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Abstract Direct measurement of the fumarole outlet temperature in active volcanoes is impractical.
Therefore, we used an aircraft to sample H, in the volcanic plume ejected from Sakurajima volcano to
remotely estimate the highest fumarolic temperatures of the volcano based on hydrogen isotopic
fractionation between H, and magmatic H,O. We successfully estimated that the 8D of the fumarolic H, in
September and December 2014 was —135 4 13%o0 and —113 £ 11%o, respectively, and that the
corresponding highest outlet temperatures were 1050 4+ 120°C and 1199 + 139°C. Although the
temperatures were higher than those determined by using infrared remote sensing, we concluded that they
are more reliable estimates of the highest fumarole outlet temperatures. Combined with plume sampling by
using aircraft, remote temperature sensing based on the 3D of H, in volcanic plumes can be widely applied to
active volcanoes to determine the highest fumarole outlet temperatures.

1. Introduction

1.1. Outlet Temperature of Fumaroles

The outlet temperatures of fumaroles in active volcanoes have provided useful information on the
magmatic/hydrothermal activity in those volcanoes [e.g., Badrudin, 1994; Botcharnikov et al., 2003; Connor
et al., 1993; Matsushima, 2011; Menyailov et al., 1986; Ripepe et al., 2002; Taran et al., 1995; Yokoo, 2009]. In
our previous reports, we accurately estimated the outlet temperature of fumaroles remotely by determining
the D/H ratios of H, in the volcanic plume [Tsunogai et al., 2013, 2011]. This remote temperature sensing tech-
nique, known as Hydrogen Isotopes Remote Temperature Sensing (HIReTS), is particularly useful for under-
standing the magmatic/hydrothermal processes occurring in eruptive volcanoes where direct
measurement of the outlet temperatures of fumaroles is impossible.

In previous studies that applied HIReTS to Aso and Satsuma-lwojima volcanoes (Figure 1a), volcanic plume
samples were collected at the rim of each volcanic crater a few hundred meters from the fumaroles located
in the bottom of each crater [Tsunogai et al., 2013, 2011]. Direct access to the rims of summit craters, however,
is neither practical nor safe in many eruptive volcanoes. Therefore, it is necessary to develop alternative meth-
ods and devices for obtaining samples of plumes of eruptive volcanoes and to remotely determine outlet
temperatures of fumaroles by using HIReTS.

In general, a volcanic plume spreads laterally at a height close to or slightly higher than the summit of the
volcano from which it was ejected so that its height is significantly higher than sea/ground level. As a result,
flying devices such as aircraft [e.g., Fiske and Sigurdsson, 1982; Hirabayashi et al., 1982; Saiki and Ohba, 2010;
Shinohara et al., 2003] are needed to obtain samples of volcanic plumes when using HIReTS for eruptive vol-
canoes. Development of devices for sampling the plume air is needed as well.

In this study, we used a manned fixed-wing aircraft to obtain volcanic plume samples ejected from
Sakurajima volcano (Figure 1), one of the most active volcanoes in the world, to remotely determine the high-
est outlet temperature of summit fumaroles by using HIReTS. Because Sakurajima volcano has shown contin-
uous explosive activity at the summit crater since 1955, direct measurement of the outlet temperature has
been impractical.

An additional aim of this study is to determine the spatial distribution of fumarolic H; in a volcanic plume by
using aircraft. To deduce the precise hydrogen isotopic composition (8D) of fumarolic H, remotely, samples
of volcanic plumes enriched in fumarolic H, are needed [Tsunogai et al., 2013, 2011]. In contrast to SO,
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Figure 1. (a) Map showing the location of Sakurajima volcano on Kyushu Island, Japan, including nearby active volcanoes.
(b) Topographic map of Sakurajima volcano including the sampling points of the volcanic plume during flights SK14-1,
SK14-2, and SK14-3, shown by diamonds, circles, and squares, respectively. The size of each symbol is proportional to the H,
concentration in each sample.

distributions, little data are available on the spatial distribution of H, in a volcanic plume. Although recent
advances on in situ direct measurement techniques are remarkable for H, [Aiuppa et al., 2011, 2015, 2012;
Shinohara et al., 2011], most of the published data have been obtained on ground level. To apply HIReTS
to eruptive volcanoes, we must increase our knowledge of the spatial distribution of H, in volcanic plumes
by using aircrafts.

