量子力学 I 講義ノート

— 2016年度後期 —

棚橋 誠治

目 次

1	はじ	じめに こうしん しんしん しんしん しんしん しんしん しんしん しんしん しんしん	1
	1.1	Stern-Gerlach 実験	1
	1.2	連続した SG 実験	2
	1.3	SG 実験と光の偏極(偏光)との類似: : : : : : : : : : : : : : : : :	3
	1.4	電磁気学での偏光の理解	4
	1.5	状態の重ね合わせと SG 実験	7
	1.6	2重スリット実験10	0
	1.7	粒子と波動関数	1
2	波と	:粒子の2重性、確率、シュレディンガー方程式 12	2
	2.1	省略	2
	2.2	平面波と波束	2
	2.3	波動関数の確率解釈	6
	2.4	シュレディンガー方程式 18	8
	2.5	ハイゼンベルグの不確定性関係	0
	2.6	確率の保存と確率流	2
	2.7	期待值	4
3	固有	「値、固有関数、固有関数による展開 2 ⁷	7
	3.1	時間に依存しないシュレディンガー方程式2'	7
	3.2	固有值方程式	8
	3.3	箱に閉じ込められた粒子	0
	3.4	固有関数による展開とその物理的意味	1
	3.5	運動量固有状態と自由粒子32	2
	3.6	パリティ	3
4	1次	?元ポテンシャル 3!	5
	4.1	段差ポテンシャル	5
	4.2	井戸型ポテンシャル	8
	4.3	ポテンシャル障壁	0
	4.4	略	1
	4.5	井戸型ポテンシャルでの束縛状態	1

	4.6	デルタ関数ポテンシャル	46
	$\overline{47}$	調和振動子	48
	1.1		10
-	旦つ	7 七 谷の様法	F 0
9	里丁	「力子の情道	53
	5.1	波動関数とヒルベルト空間.................................	53
	5.2	エルミート演算子と観測可能量	54
	53	会 今 ふ と 射影 滞留 子	58
	0.0		00
	5.4	演算子の交換関係と同時観測可能量	61
	5.5	不確定性関係	62
	56	北能の無限小変換と演算子の交換関係 解析力学との対応	65
	5.0		00
	5.7	状態の時間発展	67
6	演算	『 子法』	69
	6.1	調和振動子のエネルギー準位	69
	6.2	調和振動子の波動関数	79
	0.2		12
	6.3	シュレディンガー表示とハイゼンベルグ表示.................	73
7	角迌		74
	7.1	角運動量の交換関係	76
	79	夏 陈冶省之	77
	1.2	升陞供昇」	11
	7.3	球面調和関数	79
	7.4	球面調和関数の完全性	84
8	水素	表原子····································	84
	81	由心力ポテンシャル	8/
	0.1		01
	8.2	水素類似原丁	85
	8.3	エネルギー準位	85
	8.4	自由粒子	89
	0 5	おの内辺に明い込みとわた粉乙	00
	0.0	水の内印に闭し込められた型」	90
0	• *		
9	30	(工画転群の表現	92
	9.1	状態の回転変換	92
	9.2	角運動量の行列表示	92
Α	複	素ベクトル空間と内 積	97
			0.
в	тл	ショート行列の性質	98
D			30
	B.1	行列の成分表示	98
	B.2	転置・複素共軛・エルミート共軛	99
	B 3	エルミート行列	99
	D.4		101
	D .4	里↓ 月子との短辺	101
~	#6-		100
С	议记	5し1フタリ(S-1フタリ)と転达1フタリ(M-1フタリ)	102
_	<u> </u>		
D	フロ	1ッホの定理	105

\mathbf{E}	直交多項式	107
	E.1 エルミート多項式	108
	E.2 ルジャンドル多項式	110
	E.3 ゲーゲンバウアー多項式	112
	E.4 ラゲール多項式	114
Б		
F	コヒーレント状態	115
	F.1 調和振動子の復習	115
	F.2 量子ゆらぎ Δx と Δp	116
	F.3 コヒーレント状態	117
	F.4 コヒーレント状態の性質	119
	F.5 ベーカー・キャンベル・ハウスドルフの公式	122
	F.6 そのほかの最小不確定性状態	124
G	球座標・円筒座標系でのラプラシアン	125
	G1 デカルト座標系	125
	C 9 円筒 本 / / / / / / / / / / / / / / / / / /	126
	G.2 TI向庄(水) ····································	120
		121
\mathbf{H}	球座標における角運動量の微分演算子	127
	H.1 2次元極座標	127
	H.2 3次元極座標(球座標)	128
T	球面調和関数	129
Ŧ	大田間市内区 I 1 $(\vec{I}^{\text{op}})^2$ の目休形	120
	$L_{1} = \int \nabla \varphi \psi \psi \psi \psi$	123
	1.2 $I_{\ell m}(\sigma, \varphi)$ 切共评心	101
	1.5 <u></u> 起 邓田 御 田 魚 宮 新 見 っ 見 フ <i>U</i> () 始 傑 フ 法)	134
	1.4 4 代元空间内連期重の重丁化() 4 () 1.4 ()	138
J	球ベッセル関数と3次元井戸型ポテンシャル	139
	J.1 球ベッセル関数	139
	J.2 3次元球対称井戸型ポテンシャル	143

教科書

- ガシオロウィッツ「量子力学 I」丸善出版、林・北門 共訳
 第2版の翻訳
- S. Gasiorowicz, "Quantum Physics", 3rd edition, John Wiley & Sons Pub.

参考書 (今回の講義準備に用いる参考書)

- 猪木・川合 「量子力学 I, II」講談社サイエンティフィック
- 桜井純 「現代の量子力学」吉岡書店
- J.J. Sakurai "Modern Quantum Mechanics", Addison-Wesley Pub.
- R. Shanker "Principles of Quantum Mechanics", Springer

参考書 (そのほか)

- 猪木・川合 「基礎 量子力学」講談社サイエンティフィック コンサイス版の「猪木・川合」。
- 日笠健一「量子力学」朝倉書店 量子力学で使うさまざまな式が要領よくまとめられている教科書。
- シッフ「量子力学上,下」井上訳、吉岡書店 演習問題が豊富。問題を解けるようになる教科書。
- メシア「量子力学1,2,3」小出・田村訳、東京図書 量子力学のさまざまな内容が広く網羅されている教科書。すこし数学的。

成績

• 定期試験による。

連絡先

- 電子メール: tanabash@eken.phys.nagoya-u.ac.jp
- 内線: 2859
- 部屋: ES719

A 複素ベクトル空間と内積

内積

$$\langle e_i | e_j \rangle = \delta_{ij} \tag{A.1}$$

によって規格直交化された N 個のベクトルの組

$$|e_1\rangle, |e_2\rangle, \cdots, |e_N\rangle$$
 (A.2)

を考える。このベクトルの組と N 個の複素数(ベクトルの成分)

$$v_1, v_2, \cdots, v_N$$
 (A.3)

を用いて

$$|v\rangle = |e_1\rangle v_1 + |e_2\rangle v_2 + \dots + |e_N\rangle v_N$$

=
$$\sum_{i=1}^N |e_i\rangle v_i$$
 (A.4)

で与えられるベクトル |v) の集合 V は、ベクトルの和

$$|v\rangle + |w\rangle = \sum_{i=1}^{N} |e_i\rangle(v_i + w_i)$$
(A.5)

や複素数倍

$$c|v\rangle = \sum_{i=1}^{N} |e_i\rangle(cv_i) \tag{A.6}$$

の下で閉じており、(N 次元) 複素ベクトル空間となっている。 またふたつのベクトル $|v\rangle$, $|w\rangle$ の組に対し、 $\langle v|w\rangle$ を

$$\langle v|w\rangle = \sum_{i=1}^{N} v_i^* w_i \tag{A.7}$$

と定義すれば、

(性質1) 対称性

 $\langle v|w\rangle = (\langle w|v\rangle)^*$

(性質2)正定値性

$$\langle v|v\rangle \ge 0.$$

ただし、 $\langle v|v \rangle = 0$ となるのは、 $|v \rangle = 0$ の場合のみ。

(性質3) 線型性

$$\langle v|(a|w\rangle+b|z\rangle)=a\langle v|w\rangle+b\langle v|z\rangle$$

が成り立ち、〈*v*|*w*〉は内積としての性質を持つことがわかる。内積構造を持つベクトル空間を内積 空間と呼ぶ。 自乗可積分な関数 v(·) の集合(ヒルベルト空間)も和や複素数倍の下で閉じており、複素ベクトル空間になっていることがわかる。ヒルベルト空間における (v|w) を、式 (A.7) にならって

$$\langle v|w\rangle = \int dx v^*(x) w(x)$$
 (A.8)

