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Abstract

In our previous letter (A. Kimura, Chem. Phys. Lett. 645 (2016) 123), we constructed time-dependent renormalized Redfield
theory (TRRT) only for diagonal transition in a reduced density matrix. In this letter, we formulate the general expression for off-
diagonal transition in the reduced density matrix. We discuss the applicability of TRRT by numerically comparing the dependencies
on the energy gap of the exciton relaxation rate by using the TRRT and the modified Redfield theory (MRT). In particular, we
roughly show that TRRT improves MRT for the detailed balance about the excitation energy transfer reaction.
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1. Introduction

Photosynthesis converts photo-energy into bio-energy in the
form of carbohydrates. In the initial stages of photosynthesis,
immediately following the absorption of photons, the electroni-
cally excited state of chlorophyll in the antenna protein is trans-
ferred to a reaction center with high quantum yield through
strategies that remain unknown. The quantum effect of exci-
tation energy transfer in the antenna system has recently been
reported [1–3]. In particular, long-lasting quantum coherence
via nuclear vibrations in photosynthetic antennas at room tem-
perature has been the focus of research, and has been treated
experimentally as well as theoretically [4].

When exciton coupling strength Ve is much smaller than
the reorganization energy λ as Ve � λ, the localized excitation
state as the donor molecule transfers to an energetically lower
exciton state as the acceptor molecule. The excitation transfer
rate has been expressed by Förster [5]. In the opposite limiting
case (Ve � λ), the exciton state delocalizes in the system, and
the relaxation process to the energetically lower delocalized ex-
citon states occurs. The relaxation process can be expressed by
Redfield theory [6].

While such a limiting case is easily treatable using a sim-
ple perturbation method, it is difficult to apply the perturbation
method to it, especially in the case of intermediate coupling
[4, 7]. For such situations, Zhang et al. modified Redfield the-
ory. The modified Redfield theory (MRT) treats electronic off-
diagonal elements in exciton-phonon interaction as a perturba-
tion term [8, 9]. In recent theoretical developments, a coherent
modified Redfield theory (CMRT) was constructed by Hwang-
Fu et al. [10, 11] and was applied to the analysis of the energy
transfer pathway in photosynthetic antenna systems [12].
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We recently constructed a time-dependent renormalized Red-
field theory (TRRT) and derived a formula to represent the ex-
citon relaxation rate [13]. However, the rate formula could not
analyze the physics of quantum coherence in such photosyn-
thetic antenna systems due to the rate formula between the di-
agonal elements of the reduced density matrix element for delo-
calized exciton representation. Hence, in this letter, we extend
the formalism of the previously expressed rate to analyze the
transition rate between off-diagonal elements in the system.

The quantum master equation for the reduced density ma-
trix element under second-order perturbative approximation by
interaction representation is expressed by using the Nakajima-
Zwanzig equation as [14, 15]

i~
∂PρI(t)
∂t

=P[VI(t),QρI(0)] + P[VI(t),PρI(t)]

−
i
~

∫ t

0
dt′P[VI(t),Q[VI(t′),PρI(t′)] (1)

where P is the projection operator PA ≡ ρbTr[A]. ρb is ex-
pressed as e−βHB/Tr[e−βHB ]. HB is phonon-bath Hamiltonian.
The operator VI(t) is perturbative Hamiltonian with interaction
representation defined as eiH0t/~Ve−iH0t/~. The first term on the
rhs is an inhomogeneous term, which can be neglected due to
proper initial conditions obtaining in the reduced density ma-
trix. The third term of rhs represent dissipation, which is ex-
pressed by the time correlation of the perturbative Hamiltonian
with interaction representation VI(t). The second term of the
rhs has been neglected by comparing the result according to the
quantum master equation with that obtained by using numeri-
cally exact calculation. This elimination simplifies the equation
of motion. However, it cannot be easily justified [16]. By using
the renormalization approach, the time correlation function in
the dissipation term of the quantum master equation becomes
the formalism of the variance-covariance matrix. However, in
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case of interaction representation for the quantum master equa-
tion, it is difficult to analyze the temporal propagation of the
reduced matrix element by Schrödinger representation. The
CMRT overcomes this problem by dividing the quantum master
equation into a coherent term and a dissipation term. The time-
dependent renormalization approach in this letter improves the
dissipation term in the CMRT.