1.2. Remote Temperature Sensing Using Hydrogen Isotopes in Volcanic Plumes

In volcanic fumaroles showing outlet temperatures exceeding 400°C, H, reaches isotope exchange equili-
brium with the coexisting H,O instantaneously [Kiyosu, 1983; Mizutani, 1983; Proskurowski et al., 2006;
Tsunogai et al., 2013, 2011; Welhan and Craig, 1983], whereas the isotope exchange reactions do not take
place in volcanic plumes at ambient air temperatures. We applied this temperature-dependent isotopic frac-
tionation between fumarolic H, and H,O to remotely determine the outlet temperatures of fumaroles
[Tsunogai et al., 2013, 2011]. In this remote sensing, we deduced the D value of fumarolic H, from 3D values
of H; in the volcanic plume. Owing to recent advances in stable isotope measurement, it is possible to deter-
mine the 3D values of atmospheric H, precisely without the need for cumbersome pretreatments [Komatsu
etal., 2011; Rahn et al., 2002; Rhee et al., 2004]. We calculated the outlet temperature assuming that fumarolic
H, had been under hydrogen isotope exchange equilibrium with fumarolic H,O having 8D values of
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- s i . 805 + 25°C [Tsunogai et al., 2013].
Moreover, we found that the esti-
mated HIReTS temperature corre-
sponded to the highest outlet
temperature within the summit fumaroles showing various temperatures in the volcano [Tsunogai et al.,
2013]. Further, we estimated the 8D value of the fumarolic H, to be —172 4+ 16%o0 and the outlet temperature
to be 868 £+ 97°C [Tsunogai et al., 2011] in Aso volcano (Figure 1a), where direct temperature measurement in
fumaroles is impractical.

Figure 2. Schematic diagram showing the volcanic plume sampling device
installed in the cabin of the aircraft.

2. Materials and Methods

2.1. Sakurajima Volcano

Sakurajima volcano, a postcaldera andesitic stratovolcano in Kyushu Island, Japan (Figure 1), experiences
thousands of small eruptions annually. The total emission flux of SO, ranges from a few hundred to sev-
eral thousand tons per day. Because the volcano has been erupting almost constantly since 1955, direct
measurement of fumarole outlet temperature is impractical [e.g., Hirabayashi et al., 1982]. Using phase
equilibria of phenocryst such as plagioclase and clinopyroxene in a volcanic bomb that erupted in
November 1977, Yamamoto et al. [1979] estimated the temperature of the magma reservoir to
be 950-1040°C.

Among the three major peaks of the volcano, the present volcanic activity is concentrated on the
southern peak known as Minami-dake at 1040 m above sea level, particularly at Showa crater located
on the eastern upper flank of the Minami-dake peak (Figure 1). Although the summit crater of the
Minami-dake peak is also active, the major SO, emissions have moved to the Showa crater in recent
years [Kazahaya et al., 2013]. Because Kagoshima City is located within a few kilometers of the volcano
(Figure 1), monitoring of the outlet temperature of the fumaroles is important for the prevention of
volcanic disasters.

2.2. Sampling

The samples of the volcanic plume ejected from the summit craters of Sakurajima volcano were obtained by
using a manual sampling device setup in the cabin of a Cessna 172 Skyhawk (Figure 2). During sampling
flights SK14-1 on 10 September, SK14-2 on 11 September, and SK14-3 on 9 December 2014, the volcanic
plume spread almost laterally from the craters toward the northeast, southeast, and southwest at approxi-
mate altitudes of 1200m, 1500 m, and 1000 m, respectively. Essentially, the aircraft repeated the flights at
the same altitudes toward the cross section of the volcanic plume [Wardell et al., 2004]. The aircraft also flew
into the plume in the same direction as that of the plume flow.

