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Abstract The present paper describes a solution to a problem of identifying
damage in a building based on experimentally measured vibrational eigenvalue
and eigenmode pairs. The healthy rate, which is defined as the stiffness rate
with respect to a perfect material, is chosen as the design target to be identi-
fied. The range of the healthy rate is restricted to within the range of 0 to 1.
In order to overcome this restriction, we define a function with no restriction
on the range defined in the domain of a linear elastic body for a building as a
design variable and assume that the healthy rate is given by a sigmoid function
of the function of the design variable. The linear coupling of the mean squared
errors of vibrational eigenvalues and eigenmodes with respect to the measured
values are used as a cost function. The derivative of the cost function with
respect to the design variable is evaluated by the adjoint variable method. In
order to resolve the identification problem of the damaged area, we use an
iterative algorithm based on the H1 gradient method using the finite-element
method to obtain numerical solutions. A numerical example using experimen-
tal data demonstrates that a damaged area can be identified by the proposed
approach.
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1 Introduction

In order to prevent collapse of dilapidated historical buildings due to earth-
quakes, the development of non-destructive methods by which to identify dam-
age in buildings is required [11]. A comparatively easy and accurate method of
monitoring the stiffness of buildings is to measure vibrational eigenvalue and
eigenmode pairs by observing ambient vibrations. Then, methods by which to
identify damage by solving optimization problems in order to minimize the
error of the vibrational eigenpairs of a numerical model from the measured
data have been studied.

Methods that fit a numerical mode to experimental data are referred to
as model updating methods [9,10,12,15]. In these studies, the optimization
problems are constructed by choosing material constants, such as the Young’s
modulus and density, of finite elements as the design variables and setting the
squared error norm of the vibrational eigenpairs as the cost function to be
minimized.

The applicability of this approach to real architectures has been demon-
strated [6,3,5,4]. The relation between the degree of damage to masonry build-
ings and the vibrational eigenpairs has been measured by shaking table tests
[13,1].

However, choosing the material constants of all of the finite elements as
design variables complicates optimization problems, because doing so increases
the dimension of the design vector space.

In order to address the above-described considerations, in the present
study, we construct a non-parametric optimization problem to identify damage
in buildings. In a previous study, we proposed a topology optimization method
[7] of density type, referred to as the H1 gradient method, and applied this
method to the optimum design of mechanical parts.

Numerical solutions to topology optimization problems of density type have
been investigated extensively [14,8]. The H1 gradient method differs from
the other methods in two aspects. The first is the use of a function of free
range as a design variable, which sets a topology optimization problem in the
framework of a standard function optimization problem. The second is the
use of a gradient method in a Hilbert space for functions of H1 class, which
secures the regularity of the solution to define the domain [7].

In the present paper, the healthy rate, which is defined as the stiffness rate
with respect to a perfect material, is chosen as a design target, rather than
the density in the topology optimization problem. The linear coupling of the
mean squared errors of vibrational eigenvalues and eigenmodes with respect
to the measured values are used as a cost function.

The remainder of the present paper is organized as follows. In Section 2,
we define the healthy rate in a linear elastic body of a damaged building as
a design target and introduce a set of functions θ as a design variable. For a
given θ, in Section 3, we formulate the natural vibration problem. In Section
4, using the solution to the natural vibration problem, we formulate a damage
identification problem using a cost function. The evaluation method for the



Title Suppressed Due to Excessive Length 3

Á(µ)

D

¡D

Fig. 1 Linear elastic body of a damaged building

Fréchet derivative of the cost function with respect to arbitrary variation of θ,
which we refer to as the θ-derivative of the cost function, is shown in Section
5. Using the θ-derivative of the cost function, we present a method by which
to obtain the variation of θ that decreases the cost function in Section 6.
Finally, in Section 7, we present the numerical results for damage identification
problems.

2 Set of design variables

In the present study, we assume that a building is a linear elastic body defined
on d ∈ {2, 3}-dimensional finite domain D, as shown in Fig. 1. Let ∂D be the
boundary of D, and let ΓD ⊂ ∂D be a homogeneous Dirichlet boundary. More-
over, let ΓN ⊂ ∂D \ Γ̄D (Γ̄D denotes ΓD ∪ ∂ΓD) be a homogeneous Neumann
boundary. We assume that ΓD is not the empty set.