In the remainder of this letter, the model Hamiltonian and
analytical strategies are stated in Section 2. The requisite nu-
merical analysis is conducted in Section 3. In Section 4, we dis-
cuss some findings and the conclusions that can be drawn from
them. The details of the analytical expression are presented in
the Appendix.

2. Theory

2.1. Hamiltonian
Let us define the total Hamiltonian of the system. We ex-

press the ket vector |n〉 as the electronic excited state at the
nth site, where the electronic site energy is En. The exciton
coupling strength between the nth and mth molecules is ex-
pressed by Ve

nm. We introduce the pure exciton Hamiltonian
as [
∑

n En|n〉〈n| +
∑

n,m Ve
nm[|n〉〈m| + |m〉〈n|]]|µ〉 = Eµ|µ〉 where

|µ〉 is the ket vector in the pure exciton representation expressed
by the site representation as

|µ〉 =
∑

n

Cµ
n |n〉. (2)

For nuclear motion, we only consider the phonon bath, where
the creation (annihilation) operator for the kth phonon mode is
expressed as b†k (bk), the frequency of which is ωk. Finally,
gnk is introduced as the exciton-phonon coupling strength at the
nth excited state: We introduce exciton-phonon coupling using
pure exciton representation as

Gµν
k =
∑

n

Cµ
nCν

ngnk. (3)

Hence, the total Hamiltonian based on pure exciton representa-
tion can be expressed as H = H0 + V

H = H0 + V, (4)

H0 =
∑
µ

[Eµ + HB + Bµµ]|µ〉〈µ|, (5)

V =
∑
µ,ν

Bµν|µ〉〈ν|, (6)

where HB =
∑

k ~ωkb†kbk is the phonon-bath Hamiltonian. Here,
Bµν is defined as

Bµν =
∑

k

Gµν
k (b†k + bk). (7)

We now introduce the shift operator θ ≡ eS , where S is
defined as

S =
∑
µ

S µµ =
∑
µk

Gµµ
k

~ωk
(b†k − bk)|µ〉〈µ|. (8)

Using the shift operator, we apply a unitary transformation from
Eq. (4) to the total Hamiltonian as θHθ† = HR

0 (t) + VR(t) as in
the section 2.3.

2.2. Renormalization Strategy

We divide the total Hamiltonian H into two parts, renormal-
ized non-perturbative Hamiltonian and its perturbative Hamil-
tonian as HR

0 (t) + VR(t), in advance. Based on the zeroth-order
propagator U(to) as exp+

[
− i

~

∫ t
0 dt1HR

0 (t1)
]
, by re-introducing

the shift operator, we obtain a first-order expansion of the unitary-
transformed propagator e−iHt/~ as

〈 f |θ†e−iHt/~θ|i〉 =〈 f |θ†U(t)θ|i〉

−
i
~

∫ t

0
dt1〈 f |θ†U(t)VR

I (t1)θ|i〉, (9)

where we take the element in the electronic state, and VR
I (t) is

the interaction representation of VR(t), defined as U†(t)VR(t)U(t).
The reduced density operator is expressed as

ρ(t) = Tr[〈 f |θ†e−iHt/~θ|i〉ρb〈i′|θ†eiHt/~θ| f ′〉], (10)

where ρb is defined as e−βHB/Tr[e−βHB ]. Inserting Eq. (9) into
Eq. (10), we obtain

ρ(t) = 〈1, 1〉t −
i
~

∫ t

0
dt1[〈1,VR

I (t1)〉t − 〈V
R†
I (t1), 1〉t]

+
1
~2

∫ t

0
dt1

∫ t

0
dt′1〈V

R†
I (t′1),VR

I (t1)〉t, (11)

where we introduce the new bracket as

〈A, B〉t ≡ Tr[〈i′|θ†AU†(t)θ| f ′〉〈 f |θ†U(t)Bθ|i〉ρb]. (12)