と定義しよう。この内積が性質 (1~3) を満たすことは明らかであろう。つまり、ヒルベルト空間 も内積空間である。式 (A.7) と式 (A.8) を比較すると、N 次元ベクトル空間におけるベクトル $|v\rangle$ の *i* 番目成分 v_i には、ヒルベルト空間のベクトル $|v\rangle$ では、対応する関数 $v(\cdot)$ の座標点 *x* におけ る関数値 v(x) が対応することが分かる。

B エルミート行列の性質

量子力学での観測可能量に対応するエルミート演算子は、エルミート行列とよく似た性質を持っている。ここでは、2行2列のエルミート行列について、その性質をまとめることにする。一般次 元の場合について拡張することは容易であろう。

B.1 行列の成分表示

2行2列の行列 A

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
(B.1)

を考えよう。 A_{ij} (i, j = 1, 2) を行列 A の成分表示と呼ぶ。成分表示を用いると、行列 A のトレースは

$$\operatorname{tr}\left[A\right] = \sum_{i} A_{ii} \tag{B.2}$$

と書き表すことができる。つまり、行列のトレースを取るには、その成分表示での左足と右足を揃 えて和をとればよい。

次に、行列 A と同様に

$$B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix},$$
 (B.3)

で与えられる行列 B を導入する。行列 A と行列 B の積の行列の成分表示は

$$(AB)_{ij} = \sum_{k} A_{ik} B_{kj} \tag{B.4}$$

である。行列 A の成分表示の右足と行列 B の左足を揃えて和をとることによって行列の積が得られることがわかる。

以上の事実から、

$$tr[AB] = \sum_{i,j} A_{ij} B_{ji}$$
(B.5)

が得られる。このことからトレースに関する公式

$$tr[AB] = tr[BA] \tag{B.6}$$

を得るのは容易であろう。

B.2 転置・複素共軛・エルミート共軛

式 (B.1) で与えられる行列 A の転置をとったものを

$${}^{t}A = \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix}$$
(B.7)

と書くことにする。行列^tAの成分表示は

$$(^{t}A)_{ij} = A_{ji} \tag{B.8}$$

で与えられる。

式 (B.1) で与えられる行列 A の各成分について複素共軛をとったものを

$$A^* = \begin{pmatrix} A_{11}^* & A_{12}^* \\ A_{21}^* & A_{22}^* \end{pmatrix}$$
(B.9)

と表すことにする。その成分表示は

$$(A^*)_{ij} = A^*_{ji} \tag{B.10}$$

で与えられる。

次に、転置と複素共軛の両方を行うことを考える。

$$A^{\dagger} = \begin{pmatrix} A_{11}^* & A_{21}^* \\ A_{12}^* & A_{22}^* \end{pmatrix}.$$
 (B.11)

行列 A[†] を、行列 A のエルミート共軛とよぶ。その成分表示は

$$(A^{\dagger})_{ij} = A_{ji}^* \tag{B.12}$$

で与えられる。

B.3 エルミート行列

行列 A のエルミート共軛 A[†] がもとの行列に一致する場合、つまり、

$$A = A^{\dagger} \tag{B.13}$$

のとき、行列 A はエルミート行列であると呼ばれる。行列 A がエルミート行列の場合、行列 A の 成分表示は

$$A_{ij} = A_{ji}^* \tag{B.14}$$

の性質を満たす。

以下では、エルミート行列 A の固有値 a_n (n = 1, 2) と固有ベクトル

$$\vec{v}_n = \begin{pmatrix} v_{1n} \\ v_{2n} \end{pmatrix}, \qquad (n = 1, 2) \tag{B.15}$$

の満たす性質を考察しよう。固有ベクトル \vec{v}_n は

$$1 = \sum_{i} v_{in}^* v_{in} \tag{B.16}$$

として規格化されているものとする。

まず最初に、固有値方程式

$$A\vec{v}_n = a_n\vec{v}_n \tag{B.17}$$

を成分表示で書き下してみる。

$$\sum_{j} A_{ij} v_{jn} = a_n v_{in}. \tag{B.18}$$

式 (B.18) の両辺に v_{in}^* をかけ、i で和をとると

$$\sum_{i,j} A_{ij} v_{in}^* v_{jn} = a_n \sum_i v_{in}^* v_{in}.$$
 (B.19)

となり、

$$a_n = \sum_{i,j} A_{ij} v_{in}^* v_{jn} \tag{B.20}$$

が得られる。ここで規格化の条件 (B.16) を用いた。式 (B.20) から、行列 A がエルミート行列の とき

$$a_n^* = a_n \tag{B.21}$$

であること、つまり、固有値が実数であることを示すことは容易である。 次に、(B.18)の複素共軛をとって

$$\sum_{j} A_{ij}^* v_{jn}^* = a_n v_{in}^*.$$
(B.22)

としてみよう。ここで、固有値 a_n が実数であることを用いて、 $a_n^* = a_n$ とした。式 (B.22) において、Aがエルミート行列であることを用いると

$$\sum_{j} v_{jn}^* A_{ji} = v_{in}^* a_n \tag{B.23}$$

が得られることに注意しておく。

式 (B.18) と式 (B.23) を用いると

$$\sum_{i,j} v_{in'}^* A_{ij} v_{jn} \tag{B.24}$$

をふた通りの方法で計算することができる。

$$\sum_{i,j} v_{in'}^* A_{ij} v_{jn} = a_n \sum_i v_{in'}^* v_{in}$$
$$= a_{n'} \sum_i v_{in'}^* v_{in}$$

つまり、固有値 $a_n \ge a_{n'}$ が等しくないとき、固有ベクトル $\vec{v}_n \ge \vec{v}_{n'}$ は直交しているのである。固 有ベクトルの規格化まで含めてこの事情を式で表すと、

$$\sum_{i} v_{in'}^* v_{in} = \delta_{nn'} \tag{B.25}$$

となる。この事情は、量子力学において、エルミート演算子の固有状態が正規直交していることに 対応している。 次のように、固有ベクトル vn を並べた行列 V

$$V = \begin{pmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{pmatrix}$$
(B.26)

を考えよう。行列 V のエルミート共軛は

$$V^{\dagger} = \begin{pmatrix} v_{11}^* & v_{21}^* \\ v_{12}^* & v_{22}^* \end{pmatrix}$$
(B.27)

であり、固有ベクトルの正規直交性 (B.25) を用いると、

$$V^{\dagger}V = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) \tag{B.28}$$

であることは明らかである。つまり、行列 V の逆行列は V[†] で与えられることがわかる。このように逆行列がもとの行列のエルミート共軛で与えられる行列をユニタリー行列と呼ぶ。

行列 V を用いれば、固有値方程式 (B.18) を

$$AV = V \left(\begin{array}{cc} a_1 & 0\\ 0 & a_2 \end{array}\right) \tag{B.29}$$

のように書き直すことも可能である。この式の両辺に右から V[†] をかけることによって

$$A = V \begin{pmatrix} a_1 & 0\\ 0 & a_2 \end{pmatrix} V^{\dagger}$$
(B.30)

が得られることがわかる。つまり、エルミート行列 A はユニタリー行列を使って対角化できる。 最後に、 V^{\dagger} が V の逆行列であることのもうひとつの帰結

$$VV^{\dagger} = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right) \tag{B.31}$$

を考察しよう。成分表示を用いて式 (B.31) を書き直すと

$$\sum_{n} v_{in} v_{jn}^* = \delta_{ij} \tag{B.32}$$

が得られる。これは、量子力学においては、状態の完全性関係の式に他ならない。

B.4 量子力学との類似

以下では、エルミート行列と量子力学におけるエルミート演算子の類似点について、その固有 値、固有ベクトル、固有状態に着目してまとめておく。

固有値と固有ベクトル、固有値と固有状態

$$\sum_{j} A_{ij} v_{jn} = a_n v_{in} \qquad \Leftrightarrow \qquad \hat{A} |u_n\rangle = a_n |u_n\rangle, \tag{B.33}$$

$$\sum_{i} v_{in}^* A_{ij} = a_n v_{jn} \qquad \Leftrightarrow \qquad \langle u_n | \hat{A} = \langle u_n | a_n.$$
(B.34)

