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1. Introduction

Using the free field realization, we construct the Jackson-integral formulae for the

Uq<S/Z\2) correlation functions due to the representation theory.

2. Quantum affine algebra Uq(gfg)

2.1. First we fix some notations. The algebra Uq(s/l\g) is generated by E(z), F(z) and
Y4 (z) with relations:

VY1 (2)hx(w) = Y (w)h+(2),

(z = wg"?)(z —wq™"?)

¢+(Z)¢_ (U)) = w— (w)¢+(z) (Z _ qu_g)(z _ wq_k+2)7

Z—w -5-2
by (2)E(w) = E(w)y (2) —4— ¢,

k
z—wq 212

z — wqst?
V() F(w) = Fw)i (2) ———q2,
Z —wqz
B2 (w) = () B(z) L2,
Z—wq 2
Z— W §+2
F(z)(w) = ¢ (w)F(2) ———q 7%,

Z—wq2"
(z —wg®)E(2)E(w) + (w — 2¢*) E(w)E(2) = 0,

(2 = wg*)F(2)F(w) + (w — 2¢7*) F(w) F(2) = 0,

[B(2), F(w)] = m {0(2d") vetwa®) =3 (Za7) vo(wg H)}.

where k € C is a center, ¢ € C and §(z) := >, ., 2". Note that 1/(a—b) means following

formal power series:

1 1 b\" 1
a—b::EZ<5) 7/A_b—a'

n>0

Their mode expansion is defined as

b (2) = ¢"exp {i(q - > an‘”} :

Fn>0

E(z) =: Z B,z "1, F(z) =: Z Fpz—" %

nez neZ



The Chevalley generators e;, f; and invertible k; (¢ = 0, 1) are
e1 := Fy, ki = q"°, J1:= Fy,
e = g Ho, ko = ¢~ Ho, fo:=q"E_,.

Let us introduce the comultiplication A for the Chevalley generators

Ale) =€, @k +1®e, A(k;) = k; ® ks, A(f;) = fi®1+ki_1®fi-

2.2. Let V) be the Verma module over Uq<S/l\2), generated by the highest weight vector
|A), such that €;]\ ) = 0 and k1A ) = ¢*|\) with A € C. The dual module V* is generated
by (A which satisfies (A|fi = 0 and ( Ak = ¢*(A|. The bilinear form Vi ® Vi — C is
uniquely defined by (A[A) =1 and ((u|X)[v) = (u|(X|v)) for any (u| € Vy, [v) € V)
and X € U,(sly).

Let V4(2) be the finite dimensional centerless representation of Uq(;l\g), which is

defined by Vi(z) := @p>0C(2)ve,m and

e1Ve,m = [0 — m| Ve m+1, eoVe,m = 2[m] Ve m—1,
k1vem = ¢ g, kove,m = q" 2™ Vg m,
f1ve.m = [m]vem—1, fovem = 27— m]ve mat,

where [n] := (¢"—q~™)/(q—q~'). Throughout the paper, weight ¢ takes arbitrary complex
value. If £ € Zsg, then Vi(2) := @ _,C(2)vem is a (£ + 1)-dimensional irreducible

representation of Uq(;l\g).

2.3. The type I vertex operator, @K’g(z) : Vi = V, ® Vy(z) is defined as the intertwining
operator such that
PY(2) X = A(X) 25°(2),
for any X € Uq(s/l\g).
We define the correlation functions as the matrix elements for the product of the
vertex operators

Noorln A1yl
O‘oo‘q)xn,l (Zn)...q>/\(1) H(21) [Xo)-

Then they satisfy the ¢-KZ equation [FR].



3. Free field realization
3.1. The free field algebra is generated by a,, b, ¢n, Qq, @Qp and Q. (n € Z) with

relations
2n] [(k + 2)n]

[bmbm] = _5n+m,0@, [bO,Qb] = —

[ana QAm, ] — 6n—|—m,0

) [CLO,Qa] :2<k+2)7

[cna Cm] — +5n+m,0M

s [CO7QC]:+1

The remaining commutators vanish.

Let us define the following generating functions

. o [M, _— M- M,
<%]\]\4] a) (Z’ﬁ):_z[[j\jéﬂ{]\]\?g][%z nqlnlﬁ+h(aologz+QQ),
T 0 T T
M1 Mr L _ [Mln] cee [Mrn] —n M1 e Mr
(Fl Ce N, ai) (z) = :t(q —q 1) :F;O [Nln] — [Nrn] an2 + 7]\[1 N, aplog q.