Apparently, in order to eliminate the first order term of the rhs in
Eq. (11), we need to introduce the average interaction Hamilto-
nian, which is independent of the phonon operator but depends
on the electronic exciton states. In addition, the average inter-
action Hamiltonian needs to be a function of two type variables
for time. One is the integral variable t1; the other is the artifi-
cially observing time t. Hence, we redefine renormalized non-
perturbative Hamiltonian HR

0 (t1) ≡ H0(t1) + vc(t1, t), and renor-
malized perturbative Hamiltonian as VR(t1) ≡ V0(t1) − vc(t1, t).
The average matrix element vc(t, t1) is determined to satisfy the
relation as 〈1,VR

I (t1)〉t = 〈VR†
I (t1), 1〉t = 0

2.3. Renormalized Hamiltonian

Introducing the c-number as the strength of time-dependent
interaction vcµν(t, t′) and the renormalized exciton state |α(t)〉 as
below, we define the non-perturbative renormalized Hamilto-
nian HR

0 as

HR
0 (t) =

∑
α

[ε′α(t) + HB]|α(t)〉〈α(t)|, (13)

[
∑
µ

εµ|µ〉〈µ| +

µ,ν∑
µν

vcµν(t, t′)|µ〉〈ν|]|α(t)〉 = ε′α(t)|α(t)〉, (14)
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where the nuclear-relaxed exciton energy εµ is defined as

εµ = Eµ −
∑

k

Gµµ
k

2
/(~ωk). (15)

The renormalized perturbative Hamiltonian VR(t) is defined as

VR(t) =

µ,ν∑
µν

[vqµν − vcµν(t, t
′)]|µ〉〈ν|, (16)

vqµν ≡ θµBµνθ†ν , (17)

where θµ is expressed as eS µµ .
We now derive the rate formula for the transition between

off-diagonal elements. By using the new bracket, we define
function vc(t1, t) in single integration as

〈1, vcI(t1, t)〉t = 〈1, vqI(t1)〉t, (18)

〈v†cI(t1, t), 1〉t = 〈v†qI(t1), 1〉t, (19)

where we introduce the interaction representation of vc(t1, t)
and vq as vcI(t1, t) ≡ U†(t1)vc(t1, t)U(t1) and vqI(t1) ≡ U†(t1)vqU(t1).

2.4. General Rate Formula

According to the Appendix, the term of the single integra-
tion becomes zero. Then, inserting vq−vc(t) into V(t), we obtain
the reduced density matrix of Eq. (11) as

ρ(t) = 〈1, 1〉t +
1
~2

∫ t

0
dt1

∫ t

0
dt′1M f f ′ii′ (t1, t′1), (20)

where we define the memory kernel as

M f f ′ii′ (t1, t′1) ≡ 〈v†qI(t
′
1), vqI(t1)〉t − 〈v

†

cI(t
′
1, t), vcI(t1, t)〉t. (21)

Using the expression

U(t) ≡ ub(t)
∑
α

uα(t)|α〉〈α| ≡ ub(t)ue(t), (22)

where ub(t) is the propagator of the bath defined as e−iHbt/~, and
ue(t) is the propagator of the renormalized electronic exciton
state, defined as

〈α(0)|ue(t)|µ〉 = exp
[
−

i
~

∫ t

0
dτεα(τ)

]
〈α(0)|µ〉. (23)

Then, we finally obtain the time-dependent renormalized
second-order perturbation term of the memory kernel as

M f f ′ii′ (t1, t′1) ≡
∑
µµ′νν′

Rµµ′νν′

f f ′ii′ (t1, t′1)G f f ′ii′

µµ′νν′ (t1, t
′
1), (24)

where function Rµµ′νν′

f f ′ii′ (t1, t′1) is defined as follows:

Rµµ′νν′

f f ′ii′ (t1, t′1) = 〈i′|u†e(t′1)|ν′〉〈µ′|u†e(t)ue(t′1)| f ′〉

× 〈 f |u†e(t1)ue(t)|µ〉〈ν|ue(t1)|i〉eW(t1,t′1)+Wµν(t1,t′1)+W†
µ′ν′

(t1,t′1)
. (25)