To define a set of design variables, we use the notation for function space
as follows. Let W s,p(D;R) denote the Sobolev space for the set of functions
defined in D and having values in R that are s ∈ {0, 1, 2, · · · } times dif-
ferentiable and p ∈ [1,∞]-th order Lebesgue integrable. The terms Lp (D;R),
Hs (D;R), and Cs,α (D;R) for α ∈ (0, 1] are used as W 0,p (D;R), W s,2 (D;R),
and W s+α,∞ (D;R).

Using the notation, let C0 ∈ L∞ (
D;Rd×d×d×d

)
be the stiffness of a perfect

model having ellipticity and boundedness. For a damaged building, we define
the healthy rate ϕ : D → [0, 1], for which the stiffness is given as

C (ϕ) = ϕαC0, (2.1)

where α is a positive constant, such as 1 or 2. The influence of the value of α
will be checked in numerical examples (Section 7).

However, since the range of ϕ is restricted to within 0 to 1, ϕ is not suitable
as a design variable, because we cannot define the Fréchet derivatives of cost
functions with respect to arbitrary variation of ϕ. Then, in the present paper,
we assume that the design variable is defined in terms of a function θ belonging
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to

X = H1 (D;R) . (2.2)

The healthy rate is given as a sigmoid function of θ ∈ X. In the present paper,
we use

ϕ (θ) =
1

π
tan−1 θ +

1

2
. (2.3)

When we use (2.3), the value of ϕ (θ) is limited to (0, 1) from [0, 1]. It can
be considered that this limitation is not critical by allowing sufficiently large
absolute value for θ. Hence, we rewrite C (ϕ) of (2.1) by C (θ).

3 Main problem

Letting θ ∈ X be given, we formulate the main problem as follows. Let u ∈ U
be the displacement of the linear elastic body, where

U =
{
u ∈ H1

(
D;Rd

) ∣∣ u = 0Rd on ΓD

}
. (3.1)

In order to define the Fréchet derivative of the cost function including u with
respect to an arbitrary variation of θ ∈ X, we assume that u belongs to

S = U ∩W 1,2q
(
D;Rd

)
(3.2)

for q > d. Using u and C (θ), let

E (u) = (eij (u))(i,j)∈{1,··· ,d}2 =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(i,j)∈{1,··· ,d}2

,

Σ (θ,u) = (σij (θ,u))(i,j)∈{1,··· ,d}2

= C (θ)E (u) =

 ∑
(k,l)∈{1,··· ,d}2

cijkl (θ) ekl (u)


ij

be the strain and the stress, respectively. Moreover, let ρ ∈ L∞ (D;R) be the
density. In the present study, we assume that ρ is independent of θ.

In the present study, we assume vibrational eigenpairs of a building was
measured by experiment. Let M be a set of the mode numbers of experimen-
tally measured natural vibrations, and let |M| be the number of the elements
of the set. We assume that the multiplicity of the eigenvalues is allowed and
that the identification of the vibrational eigenmodes is checked by the modal
assurance criterion (MAC) using the normalized inner products.

Using the above notation, we define the main problem as follows. In the
present paper, ν denotes the outer unit normal on the boundary.
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Problem 1 (Natural vibration problem) Let θ ∈ X be given. For i ∈ M,
find ηi ∈ R and ui : D → Rd such that

− ηiρu
T
i −∇TΣ (θ,ui) = 0T

Rd in D,

Σ (θ,ui)ν = 0Rd on ΓN,

ui = 0Rd on ΓD,∫
D

ρ ∥ui∥2Rd dx = 1. (3.3)

In Problem 1, we refer to ηi = ω2
i as the i-th vibrational eigenvalue, ωi

as the i-th circular eigenfrequency, ui as the i-th vibrational eigenmode, and
(ηi,ui) as the i-th vibrational eigenpair.

We define (for later use) the Lagrange function of Problem 1 for i ∈ M by

LMi (θ, ηi,ui,v) =

∫
D

(ηiρui · v −Σ (θ,ui) ·E (v)) dx, (3.4)

where v ∈ U is introduced as a Lagrange multiplier, and Σ (θ,ui) · E (v)
denotes

∑
(i,j)∈{1,··· ,d}2 σij (θ,ui) eij (v). If (ηi,ui) is the solution of Problem

1,

LMi (θ, ηi,ui,v) = 0

holds for all v ∈ U .