By using an air pump (GilAir Plus, Sensidyne) at a flow rate exceeding 1 L/min, outside air was introduced con-
tinuously into the cabin through a perfluoroalkoxy tube attached to the front of the left wing. To monitor the
SO, concentration in the introduced stream of air, a constant potential electrolysis-type SO, sensor (Komyo
Rikagaku Kogyo K.K.) was used. The volcanic plume sample was collected in a preevacuated 1L glass bottle
with a stopcock sealed by O-rings composed of Viton [Tsunogai et al., 2003] connected to the upstream part
of the SO, sensor in the airflow path. The volcanic plume sample was instantaneously filled to ambient atmo-
spheric pressure in the bottle by opening the stopcock when the SO, concentration in the introduced air
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Figure 3. Temporal variation in the concentration of SO, during the earlier flight SK14-3, the SO, concentra-

half of flight SK14-3. The sampling times are indicated by crosses. . .
tions were recorded continuously

by using an analog data logger
(HOBO UX120, Onset Computer Corp.). In addition, we obtained one or two samples of background air during
each flight at points outside and upwind of the plume when possible.

2.3. Analysis

The concentrations and 3D values of H, were determined by using the continuous flow-isotope ratio mass
spectrometer system at Nagoya University. Both the analytical system and the analytical procedures are
the same as those detailed in our previous research [Komatsu et al., 2011; Tsunogai et al., 2011]. The error
in the determined concentrations was <3%, and that in the determined 3D values was <4%o.

2.4. Temperature Calculation

In this study, apparent equilibrium temperature (AETp) was estimated from the 6D values of fumarolic H,0
and H, by using equation (1) [Tsunogai et al., 2011], which we obtained from the relation of a0 and tem-
perature presented in Richet et al. [1977]:

1
AETp = {4.474x107"*x A + 3.482x 10" XA + 9.007x 107° }? — 273.15, m

where A represents 10° X In(020-112) and a20-n2 represents the equilibrium fractionation factor of hydrogen
isotopes between H,0 and H, (i.e., apz0.-H2 = (BD(H,0) + 1)/(8D(H,) + 1)).

3. Results and Discussion

3.1. H, in the Volcanic Plume

The relationship between the concentrations of SO, at the moment of sampling ([SO,]) and H, determined
for each bottle ([H.]) is presented in Figure 4. Most of the volcanic plume samples showed H, enrichment
compared with the background air samples showing [SO,]=0ppm and [H,]=0.6 + 0.05 ppm. Moreover,
[H,] of the background air samples were close to [H,] in background tropospheric air in winter, which is about
0.6 ppm [Novelli et al., 1999].

As clearly presented in Figure 4, the plume samples obtained during SO, enrichment were also enriched in
H,. The A[H,]/[SO,] ratios were approximately 0.2 + 0.1, where A[H,] corresponds to the excess H, in each
sample from the most H,-depleted background sample. The A[H,]/[SO;] ratios are typical of high-
temperature fumaroles including those in nearby volcanoes, such as 0.5+0.1 in a >800°C fumarole in
Satsuma-lwojima volcano [Shinohara et al, 2002] and 0.14 in a 400°C fumarole in Kuju-lwo volcano
[Mizutani et al., 1986]. This linear correlation implies that SO, and H, were ejected from the high-temperature
fumaroles in the summit craters of Sakurajima volcano. That is, variations in the mole fractions of volcanic
gases within the tropospheric air were responsible for the various H, concentrations in the plume samples.
The maximum mole fractions of fumarolic H, within the total H, of the plume were roughly estimated to
be 54% in September and 74% in December 2014. This estimation was based on the assumption that the
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0.0 . v v ejected from fumaroles and
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[SO2] (ppm) stable after they stop ascending

and begin to spread laterally.
Figure 4. Correlation of [SO,] and [H,] obtained during flights SK14-1 and Therefore, the distance to the cra-
SK14-2 (shown by black circles) and SK14-3 (shown by white circles) in

ter was not an essential parameter
addition to hypothetical mixing lines with A[H,1/[SO] ratios of 0.3 and 0.1. P

used to determine the [H,] in the
volcanic plume. Rather, sampling at the central altitude of the volcanic plume is more important for obtaining
volcanic plume samples enriched in H,.