固有ベクトルと固有状態の正規直交性

$$\sum_{i} v_{in'}^* v_{in} = \delta_{nn'} \qquad \Leftrightarrow \qquad \langle u_{n'} | u_n \rangle = \delta_{nn'}. \tag{B.35}$$

固有ベクトルと固有状態の完全性

$$\sum_{n} v_{in} v_{jn}^* = \delta_{ij} \qquad \Leftrightarrow \qquad \sum_{n} |u_n\rangle \langle u_n| = \hat{1}.$$
(B.36)

C 散乱行列 (S-行列) と転送行列 (M-行列)

1次元量子力学での散乱について、散乱行列 (S-行列) と転送行列 (M-行列) を用いた計算手法を 紹介しよう。

上図のよう r に $x = x_1$ の近傍に局在するポテンシャル V_1 を考える。つまり x_1 より十分左側あるいは十分右側の領域では、このポテンシャルは $V_1 = 0$ となっている。 l 次元量子力学の時間に依存しないシュレディンガー方程式

$$Eu = \left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right] u \tag{C.1}$$

を解いて、このように局在したポテンシャル $V = V_1$ による1次元量子力学での粒子散乱を考察してみよう。

点 $x = x_1$ より十分左側の領域ではポテンシャルは V = 0 であり、シュレディンガー方程式の 解を

$$u = A_0 e^{ikx} + B_0 e^{-ikx}, \qquad k = \frac{\sqrt{2mE}}{\hbar}$$
(C.2)

と書くことができる。同様に点 $x = x_1$ より十分右側の領域でも

$$u = A_1 e^{ikx} + B_1 e^{-ikx} \tag{C.3}$$

である。

 $x = x_1$ 近傍のシュレディンガー方程式を解くことができれば、式 (C.2) の解に表れる係数 A_0 , B_0 と、式 (C.3) の係数 A_1 , B_1 との間に線形の関係

$$\begin{pmatrix} A_0 \\ B_0 \end{pmatrix} = M_1 \begin{pmatrix} A_1 \\ B_1 \end{pmatrix}$$
(C.4)

をつけることができる。この式に表れる行列 M₁ を転送行列と呼ぶ。

式 (C.4) はまた、

$$\left(\begin{array}{c}A_1\\B_0\end{array}\right) = S\left(\begin{array}{c}A_0\\B_1\end{array}\right) \tag{C.5}$$

の形に書き換えることができる。式 (C.5) において、右辺に表れる係数 A_0 , B_1 は点 $x = x_1$ に向 かって進行する波の係数であり、左辺に表れる A_1 , B_0 は点 $x = x_1$ から外向きに拡がっていく波 の係数であることに注意しよう。したがって、式 (C.5) で定義される行列 S は、 $x = x_1$ 近傍のポ テンシャルによって引き起こされる散乱を記述する行列であり、散乱行列 (S-行列) と呼ばれる。

実際、S-行列を次のように成分表記すると

$$S = \begin{pmatrix} S_{AA} & S_{AB} \\ S_{BA} & S_{BB} \end{pmatrix}$$
(C.6)

 $x = x_1$ の左側から右側へ透過する粒子の透過率 $T_{l \to r}$ や、左側から入射した粒子が左側に跳ね返る 反射率 $R_{l \to l}$ 、さらには右側からの透過率 $T_{r \to l}$ と反射率 $R_{r \to r}$ は、S-行列要素を用いて

$$T_{l \to r} = |S_{AA}|^2, \quad R_{l \to l} = |S_{BA}|^2, \quad T_{r \to l} = |S_{BB}|^2, \quad R_{r \to r} = |S_{AB}|^2$$
(C.7)

と求められることがわかる。

さらに、散乱の前後での確率の保存

$$|A_1|^2 + |B_0|^2 = |A_0|^2 + |B_1|^2$$
(C.8)

から、S-行列はユニタリー行列

$$S^{\dagger}S = SS^{\dagger} = 1 \tag{C.9}$$

であることが示される。このことより、*S*-行列の固有値の絶対値が1であることがわかり、した がって、適当なユニタリー行列*U*を用いて*S*-行列を対角化して

$$S = U^{\dagger} \begin{pmatrix} e^{2i\delta_0} & 0\\ 0 & e^{2i\delta_1} \end{pmatrix} U$$
 (C.10)

と表すことができる。ここで、 δ_0, δ_1 は、この散乱の「位相のずれ」と呼ばれる実数パラメータである。

特にポテンシャル V が原点 x = 0 を中心とするパリティー対称性 V(x) = V(-x) を持つ場合 は、U は

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix} \tag{C.11}$$

の形で与えられ、 δ_0 , δ_1 はそれぞれ、偶パリティ、奇パリティ散乱の「位相のずれ」となる。この ときの *S* 行列は

$$S = \frac{1}{2} \begin{pmatrix} e^{2i\delta_0} + e^{2i\delta_1} & e^{2i\delta_0} - e^{2i\delta_1} \\ e^{2i\delta_0} - e^{2i\delta_1} & e^{2i\delta_0} + e^{2i\delta_1} \end{pmatrix}$$
$$= e^{i(\delta_0 + \delta_1)} \begin{pmatrix} \cos(\delta_0 - \delta_1) & i\sin(\delta_0 - \delta_1) \\ i\sin(\delta_0 - \delta_1) & \cos(\delta_0 - \delta_1) \end{pmatrix}$$

の形になり、透過率と反射率は、

$$T_{l \to r} = T_{r \to l} = \cos^2(\delta_0 - \delta_1), \qquad R_{l \to l} = R_{r \to r} = \sin^2(\delta_0 - \delta_1)$$

と位相のずれを用いて計算できることがわかる。

転送行列 M₁ が計算できたとき、具体的に S-行列を求めるには、

$$M_1 = \begin{pmatrix} M_{AA} & M_{AB} \\ M_{BA} & M_{BB} \end{pmatrix}$$
(C.12)

と成分表記しておくと便利である。この表記を用いて式 (C.4) の A_1 , B_0 を、 A_0 と B_1 について解 き直すと、S-行列が

$$S = \frac{1}{M_{AA}} \begin{pmatrix} 1 & -M_{AB} \\ M_{BA} & M_{AA}M_{BB} - M_{BA}M_{AB} \end{pmatrix}$$
(C.13)

の形で与えられることがわかる。

次に、ポテンシャルが形を変えずに △ だけ右に移動した場合

$$V(x) = V_1(x - \Delta) \tag{C.14}$$

に、転送行列 $M_{\Delta 1}$ がもとの M_1 からどのように変化するか考察しよう。そのためには、変数 $x_{\Delta} = x - \Delta$ を用いてシュレディンガー方程式を書き下すと、もとのポテンシャル $V_1(x)$ で変数を x としたときのシュレディンガー方程式と同一であることに着目すればよい。つまり、左側領域での波動 関数を

$$u = A_{\Delta 0}e^{ikx_{\Delta}} + B_{\Delta 0}e^{-ikx_{\Delta}} \tag{C.15}$$

とし、右側領域での波動関数を

$$u = A_{\Delta 1} e^{ikx_{\Delta}} + B_{\Delta 1} e^{-ikx_{\Delta}} \tag{C.16}$$

とすると、係数間の関係は

$$\begin{pmatrix} A_{\Delta 0} \\ B_{\Delta 0} \end{pmatrix} = M_1 \begin{pmatrix} A_{\Delta 1} \\ B_{\Delta 1} \end{pmatrix}$$
(C.17)

で与えられる。一方、 $x_{\Delta} = x - \Delta$ を用いて、解の形 (C.15) を、もともとの解の形と比較すると

$$A_{\Delta 0} = A_0 e^{ik\Delta}, \qquad B_{\Delta 0} = B_0 e^{-ik\Delta} \tag{C.18}$$

であることがわかる。同様に

$$A_{\Delta 1} = A_1 e^{ik\Delta}, \qquad B_{\Delta 1} = B_1 e^{-ik\Delta} \tag{C.19}$$

である。したがって、

$$\begin{pmatrix} A_0 \\ B_0 \end{pmatrix} = \begin{pmatrix} e^{-ik\Delta} & 0 \\ 0 & e^{ik\Delta} \end{pmatrix} M_1 \begin{pmatrix} e^{ik\Delta} & 0 \\ 0 & e^{-ik\Delta} \end{pmatrix} \begin{pmatrix} A_1 \\ B_1 \end{pmatrix}$$
(C.20)