4 Damage identification problem

Let η and U denote {ηi}i∈M and {ui}i∈M, respectively. Using (η,U), we
define a damage identification problem. In the present paper, we assume that
the i-th vibrational eigenpairs are given by (η̄i, ūi), in which ūi is given on an
assigned domain or boundary Ω̄M ⊂ D̄ \ ΓD. We refer to

f0 (η) =
∑
i∈M

|ηi − η̄i|2 (4.1)

as the error norm of vibrational eigenvalues. Moreover, assuming β = {βi}i∈M ∈
R|M| to be variables to control the magnitudes of the mode vectors, we refer
to

f1 (U ,β) =
∑
i∈M

h (ui, βi) (4.2)

as the error norm of vibrational eigenmodes, where

h (ui, βi) = η̄i

(∫
Ω̄M∩D

∥ui − βiūi∥2Rd dx+

∫
Ω̄M∩∂D

∥ui − βiūi∥2Rd dγ

)
.

(4.3)
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Using f0 and f1, we define

f (η,U ,β) = f0 (η) + c1f1 (U ,β) (4.4)

as a cost function for damage identification, where c1 is a constant that is
appropriately determined depending on the method of taking Ω̄M. Using f ,
we define the damage identification problem as follows.

Problem 2 (Damage identification problem) LetX and U be defined as
(2.2) and (3.1), respectively, and let f be defined as (4.4). Find θ such that

min
θ∈X

{
f (η,U ,β) | (ηi,ui) ∈ R× U, i ∈ M,

Problem 1
}
.

5 θ-derivative of f

Since the solution (η,U) of Problem 1 is determined uniquely for θ ∈ X, we
denote (4.4) for θ as

f̃ (θ,β) = f̃0 (θ) + c1f̃1 (θ,β) .

Hence, we refer to the partial Fréchet derivative of f̃ with respect to arbitrary
variation ϑ ∈ X of θ denoted by

f̃θ (θ,β) [ϑ] = f̃ ′
0 (θ) [ϑ] + c1f̃1θ (θ,β) [ϑ] =

∫
D

(g0 + c1g1)ϑ dx = ⟨g, ϑ⟩ (5.1)

the partial θ-derivative of f̃ , where ⟨ · , · ⟩ denotes the dual product. In the
following, we present the evaluation methods of g0 and g1.

5.1 Evaluation of g0

Since f0 (η) includes the solution η of Problem 1, we define the Lagrange
function of f0 (η) as

L0 (θ,η,U ,V0) = f0 (η) +
∑
i∈M

LMi (θ, ηi,ui,vi0) , (5.2)

where V0 = {vi0}i∈M ∈ U |M| is the Lagrange multiplier of Problem 1 for f0.
The Fréchet derivative of L0 with respect to arbitrary variation ϑ ∈ X of θ
can be written as

L ′
0 (θ,η,U ,V0) [ϑ] = L0θ (θ,η,U ,V0) [ϑ] + L0η (θ,η,U ,V0) [η

′]

+ L0U (θ,η,U ,V0) [U
′] + L0V0 (θ,η,U ,V0) [V

′
0 ] . (5.3)
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Here, η′ denotes the Fréchet derivative η′ (θ) [ϑ] of the solution η of Problem
1 with respect to arbitrary variation ϑ ∈ X. In the same manner, U ′ and V ′

0

denote these Fréchet derivatives.
The forth term on the right-hand side of (5.3) becomes

L0V0 (θ,η,U ,V0) [V
′
0 ] = ⟨L0V0 (θ,η,U ,V0) ,V

′
0 ⟩

=
∑
i∈M

LMi (θ, ηi,ui,v
′
i0) , (5.4)

which agrees with the Lagrange function of Problem 1. Then, if (η,U) are
weak solutions of Problem 1, the fourth term on the right-hand side of (5.3)
becomes 0.

The second and third terms on the right-hand side of (5.3) becomes

L0η (θ,η,U ,V0) [η
′] + L0U (θ,η,U ,V0) [U

′]

=
∑
i∈M

(
⟨L0ηi (θ,η,U ,V0) , η

′
i⟩+ ⟨LMui (θ,η,U ,V0) ,u

′
i⟩
)
, (5.5)

where

⟨L0ηi (θ,η,U ,V0) , η
′
i⟩ = f0ηi (η) [η

′
i] + LMiηi (θ, ηi,ui,vi0) [η

′
i]

= 2 (ηi − η̄i) η
′
i + η′i

∫
D

ρui · vi0 dx,

⟨LMui (θ,η,U ,V0) ,u
′
i⟩ = LMi (θ, ηi,u

′
i,vi0) .

(5.5) agrees with the Lagrange function of the following problem. Then, if V0

is the weak solution of the following problem, the second and third terms on
the right-hand side of (5.3) become 0.