The fields b(z; 8), ¢(z; ), b+(z) and c4(z) are defined in the same way.

The quantum affine algebra Uq(£) is realized by the free field algebra as follows
[M2, Sh]:

E(z) :=E(z) — E_(2), F(z):=Fy(z) — F_(2)

with
Pae) = oz S exp {ba(e) = (b A *150))
s rh) = exp {aslog™ ) + (302 G20 ]
Fe(2) 1= 1y & b {osea™ ) 4 ba a4 4 (b (o= Vi0)

Here, normal order ¢ ¢ mean the ordering such that a, (n > 0) move to the right of a,

(n < 0) and Q,, etc.

3.2. Let us define the screening current S(z) as



with
2 exp{—bs(z) — (b+¢)(2¢7150)} 2 s(2),

s i= sewn{ - (g0 =S50 f

Then it satisfies

[B(),5w)] = [92(2),5w)] =0, [F(2), 5(w)] = ~uea0u {5 (%) 5w)}.

5(2) 1= © exp{— <%+2a) (= %)} °,

where ,0, is the following ¢ difference operator

f(zq®) — f(zq™%)
(g—q Yz

aazf(z) =

Hence, if the Jackson integral of the screening currents
SO0
0

are convergent, then they commute with the action of Uq(£) exactly.

3.3. Let us define the vertex operator ¢y, (2) : VA — Viayr as

o 1 1 k+2.k+2 o
¢£,0(2) T o exp{(2 ]{'—{-20/) (Zq ) 92 ) 0

¢f,m—|—1(z) = %da’:¢f,m+l(za Zl'f), ¢f,m—|—1(27 Zl'f) = [¢£,m(2)7 F(CE) ]q£72m P
where [A, B]q = AB — ¢BA. For f(x) =3, o fnz™, the integral means ¢ d%f(x) = fo,
i.e., the constant part of f(z) in . We will denote ¢4(2) := ¢y,0(2).
Then the type I vertex operator @K’K(z) : Vi = Vo, ® Vi(2) is realized as follows:

q);e(Z) :/O d tS tl Z ¢€m ®U€ ,M )

m>0
where v = A+ —2r and dpt = dptq - - dpt,.
Therefore, the correlation functions are realized by the free fields as follows:
> |t Ol 1) ()1 (20) s (20) o) @t e
Min >0
where Ao 1= Ao + >, ¢; —2m with m := ) m,. Here we consider only the case that
Ao = 0.



4. Factorization to one-point functions

4.1. Let us consider the integrand of our correlation function:

U= H H¢f oy (20) ) 1= (Aoo| S(t1) -+ S(tm) Py my (21) -+~ P,y o (20) [0).

Here and after, we omit the highest weight A\, and Ag = 0, and the product of the

operators means the following order:

b

H O(x;) := O(2q)O(xq41) - - - O(xp).

Let x := (21, +,@m) == (X1, Xpn), Xp := (X1, *, T, ) and dx := [[-, dx;, then
\I’:j{dx H H¢€ JMe zT‘7XT >7
¢€,M(z7 X) = [ e [¢€<Z)7 F(ml)]qe T F(mm)]qz_z(m_m.

Every rational function in this paper is a formal power series. But by the residue
theorem, we can realize § dz as a contour integral around the origin (counter clock wise)
or the infinity (clock wise).

First, since St (0){zF (2)]a=0} = 0, ¢e(2){aF(z)|z=0} = {2F (x)[s=0}¢e(2) = 0 and
Fi(y){zF(2)|s=0} = {2F()|s=0} Fx (y) = 0, the residue at x = 0 cancels between F. (z)
and F_(x), i.e., resy—o(---F(x)---) = 0. Next, since (Sy(t)S(u)) = (S_(t)S(u)) and
S(t){zFL(x)|s=00} = 0, the residue at x = oo cancels between S, (t) and S_(t), i.e.,
resg—oo( -+ S(t)-+-) = 0. Thus we have,

Proposition. The integrand of ¥ does not have residue at x; =0 nor oo (i =1,---,m).

4.2. As we prove in appendix B, one can show that: At first, by calculating the integral
for the variables x’s of the current F'(x)’s, we find that the F_(z)’s do not contribute to
the results. Second, by the residue theorem, we can estimate the integral for = at the
polls y such that |y| > |z|. Then we find that the S_(t)’s contribute only for the residue

canceling at x = cc.



Therefore, for our correlation functions W, only the + parts of F(x) and S(z) are
non-vanishing.

