is composed of a ratio of neutron source 

to total cross section. The verification results suggest that accuracy is degraded by the SPH 

method as expected especially in a geometry where neutron sources and total cross sections 

are drastically changing through a depletion. On the other hand, the new approach gives more 

accurate results compared to the conventional MOC in all calculation cases. Consequently, 

improvement of calculation efficiency by the new approach is confirmed. 
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1. Introduction 

 In the method of characteristics (MOC) [1], ray tracing parameters, which represent 

azimuthal angle division, polar angle division and ray separation, are important from the 

viewpoints of computational burden and accuracy. Although faster calculation can be carried 

out with coarser ray tracing parameters, accuracy would be degraded due to discretization 

errors. In order to reduce the discretization errors, several techniques have been proposed in 

the previous studies [2]-[6]. These techniques focus on a certain type of ray tracing parameter, 

i.e. polar angle division or ray separation. As an alternate approach, in the other previous 

study, the superhomogenization (SPH) method [7] is used to reduce all types of the 

discretization errors for ray tracing [8]. 

 In this paper, a calculation scheme using the SPH method is considered as the first 

step of the present study. The SPH method is a kind of equivalence methods, by which a 

reference result can be reproduced with a coarse calculation condition, and is used to improve 

calculation efficiency in the previous studies [8]-[10]. Although the SPH method is originally 

a technique for reducing spatial homogenization errors, the SPH method can be used also for 

reducing discretization errors due to coarse ray tracing condition as described above. In 

general, the calculation procedure of the SPH method is as follows: 

 

Step 1: Calculation with a fine condition is carried out to obtain a reference result. 

Step 2: Calculation with a coarse condition using the SPH corrected cross sections (as 

shown in Equation (1)) is carried out: 

 igxig
SPH

igx ,,,,,   , (1) 

where 

igx ,, : cross section of reaction x, g-th energy group and i-th region, 
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ig , : the SPH factor of g-th energy group and i-th region. 

Step 3: The SPH factors are evaluated by Equation (2): 

 
coarse

ig

fine
ig

ig
,

,
, 


  , (2) 

where 

coarse
ig , : neutron flux of g-th energy group and i-th region with a coarse condition, 

fine
ig , : neutron flux of g-th energy group and i-th region with a fine condition. 

Step 4: Steps 2 and 3 are iterated until the SPH factors get convergent. 

 

 Calculations in Steps 1 and 2 of this procedure have to be performed by eigenvalue 

calculations to completely reproduce a reference results. In order to reduce the additional 

calculation time for these steps, in the present study, fixed source calculations are performed 

instead of eigenvalue calculations. 

As shown in the above procedures, additional calculations are necessary for the 

evaluation of the SPH factors. Especially, Step 1 would need huge computational time since 

calculation with a fine condition is performed. When the SPH factors are evaluated at all 

burnup steps, merit of the SPH method is cancelled out due to the additional calculations. 

Therefore, the SPH factors have to be evaluated only at a few burnup steps to improve 

calculation efficiency. The concept of the SPH method considered in the present study is 

illustrated in Figure 1. In the calculation procedure of Figure 1, the SPH factors are not 

prepared before a depletion calculation is begun. Therefore, additional calculations to evaluate 

the SPH factors are performed only at the first burnup step and at some burnup steps in which 

the discretization errors are predicted to be large. 

< Figure 1 > 

 

 If the discretization errors are reduced by this approach, calculation efficiency is 
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expected to be improved, because accurate results can be obtained without significant 

additional computational time for the application of the SPH method. As the first step of the 

present study, the applicability of the SPH method to depletion calculations based on the 

above procedure is investigated. Then, as the next step, a new technique which is more 

suitable for depletion calculations is proposed by using a similar procedure with Figure 1. The 

purpose of the present study is to improve calculation efficiency of lattice calculations 

involving single and multi assemblies. 

 In section 2, equations for the discretization errors in the conventional MOC and the 

SPH method are derived to analyze causes of the errors. By using ideas in these derivations, a 

new approach is proposed to reduce the discretization errors. The derivation of the new 

approach is also shown in section 2. Some verifications through single and multi assembly 

calculations are carried out in section 3. Finally the conclusion of the present paper is 

summarized in section 4. 