となり、ポテンシャルが Δ だけ右に移動した場合の転送行列 $M_{\Delta 1}$ は、もとの転送行列 M_1 を用いて

$$M_{\Delta 1} = \begin{pmatrix} e^{-ik\Delta} & 0\\ 0 & e^{ik\Delta} \end{pmatrix} M_1 \begin{pmatrix} e^{ik\Delta} & 0\\ 0 & e^{-ik\Delta} \end{pmatrix}$$
(C.21)

で与えられることが分かる。

最後に、ポテンシャル V が $x = x_1$ と $x = x_2$ の 2 箇所 $(x_1 < x_2)$ にわかれて局在している場合 を考察しよう。 x_1 近傍でのポテンシャルによる転送行列を M_1 とし、 x_2 近傍でのポテンシャルに よる転送行列を M_2 とすると、この系全体の転送行列 M が

$$M = M_1 M_2 \tag{C.22}$$

で与えられることは明らかであろう。とくに同一の形の局在ポテンシャルが $x = 0 \ge x = \Delta > 0$ に存在する場合、つまり、 Δ だけの距離をおいて局在ポテンシャルが繰り返される場合は

$$M = M_1 \begin{pmatrix} e^{-ik\Delta} & 0\\ 0 & e^{ik\Delta} \end{pmatrix} M_1 \begin{pmatrix} e^{ik\Delta} & 0\\ 0 & e^{-ik\Delta} \end{pmatrix}$$
(C.23)

となる。

D ブロッホの定理

周期 a の周期的ポテンシャル

$$V(x+a) = V(x) \tag{D.1}$$

のもとでの1次元量子力学を考える。時間に依存しないシュレディンガー方程式

$$Eu(x) = \left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right] u(x)$$
 (D.2)

の遠方で発散しない解u(x)は

$$u(x+a) = e^{iKa}u(x) \tag{D.3}$$

の形で表される周期性を持つことが知られている(ブロッホの定理)。ここで *K* は *x* に依らない 実数である。

この定理を証明するには、波動関数を a だけ移動させる演算子

$$\hat{D} = \exp\left(i\frac{a}{\hbar}\hat{p}\right)$$

$$= 1 + i\frac{a}{\hbar}\hat{p} - \frac{1}{2!}\left(\frac{a}{\hbar}\right)^2\hat{p}^2 + \cdots$$
(D.4)

の状態

$$|u\rangle = \int dx |x\rangle u(x)$$
 (D.5)

への作用を考察すればよい。実際に演算子 D が波動関数を a だけ移動させることは

$$\begin{aligned} \hat{D}|u\rangle &= \int dx|x\rangle \left(1 + a\frac{d}{dx} + \frac{1}{2!}a^2\frac{d^2}{dx^2} + \cdots\right)u(x) \\ &= \int dx|x\rangle \left(u(x) + au'(x) + \frac{1}{2!}a^2u''(x) + \frac{1}{3!}a^3u'''(x) + \cdots\right) \\ &= \int dx|x\rangle u(x+a) \end{aligned}$$

により示される。一方、ポテンシャル V(x) が周期 a の周期関数であることから、

$$[\hat{D}, \hat{H}] = 0 \tag{D.6}$$

であることがわかり、エネルギー固有状態 $|u\rangle$ は演算子 \hat{D} の固有状態でもあることが示される。 状態 $|u\rangle$ における \hat{D} の固有値を κ とおくと

$$\hat{D}|u\rangle = \kappa |u\rangle.$$
 (D.7)

つまり、

$$u(x+a) = \kappa u(x), \qquad u(x-a) = \kappa^{-1}u(x)$$
 (D.8)

が示される。このことから \hat{D} をかける操作をn回繰り返すと

$$u(x+na) = \kappa^n u(x), \qquad u(x-na) = \kappa^{-n} u(x)$$
(D.9)

となることがわかり、 $|\kappa| \neq 1$ の場合には、xの無限遠方で波動関数が発散してしまう。逆にいえば、 κ の絶対値が1であること、つまりxに依らない実数Kを用いて

$$u(x+a) = e^{iKa}u(x) \tag{D.10}$$

と書けることが証明できるのである。

ブロッホの定理の応用として、周期的デルタ関数ポテンシャル

$$V(x) = \sum_{n} \frac{\hbar^2 \lambda}{2ma} \delta(x + na) \tag{D.11}$$

のもとでの質量 m の粒子の 1 次元量子力学を考えよう。ここで \sum_{n} はすべての整数 n についての 和を表す。この周期的デルタ関数ポテンシャルはクローニッヒ・ペニー模型として知られており、 この模型を研究することで、周期的な結晶構造中の電子状態の定性的な振る舞いを理解することが できる。

波数なを

$$k = \frac{\sqrt{2mE}}{\hbar} \tag{D.12}$$

とすると、このポテンシャルの下での領域 -a < x < 0でのシュレディンガー方程式の解は、一般に

$$u(x) = Ae^{+ikx} + Be^{-ikx}, \quad \text{for } -a < x < 0$$
 (D.13)

で与えられる。一方、ブロッホの定理より、領域0<x<a での解は

$$u(x) = e^{iKa}u(x-a)$$

= $Ae^{i(K-k)a}e^{+ikx} + Be^{i(K+k)a}e^{-ikx}$, for $0 < x < a$ (D.14)

とならねばならない。

ブロッホの定理に表れる実数パラメータ K は、一般にエネルギー E に依存して決定されるパラ メータである。周期的なポテンシャルは、結晶中で典型的に生じるため K は結晶波数と呼ばれる。 次に、どのように結晶波数 K が決定されるかを考えよう。いまのポテンシャルの場合は、波数 k に応じてエネルギー E が決まるので、波数 k と結晶波数 K に関係をつければよい。そのために、 点 x = 0 における(デルタ関数ポテンシャルの存在の下での)波動関数の接続条件

$$\lim_{x \downarrow 0} u = \lim_{x \uparrow 0} u, \qquad \lim_{x \downarrow 0} u' = \lim_{x \uparrow 0} u' + \frac{\lambda}{a} u(0)$$

を考える。解(D.13)と(D.14)を上式に代入すると、

$$\begin{pmatrix} A \\ B \end{pmatrix} = M \begin{pmatrix} e^{i(K-k)a} & 0 \\ 0 & e^{i(K+k)a} \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix}$$
(D.15)

が得られる。ここで、行列 M は

$$M \equiv \begin{pmatrix} 1+i\alpha & i\alpha \\ -i\alpha & 1-i\alpha \end{pmatrix}, \qquad \alpha \equiv \frac{\lambda}{2ka}$$
(D.16)

で定義される行列である。式 (D.15) で、係数 A, B が非自明な解を持つためには、行列

$$M\left(\begin{array}{cc} e^{i(K-k)a} & 0\\ 0 & e^{i(K+k)a} \end{array}\right) - 1 = \left(\begin{array}{cc} (1+i\alpha)e^{i(K-k)a} - 1 & i\alpha e^{i(K+k)a}\\ -i\alpha e^{i(K-k)a} & (1-i\alpha)e^{i(K+k)a} - 1 \end{array}\right)$$

の行列式

 $2e^{iKa}\left[\cos Ka - \cos ka - \alpha \sin ka\right]$

がゼロでならねばならない。この条件から

$$\cos(Ka) = \cos(ka) + \frac{\lambda}{2ka}\sin(ka) \tag{D.17}$$

が得られ、実数パラメータ K が波数 k に応じて決定されることが見て取れる。

式 (D.17) を吟味すると、波数 k の値によっては、対応する結晶波数 K が存在しない場合がある ことがわかる。実際、 $\lambda = 20$ のときに式 (D.17) の右辺を z = ka についてプロットすると次ペー ジに示すようなグラフが得られる。式 (D.17) の左辺が $-1 < \cos(Ka) < 1$ の範囲に制限されるこ とより、このグラフの縦軸の値が 1 を超える領域や -1 よりも小さくなる領域では、波数 k に対応 する結晶波数が存在せず、結果として、可能なエネルギー E にエネルギーギャップを生じる。これ は、周期的なポテンシャルをもつ結晶中の電子状態にしばしば生じる現象である。

E 直交多項式

量子力学の具体的問題を計算するためには、ハミルトニアン演算子の固有値問題(時間に依存し ないシュレディンガー方程式)を解くことが必要である。これらの固有状態はお互いに直交するこ とから、波動関数がなんらかの直交多項式で表されることが多い。また、波動関数の言葉では、ハ ミルトニアン演算子が2階微分演算子であることから、これらの直交多項式を微分方程式の解とし て表現しておくことが必要である。最後に、これらの直交多項式を生成する母関数(生成関数)を 知っていると、具体的な計算が著しく簡単になることが多い。

