iPS Cells

Outlines

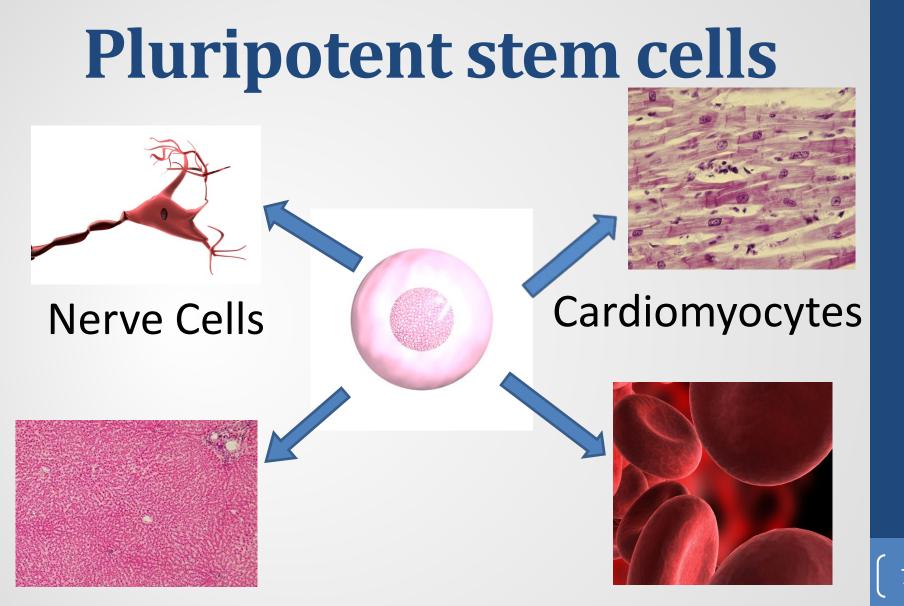
- Reasons
- iPS cells
- Pluripotent stem cells
- ES cells and iPS cells
- Prospect

- Prof. Yamanaka won a Nobel prize
 iPS cells have attracted considerable attention
- I am interested in iPS cells

What are iPS cells?

- induced pluripotent stem cells
- Able to differentiate and grow almost indefinitely (pluripotent stem cells)
- Born in 2006 by Prof. Shinya Yamanaka

Mr. Shinya Yamanaka


- The Director of Center for iPS Cell Research and Application,
 - **Kyoto University**
- Nobel prize for medicine

Pluripotent stem cells

Able to differentiate and grow almost indefinitely

- iPS cells
- ES cells

etc...

Hepatocytes

Blood Cells

How were iPS cells made?

Prof. Yamanaka

- Introducing four genes (Oct3/4, Sox2, c-Myc, Klf4) into mouse fibroblast by retrovirus vector
- Culturing for a few weeks
 → iPS cells

How to make iPS cells

- Genes
- Vector
- Compound (under study)

Background

- 1981: Embryonic stem (ES) cells
- 1998: Human ES cells
 - → More expectations to apply to regenerative medicine
 - → Ethical difficulties and problems of

tissue rejection

- 2006: iPS cells from mouse's skin tissue
- 2007: iPS cells from human skin tissue

ES cells
Made from a embryo
iPS cells
Made from a somatic cell

Common Merit

Pluripotency

Grow almost indefinitely

 \rightarrow pluripotent stem cells

- **Common Problems**
- Unknown in mechanism of maintaining pluripotency
- Possibility of canceration due to almost indefenite growth

	ES Cells	iPS Cells
Merit	 Pluripotency Grow almost indefinitely No introduction of genes Rich store of knowledge 	 Pluripotency Grow almost indefinitely Low possibility of rejection No embryo
Demerit	 Ethical problems Difficulty of stably 	 Possibility of canceration due to introduction of genes Unknown in mechanism of reprogramming
Common Problems	 Unknown in mechanism of maintaining pluripotency Possibility of canceration due to almost indefenite growth 	

Application of iPS cells

- Regenerative medicine
- Elucidation of the cause of disease
- Development of new drugs

Problems of iPS cells

- Canceration
- Forming teratoma
- Unknown in mechanism of reprogramming
- Efficiency

iPS cells

- Expectations
- Problems and difficultiesUnder study

iPS cells

Possibilities and potential Important role Great benefit

Thank you for listening!

Any Question?