Problem 3 (Adjoint problem for f0) Let θ ∈ X be given. For i ∈ M, let
the solution (ηi,ui) of Problem 1 be given. Find vi0 : D → Rd such that

− ηiρv
T
i0 −∇TΣ (θ,vi0) = 0T

Rd in D,

Σ (θ,vi0)ν = 0Rd on ΓN,

vi0 = 0Rd on ΓD,∫
D

ρui · vi0 dx = −2 (ηi − η̄i) . (5.6)

Problem 3 becomes the same eigenvalue problem as Problem 1, although
the magnitude of vi0 is determined by the normalization condition of (5.6).

Moreover, the first term on the right-hand side of (5.3) becomes

L0θ (θ,η,U ,V0) [ϑ] =

∫
D

∑
i∈M

gi0ϑ dx = ⟨g0, ϑ⟩ , (5.7)
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where

gi0 = −∂Σ (θ,ui)

∂θ
·E (vi0) = −αϕα−1 dϕ

dθ
(C0 : E (ui)) ·E (vi0)

= −α

ϕ

dϕ

dθ
Σ (θ,ui) ·E (vi0) .

Based on these results, if (η,U) and V0 are weak solutions of Problems
1 and 3, respectively, since the Fréchet derivative of the second term on the
right-hand side of (5.2) becomes 0, f̃ ′

0 (θ) [ϑ] in (5.1) agrees with (5.7). Here, if
the conditions such that ui and vi0 belong to S in (3.2) are satisfied, since g0
belongs to Lq

(
D;Rd

)
, the necessary condition g0 ∈ X ′ (X ′ denotes the dual

space of X) for the Fréchet derivative with respect to arbitrary variation of
θ ∈ X is satisfied.

5.2 Evaluation of g1

Since f1 (U ,β) includes the solution U of Problem 1, we define the Lagrange
function for f1 (U ,β) as

L1 (θ,η,U ,β,V1) = f1 (U ,β) +
∑
i∈M

LMi (θ, ηi,ui,vi1) , (5.8)

where V1 = {vi1}i∈M ∈ U |M| is the Lagrange multiplier of Problem 1 for f1.

Here, let β′ ∈ R|M| denote the arbitrary variation of β, and let ϑ ∈ X denote
the arbitrary variation of θ. Then, the Fréchet derivative of L1 with respect
to these variations can be written as

L ′
1 (θ,η,U ,β,V1) [ϑ,β

′] = L1θ (θ,η,U ,β,V1) [ϑ]

+ L1η (θ,η,U ,β,V1) [η
′] + L1U (θ,η,U ,β,V1) [U

′]

+ L1V1 (θ,η,U ,β,V1) [V
′
1 ] + L1β (θ,η,U ,β,V1) [β

′] . (5.9)

Here, η′ denotes the Fréchet derivative η′ (θ) [ϑ] of the solution η of Problem
1. In the same manner, U ′ and V ′

1 denote these Fréchet derivatives.

The fifth term on the right-hand side of (5.9) becomes

L1β (θ,η,U ,β,V1) [β
′] =

∑
i∈M

f1βi (U ,β) [β′
i]

= −
∑
i∈M

2β′
iη̄i

(∫
D∩Ω̄M

(ui − βiūi) · ūi dx

+

∫
ΓN∩Ω̄M

(ui − βiūi) · ūi dγ

)
.



Title Suppressed Due to Excessive Length 9

Then, if we set

βi =

∫
D∩Ω̄M

ui · ūi dx+

∫
ΓN∩Ω̄M

ui · ūi dγ∫
D∩Ω̄M

ūi · ūi dx+

∫
ΓN∩Ω̄M

ūi · ūi dγ

, (5.10)

the fifth term on the right-hand side of (5.9) becomes 0.

The forth term on the right-hand side of (5.9) agrees with (5.4), in which
V0 is replaced by V1. Then, if (η,U) are weak solutions of Problem 1, the
fourth term on the right-hand side of (5.9) becomes 0.

Moreover, the second and the third terms become

L1η (θ,η,U ,β,V1) [η
′] + L1U (θ,η,U ,β,V1) [U

′]

=
∑
i∈M

(
⟨LMηi (θ,η,U ,V1) , η

′
i⟩+ ⟨f1ui (U ,β) ,u′

i⟩

+ ⟨LMui (θ,η,U ,V1) ,u
′
i⟩
)
, (5.11)

where

⟨LMηi (θ,η,U ,V1) , η
′
i⟩ = η′i

∫
D

ρui · vi1 dx,

⟨f1ui (U ,β) ,u′
i⟩+ ⟨LMui (θ,η,U ,V1) ,u

′
i⟩

= 2η̄i

(∫
D∩Ω̄M

(ui − βiūi) · u′
i dx+

∫
ΓN∩Ω̄M

(ui − βiūi) · u′
i dγ

)
+ LMi (θ, ηi,u

′
i,vi1) .