 

2. Derivation of equations for the discretization errors 

2.1. Discretization errors in the conventional MOC 

In this section, the equation for the discretization errors in the conventional MOC is 

derived to grasp how the discretization errors are caused. When the isotropic scattering is 

assumed and a discretization error of polar angle is eliminated, MOC is equivalent to the 

collision probability method. Although collision probabilities are not explicitly treated in 

ordinary MOC calculations, neutron balance equations using collision probabilities can be 

written as follows: 

 
i

i
n
ig

ncoarse
ijgj
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n
jgt VQPV )(

,
)(
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,,  , (3) 
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where 

)(
,,

n
jgt : total cross section of n-th burnup step, g-th energy group and j-th region, 

jV : region volume of j-th region, 

)(
,
n
igQ : neutron source of n-th burnup step, g-th energy group and i-th region, 

)(
,

ncoarse
jg : neutron flux of n-th burnup step, g-th energy group and j-th region with a coarse 

condition, 

)(
,

nfine
jg : neutron flux of n-th burnup step, g-th energy group and j-th region with a fine 

condition, 

)(
,

ncoarse
ijgP : collision probability of n-th burnup step, g-th energy group from i-th region to j-th 

region calculated with a coarse condition, 

)(
,

nfine
ijgP : collision probability of n-th burnup step, g-th energy group from i-th region to j-th 

region calculated with a fine condition. 

 

It should be noted that neutron sources and cross sections obtained with a coarse 

condition are actually different from those obtained with a fine condition due to the 

discretization errors in the previous burnup steps (propagation of the discretization errors 

during burnup). However, in this study, those differences are ignored for simplicity. In other 

words, the discretization errors are assumed to be directly caused in collision probabilities, 

and as a result of a transport sweep, those errors have effects only on neutron fluxes. From 

Equations (3) and (4), the discretization errors of neutron fluxes can be written as the 

following equation: 

   
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2.2.Discretization errors in the SPH method 

The calculation procedure of the SPH method is described in section 1. As mentioned 
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in Section1, fixed source calculations are performed in Steps 1 and 2 of this procedure instead 

of eigenvalue calculations to reduce the additional calculation time for these steps. The 

neutron sources for the fixed source calculations are evaluated by one transport sweep with a 

coarse condition. If the transport sweep for the evaluation of neutron sources is iterated twice 

or more, better neutron sources would be obtained. However, we confirmed that one transport 

sweep with acceleration such as GCMR [11][12] gives appropriate neutron sources especially 

in single assembly calculations. It should be noted that this calculation scheme would not 

completely reproduce a reference result especially in large geometries because neutron 

sources used for the calculations of the SPH factors are not completely convergent and are not 

evaluated with a fine condition. 

The equation for the discretization errors in the SPH method is discussed through the 

similar derivation in the previous sub-section. When the SPH factors are evaluated at m-th 

burnup step, the neutron balance equation at n-th burnup step can be written as Equation (6): 

 
i
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ijgj
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n
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m
jg VQPV )(

,
)]([
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,  , (6) 

where 

][
,
m

jg : the SPH factor of g-th energy group and j-th region evaluated at m-th burnup step, 

)(],[
,

nmSPH
jg : neutron flux of n-th burnup step, g-th energy group and j-th region with the SPH 

factors evaluated at m-th burnup step, 

)(],[
,

nmSPH
ijgP : collision probability of n-th burnup step, g-th energy group from i-th region to j-th 

region with the SPH factors evaluated at m-th burnup step. 

 

From Equations (4) and (6), the discretization errors of neutron fluxes for the SPH 

method can be written as the following equation: 
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In order to analyze the meaning of Equation (7), the right hand side of Equation (7) is 

separated into three parts as shown in Equation (8): 
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From the reproducibility of the SPH method, reaction rates at m-th burnup step 

obtained by the SPH method become equivalent to those obtained with a fine condition. 