3.2. 8D Value of Fumarolic H,

The determined 8D values of H, in the volcanic plume samples showed large variation, from —47%o to
+125%o, whereas those in the background air samples were almost constant at +113%eo. In order to clarify
the reason for the large variation in the volcanic plume samples, the 8D values of H, in the samples were
plotted as a function of the reciprocal of the H, concentration (1/[H;]) in Figure 5. As shown in the figure,
the 6D values showed a strong linear relationship with 1/[H,]. Thus, we concluded that simple mixing
between two end-members having different [H,] and different 6D values of H, was responsible for the
observed large variation in the 3D values of H, in the plume samples [e.g., Keeling, 1958; Tsunogai et al.,
2013, 1998, 2005, 2011, 2003, 2010]. Similar linear relationships between the 1/[H,] and 8D values of H, have
been found in the other volcanic plumes such as those in Aso and Satsuma-lwojima volcanoes [Tsunogai
et al, 2013, 2011]. As presented in previous research, the H,-depleted end-member showing relatively D-
enriched 8D values of more than +110%o0 must be H; in the background air [Rice et al., 2010]. However, the
H,-enriched end-member showing relatively D-depleted 3D values must be fumarolic H,, which in past stu-
dies always presented lower 6D values than those in tropospheric H, [Kiyosu, 1983; Mizutani, 1983;
Proskurowski et al., 2006; Tsunogai et al., 2013, 2011; Welhan and Craig, 1983]. Furthermore, the strong linear
relationship implies that the fumarolic H, was stable in the volcanic plume. That is, chemical interactions
between H, and other coexisting components, such as coexisting H,0, were minimal in the plume during
the mixing with background air. Therefore, we can deduce the 3D value of fumarolic H, by correcting the con-
tribution of the tropospheric H, from the 8D values.

By extrapolating each linear relationship shown in Figures 5a and 5b to 1/[H,] =0 (y axis in the figures) based
on the least squares fitting of the straight lines considering the significant differences in errors in the values of
1/[H,] between the samples, we excluded the contribution of the tropospheric H, from the 3D value of each
sample [Tsunogai et al., 2013, 2011]. Thus, we estimated the average 8D value of the fumarolic H, to be
—135 4 13%o in September and —113 £ 11%o in December 2014. The 8D value of fumarolic H,, which was
higher than that of Aso volcano, at —172 4+ 16%o [Tsunogai et al.,, 2011], and Satsuma-lwojima volcano, at
—185.0 £ 2.5%o [Tsunogai et al., 2013], implies a higher outlet temperature in Sakurajima volcano.

TSUNOGAI ET AL.

REMOTE DETERMINATIONS ON OUTLET TEMPERATURE 11,624



@AG U Geophysical Research Letters 10.1002/2016GL070838

+150

3.3. Estimating the Outlet
Temperature of Fumaroles

(a) Sep. 2014

~ +100
3 To calculate the highest outlet tem-
C +s0f perature of fumaroles from the esti-
c% mated average oD values of
> t0r fumarolic H, in the Sakurajima vol-
g. cano, the 3D value of coexisting H,0
E ST in the fumaroles should be estimated
:O a0l - as well. In this study, we used the
= -7 0 average 3D value of magmatic H,O
150 )(— —135 :|:13 /)0 in active volcanoes, —24.5+7.3%o0
[Tsunogai et al., 2011], as the 8D value
2200 TII}S 1/'2 1/'1.5 1}1 7% of coe>iisting H,0 in the fumaroles in
1/10 1/[H:] (ppm) Sékurajlma volcano. The 6D Yalues of
1510/100 high-temperature  fumarolic H,0

+

- obtained at nearby volcanoes were
also included in the range
(—245+7.3%0). These include
Satsuma-lwojima volcano, showing
outlet temperatures exceeding 800°C
[Shinohara et al., 2002], and Kuju-lwo
volcano, showing those exceeding
400°C [Mizutani et al., 1986].