ここでは、調和振動子の計算で現れるエルミート多項式、角運動量の量子化で重要なルジャンド ル多項式(およびその拡張としてのゲーゲンバウアー多項式)、水素原子の動径方程式の解を記述 するラゲール多項式について、その母関数はなにか、それらの具体的な形、満たすべき微分方程 式、直交性の性質をまとめておく。

E.1 エルミート多項式

まず最初に、1次元調和振動子の量子力学で現れる直交多項式であるエルミート多項式について、少し詳しくその性質を調べよう。

エルミート多項式 $H_n(x)$ はその母関数

$$S(x,s) = e^{x^2} e^{-(x-s)^2} = e^{2xs-s^2}$$
(E.1)

を用いて

$$H_n(x) = \left. \frac{\partial^n}{\partial s^n} S(x, s) \right|_{s=0}$$
(E.2)

として定義されるn次多項式である。たとえば、n = 0,1,2,3,4,5の場合のエルミート多項式は

$$H_0 = 1, \tag{E.3}$$

$$H_1 = 2x, \tag{E.4}$$

$$H_2 = 4x^2 - 2, (E.5)$$

$$H_3 = 8x^3 - 12x, (E.6)$$

$$H_4 = 16x^4 - 48x^2 + 12, \tag{E.7}$$

$$H_5 = 32x^5 - 160x^3 + 120x \tag{E.8}$$

で与えられる。エルミート多項式 H_n(x) を用いて母関数を表示すると

$$S(x,s) = \sum_{n=0}^{\infty} \frac{1}{n!} H_n(x) s^n$$
 (E.9)

となることに注意しておく。

次にエルミート多項式の満たすべき微分方程式(エルミートの微分方程式)を考察しよう。母関 数 *S* を *x* で微分すると

$$\frac{\partial}{\partial x}S(x,s) = \sum_{n=0}^{\infty} \frac{1}{n!} H'_n(x) s^n \tag{E.10}$$

となる。母関数の定義式 (E.1) より

$$\frac{\partial}{\partial x}S(x,s) = 2sS(x,s)$$
$$= 2s\sum_{n=0}^{\infty} \frac{1}{n!}H_n(x)s^n$$

であるが、この式を式 (E.10) の左辺に代入し、sの各次数で比較すると

$$H'_{n} = \begin{cases} 2nH_{n-1} & \text{for } n \ge 1\\ 0 & \text{for } n = 0 \end{cases}$$
(E.11)

が得られる。同様に、母関数Sのs微分から

$$2(x-s)\sum_{n=0}^{\infty}\frac{1}{n!}s^{n}H_{n}(x) = \sum_{n=1}^{\infty}\frac{1}{(n-1)!}s^{n-1}H_{n}(x)$$

が得られ、この式の両辺を s の各次数で比較することで、エルミート多項式の漸化式

$$H_{n+1} = \begin{cases} 2xH_n - 2nH_{n-1} & \text{ for } n \ge 1\\ 2xH_0 & \text{ for } n = 0 \end{cases}$$
(E.12)

が得られる。多項式 H_0 と H_1 が求まると、上記の漸化式を適用することで任意の次数 (n) のエル ミート多項式 H_n を構成できることに注意しておく。

式 (E.11) を用いると、 $n \ge 1$ なる n について、

$$H_n = \frac{1}{2(n+1)}H'_{n+1}, \quad H_{n-1} = \frac{1}{4n(n+1)}H''_{n+1},$$

を示すことができる。これらの式を式 (E.12) の n ≥ 1 の場合の右辺に代入すると

$$H_{n+1}'' - 2xH_{n+1} + 2(n+1)H_{n+1} = 0$$

を得る。このようにして n ≥ 2 の場合についてエルミートの微分方程式

$$H_n'' - 2xH_n' + 2nH_n = 0 (E.13)$$

が得られる。一方、 $H_1 \ge H_0$ については、式 (E.3) と式 (E.4) でその具体的な形が分かっている が、これらも微分方程式 (E.13) を満たしている。つまり、すべての $n \ge 0$ について、エルミート 多項式がエルミートの微分方程式 (E.13) を満たすことが分かる。

次に積分

$$I_{nn'} = \int_{-\infty}^{\infty} dx e^{-x^2} H_n(x) H_{n'}(x)$$
(E.14)

を考察しよう。 $n \neq n'$ のとき、この積分がゼロになること(エルミート多項式の直交性)は、以下のようにして容易に証明できる。まず最初に、部分積分のテクニックを使って、任意の多項式 f(x), g(x)について、等式

$$\int_{-\infty}^{\infty} dx e^{-x^2} f(x) \left[\frac{d}{dx^2} - 2x \frac{d}{dx} \right] g(x) = \int_{-\infty}^{\infty} dx e^{-x^2} g(x) \left[\frac{d}{dx^2} - 2x \frac{d}{dx} \right] f(x)$$
(E.15)

を証明する。次にエルミートの微分方程式 (E.13) とさっき証明した等式 (E.15) を使って

$$2n'I_{nn'} = \int_{-\infty}^{\infty} dx e^{-x^2} H_n \left[\frac{d}{dx^2} - 2x \frac{d}{dx} \right] H_{n'}$$
$$= \int_{-\infty}^{\infty} dx e^{-x^2} H_{n'} \left[\frac{d}{dx^2} - 2x \frac{d}{dx} \right] H_n$$
$$= 2nI_{nn'}$$
(E.16)

を得る。 $n \neq n'$ のときに $I_{nn'} = 0$ であることはもはや明らかであろう。

n = n'のときの値まで含めて積分 $I_{nn'}$ を評価するには、母関数の積分

$$I = \int_{-\infty}^{\infty} dx e^{-x^2} S(x,t) S(x,s)$$
(E.17)

を計算するのが便利である。母関数Sのエルミート多項式を使った展開式 (E.9) を用いると

$$I = \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} \frac{s^n t^{n'}}{n!n'!} I_{nn'}$$
(E.18)

であることが示される。一方で、ガウス積分の公式を用いて積分 (E.17) を評価して

$$I = \int_{-\infty}^{\infty} dx e^{-x^2 + 2xs - s^2 + 2xt - t^2}$$

=
$$\int_{-\infty}^{\infty} dx e^{-(x - s - t)^2 + 2st} = \sqrt{\pi} e^{2st}$$

=
$$\sqrt{\pi} \sum_{n=0}^{\infty} \frac{(2st)^n}{n!}$$
 (E.19)

を得る。式 (E.18) と式 (E.19) で s, t の各次数を比較して、

$$I_{nn'} = \int_{-\infty}^{\infty} dx e^{-x^2} H_n(x) H_{n'}(x) = 2^n n! \sqrt{\pi} \delta_{nn'}$$
(E.20)

と求められた。

最後に、エルミート多項式の具体形を求めるのに便利な公式

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$
(E.21)

を紹介しよう。この公式を証明するには、

$$\frac{\partial^n}{\partial s^n}S(x,s) = e^{x^2}\frac{\partial^n}{\partial s^n}e^{-(s-x)^2} = (-1)^n e^{x^2}\frac{\partial^n}{\partial x^n}e^{-(x-s)^2}$$

とエルミート多項式の定義式 (E.2) を用いればよい。

E.2 ルジャンドル多項式

球面調和関数 $Y_{\ell m}$ において m = 0 の結果を与えるルジャンドル多項式 $P_{\ell}(z)$ について駆け足で 紹介しよう。ここで z は、球面調和関数 $Y_{\ell m}$ において、球座標表示での $\cos \theta$ に対応する変数で ある。

ルジャンドル多項式 $P_{\ell}(z)$ の母関数は、

$$T(z,s) = \frac{1}{\sqrt{1 - 2sz + s^2}}$$
(E.22)

で与えられ、この母関数をsで冪展開することによって

$$T(z,s) = \sum_{\ell=0}^{\infty} P_{\ell}(z)s^{\ell}$$
(E.23)

としてルジャンドル多項式 P_ℓ を求めることができる。この多項式が ℓ 次の多項式になることは、この構成方法から明らか。たとえば、 $\ell = 0, 1, 2, 3, 4, 5$ の場合のルジャンドル多項式は

$$P_0(z) = 1,$$
 (E.24)

$$P_1(z) = z, \tag{E.25}$$

$$P_2(z) = \frac{1}{2}(3z^2 - 1), \qquad (E.26)$$

$$P_3(z) = \frac{1}{2}(5z^3 - 3z), \qquad (E.27)$$

$$P_4(z) = \frac{1}{8}(35z^4 - 30z^2 + 3), \tag{E.28}$$

$$P_5(z) = \frac{1}{8}(63z^5 - 70z^3 + 15z)$$
(E.29)