Therefore, Equation (9), which describes the equivalence of reaction rates, is satisfied: 

  
i

i
m
ig

mfine
ijg

i
i

m
ig

mmSPH
ijg VQPVQP )(

,
)(

,
)(

,
)(],[

, . (9) 

 

By using Equation (9), the first term of the right hand side of Equation (8) can be 

eliminated and Equation (8) can be transformed into the following equation: 
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By using the following definitions shown in Equations (11) and (12), Equation (10) 

can be rewritten as Equation (13): 
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 

 













i
i

m
ig

nmfine
ijg

nmmSPH
ijg

j
n

jgt

i
i

nm
ig

nfine
ijg

nmSPH
ijg

j
n

jgt

nfine
jg

nmSPH
jg

m
jg

VQPP
V

VQPP
V

)(
,

),(
,

),(],[
,)(

,,

),(
,

)(
,

)(],[
,)(

,,

)(
,

)(],[
,

][
,

1

1

. (13) 

 

The first term of the right hand side of Equation (13) depends on changes of neutron 

sources. And the second term of the right hand side comes from changes of total cross 

sections since changes of collision probabilities through a depletion is caused by only changes 

of total cross sections. Therefore, Equation (13) indicates that the discretization errors in the 

SPH method is caused by the changes of neutron sources and total cross sections. From this 

reason, in the SPH method, calculation accuracy would be degraded when neutron sources 

and total cross sections are drastically changing during a depletion calculation. Furthermore, a 

criterion for an update of the SPH factors is difficult to determine, since the changes of two 

parameters have effects on the discretization errors. 

 

2.3.Derivation of a new approach and its discretization errors 

As described in the previous sub-section, changes of neutron sources and total cross 

sections have effects on the discretization errors in the SPH method. In this section, a 

different approach, which can reduce the discretization errors due to changes of neutron 

sources, is proposed. 

As the first step of the derivation, Equation (5), which describes the discretization 

error in the conventional MOC, is transformed into Equation (14) through the similar 

derivation in the previous sub-section: 
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Equation (14) can be rewritten as Equation (15) by using the definition of Equation 

(16): 
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where 

)(
,
m
jgF : difference of fine and coarse neutron fluxes evaluated at m-th burnup step, g-th energy 

group and j-th region. 

 

The first term of the right hand side of Equation (15) is composed of )(
,
m
jgF , which 

represents a difference of fine and coarse neutron fluxes at m-th burnup step, and a ratio of 

total cross sections. This term can be interpreted as an approximated difference of neutron 

flux at n-th burnup step projected with that of m-th burnup step, if each neutron flux is 

assumed to be inversely proportional to total cross section. Therefore, a corrected neutron flux 

newly proposed as Equation (17) is expected be closer to the fine neutron flux compared to 

the original coarse neutron flux: 
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)(],[
,

nmcorrected
jg : neutron flux of n-th burnup step, g-th energy group and j-th region corrected by 

the difference of fine and coarse neutron fluxes evaluated at m-th burnup step. 

 

By using the corrected neutron flux shown in Equation (17), Equation (18) can be 

derived from Equation (15): 
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Two terms in the right hand side of Equation (18) correspond to the discretization 

errors when the corrected neutron fluxes shown in Equation (17) is applied. The corrected 

neutron fluxes are based on the differences of fine and coarse neutron fluxes evaluated at m-th 

burnup step. Therefore, the corrected neutron fluxes can be easily evaluated when fixed 

source calculations with fine and coarse conditions are performed at m-th burnup step as 

similar to the calculation scheme of the SPH method. In this correction, the first term of the 

right hand side of Equation (15) is simply subtracted from the original coarse neutron flux. 

Now we remind that an approximation (i.e., neutron flux is inversely proportional to the total 

cross section) is used to derive Equation (17). Thus, accuracy of this correction would be 

improved by adjusting the magnitude of correction term, i.e., the second term of the right 

hand side of Equation (17). From this idea, a spatially independent scaling factor is introduced 

to improve the correction as shown in Equation (19): 
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where 

)(n
g : scaling factor for )(

,
m
jgF  of n-th burnup step and g-th energy group (spatially 

independent parameter), 

)(],[
,

ˆ nmcorrected
jg : neutron flux of n-th burnup step, g-th energy group and j-th region corrected by 

the scaling factor and the difference of fine and coarse neutron fluxes evaluated 

at m-th burnup step. 