(b) Dec. 2014
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Figure 5. Relationship between 8D of H, and reciprocal of H, concentration P P

(1/H,]) in the volcanic plume obtained during (a) flights SK14-1 and SK14-2 slightly higher than the temperatures
and (b) flight SK14-3. Each solid line represents the least squares fitting of the ~ estimated in the magma reservoir in
samples; each dotted line shows the 2c variation envelope of the fitting line. 1977, at 950-1040°C [Yamamoto

etal., 1979].

Direct measurement of the outlet temperature of fumaroles is impractical for Sakurajima volcano. Instead,
remote measurements of the brightness temperature obtained by using infrared (IR) radiation have been
conducted in fumarolic areas several times in the past. Among these past remote measurements, the highest
temperature of 854°C was recorded at the bottom of the summit crater in April 2008 by using airborne hyper-
spectral scanners at an altitude of 5000 m [Jitsufuchi, 2010]. Although the measured temperature in the
fumarolic area varied widely in past studies by more than 300°C in each crater, even the highest temperature
was lower than that estimated in this study by using HIReTS.

Sakurajima was apparently under an active stage at least during the samplings. Volcanic red glow in and
around the craters has been frequently detected at night by visual observation. The number of volcanic tre-
mors often exceeds 1000 times per day. In addition, tiltmeters and strainmeters set in the volcano indicate
that Sakurajima volcano has expanded since January 2015 [Japan Meteorological Agency, 2015]. These obser-
vations imply that magma had ascended just beneath the fumaroles during our observation in 2014 and that
the temperatures determined by using HIReTS are reasonable estimates of the highest outlet temperatures of
the fumaroles. The discrepancy between HIReTS and the IR remote sensing can be attributed to insufficient
spatial resolution in the IR remote sensing (2 m [itsufuchi, 2010]). If the dimension of each high-temperature
fumarole at the surface was less than the spatial resolution, the temperature based on the IR remote sensing
became lower than the outlet temperature of the fumarole. This hypothesis is also supported by observation
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of the fumarolic area in Satsuma-lwojima volcano by using an airborne multispectral scanner [Ukawa et al.,
20001. In that case, the highest temperature determined remotely was 311°C, whereas the outlet temperature
determined directly was more than 800°C.

In summary, the highest outlet temperature of the fumaroles estimated by HIReTS was comparable to or even
slightly higher than the temperatures estimated for the magma reservoir in past research. Further increases in
the temperature of the magma reservoir over the old estimate could explain such elevated temperature in
the fumaroles. On the basis of petrochemical studies on the historical eruptive products of Sakurajima vol-
cano, Uto et al. [2005] detected binary mixing of felsic and mafic magmas beneath the volcano. The elevated
fumarolic temperature estimated in this study could imply an increase in the proportion of mafic magma in
the reservoir in recent years. A parallel study of HIReTS and petrological studies should be done to verify this
hypothesis. Besides, further HIReTS studies should be needed to verify the accuracy of temperature estima-
tion, especially in active volcanoes with high-temperature fumaroles.

4. Conclusions

By combining HIReTS with airborne sampling of a volcanic plume, we estimated the highest outlet tempera-
tures in Sakurajima volcano to be more than 930°C and more than 1060°C in September 2014 and December
2014, respectively. We conclude that HIReTS is more reliable than the IR remote sensing to estimate the high-
est outlet temperatures of the fumaroles remotely. By combining HIReTS with periodical volcanic plume sam-
pling by aircraft in the future, we can clarify the major factors controlling the outlet temperatures of
fumaroles in eruptive volcanoes.
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