Furthermore, the function G f f ′ii′

µµ′νν′ (t1, t
′
1) is defined as follows:

G f f ′ii′

µµ′νν′ (t1, t
′
1) = ePµµ′νν′ (t1,t′1)[Qµµ′νν′ (t1, t′1)

+ (X†µ′ν′ (t1, t
′
1) + Y†µµ′νν′ (t1, t

′
1))(Xµν(t1, t′1) + Yµµ′νν′ (t1, t′1))]

− X†µ′ν′ (t1, t
′
1)Xµν(t1, t′1). (26)

The details of P, Q, W, X, and Y are provided in the Appendix.
Consequently, we define the time-dependent relaxation rate

k f f ′ii′ (t), which is the time-dependent Redfield tensor in the dis-
sipation term of the quantum master equation. Differentiating
Eq. (20) by time t, we obtain

∂ρ(t)
∂t

=
i
~

(〈HR
0 (t), 1〉t − 〈1,HR

0 (t)〉t) + k f f ′ii′ (t). (27)

Hence, the time-dependent rate is expressed as

k f f ′ii′ (t) =
1
~2

∫ t

0
dt1[M f f ′ii′ (t, t1) + M f f ′ii′ (t1, t)], (28)

where we assume that the differentiation term for the variable of
time t in the memory kernel can be neglected because its term
is neglected for the MRT. In the case without renormalization
approach as vcµν(t, t′) = 0 in Eq. (16), the rate formula of the
modified redfield theory is reproduced by Eq. (28) in the limit
of t → ∞ as i′ = i and f ′ = f .

By using the analytical expression of the memory kernel
M f f ′ii′ (t1, t′1), we can calculate the dissipation term of the quan-
tum master equation for site representation. In order to numer-
ically compare the time-dependent rate k f f ′ii′ (t) for delocalized
representation and that for site representation, the relaxation
rate for site representation is defined as

ksite
mm′nn′ (t) =

∑
f f ′ii′

Ci
nCi′

n′C
f
mC f ′

m′k f f ′ii′ (t). (29)

3. Numerical Analysis

In order to check the refinement of TRRT, we numerically
analyzed the time-dependent reaction rates for two molecular
systems, and show the results through two electronic represen-
tations: one was based on delocalized exciton states from the
upper energy exciton state |+〉 to the lower state |−〉, whereas
the other was based on on localized exciton states, from the ex-
cited donor (site 1) state |1〉 to the excited acceptor (site 2) state
|2〉.

In this letter, we used the density of states for nuclear vi-
brations defined as Jmn(ω) =

∑
k gmkgnkω

2
kδ(ω − ωk) as super-

ohmic-type, which is proportional to (λω3/2ω3
c)e−ω/ωc , where

ωc is the cutoff frequency. In the following, all parameters
were normalized to the cutoff energy of the phonon as ~ωc.
In addition, we neglected the correlation in nuclear fluctua-
tion between each pair of localized exciton states |m〉 and |n〉
as Jnm(ω) = δmnJm(ω).

The temporal dependencies of the reaction rate k−−++(t) and
ksite

2211(t) using MRT and TRRT are shown in Fig. 1, where the
parameters are Ve

12/~ωc = 1, β/~ωc = 1, ∆E/~ωc = 1, and
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Figure 1: Time dependencies of the reaction rates. Relaxation rate k−−++(t)
from the upper-exciton state to the lower-exciton state by MR and TRRT. Exci-
ton relaxation rate ksite

2211(t) for the site representation from site 1 to site 2 by MR
and TRRT. The degree of the off-diagonal element of vc−+(t). Other parameters
were Ve

12/~ωc = 1, β/~ωc = 1, ∆E/~ωc = 1, and λ/~ωc = 1.