 

By using the corrected flux shown in Equation (19), Equation (15) can be transformed 

into Equation (20): 
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By substituting Equation (16) to Equation (20) and using Equation (12), Equation (21) 

is derived: 
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The right hand side of Equation (21) is similar to that of Equation (13), which is the 

equation for the SPH method. However, unlike the situation in the SPH method, the first term 

of the right hand side of Equation (21) could be reduced, since this term includes the scaling 

factor as additional freedom. As the next step of the derivation, determination of the scaling 

factor is discussed. 
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From the reciprocity theorem, Equation (22) is generally satisfied among collision 

probabilities, total cross sections and region volumes: 

 jjgtjigiigtijg VPVP ,,,,,,  . (22) 

 

By using the reciprocity theorem described in Equation (22), which is satisfied in each 

of coarse and fine conditions, and the definition of Equation (23), Equation (21) can be 

rewritten as Equation (24): 
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The first term of the right hand side of Equation (24) becomes zero when R values are 

constant through all regions, since a summation of collision probabilities becomes unity. This 

fact indicates that spatial variance of Equation (23) have impact on the calculation error which 

comes from the first term of the right hand side of Equation (24). From this idea, in the 

present approach, the scaling factor is determined by minimizing a variance of Equation (23). 

The variance of Equation (23) is defined as Equation (25) by using the definition for the 

average shown in Equation (26): 
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where 

i : weighting factor of i-th region for evaluating the average and variance values. 
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In the present study, fraction of region volume is used as the weighting factor shown 

in Equations (25) and (26): 
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The variance described as Equation (25) is minimized when the derivative of the 

variance becomes zero. Therefore, the scaling factor which minimize the variance is obtained 

from the following equation: 
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Solving Equation (28), the scaling factor which minimizes the variance can be derived 

as Equation (29): 
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It should be noted that suffix of ‘m’ is added to the scaling factor in Equation (29) 

since it depends also on neutron sources of m-th burnup step. The present approach explained 

above and the scaling factor given by Equation (29) are referred to as the SVM (Source ratio 

Variance Minimization) method and the SVM factor, respectively. From Equations (16), (19) 

and (21), equations for the SVM method can be summarized as Equations (30) and (31): 
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where 

)(],[
,

nmSVM
jg : neutron flux of n-th burnup step, g-th energy group and j-th region based on the 

difference of fine and coarse neutron fluxes evaluated at m-th burnup step. 

 

In the right hand side of Equation (30), when the correction term (the second term) is 

larger than the original neutron flux (the first term), the corrected neutron flux becomes 

negative value. Thus, it should be noted that positivity of the corrected neutron flux is not 

guaranteed. However, we have never experienced the numerical instability caused by negative 

neutron fluxes in test calculations including the verifications described in Section 3. 

From a comparison between Equations (5) and (31), it can be confirmed that the 

equation for the discretization errors in the SVM method becomes identical with that in the 

convention MOC when the all SVM factors are zero. On the other hand, from a comparison 

between Equations (13) and (31), the equation in the SVM method becomes the same form 

with that in the SPH method when the all SVM factors are unity. Although both of two terms 

in the right hand side of Equation (31) are the terms for the discretization errors, the first term 

is expected to be small since this term is minimized by using the SVM factors. Therefore, the 

calculation error would be dominated by the second term. In such case, a criterion for an 

update of the difference of neutron fluxes for the SVM method, which is shown in Equation 

(16), can be easily determined because the discretization errors mainly depend on changes of 

total cross sections.  

As another topic, a necessity of a normalization of neutron fluxes should be discussed 

when a correction method on neutron fluxes is applied. If a summation of reaction rates 

through all regions is changed by a correction, neutron fluxes have to be normalized to 
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preserve neutron balance. In the case of the SVM method, the summation of the reaction rates 

can be written as Equation (32): 
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Equation (32) can be transformed into Equation (33) by using collision probabilities: 
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The second term of the right hand side of Equation (33) can be eliminated, because a 

summation of collision probabilities becomes unity. Therefore, Equation (34) is derived as the 

equation for the summation of reaction rates: 
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Equation (34) indicates that the normalization of neutron fluxes is not necessary since 

neutron balance is preserved through the SVM method. 

From the above discussions, the calculation procedure of the SVM method is 

described as follows: 

 

(Steps 1 to 4 are performed at the burnup step where the update is carried out) 

Step 1: Neutron sources for the following fixed source calculations are evaluated by one 

transport sweep with a coarse condition. (the same manner with the calculation 

scheme of the SPH method) 
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Step 2: Fixed source calculation with a fine condition is carried out. 