で与えられる。とくに、 z=1 でのルジャンドル多項式の値が必ず

$$P_{\ell}(z=1) = 1 \tag{E.30}$$

となることに注意しておく。

この母関数 T(z,s) を用いると、ルジャンドル陪関数

$$P_{\ell}^{m}(z) = (1 - z^{2})^{m/2} \frac{d^{m}}{dz^{m}} P_{\ell}(z)$$
(E.31)

が

$$\sum_{\ell=m}^{\infty} P_{\ell}^m(z) s^{\ell} = (1-z^2)^{m/2} \frac{\partial^m}{\partial z^m} T(z,s)$$
(E.32)

と計算できることは明らかであろう。

エルミート多項式のときの式 (E.11) に対応して、ルジャンドル多項式では

$$(1-z^2)P'_{\ell} = \begin{cases} -\ell z P_{\ell} + \ell P_{\ell-1} & \text{for } \ell \ge 1\\ 0 & \text{for } \ell = 0 \end{cases}$$
(E.33)

が成り立つことが示される。同様に、エルミート多項式の場合の式 (E.12) に対応して、漸化式

$$(\ell+1)P_{\ell+1} = \begin{cases} (2\ell+1)zP_{\ell} - \ell P_{\ell-1}, & \text{for } \ell \ge 1\\ zP_0 & \text{for } \ell = 0 \end{cases}$$
(E.34)

が得られる。

母関数 T(z,s) が偏微分方程式

$$\frac{\partial}{\partial z}\left[(1-z^2)\frac{\partial}{\partial z}T\right] + \left[s^2\frac{\partial^2}{\partial s^2} + 2s\frac{\partial}{\partial s}\right]T = 0$$

を満たすことを示すことができる。この式を *s* について冪展開し、各次数の係数を比較することで、ルジャンドル多項式の満たす微分方程式

$$\frac{d}{dz}\left[(1-z^2)\frac{dP_\ell}{dz}\right] + \ell(\ell+1)P_\ell = 0 \tag{E.35}$$

を得ることができる。微分方程式 (E.35) はルジャンドルの微分方程式と呼ばれる微分方程式である。この微分方程式は、磁気量子数がゼロ (m=0)の場合に角運動量演算子 $(\vec{L}^{op})^2$ の固有値問題を与える微分方程式

$$-\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left[\sin\theta\frac{\partial}{\partial\theta}Y\right] = \ell(\ell+1)Y \tag{E.36}$$

に対応するものとなっている。このことは、変数変換 $z = \cos \theta$ から得られる関係

$$\frac{d}{dz} = \frac{d\theta}{dz}\frac{d}{d\theta} = -\frac{1}{\sin\theta}\frac{d}{d\theta},\tag{E.37}$$

を用いて、式 (E.35) に現れる微分演算子を

$$\frac{d}{dz}\left[(1-z^2)\frac{d}{dz}f\right] = \frac{1}{\sin\theta}\frac{d}{d\theta}\left[\sin\theta\frac{d}{d\theta}f\right]$$
(E.38)

と書き直してやれば示すことができる。

エルミート多項式のときと同様に、 ℓの異なるルジャンドル多項式はある種の直交性を示す。部 分積分を2回使うことで

$$\int_{-1}^{+1} dz P_{\ell'}(z) \frac{d}{dz} \left[(1-z^2) \frac{d}{dz} P_{\ell}(z) \right] = \int_{-1}^{+1} dz P_{\ell}(z) \frac{d}{dz} \left[(1-z^2) \frac{d}{dz} P_{\ell'}(z) \right]$$

であることを示すのは容易であろう。この式とルジャンドルの微分方程式 (E.35) を用いれば、直 交性の式

$$\int_{-1}^{+1} dz P_{\ell}(z) P_{\ell'}(z) = 0, \quad \text{for } \ell \neq \ell'$$
(E.39)

は簡単に示される。ルジャンドル多項式の母関数の式 (E.22), (E.23) と、ルジャンドル多項式の直 交性 (E.39) を用いると

$$\int_{-1}^{+1} dz \frac{1}{1} 1 - 2zs + s^2 = \sum_{\ell=0}^{\infty} \int_{-1}^{+1} dz |P_{\ell}(z)|^2 s^{2\ell}$$

が得られる。この式の左辺の積分は簡単に実行できて

$$\frac{1}{s}\ln\frac{1+s}{1-s} = \sum_{\ell=0}^{\infty} \int_{-1}^{+1} dz |P_{\ell}(z)|^2 s^{2\ell}$$

であることがわかり、左辺をsについて冪展開することで

$$\int_{-1}^{+1} dz |P_{\ell}(z)|^2 = \frac{2}{2\ell + 1}$$

が得られる。この結果をルジャンドル多項式の直交性 (E.39) とまとめて、規格直交関係の式として

$$\int_{-1}^{1} dz P_{\ell}(z) P_{\ell'}(z) = \frac{2}{2\ell + 1} \delta_{\ell\ell'}$$
(E.40)

を得る。

最後に、ルジャンドル多項式を求めるのに便利なロドリゲスの公式

$$P_{\ell}(z) = \frac{1}{2^{\ell} \ell!} \frac{d^{\ell}}{dz^{\ell}} (z^2 - 1)^{\ell}$$
(E.41)

を(証明なしで)紹介しておく。

E.3 ゲーゲンバウアー多項式

ルジャンドル多項式の母関数 (E.22) を一般化した母関数

$$T^{(\nu)}(z,s) = \frac{1}{(1 - 2sz + s^2)^{\nu}}$$
(E.42)

を冪展開し、

$$T^{(\nu)}(z,s) = \sum_{nu}^{\infty} C_n^{(\nu)}(z) s^n$$
 (E.43)

によって定義される $C_n^{(\nu)}(z)$ を考えよう。たとえば、n = 0, 1, 2, 3の場合は

$$C_0^{(\nu)} = 1, (E.44)$$

$$C_1^{(\nu)} = 2\nu x,$$
 (E.45)

$$C_2^{(\nu)} = 2\nu(\nu+1)z^2 - \nu$$
(E.46)

$$C_3^{(\nu)} = \frac{4}{3}\nu(\nu+1)(\nu+2)z^3 - 2\nu(\nu+1)z$$
 (E.47)

で与えられる。

この多項式 $C_n^{(\nu)}(z)$ はゲーゲンバウアー多項式、あるいは超球多項式 (ultraspherical polynomials) と呼ばれ、 $\nu = 1/2, n = \ell$ の場合は

$$P_{\ell}(z) = C_{n=\ell}^{(\nu=1/2)}(z) \tag{E.48}$$

となり、ルジャンドル多項式 $P_{\ell}(z)$ と一致する。式 (E.32) で与えられるルジャンドル陪関数もゲー ゲンバウアー多項式を用いて

$$P_{\ell}^{m}(z) = \frac{(2m)!}{2^{m}m!} (1 - z^{2})^{m/2} C_{n=\ell-m}^{(\nu=m+1/2)}(z)$$
(E.49)

と表示することができる。

エルミート多項式やルジャンドル多項式の場合と同様のやり方で、ゲーゲンバウアー多項式の漸 化式が得られ、

$$(n+1)C_{n+1}^{(\nu)} = \begin{cases} 2(n+\nu)zC_n^{(\nu)}(z) - (n-1+2\nu)C_{n-1}^{(\nu)}(z) & \text{for } n \ge 1\\ 2\nu zC_0^{(\nu)}(z) & \text{for } n = 0 \end{cases}$$
(E.50)

であることがわかる。ゲーゲンバウアー多項式の微分が

$$\frac{d^m}{dz^m}C_n^{(\nu)}(z) = 2^m\nu(\nu+1)\cdots(\nu+m-1)C_{n-m}^{(\nu+m)}(z)$$
(E.51)

であることを示すことも容易であろう。

ゲーゲンバウアー多項式 $C_n^{(
u)}(z)$ は微分方程式

$$(1-z^2)^{-\nu+1/2} \frac{d}{dz} \left[(1-z^2)^{\nu+1/2} \frac{d}{dz} C_n^{(\nu)} \right] + n(n+2\nu) C_n^{(\nu)} = 0$$
 (E.52)