Proposition.

where res,, means the residue at some of x’s are oc.

4.3. Now we denote

with
1
B(t) == mg exp {—b+(t) —(b+ C)(tq_l;())} o,
() == m exp {bs (24"72) + (b + ©)(2g"+1;0)} ¢,

f(@) = exp {ay(2g"F) } .

The correlation function decouple to the a-part ¥, and be-part Wy,

= j{dx U, Uy, — resso,

where
v, H H o) (20, x,) U = ([ 8t T P (x0))
=1 1=1 r=1

and

™) (2,%) i= [+ [Be(2), F@)]ges - F(@m)] gezim—,

P (x) = [ [y(@1), v(@)]ge—2, - V(@) ge—20m-1-
4.4. Here we analyze a term of ¥ such that

Vo j{dx o T 80t [T () ) — resee.
=1 r=1

Since ¥, has no polls about x, we have the following inductive formula:

- faxn 3 [T s TTrte) e (-2 ) L - xes,

i=1,i#£7] r=2 k>j




here the symmetric factor Cj; is

ti — tjq2

Cyy = B UL
/ tig? — t;

So we get

—k—2
fdx\lf > Hta( VA (W) II  Cotron
ceSi=1 @) i>j,0(i)<o(j)
4.5. Similarly, we have other inductive formula as follows:

- ¢ dx\pazﬁlmti) [T o))t (s ) TL G = oo

r=1,r#s md k<s

here the symmetric factor G,.; is

2

G = Ty — Tsq
rs 1T .
Trg® — Ts

From this property, we obtain the “screening current Ward identity” [ATY]:

jfdx v [ [0 [T B (x,)) — resa

= fdx\v > HB PE (1) - (b(tn) P (6)) -+ P (xa) ) T GR2Y — resee,

r<s

with
Lp; — tmq_k
Gm) = .
" ];[ xTiQQ - tmq_k_Q

Here (b(tm)Pg@S)(xs)) means that b(t,,) contract with some of v(z,) in Pé:nS)(xs)).

From this identity, we have

}{dx\IJ Hﬁ HP(m’") (X)) — reseo
= faxw, ST #0028 6 T TT O

Part r=1 i€P, s<rjebP;

Here > ... stands for the summation over all the partition of P = 1,2,---,m into n

disjoint union P, U P, U ---U P,.



4.6. Form the fact that (¢y(2)f(z)) = 1, a-part decouples to three parts as follows:

o = (T st T] o0 (o)) [T G TTCTT F@)o (2
From this and

( HieP St (ti)¢2:m(2, X)) . ( Hz‘eP S(ti)pe.m(z,x))

H@ t) P (%)) (60" (2,%) ) =

(TLepsti)ee(z))  (TLepstioe(z))
we obtain
Theorem.
H H¢£ My ZT,X,« = H H¢£ Zr
% Z H zGP )¢€ mr(zraxr H H H C]z H _k_2)¢ﬁr(zr)> 7
Part r=1 ZGP ( Z>¢Z"( ) i€P,. | s<rjepP; s>r
where
(TTs) I 60 (z)) = [T Cst)s)) TT T (st e, (z) ) T be, (20) e (26) )
i=1 r=1 1<j i=1r=1 r<s
and
2 (203D e (2¢"pip)ec
(s(ti)s(ty)) =1t Eéé;:§;52;7 (s(ti)pe,(2zr)) =1, (%?5:5255i;7
tets  (Zmghr et 2pip gf) oo (Z2q7 DD, ) oo
(o (2) 00, (25)) = ¢"T22] 2kt )(que LAy ) (2 g 2 p, ) o
k9 o .__tiqe — Zrp ..__ti“t'q
<f(tzq )¢€T (ZT)> =T = t— qugrp7 Cl] - tiq2 _tha

with p = ¢>%*2) and
(@:p)oo = [ [ =2p"),  (@p@oo= ][ (1—a2p'd).
i>0 i>0,5>0

By this theorem, the n-point function in ¢y, m, (27, %,) is factored to the one-point

functions.