λ/~ωc = 1, and ∆E is the energy gap for site representation
as E1 − E2. While the value of vc varied in the short-time re-
gion, the reaction rates for each representation drastically in-
creased, and the properties due to TRRT were slightly different
from that due to MRT. For the temporal region longer than the
nuclear-vibrational relaxation time by approximately 1/ωc, the
rate by using MRT and TRRT coherently fluctuated, but the av-
erage values were different. In particular, the average rate using
TRRT was smaller than that using MRT. Moreover, the phases
for each theory relatively shifted. We then estimated the aver-
age rate k̄ f f ′ii′ and its dispersion ∆k f f ′ii′ defined as

k̄ f f ′ii′ =

∫ Tmax

Tmin

k f f ′ii′ (t)
Tmax − Tmin

dt, (30)

(∆k f f ′ii′ )2 =

∫ Tmax

Tmin

(k f f ′ii′ (t) − k̄ f f ′ii′ )2

Tmax − Tmin
dt, (31)

where the time regions are determined asωcTmin = 2.0,ωcTmax =

10.0.
Because we found some bugs in the program we used for

the numerical calculation of the time-dependent rate in the pre-
vious letter, we recalculated the energy gap dependencies of the
average relaxation rate k̄−−++ and the dispersion of its fluctua-
tion ∆k−−++ from the upper state to the lower state by using
MRT and the TRRT, as shown in Fig. 2. For all regions with
an energy gap, the rate by using TRRT was smaller than that
by MRT. When the reorganization energy increased in magni-
tude, three peaks appeared in Fig. 2. With a peak for the case
where ∆E = 0, the system was resonant immediately after pho-
toexcitation. The cause of the other peaks might have been the
resonant case where |∆E| ' ~ωc. In the region of the energy
gap between 0 < |∆E| < ~ωc, the rate by TRRT was smaller
than that by MRT due to the renormalization effect.

The energy gap dependencies of the average relaxation rate
k̄site

2211 and the dispersion of its fluctuation ∆k2211 for the site rep-
resentation from site 1 to site 2 by MRT and TRRT are shown
in Fig. 3. When the energy gap was zero, the value of the av-
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Figure 3: Energy gap dependency of the average relaxation rate k̄site
2211 and

its fluctuation ∆k2211 for site representation from site 1 to site 2 by MR and
TRRT. The energy gap was defined as ∆E = E1 − E2. Other parameters were
Ve

12/~ωc = 1, λ/~ωc = 1.0, and β~ωc = 1.0.

eraged rate by MRT equaled that by TRRT. For the region with
a positive energy gap, the averaged rate by TRRT was smaller
than that by MRT. Although the differences between MRT and
TRRT were small in the case of small reorganization energy
value λ in Fig. 4, the differences in the case of large reorganiza-
tion energy values became apparent. When the reorganization
energy became large, two peaks appeared. Although the en-
ergy gap dependence for relaxation from the upper delocalized
exciton state to the lower was symmetrical, the relaxation rate
for the site representation was not. When the energy gap ∆E
was zero, the results by TRRT were equal to those by MRT
due to the resonance case. Thus, by considering the thermal-
ization effect, the reduction in the relaxation rate occurs. When
∆E becomes large again, the system might become resonant
again. Consequently, a second peak of the relaxation rate might
emerge.
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4. Discussion

The qualitative refinement was due to the renormalization
of the time-dependent perturbative interaction term. The renor-
malization approach perfectly deletes the first-order perturba-
tion term of the reduced density matrix. This term represents
the degree of quantum mechanical interference between pure
exciton states. Thus, one physical reason for the difference
between the results by TRRT and MRT means that the rate
obtained by using TRRT included interference effects. The
second-order perturbation term of the reduced density matrix
was expressed by the form of the variance-covariance matrix.
Thus, the TRRT is applicable to any value of reorganization
energy, but is dependent on the degree of the elements in the
variance-covariance matrix for exciton-phonon interaction.