Here, (5.11) agrees with the Lagrange function of the following problem. Then,
if V1 is the weak solution of the following problem, the second and third terms
on the right-hand side of (5.9) become 0.

Problem 4 (Adjoint problem for f1) Let θ ∈ X be given. For i ∈ M, let
the solution (ηi,ui) of Problem 1 be given. Find vi1 : D → Rd such that

− ηiρv
T
i1 −∇TΣ (θ,vi1)

=

{
2η̄i (ui − βiūi)

T
in D ∩ Ω̄M,

0T
Rd in D \ Ω̄M,

Σ (θ,vi1)ν =

{
2η̄i (ui − βiūi) on ΓN ∩ Ω̄M,
0Rd on ΓN \ Ω̄M,

vi1 = 0Rd on ΓD,∫
D

ρui · vi1 dx = 0. (5.12)
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Problem 4 can be solved as follows. Let N be a set of all of the mode
numbers of eigenfrequencies in a frequency range that is sufficiently large,
which covers all of the eigenfrequencies of M, and uj for all j ∈ N be the
solutions of Problem 1. If |N | is sufficiently large, we can write the following
approximation:

vi1 =
∑

j∈N\{i}

ξijuj . (5.13)

Here, ξi = (ξij)j ∈ R|N |−1 is referred to as the mode coordinates of vi1 with

respect to {uj}j∈N . Since vi1 is the weak solution of Problem 4, the Lagrange

function of Problem 4 given by (5.11) becomes 0. Using this condition, we have

ξij =
2η̄i

ηj − ηi

(∫
D∩Ω̄M

(ui − βiūi) · uj dx+

∫
ΓN∩Ω̄M

(ui − βiūi) · uj dγ

)
.

(5.14)

Here, we used the following conditions. Since j ∈ N \{i} is assumed in (5.13),
the first term on the right-hand side of (5.11) becomes 0. Moreover, substi-
tuting (5.13) into the second and third terms on the right-hand side of (5.11),
setting u′

i = uj , considering LMj (θ, ηj ,uj ,uj) = 0, and using the normaliza-
tion condition (3.3) of uj , we have (5.14). Then, we can compute the weak
solution vi1 of Problem 4 by (5.13) using ξij in (5.14).

Moreover, the first term on the right-hand side of (5.9) becomes

L1θ (θ,η,U ,β,V1) [ϑ] =

∫
D

∑
i∈M

gi1ϑ dx = ⟨g1, ϑ⟩ , (5.15)

where

gi1 = −∂Σ (θ,ui)

∂θ
·E (vi1) = −αϕα−1 dϕ

dθ
C0E (ui) ·E (vi1)

= −α

ϕ

dϕ

dθ
Σ (θ,ui) ·E (vi1) .

From these results, if (η,U) and V1 are weak solutions of Problems 1 and
4, respectively, since the Fréchet derivative of the second term on the right-
hand side of (5.8) becomes 0, f̃1θ (θ,β) [ϑ] in (5.1) agrees with (5.15). Here,
if the conditions for ui and vi1 to belong to S in (3.2) are satisfied, since g1
belongs to Lq

(
D;Rd

)
, g1 ∈ X ′ is satisfied.

6 H1 gradient method

Since θ-derivative g of f is evaluated, the variation of θ, which belongs to
X and minimizes f , can be found by the H1 gradient method for topology
optimization problem of θ type [7].
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Problem 5 (H1 gradient method for θ type) Let X be defined as (2.2),
aX : X×X → R be a coercive bilinear form on X, and the θ-derivative g ∈ X ′

of f . Find ϑg ∈ X such that

aX (ϑg, z) = −⟨g, z⟩

for all z ∈ X.

For example, for the case in which we use

aX (θ, ϑ) = ca

∫
D

(∇θ ·∇ϑ+ cΩθϑ) dx, (6.1)

the strong form of Problem 5 becomes as follows, where ca is a positive constant
to control the magnitude of ϑg, and cΩ is a positive constant to control the
smoothness of ϑg. Here, let ∂ν denote ∇ · ν.