5. Jackson integral formulae from the free field realization
5.1. From the commutation relation for F'(z) and S(t), we have following “current Ward

identity”:

Fda(S(tr) - S(tm)ldem (%), F@)gp )

m

=3 ks20, (S(t1) - 5(t:) -+ S(tm) b (2,%) ).
=1
Finally we obtain
Theorem.
(S(t1) - S(tm)de.m K20k, ( 5 (H—l) - 5(tm)de(2) )
S e e b | e e v T

Sym =1
By this theorem and that in sect. 4.6, we obtain the formula for W.
5.2. There is another solution. If we symmetries for the integrable variable x of F(x)

then

m mo A—r+1
) ) q [_)‘+T+1] Ty — Ts
(ﬁg’m(Z) = fdxo(ﬁE(Z) HF—’_(:CT) o H T — zq>‘+"“+2 H Trq — T q—l
" - r r<s ™ S

Hence we obtain

Theorem.

m m )\ z—l—l ; _
(TS 6em(: II A+z+uII ti —t;
i=1

paley ti — 2q™p tiq —tiq~!
Here we use the identity

[I7 117 = e [ 7

1<J Sym i<j 1<j

By this theorem and that in sect. 4.6, we obtain another formula for .
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Appendix A. Double loop algebra

A.1. We here show OPE relations used in this paper. For F. (x) and S (¢),

Fy(21)Fy(22) = ¢ Fe(z1)Fe(22) g %qﬂ,
+2
o o L1 — T2q
Fy(z1)Fy(22) = ¢ Fe(o1)Fy(z2) a:i—isczq*qﬂ’
o o t_xqik
S+(t)Fi(x) = o S+(t)Fx(w) g qul,
S+ (t)Fx(z) = $ S+(t)Fx(2) S ¢,
1 —1
St(t1)Sx(t2) = gsi(tl)si(b)g<S(t1)5(t2)>ﬁ ,

° ° ty —taq™
St (t1)Sx(t2) = o S+ (t1)Sx(t2) o (s(t1)s(t2) ) ————q¢7.

t1 —taq?
For Fy(x) and ¢,(z2),
- k+2F¢
o oL <q +/
Fi($)¢g(2) - oF:|:<$)¢€<Z)o x_qu~c+2+€q ’
2 — wq—h—2E

Ge(2)Fe(x) = ¢ de(2)Fe() g W

For ¢¢(z), s(t) and 5(t),

b, (20)0, (25) = & o, (30)n, (2) S 227007

(i—qe D ) oo (22T DD, 0o
(i—qﬁ 2D, ¢ ) oo (Z2qT 2D p, g ) o
. o i3z (247 P)os
S(t2>8(tj) = os(tl>8(tj>o z )
t—q
(#4723 p)s
(t)e, (=) = S s(t)or, (2) 38, e
Y 7 b \*r) oty Tz 7 N
Y (g pip)es
L (54" pip) oo

(2= +2p; p) oo

11



B(t)B(t2) = £ B(t)B(02) S T
B@) = £ B¢ s,
Py e) = Syt () s e,
P = ST @on(a) s S

Ge(2)f(x) = S e(2)f ()35
A.2. We here show the OPE relations of Fi(z), F1(z) and ¥4 (z).
Vi (2)vs(w) = o+ (2)v4(w) 5,

_ o (2 = wg"*?)(z — wg™"F?)
Qp:t(z)zp?(w) — o ¢:|:(z)¢¥(w) o (Z — qu_g)(z _ wq_’f+2) 5

_k1o
o o Z—wq 2T
Vi(2)Eo(w) = ¢ 9¥+(2)Eo(w) g Y j:2,
z—wq 2T

242
Ba(2)(w) = § Ba(2)ts (w) e ————.
Z—wq 2
o E£2
Vi (2)Fa(w) = S2(2)Fa(w) S 0 — 72,
Z —wq?2
—wasF2
Fo(2)2(w) = & Fa(2)t (w) 3 = —,
Z —wq2
Ba(2)Ba(w) = ¢ Ba(2)Ba(w) S T 0™,

z —wq
k42
o oZ wq 1
E F ="F F T
i(z) i(w) o :IZ(Z) i(w)o z—wqi"“ q -,
Ei(Z)Fﬂw) = gEi(Z)Fﬂw)gq?l,
o o % wqyf?Q +1
F E =°F E
+(2) Bx(w) = ¢ Fa(2) By (w) o — w4
Fy(2)Eq(w) = S Fy(2)Ex(w) 2 ¢™,
z w
Fi(2)Fi(w) =  Fa(z)Fs(w)? 1
i(z) i(w) o i(z) i(w)oz wq_Qq 5
P (2) Fe(w) = S Fa(2) P (w) S 200
z w) = z w .
+ F == F OZ—’U}q_Qq



A.3. We here show the algebra of Fy(z), F1(z) and 4 (2).