The relaxation rate obtained by using TRRT for the site rep-
resentation was larger than that by MRT. We analyzed how the
detailed balance between MRT and TRRT was satisfied. Fig. 5
shows the energy gap dependence of the ratio between forward
and backward relaxation rates as k̄site

2211/k̄
site
1122. It is apparent that

the curve by TRRT is more similar to exp(β∆E) than that by
MRT, although the curve obtained by using TRRT in the case
of large reorganization energy fluctuated about exp(β∆E). This
property might have occurred due to the large variance about
nuclear fluctuations in exciton states due to the large reorga-
nization energy. The difference between TRRT and exp(β∆E)
might have been due to different thermal equilibrium states in
the steady state, although the TRRT yielded correct result for
the transient reaction process immediately following photo-excitation.
On the contrary, it is known that exitonic equilibrium holds for
lamda approaching zero [17, 18]. It may not be suitable that this
energy gap is a good parameter for defining thermal equilibrium
populations. We hence might need to consider the delocalized
exciton gap, and thermal renormalization effects might provide
better evaluation of the performance of the new method.

The temperature dependence of the size of exciton delocal-
ization in Photosystem II (PSII) was recently studied by using
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Figure 5: Energy gap dependency of the ratio of forward (|1〉 → |2〉) to back-
ward (|2〉 → |1〉) average relaxation rates for site representation by using
MR (black curves) and TRRT (red curves). The energy gap was defined as
∆E = E1 − E2. The value of the reorganization energy was varied from 0.5 to
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the variational master equation (VME) [19]. In the intermedi-
ate coupling case excluding the relatively large energy gap, as
λ ∼ |Ve

12| < |∆E| in some chlorophyll pairs in the PSII, the re-
sults showed that the EET mechanism by using the VME was
of the Förster type. On the contrary, the result obtained by nu-
merically exact calculations[20] yielded a Redfield-type mech-
anism. In the intermediate coupling region, there were local
minima for the numerical analysis of free energy analysis in the
VME [21–23]. These variational parameters included both de-
localized and localized exciton states [19, 21, 24]. In case of
strong excitonic coupling, the numerically calculated rate was
lower than that obtained by numerically exact analysis. In such
situations, when we selected the other solution of the variational
parameter, we could have reproduced the result of the numeri-
cally exact calculation[23]. Although the cause of the reproduc-
tion was not apparent, we intend to apply TRRT to study it with
the upper limit of the Bogoliubov inequality for free energy.

Finally, the analysis of quantum coherence via nuclear vi-
brations in the photosynthetic antenna systems have recently
been proposed using polaron formation [21, 25, 26] as well as
modifications based on variational approaches [27–29]. In fu-
ture work, to compare these theories, we need a comprehen-
sive comparison with simple Redfield, Förster, or VME meth-
ods at least, because the parameter regimes examined in this
work might not rest in the range where the MRT yields good
results.

5. Conclusion

In this letter, we formulated the time-dependent rate for the
transition between off-diagonal elements by introducing a time-
dependent renormalization technique based on the MRT. By nu-
merical analysis, we found that the average rate by using TRRT
for site representation was slower than that by MRT for the case
where ∆E > 0, although the time dependence of the reaction
rate oscillated in the intermediate coupling case. This result is
consistent with that in our previous study. For the case where
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∆E < 0, we found that the average rate obtained by using TRRT
was slightly larger than that by using MRT. By comparing the
ratio of the rates for the forward and backward reactions, we
found that the TRRT has a property which approaches the the-
orem of detailed balance more closely than the result obtained
by using MRT. We believe the theoretical development in this
letter will raise questions about the relationship between high
yields and the quantum effects in light harvesting systems in
photosynthetic reactions.

Appendix A. Expression of vc

According to the definitions of Eqs. (18) and (19), let us
consider the term as

〈1, vcI(t1, t)〉t

=
∑
αα′

u∗e,α(t1)ue,α′ (t1)〈α|vc(t1, t)|α′〉〈1, |α〉〈α′|〉t, (A.1)

〈1, vqI(t1)〉t

=
∑
αα′

u∗e,α(t1)ue,α′ (t1)〈1, |α〉〈α|vq(t1)|α′〉〈α′|〉t, (A.2)

where we introduce the exciton-phonon interaction for interac-
tion representation by nuclear fluctuation as vq(t) ≡ u†b(t)vqub(t).