Problem 6 (Strong form of Problem 5) Let g ∈ X ′ be given. Find ϑg ∈
X such that

ca (−∆ϑg + cΩϑg) = g in D,

ca∂νϑg = 0 on ∂D.

7 Numerical example

We developed a program in which g0 and g1 were computed using the nu-
merical solutions of Problems 1, 3, and 4 by the finite-element method, and
θ was renewed using the numerical solution ϑg of Problem 6 by the finite-
element method. The correspondence of mode numbers between the finite-
element model and the measurement data was checked using the modal assur-
ance criterion. In (2.1), α = 2 was used, while similar results were obtained
using α = 1. c1 in (4.4) was determined to hold f0 ≈ f1 in the initial model.
N = {1, · · · , 150} and cΩ = 10 [1/m2] were used in (5.13) and (6.1), respec-
tively.

A School of Pharmacy building of Nagoya City University that is to be
demolished was used as a target object. Figure 2 shows a photograph of the
building and the finite-element model used in the present analyses. The bottom
plane was assumed to be ΓD. The hexahedral second-order element was used
for the finite-element model. The numbers of nodes and elements were 32,410
and 5,706, respectively. Moreover, 21.1 [GPa], 0.2, and 2,210 [kg/m3] were
used as the Young’s modulus, Poisson’s ratio, and the density, which were
determined by sampling based on material experiments.
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(a) Photograph (b) FE model

Fig. 2 Building used in the experiment

Fig. 3 FE model assuming imaginary damage

(a) Front view (b) Back view

Fig. 4 Healthy rate identified from 1st and 2nd mode pairs with respect to the FE model
of Fig. 3

7.1 Theoretical damage

First, a problem of identifying theoretical damage was solved. Figure 3 shows
this finite-element model, in which healthy rates of 0.1 and 0.9 were assumed
for the damaged area and the remainder, respectively. In Problem 2, we as-
sumed that M = {1, 2} and Ω̄M = D̄ \ ΓD. The initial healthy rate was 0.9
uniformly. Figures 4 and 5 show the identified healthy rate and its eigenmodes,
respectively.
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(a) 1st mode 2.74 [Hz] 2nd mode 3.10 [Hz]

Fig. 5 Eigenmodes of the identified FE model of Fig. 4

(a) Diagram [unit: m]

(b) FE model

Fig. 6 Artificially damaged part

7.2 Experimental data

Aoki et al. [2] obtained the data of the eigenpairs by measuring ambient vi-
bration before and after damage was artificially generated. Figure 6 shows the
damaged area. Figure 7 shows 12 points at which ambient vibration was mea-
sured. The eigenfrequencies from the first mode to the eighth mode are listed
in Table 1. The eigenmodes before and after the damage are shown in Figs. 8
and 9. The healthy rate identified from these experimental data is shown in
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Fig. 7 Measurement points of ambient vibration

Table 1 Measured eigenfrequencies

Mode Pre-damage [Hz] Post-damage [Hz]
1st 3.02 2.95
2nd 4.76 4.05
3rd 6.28 4.69
4th 7.41 6.11
5th 9.65 6.76
6th 10.10 7.39
7th 11.00 8.69
8th 11.30 9.50

1st 2nd 3rd 4th

5th 6th 7th 8th

Fig. 8 Measured eigenmodes of pre-damage

Fig. 10. From this figure, it is confirmed that the healthy rate is low in the
neighborhood of the damaged area.

In the case using the experimental data, since the measuring points of
vibration and the number of the eigenpairs were limited to 12 points and
8 modes, respectively, it is considered that the resolution of the identified
damaged area was not enough. However, considering that the accurate result
was obtained in the case of using the theoretical damage, it is expected that
more accurate identification is realized by using sufficient experimental data.
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1st 2nd 3rd 4th

5th 6th 7th 8th

Fig. 9 Measured eigenmodes of post-damage

(a) Front view (b) Ground-up view

Fig. 10 Healthy rate identified from experimental data

8 Conclusions

The present paper described a solution to a problem of identifying damage in
buildings based on experimentally measured vibrational eigenvalue and eigen-
mode pairs. The healthy rate, which was defined as the stiffness rate with re-
spect to a perfect material, was chosen as an identification variable. The linear
coupling of the mean squared errors of vibrational eigenvalues and eigenmodes
with respect to the measured values was used as a cost function. The derivative
of the cost function with respect to the design variable was evaluated by the
adjoint variable method. A numerical solution using the H1 gradient method
was presented, and numerical examples were presented.
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