を満たす。式 (E.52) はゲーゲンバウアーの微分方程式と呼ばれる微分方程式である。 直交性と規格化は

$$\int_{-1}^{+1} dz (1-z^2)^{\nu-1/2} C_n^{(\nu)}(z) C_{n'}^{(\nu)}(z) = \frac{\pi \Gamma(n+2\nu)}{2^{2\nu-1}(n+\nu)n! [\Gamma(\nu)]^2} \delta_{nn'}$$
(E.53)

で与えられる。ここで Γ はガンマ関数

$$\Gamma(x) = \int_0^\infty d\xi \xi^{x-1} e^{-\xi}, \quad \text{for } x > 0$$
 (E.54)

である。Γは

$$\begin{split} \Gamma(x+1) &= \int_0^\infty d\xi \xi^x e^{-\xi} = -\int_0^\infty d\xi \xi^x \frac{d}{d\xi} e^{-\xi} \\ &= -\xi^x e^{-\xi} \big|_{\xi=0}^\infty + x \int_0^\infty d\xi \xi^{x-1} e^{-\xi} = x \Gamma(x) \end{split}$$

と計算すればわかるように

$$\Gamma(x+1) = x\Gamma(x) \tag{E.55}$$

との性質をもつ。さらに

$$\Gamma(1) = \int_0^\infty d\xi e^{-\xi} = 1$$

なので、その値は非負の整数 n について、階乗の記号を用いて

$$\Gamma(n+1) = n! \tag{E.56}$$

と計算される。またx = 1/2のときの Γ の値として、積分変数を $\xi = \sqrt{X}$ と変数変換することで

$$\Gamma(1/2) = 2 \int_0^\infty dX e^{-X^2} = \sqrt{\pi}$$

が得られるので、x半整数の場合の Γ の値は

$$\Gamma(1/2) = \sqrt{\pi}, \quad \Gamma(3/2) = \frac{\sqrt{\pi}}{2}, \quad \Gamma(5/2) = \frac{3\sqrt{\pi}}{4}, \quad \cdots$$
 (E.57)

と求められる。これらの式を用いれば、ゲーゲンバウアー多項式の直交性・規格化の式 (E.53) が、 $\nu = 1/2$ の場合にルジャンドル多項式の直交性・規格化の式 (E.40) に帰着することを確認するの はたやすい。

ゲーゲンバウアー多項式を求めるためのロドリゲスの公式は以下のとおり。

$$C_n^{(\nu)}(z) = \frac{(-2)^n}{n!} \frac{\Gamma(n+\nu)\Gamma(n+2\nu)}{\Gamma(\nu)\Gamma(2n+2\nu)} (1-z^2)^{-\nu+1/2} \frac{d^n}{dz^n} \left[(1-z^2)^{n+\nu-1/2} \right].$$
 (E.58)

E.4 ラゲール多項式

水素原子の動径波動関数は、ラゲールの陪多項式を用いて表される。ラゲールの陪多項式の説明 をする前に、そのもととなるラゲール多項式について解説しよう。

エルミート多項式、ルジャンドル多項式の場合と同様に、ラゲール多項式についても、母関数

$$U(\rho, s) = \frac{\exp\left(-\rho \frac{s}{1-s}\right)}{1-s}$$
(E.59)

を用いた母関数表示

$$U(\rho, s) = \sum_{q=0}^{\infty} \frac{1}{q!} L_q(\rho) s^q$$
(E.60)

が知られている。愚直に計算していけば、いろいろな q についてラゲール多項式を求めるのは容易 である。たとえば

$$L_0 = 1, \tag{E.61}$$

$$L_1 = 1 - \rho, \tag{E.62}$$

$$L_2 = 2 - 4\rho + \rho^2, \tag{E.63}$$

$$L_3 = 6 - 18\rho + 9\rho^2 - \rho^3, \tag{E.64}$$

$$L_4 = 24 - 96\rho + 72\rho^2 - 16\rho^3 + \rho^4, \tag{E.65}$$

$$L_5 = 120 - 600\rho + 600\rho^2 - 200\rho^3 + 25\rho^4 - \rho^5.$$
 (E.66)

エルミート多項式の場合の式 (E.11)、式 (E.12) に対応して、ラゲール多項式では

$$L'_{q} - qL'_{q-1} = -qL_{q-1} \quad \text{for } q \ge 1$$
(E.67)

$$L'_0 = 0 for q = 0 (E.68)$$

および

$$L_{q+1} = \begin{cases} (2q+1-\rho)L_q - q^2 L_{q-1} & \text{for } q \ge 1\\ (1-\rho)L_0 & \text{for } q = 0 \end{cases}$$
(E.69)

が得られ、これらの結果から、ラゲール多項式が微分方程式

$$\rho L_q'' + (1 - \rho) L_q' + q L_q = 0 \tag{E.70}$$

を満たすことを示すことができる。微分方程式 (E.70) はラゲールの微分方程式とよばれる。 $q \neq q'$ のときの直交性は

$$\int_{0}^{\infty} d\rho e^{-\rho} L_{q}(\rho) L_{q'}(\rho) = (q!)^{2} \,\delta_{qq'} \tag{E.71}$$

と表される。計算に便利なロドリゲスの公式

$$L_q(\rho) = e^{\rho} \frac{d^q}{d\rho^q} (e^{-\rho} \rho^q)$$
(E.72)

もよく知られている。

次にラゲールの陪多項式

$$L_q^p(\rho) = \frac{d^p}{d\rho^p} L_q(\rho) \tag{E.73}$$

に話題を移そう。ラゲール多項式は L_q は q次多項式なので、その陪多項式 L_q^p は (q-p)次多項式 であることに注意。ラゲールの微分方程式 (E.70) を p 階微分することで、ラゲールの陪多項式の 従う微分方程式

$$\rho(L_q^p)'' + (1+p-\rho)(L_q^p)' + (q-p)L_q^p = 0$$
(E.74)

が得られる。式 (E.74) もまたラゲールの微分方程式と呼ばれる。この式で $p = 2\ell + 1, q = n + \ell$ ととれば、水素類似原子の動径方程式と同じ微分方程式になることに注意してほしい。

ラゲールの陪多項式の母関数も式 (E.59) をρで p 階微分して得られる。

$$U_p(\rho, s) = \frac{(-s)^p \exp\left(-\rho \frac{s}{1-s}\right)}{(1-s)^{p+1}},$$
(E.75)

$$U_p(\rho, s) = \sum_{q=p}^{\infty} \frac{1}{q!} L_q^p(\rho) s^q.$$
 (E.76)

ラゲールの陪多項式も一種の直交多項式であり、 $q \neq q'$ の場合、次の積分がゼロになることを示すことができる。

$$\int_{0}^{\infty} d\rho e^{-\rho} \rho^{p} L_{q}^{p}(\rho) L_{q'}^{p}(\rho) = \frac{(q!)^{3}}{(q-p)!} \delta_{qq'}$$
(E.77)

F コヒーレント状態

F.1 調和振動子の復習

ハミルトニアン

$$\hat{H} = \frac{1}{2m}\hat{p}^2 + \frac{1}{2}m\omega^2\hat{x}^2$$
(F.1)

で与えられる1次元量子力学の問題は、エネルギー量子 ħω の生成演算子 â[†] と消滅演算子 â を用 いて見通しよく解くことができる。ここで、

$$\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right), \qquad \hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right),$$
(F.2)

であり、それらの交換関係は、 $[\hat{x}, \hat{p}] = i\hbar \, \varepsilon$ 用いて

$$[\hat{a}, \hat{a}^{\dagger}] = 1 \tag{F.3}$$

と求められる。さらに、ハミルトニアンが

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) \tag{F.4}$$

となることに注意しておく。

演算子法による解法では、エネルギー固有値が最小となる基底状態|0)は、条件

$$\hat{a}|0\rangle = 0 \tag{F.5}$$

を満たす状態として与えられ、n 番目の励起状態 |n) は

$$|n\rangle = \frac{1}{\sqrt{n!}} \left(\hat{a}^{\dagger}\right)^{n} |0\rangle \tag{F.6}$$

と求められる。これらエネルギー固有状態のエネルギー固有値は

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega\tag{F.7}$$

である。式 (F.6) からは、生成・消滅演算子を用いてエネルギー準位を上げ下げするときの規格化 定数が

$$\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle, \qquad \hat{a}|n\rangle = \sqrt{n}|n-1\rangle$$
 (F.8)