Step 3: Fixed source calculation with a coarse condition is carried out. 

Step 4: The difference of neutron fluxes shown in Equation (16) are evaluated. 

(Steps 5 and 6 are performed at all burnup steps) 

Step 5: The SVM factors are evaluated by Equation (29) after fission and scattering 

sources are updated during inner iteration. 

Step 6: Neutron fluxes are corrected by Equation (30) after each inner iteration. 

 

As the same procedure with the SPH method, in the present study, fixed source 

calculations are performed instead of eigenvalue calculations at Steps 2 and 3 in order to 

reduce additional calculation time for the SVM method. The detail of the calculation 

procedure of the SVM method can be shown in Figure 2. 

< Figure 2 > 

 

In section 2, equations for the discretization errors are derived as Equations (5), (13) 

and (31) for the conventional MOC, the SPH method and the SVM method, respectively. 

Calculation accuracy of each method is tested through some verification calculations 

described in the next section. 

 

3. Verifications 

3.1. Verifications in single assembly geometries 

In order to confirm accuracy of the SPH and SVM methods, verification calculations 

are performed in PWR single assembly geometries by the AEGIS code [13]. Four types of 

calculation cases named ‘ORG’, ‘SPH’, ‘SVM’ and ‘SVM_UD’ listed below are assumed in 

this verification and those results are compared to the reference result. 

- ORG: depletion calculations are performed with the conventional MOC. 
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- SPH: depletion calculations are performed with the SPH method (the SPH factors are 

evaluated at the first burnup step and not updated). 

- SVM: depletion calculations are performed with the SVM method (the differences of 

neutron fluxes between fine and coarse calculation conditions are evaluated at 

the first step and not updated). 

- SVM_UD: depletion calculations are performed with the SVM method (the 

difference of neutron fluxes are updated when the maximum change of total 

cross sections in flat flux regions exceeds 20%). 

 

In order to evaluate the basic capabilities of the SPH and SVM methods, the SPH 

factors and the differences of neutron fluxes for the SVM method are not updated during 

depletion calculations in the SPH and SVM cases. On the other hand, in the SVM_UD case, 

the differences of neutron fluxes are updated according to the change of total cross sections in 

order to investigate an impact of the update. The change of total cross sections in the 

definition of SVM_UD means a change from the total cross sections at the latest updated step. 

In order to minimize the additional calculation time for the update, the differences of neutron 

fluxes are updated only in the energy group whose change of total cross section is significant. 

Although an update of the SPH factors can be done by a similar manner, a criteria for 

updating the SPH factors is difficult to determine because the discretization errors depend on 

changes of two parameters as mentioned in the previous section. Therefore, update of the SPH 

factors is not carried out in this test. The calculation geometries are listed below and 

illustrated in Figure 3. These geometries are chosen as representatives of PWR single 

assembly. 

- 4.8 wt% UO2 fuel (‘UO2’) 

- 4.8 wt% UO2 fuel with control rods insertion (‘RCC’) 

- 10.0 wt% Gd bearing 4.8 wt% fuel (‘GAD’) 
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- 4.0, 8.0, 12.0 wt% Pu-total MOX fuel (‘MOX’) 

< Figure 3 > 

 

In this paper, the above calculation geometries are called as UO2, RCC, GAD and 

MOX, respectively. The ray tracing and calculation conditions are listed in Tables 1 and 2. 

As shown in Table 1, two types of ray tracing conditions, i.e. the fine and coarse conditions, 

are used. In ORG, SPH and SVM cases, the coarse condition shown in Table 1 is used for the 

calculations. The reference results are obtained by the conventional MOC calculations with 

the fine condition shown in Table 1. 

< Table 1 > 

< Table 2 > 

 

In all cases of the calculations, differences of k-infinity and pin wise fission rate from 

those of the reference results are evaluated. The results of the k-infinity differences are shown 

in Figure 4, and those of the maximum pin wise fission rate differences are shown in Figure 

5. Additionally, the maximum differences through depletion calculations are summarized in 

Table 3. 