Based on the definition of vc, let us express the matrix ele-
ment of vc as a simple relation as

〈α|vc(t1, t)|α′〉〈1, |α〉〈α′|〉t = 〈1, |α〉〈α|vq(t1)|α′〉〈α′|〉t. (A.3)

Then, the l.h.s of Eq. (A.3) can be expressed as∑
β

〈i′|β〉〈β| f ′〉u∗β(t)〈 f |α〉〈α
′|i〉uα(t)

× 〈α|vc(t1, t)|α′〉Tr[θ†i′θ f ′ (t)θ
†

f (t)θiρb], (A.4)

where we introduce the shift operator for interaction represen-
tation by nuclear fluctuation as θi(t) ≡ u†b(t)θiub(t). The r.h.s of
Eq. (A.3) can then be expressed as∑

β

〈i′|β〉〈β| f ′〉u∗β(t)〈 f |α〉〈α
′|i〉uα(t)

× Tr[θ†i′θ f ′ (t)θ
†

f (t)〈α|vq(t1)|α′〉θiρb]. (A.5)

Thus, transferring representation α into the pure exciton repre-
sentation µ, we obtain

〈µ|vc(t1, t)|ν〉 =
Tr[θ†i′θ f ′ (t)θ

†

f (t)〈µ|vq(t1)|ν〉θiρb]

Tr[θ†i′θ f ′ (t)θ
†

f (t)θiρb]

= Xµν(t1, t′1)eWµν (t1, t′1). (A.6)

The Hermite conjugate 〈µ|v∗c(t1, t)|ν〉 is expressed by taking its
Hermite conjugation and exchanging the indices with each other,
as i↔ i′ and f ↔ f ′.

Appendix B. Correlation function

Using Eq. (A.6), we can find

〈v†cI(t
′
1, t), vcI(t1, t)〉t = Tr[θ†i′u

†

b(t)θ f ′θ
†

f ub(t)θiρb]

×
∑
µν

〈 f |u†e(t1)ue(t)|µ〉〈µ|vc(t1, t)|ν〉〈ν|ue(t1)|i〉

×
∑
µ′ν′

〈i′|u†e(t′1)|ν′〉〈ν′|v†c(t1, t)|µ′〉〈µ′|u†e(t)ue(t′1)| f ′〉. (B.1)

In addition to this relation, 〈v†cI(t
′
1, t), vqI(t1)〉t and 〈v†qI(t

′
1), vcI(t1, t)〉t

are equal to 〈v†cI(t
′
1, t), vcI(t1, t)〉t .

The second order of vq is expressed as

〈U†(t′1)v†qU(t′1),U†(t1)vqU(t1)〉t

=
∑
µµ′νν′

〈i′|u†e(t′1)|ν′〉〈ν|ue(t1)|i〉〈 f |u†e(t1)ue(t)|µ〉〈µ′|u†e(t)ue(t′1)| f ′〉

× Tr[θ†i′〈ν
′|v†q(t′1)|µ′〉θ f ′ (t)θ

†

f (t)〈µ|vq(t1)|ν〉θiρb]. (B.2)

Consequently, we can obtain the time correlation as

〈(v†qI(t
′
1) − v†cI(t

′
1, t)), (vqI(t1) − vcI(t1, t))〉t

= 〈v†qI(t
′
1), vqI(t1)〉t − 〈v

†

cI(t
′
1, t), vcI(t1, t)〉t. (B.3)

Appendix C. Calculation of correlation

In this section, we state the general method for the expres-
sions of the correlation functions as the denominator and the
numerator of the r.h.s in Eq. (A.6). In addition, we need to
analyze the following correlation regarding the first term on the
r.h.s of Eq. (B.3):

Tr[θ†i′θν′ (t
′
1)B†ν′µ′ (t

′
1)θ†µ′ (t

′
1)θ f ′ (t)

× θ†f (t)θµ(t1)Bµν(t1)θ†ν(t1)θiρb], (C.1)

where θµ = eS µµ , and S µµ =
∑

k
Gµµ

k
~ωk

(b†k − bk).
In order to do this, we simply analyze the following operator

as

eABeC DeE = ∂x∂yeAexBeCeyDeE |x=y=0, (C.2)

where A, B, C, D, and E are linear combinations of the creation
and the annihilation operators of the phonon. For example, in
Eq. (C.1) they are as follows:

A = −S i′i′ (0) + S ν′ν′ (t′1),

B = B†ν′µ′ (t
′
1),

C = −S µ′µ′ (t′1) + S f ′ f ′ (t) − S f f (t) + S µµ(t1),
D = Bµν(t1),
E = −S νν(t1) + S ii(0). (C.3)

By using the relation as eAeB = eA+B+ 1
2 [A,B], we obtain

〈eAexBeCeyDeE〉 =e
1
2 [A+xB,xB+C]+ 1

2 [C+yD,yD+E]+ 1
2 [A+xB,yD+E]

× e
1
2 〈(A+xB+C+yD+E)2〉. (C.4)
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Differentiating it by x and y, and inserting x = y = 0, we obtain

∂x∂y〈eAexBeCeyDeE〉|x=y=0 = e
1
2 (〈AA〉+〈CC〉+〈EE〉+2〈AC〉+2〈CE〉+2〈AE〉)

× [〈BD〉 + (〈DE〉 + 〈AD〉 + 〈CD〉)
× (〈BC〉 + 〈BE〉 + 〈AB〉)]. (C.5)

Appendix D. Introducing the correlation function for monomers

We express the correlation function by the shift operator
S µν under a delocalized representation as the following inner
product:

〈S µν(t)S µ′ν′ (t′)〉 =
∑
nm

Cµ
nCν

nCµ′

m Cν′

mγnm(t − t′)

= cµνγ(t − t′)cµ′ν′ , (D.1)

where cµν and γnm(t) are defined as

(cµν)n ≡ Cµ
nCν

n, (D.2)

γnm(t) =
∑

k

gnkgmk

~2ω2
k

[−2(nk +
1
2

) cos(ωkt) + i sin(ωkt)]. (D.3)

Appendix E. Summary of correlation functions

Finally, we show the functions of W, P, Q, X, and Y as

W(t1, t′1) = (ci′i′ − cii)γ(0)(ci′i′ − cii)/2
+ (c f ′ f ′ − c f f )γ(0)(c f ′ f ′ − c f f )/2
− ci′i′γ(−t)(c f ′ f ′ − c f f )
+ (c f ′ f ′ − c f f )γ(t)cii, (E.1)

Wµν(t1, t′1) = (cνν − cµµ)[γ(0)(cνν − cµµ)/2 − γ(t1)cii

+ γ(−t1)ci′i′ − γ(t − t1)(c f ′ f ′ − c f f )], (E.2)

W†

µ′ν′ (t1, t
′
1) = (cν′ν′ − cµ′µ′ )[γ(0)(cν′ν′ − cµ′µ′ )/2 + γ(t′1)cii

− γ(−t′1)ci′i′ + γ(t′1 − t)(c f ′ f ′ − c f f )], (E.3)

Pµµ′νν′ (t1, t′1) = (cµ′µ′ − cν′ν′ )γ(t′1 − t1)(cνν − cµµ), (E.4)

Qµµ′νν′ (t1, t′1) = ~2cν′µ′ γ̈(t′1 − t1)cνµ, (E.5)

Xµν(t1, t′1) = i~cµν[γ̇(0)cνν + γ̇∗(0)cµµ
− γ̇(t1)cii − γ̇

∗(t1)ci′i′

+ γ̇∗(t1 − t)(c f ′ f ′ − c f f )], (E.6)

X†µ′ν′ (t1, t
′
1) = i~cν′µ′ [−γ̇(t′1 − t)(c f ′ f ′ − c f f )

+ γ̇(0)cµ′µ′ + γ̇∗(0)cν′ν′
− γ̇(t′1)cii − γ̇

∗(t′1)ci′i′ ], (E.7)

Yµµ′νν′ (t1, t′1) = i~cνµγ̇∗(t1 − t′1)(cν′ν′ − cµ′µ′ ), (E.8)

Y†µµ′νν′ (t1, t
′
1) = −i~cν′µ′ γ̇(t′1 − t1)(cµµ − cνν), (E.9)

where dot implies the time derivative of the function.
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