Y (2)Ys(w) = e (w)p(2),
¥ — wd 2 (5 — w
Yy (2)Y_(w) = ¢_(w)¢+(z)< " )( q

(2 —wg"=2)(z —wg="+2)’

—k—2)

_Ek_
z-wg 2P,

VI (2) B ()T (2) = Eo(w) 7,

k
z—wq 212
k
zZ— wq§+2

Vi (2) Fa(w)yF' (z) = Fa(w)ﬁq_a
z —wq?

(z —wg®)Ex(2)Ex(w) + (w — 2¢*)E+(w)E+(2) = 0,

(z —wq ) Fy(2)Fe(w) + (w — 2 2)Fa(w)Fi(2) = 0,

z—wg? o,

E.(2)E-(w) = B (w) B () L

B2(:)Pe(0)] = = (L0**) v (ug*®),

Ei(2)Fy(w) = Fy (w)Ex(2).

Here we use the following relations:

o o 1 k
oE:t(wq:tk)F:t(w)o = _ Tk d]i(wqi2)7

1 11w
+ :—6<—).
Z—Ww w—z z z

13



Appendix B. Proof of proposition in sect. 4.2

B.1. Let O{A,B,---,C} be an any ordered product of A,B,---,C, e.g., AB---C,
BA---C,CA---B, etc. Then our V is a linear combination of

j{dXdY<HS(ti)O{F+(x1)a o '7F+<xr)7F—(y1)7 o '7F—(ys)7¢€1(z1)7 o '7¢€n(zn)}>

withr+s=m

At first, let us calculate the integral for the variables y’s of the current F_(y)’s,
which can be realized as a counter clock wise contour integral around the origin. Since
F_(y)F+(z) and F_(y)¢e(z) do not have pole except for y = 0, we have
Lemma. Let O{Fi(x),¢(z)} be an arbitrary ordered product of Fy(xy1),---, Fy(x,),

d(z1), -+, d(zn). Then
}{dyF—(?J)O {Fi(x),0(2)} | Ao ) = resy—oF_(y) O {Fy(x),9(z)} | o).

Therefore, the most right ¢ dyF_(y) in ¥ can be replaced with yF_(y)|,—o. Further-
more, since F_ (y1){yF_(y)|y=0} also do not have pole except for y = 0, every ¢ dyF_(y)

in ¥ can be replaced with yF_(y)|y=o-

Since [¢(2). {yF-(9)]y~0}lgr = 0 amd [F (z), {yF_(y)]y=0}]g-2 = 0 we have

Lemma.

[ (2), {UF—(y)|y=0} ge—2m = 0.

Therefore, the nearest yF_(y)|y=o to ¢¢(z) vanishes. Thus

H¢€l,mz zi)[0) H¢Z m; (2:)0).

This means that the F_(y)’s do not contribute to the results, thus our ¥ is a linear

combination of

7{ dx(T[ SO LF (1), Fy(@m)s b, (21), -+ br, (20)} )-

14



B.2. Second, let us calculate the integral for the variables x’s of the current F (x)’s,
which can be realized as a clock wise counture integral around the infinity, by the residue

theorem. Since

—xd* P ‘
HF+ $Z _o ()F-i-( )HF+<$i)gqt_qu+2 t—x-q"“"‘Qx—mq_?
o P ) %

we have
e, g x2( Al S (1 HF+ 2) = ool 34 O F () T Fowi) Sta — a7,
i=1

Thus this residue does not have extra poles at x; = t¢**. Similarly

resy—ig—+-2( Aoo|S4 (1) O {P(2) } Fy (2) O {F.(x), p(w)}

is also the same. Therefore, the residue at z = t;q=%=2 of the most left § dzF, (x) in ¥
does not produce extra poles.
Let dx := [[~, dz; and Fy(x) := {Fy(z1), -, Ft(xm)}, and let us consider the

following m-integral, which contain at least one S_(%):

k—1 m

FaxOl L5 5-0) T] S(t)-0(Fi0.00a)}.

i=1 j=k+1

Since S_(t)F4(z) do not have pole except for x = oo, some variable z; of our m-integral
should localize to co. Therefore, we have

Lemma.

§ ax oo|Hs )0 {F1(x),6(2) = ¢ dx( oo|Hs+ JO (P4 (x), 6()} + -,

here - - - means residues at some x;’s are oo.
But ¥ has no contribution from the residue at some z;’s are oo. This means that the
S_(t)’s contribute only for the residue canceling at x = oo. Therefore, for our correlation

functions, it is enough to consider only the + parts of F'(x) and S(z).

15
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