< Figure 4 > 

< Figure 5 > 

< Table 3 > 

 

From the results of the SPH case, it is confirmed that differences from the reference 

results are not improved in some cases in Table 3. Especially, in Gd bearing fuel assembly, 

differences become extremely large in the SPH method as expected since neutron sources and 

total cross sections are drastically changing through the depletion in such geometry. From 

these results, the SPH method in the present scheme is not suitable for depletion calculations. 
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In the SVM case, differences from the reference results are smaller than those in the 

conventional MOC in most of the cases in Table 3 except for pin wise fission rate difference 

in Gd bearing fuel assembly. On the other hand, in the SVM_UD case, differences from the 

reference results are decreased in all items in Table 3. These results mean that the differences 

of neutron fluxes for the SVM method, which is shown in Equation (16), need to be updated 

according to changes of total cross sections to obtain accurate results. The differences in the 

SVM_UD case are stably small through depletion calculations and the maximum difference 

of k-infinity is approximately 0.05% and that of pin wise fission rate is smaller than 0.4%. 

These results are significantly better than those of the ORG case, i.e. 1.69% and 1.8% 

respectively. However, this comparison is not fair because there is the additional calculation 

time for the SVM method in the SVM_UD case. Therefore, relationships between accuracy 

and calculation time in each case are evaluated through calculations with five types of coarse 

ray tracing conditions listed in Table 4. In this table, the ray tracing conditions become finer 

as it goes downwards. The calculation time evaluated in this test includes time for transport 

sweep and the additional time for the SVM method (calculation time for other processes such 

as resonance calculations and burnup calculations are excluded from the calculation time). 

The results for k-infinity and the maximum pin wise fission rate differences are shown in 

Figures 6 and 7, respectively. In these figures, the horizontal axes are normalized so that 

calculation time with the coarsest condition, i.e. the coase_1 condition, becomes unity in each 

geometry. 

< Table 4 > 

< Figure 6 > 

< Figure 7 > 

 

Although the additional calculation time for the SVM method is approximately 20% at 

maximum, the differences in the SVM_UD case are significantly smaller than those in the 
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ORG case. Figures 6 and 7 indicate that the SVM method with the update gives enough 

accurate results by shorter calculation time compared to the conventional MOC. In the 

SVM_UD case with the coarse_3 condition, the maximum differences of k-infinity and pin 

wise fission rate are 0.01% and 0.1% respectively. In order to obtain the comparable accuracy 

in the ORG case, the coarse_5 condition is necessary. Comparing to the calculation time of 

these cases, the calculation time in the SVM_UD case is smaller than one third of that in the 

ORG case. From these results, improvement of calculation efficiency by the present approach 

is confirmed. 

 

3.2. Multi Assembly Calculations 

In order to test the present method in a geometry where a large spatial change of 

neutron flux appears, verification calculations are performed in PWR multi assembly 

geometry by the AEGIS code. In this verification, the ‘ORG’ and ‘SVM_UD’ cases defined 

above are assumed and those results are compared to the reference result. The calculation 

geometry is illustrated in Figure 8. 

< Figure 8 > 

 

The ray tracing and calculation conditions are the same with those of the verification 

in single assembly calculations (shown in Tables 1 and 2). The reference results are obtained 

by the conventional MOC calculations with the fine condition shown in Table 1. In all cases 

of the calculations, differences of k-infinity and pin wise fission rate from those of the 

reference results are evaluated. The results of the k-infinity differences are shown in Figure 9, 

and those of the maximum pin wise fission rate differences are shown in Figure 10. 

Additionally, the maximum differences through depletion calculations are summarized in 

Table 5. 

< Figure 9 > 
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< Figure 10 > 

< Table 5 > 

 

The differences in the SVM_UD case are stably small through depletion calculations 

as similar to the results of single assembly calculations. The maximum difference of k-infinity 

is approximately 0.12% and that of pin wise fission rate is smaller than 0.4%. These results 

are significantly better than those of the ORG case, i.e. 1.15% and 3.6% respectively. 

However, as mentioned above, this comparison is not fair because there is the additional 

calculation time for the SVM method only in the SVM_UD case. Therefore, relationships 

between accuracy and calculation time in each case are evaluated through calculations with 

five types of coarse ray tracing calculations listed in Table 5. The definition of the calculation 

time is same with that in the single calculations (only calculation time for transport sweep and 

the addition calculation time for the SVM method). The results for k-infinity and the 

maximum pin wise fission rate differences are shown in Figures 11 and 12, respectively. In 

these figures, the horizontal axes are normalized so that calculation time with the coarsest 

condition becomes unity. 

< Figure 11 > 

< Figure 12 > 

 

As similar to the results of the single assembly calculations, the differences can be 

significantly reduced by the SVM method with the update. In the SVM_UD case with the 

coarse_3 condition, the maximum differences of k-infinity and pin wise fission rate are 0.02% 

and 0.2% respectively. In order to obtain the comparable accuracy in the ORG case, the 

coarse_5 condition is necessary. Comparing to the calculation time of these cases, the 

calculation time in the SVM_UD case is smaller than quarter of that in the ORG case. From 

these results, improvement of calculation efficiency by the present approach is confirmed 
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including in the geometry where large spatial change of neutron flux appears. 

 

4. Conclusions 

In this paper, efficient calculation schemes for MOC to reduce discretization errors of 

ray tracing are investigated focusing on depletion calculations. As the first step of the present 

study, a calculation scheme using the SPH method is considered. As results of derivations, it 

is found that the discretization errors in this scheme are caused by changes of neutron sources 

and total cross sections according to a depletion. From this fact, in this study, a new approach 

is proposed to mitigate the problem of the SPH method. In the new approach called the SVM 

method, the discretization error caused by changes of neutron sources can be reduced by 

minimizing a variance of a certain parameter which is composed of a ratio of neutron source 

to total cross section.  

The verification calculations are performed in PWR single and multi assembly 

geometries to evaluate accuracy and calculation efficiency of the SPH and SVM methods. 

The verification results indicate that differences from the reference results are degraded in 

some cases in the SPH method. Especially in a calculation of Gd bearing fuel assembly, the 

differences by the SPH method becomes extremely larger than those by the conventional 

MOC. On the other hand, the SVM method gives more accurate results compared to the 

conventional MOC in all calculations when a parameter related to the SVM method is 

updated according to changes of total cross sections. Although the update of the parameter in 

the SVM method needs additional calculation time, the results of accuracy and calculation 

time suggest that calculation efficiency can be improved by the SVM method in both of single 

and multi assembly calculations. Calculation time in the SVM method in single and multi 

assembly calculations are smaller than one third and quarter of that in the conventional MOC 

respectively to obtain comparable accuracy. 
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Figure captions 

 

Figure 1. Concept of the application of the SPH method to depletion calculations. 

Figure 2. Flow char for the calculation procedure of the SVM method. 

Figure 3. Geometries for single assembly calculations. 

Figure 4. Differences of k-infinity (single assembly calculations). 

Figure 5. Maximum differences of pin wise fission rate (single assembly calculations). 

Figure 6. Relationship between difference of k-infinity and calculation time (single 

assembly calculations). 

Figure 7. Relationship between maximum difference of pin wise fission rate and 

calculation time (single assembly calculations). 

Figure 8. A geometry for multi assembly calculations. 

Figure 9. Difference of k-infinity (multi assembly calculations). 

Figure 10. Maximum difference of pin wise fission rate (multi assembly calculations). 

Figure 11. Relationship between difference of k-infinity and calculation time (multi 

assembly calculations). 

Figure 12. Relationship between maximum difference of pin wise fission rate and 

calculation time (multi assembly calculations). 
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Table 1.  Ray tracing conditions used in the verification calculations. 

 Ray separation (*1) 

[cm] 

Number of azimuthal 

angle division (*2) 

Number of polar 

angle division (*3) 

coarse 0.50 8 1 

fine 0.05 128 3 

(*1) Macroband method with transmission probability preservation through linear 

approximation (TPPL) [6] is used. Values in this table mean the maximum ray separation 

(in average, ray separations are narrower). 

(*2) Uniformly divided angle is used. Values in this table mean number of divisions for 2π. 

(*3) The Tabuchi and Yamamoto’s optimum quadrature set (TY quadrature set ) [5] is used. 

Values in this table mean number of divisions for π/2. 
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Table 2.  Calculation conditions used in the verification calculations 

Number of energy groups 172 (XMAS group structure [14]) 

Scattering order P0 (transport correction [15]) 

Burnup step 

[GWd/t] 

UO2, RCC and MOX: 0, 0.1, 0.5, 1, every 1 from 1 to 60 

GAD: 0, 0.1, 0.5, every 0.5 from 0.5 to 30, every 1 from 30 to 60
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Table 3.  Maximum differences through depletions (single assembly calculations). 

Geometry 
Calculation 

case 

Difference of 

k-infinity [%] 

Difference of pin-by-pin fission rate [%] 

RMS difference Maximum difference

UO2 

ORG 0.756 0.23 0.55 

SPH 0.640 0.22 0.56 

SVM 0.225 0.06 0.14 

SVM_UD 0.046 0.03 0.09 

RCC 

ORG 1.369 0.64 1.52 

SPH 0.269 0.34 0.85 

SVM 0.064 0.08 0.21 

SVM_UD 0.031 0.08 0.23 

GAD 

ORG 0.802 0.56 1.79 

SPH 8.521 7.94 29.37 

SVM 0.311 1.14 4.71 

SVM_UD 0.051 0.15 0.38 

MOX 

ORG 1.688 0.37 1.04 

SPH 0.408 1.39 4.16 

SVM 0.138 0.11 0.24 

SVM_UD 0.051 0.05 0.10 
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Table 4.  Ray tracing conditions used for the evaluation of calculation efficiency. 

 Ray separation (*1) 

[cm] 

Number of azimuthal 

angle division (*2) 

Number of polar 

angle division (*3) 

coarse_1 0.50 8 1 

coarse_2 0.20 16 2 

coarse_3 0.10 32 2 

coarse_4 0.10 64 3 

coarse_5 0.05 96 3 

fine 0.05 128 3 

(*1) Macroband method with TPPL is used. Values in this table mean the maximum ray 

separation (in average, ray separations are narrower). 

(*2) Uniformly divided angle is used. Values in this table mean number of divisions for 2π. 

(*3) The TY quadrature set is used. Values in this table mean number of divisions for π/2. 
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Table 5.  Maximum differences through depletions (multi assembly calculations). 

Calculation 

case 

Difference of 

k-infinity [%] 

Difference of pin-by-pin fission rate [%] 

RMS difference Maximum difference

ORG 1.145 1.69 3.58 

SVM_UD 0.121 0.16 0.36 
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Figure 1. Concept of the application of the SPH method to depletion calculations. 

M. Tabuchi: 

Reduction of MOC discretization errors through a minimization of source ratio variances 
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Figure 2. Flow chart for the calculation procedure of the SVM method. 

M. Tabuchi: 

Reduction of MOC discretization errors through a minimization of source ratio variances 
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Figure 3. Geometries for single assembly calculations. 

M. Tabuchi: 

Reduction of MOC discretization errors through a minimization of source ratio variances 
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Figure 4. Differences of k-infinity (single assembly calculations). 

M. Tabuchi: 

Reduction of MOC discretization errors through a minimization of source ratio variances 
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Figure 5. Maximum differences of pin wise fission rate (single assembly calculations). 

M. Tabuchi: 

Reduction of MOC discretization errors through a minimization of source ratio variances 
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Figure 6. Relationship between difference of k-infinity and calculation time (single assembly 

calculations). 

M. Tabuchi: 

Reduction of MOC discretization errors through a minimization of source ratio variances 
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Figure 7. Relationship between maximum difference of pin wise fission rate and calculation 

time (single assembly calculations). 

M. Tabuchi: 

Reduction of MOC discretization errors through a minimization of source ratio variances 
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Figure 8. A geometry for multi assembly calculations. 

M. Tabuchi: 

Reduction of MOC discretization errors through a minimization of source ratio variances 
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Figure 9. Difference of k-infinity (multi assembly calculations). 

M. Tabuchi: 

Reduction of MOC discretization errors through a minimization of source ratio variances 
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Figure 10. Maximum difference of pin wise fission rate (multi assembly calculations). 

M. Tabuchi: 

Reduction of MOC discretization errors through a minimization of source ratio variances 
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Figure 11. Relationship between difference of k-infinity and calculation time (multi assembly 

calculations). 

M. Tabuchi: 

Reduction of MOC discretization errors through a minimization of source ratio variances 
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Figure 12. Relationship between maximum difference of pin wise fission rate and calculation 

time (multi assembly calculations). 

M. Tabuchi: 

Reduction of MOC discretization errors through a minimization of source ratio variances 

 

 