で与えられることも見て取れる。

F.2 量子ゆらぎ $\Delta x \ge \Delta p$

次に、調和振動子のこれらエネルギー固有状態での、位置と運動量の不確定性を評価する。生成・消滅演算子の定義式 (F.2) より、位置演算子 \hat{x} と運動量演算子 \hat{p} が

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a}^{\dagger} + \hat{a} \right), \qquad \hat{p} = i\sqrt{\frac{\hbar m\omega}{2}} \left(\hat{a}^{\dagger} - \hat{a} \right)$$
(F.9)

と書けることに注意しておく。

エネルギー固有状態 |n) における位置と運動量の期待値が

$$\langle n | \hat{x} | n \rangle = \langle n | \hat{p} | n \rangle = 0$$
 (F.10)

となることは、状態の直交性

$$\langle n_1 | n_2 \rangle = \delta_{n_1 n_2} \tag{F.11}$$

より明らかであろう。

したがって、状態 $|n\rangle$ における位置の不確定性(量子ゆらぎ) Δx_n を求めるには、

$$(\Delta x_n)^2 = \langle n | \hat{x}^2 | n \rangle$$

= $\frac{\hbar}{2m\omega} \langle n | (\hat{a}^{\dagger} + \hat{a})^2 | n \rangle$
= $\frac{\hbar}{2m\omega} \langle n | (\hat{a}^{\dagger} \hat{a} + \hat{a} \hat{a}^{\dagger}) | n \rangle$
= $\frac{\hbar}{2m\omega} (2n+1)$ (F.12)

と計算すればよい。ここで、2行目から3行目の式変形では状態の直交性を用い、3行目から4行 目への変形には式 (F.8)を用いた。運動量の不確定性(量子ゆらぎ)も同様に

$$(\Delta p_n)^2 = \langle n | \hat{p}^2 | n \rangle$$

= $\frac{\hbar m \omega}{2} \langle n | (\hat{a}^{\dagger} - \hat{a})^2 | n \rangle$
= $\frac{\hbar m \omega}{2} \langle n | (\hat{a}^{\dagger} \hat{a} + \hat{a} \hat{a}^{\dagger}) | n \rangle$
= $\frac{\hbar m \omega}{2} (2n + 1)$ (F.13)

と求められ、その積が

$$(\Delta x_n)^2 (\Delta p_n)^2 = \frac{\hbar^2}{4} (2n+1)^2$$
(F.14)

と計算できる。

式 (F.14) の結果は、エネルギー固有状態のうち、基底状態 |0) のみがハイゼンベルグの不確定性 関係

$$\Delta x \, \Delta y \ge \frac{1}{2}\hbar \tag{F.15}$$

の下限を与える最小不確定性状態であり、励起準位 n が大きいほど不確定性が増していくことを示している。

一般に、最小不確定性状態の波動関数 u は、

$$u(x) = C \exp\left(-\frac{1}{2}\kappa(x-\xi)^2\right)$$
(F.16)

の形のガウス分布関数で与えられることが知られている。ここで、*C*は規格化の定数。κは正の実 定数であり、*ξ*は複素数パラメータである。

前節の結果は、基底状態の波動関数 u₀(x) のみが

$$u_0(x) = A_0 \exp\left(-\frac{1}{2}\frac{m\omega}{\hbar}x^2\right) \tag{F.17}$$

となってガウス分布関数の形をしており、励起状態の波動関数 $u_n(x)$ $(n \ge 1)$ がガウス分布関数で はなかった事実と整合している。以降の節では、基底状態以外の最小不確定性状態を演算子法を用 いて具体的に構成し、その性質を調べていこう。

F.3 コヒーレント状態

波動関数をガウス分布関数に保ったまま基底状態を変形できれば、基底状態以外の最小不確定性 状態を構成できる。ひとつの例として、*x*を実数パラメータとし、

$$\hat{T}(\bar{x}) = \exp\left(\frac{\bar{x}}{i\hbar}\hat{p}\right)$$
 (F.18)

で与えられる並進変換を考えてみよう。式 (F.18) で与えられる演算子が並進変換であることは、任意の状態

$$|u\rangle = \int dx |x\rangle \, u(x)$$

に対して

$$\begin{aligned} \hat{T}(\bar{x})|u\rangle &= \int dx|x\rangle \exp\left(-\bar{x}\frac{d}{dx}\right)u(x) \\ &= \int dx|x\rangle \left[1 - \bar{x}\frac{d}{dx} + \frac{1}{2}\bar{x}^2\left(\frac{d}{dx}\right)^2 - \frac{1}{3!}\bar{x}^3\left(\frac{d}{dx}\right)^3 + \cdots\right]u(x) \\ &= \int dx|x\rangle \left[u(x) - \bar{x}u'(x) + \frac{1}{2}\bar{x}^2u''(x) - \frac{1}{3!}\bar{x}^3u'''(x) + \cdots\right] \\ &= \int dx|x\rangle u(x - \bar{x}) \end{aligned}$$

と作用することから理解できるであろう。したがって、状態

 $\hat{T}(\bar{x})|0\rangle$

の波動関数を、式 (F.17) で与えられた基底状態波動関数 u0 を用いて

$$u(x) = u_0(x - \bar{x}) = C_0 \exp\left(-\frac{1}{2}\frac{m\omega}{\hbar}(x - \bar{x})^2\right)$$
 (F.19)

と書き下すことができることがわかる。この状態は明らかに最小不確定性状態の例を与えている。 演算子 $\hat{T}(\bar{x})$ がユニタリー

$$(\hat{T}(\bar{x}))^{\dagger} \hat{T}(\bar{x}) = \hat{T}(\bar{x}) (\hat{T}(\bar{x}))^{\dagger} = 1$$

であることにも注意しよう。このことから、 $\hat{T}(\bar{x})|0\rangle$ の規格化も自動的であることがわかる。生成・ 消滅演算子を用いると、並進変換の演算子が

$$\hat{T}(\bar{x}) = \exp\left(\sqrt{\frac{m\omega}{2\hbar}}(\bar{x}\hat{a}^{\dagger} - \bar{x}\hat{a})\right)$$
(F.20)

と表されることにも注意しておく。

最小不確定性状態を表す波動関数 (F.16) でのパラメータ ξ は任意の複素数でよかったことに対し、基底状態を並進変換 $\hat{T}(\bar{x})$ で変換して作られる状態の波動関数 (F.19) では、対応するパラメータ \bar{x} の取りうる値は実数に限られてしまう。単純に式 (F.18) に表れるパラメータ \bar{x} を複素数にするとユニタリー性を満たさなくなってしまうので、式 (F.18) を参考にして、複素パラメータ η をもつ演算子 (変位演算子)

$$\hat{T}_{\eta} \equiv \exp\left(\eta \hat{a}^{\dagger} - \eta^{\dagger} \hat{a}\right) \tag{F.21}$$

を定義してみよう。変位演算子は、 η を実数にとると並進変換 $\hat{T}(\bar{x} = \sqrt{\frac{2\hbar}{m\omega}}\eta)$ に帰着することに 注意。

変位演算子 \hat{T}_{η} を基底状態 $|0\rangle$ に作用させることによって複素パラメータ ξ に中心をもつガウス 分布関数型の波動関数をもつ状態

1

$$|\eta\rangle \equiv \hat{T}_{\eta}|0\rangle \tag{F.22}$$

が構成できる。このことを示すには、変位演算子によって消滅演算子 âが

$$\hat{T}_{\eta}\hat{a}\hat{T}_{\eta}^{\dagger} = \hat{a} + [(\eta\hat{a}^{\dagger} - \eta^{\dagger}\hat{a}), \hat{a}] + \frac{1}{2}[(\eta\hat{a}^{\dagger} - \eta^{\dagger}\hat{a}), [(\eta\hat{a}^{\dagger} - \eta^{\dagger}\hat{a}), \hat{a}]] + \cdots \\
= \hat{a} - \eta$$
(F.23)

と変換されることに着目すればよい。同様に、生成演算子 â[†] は

$$\hat{T}_{\eta}\hat{a}^{\dagger}\hat{T}_{\eta}^{\dagger} = \hat{a}^{\dagger} - \eta^{\dagger} \tag{F.24}$$

と変換されることにも注意しておく。 $0 = \hat{a}|0\rangle$ の両辺に \hat{T}_{η} を作用させれば、

$$0 = \hat{T}_{\eta}\hat{a}|0\rangle = \hat{T}_{\eta}\hat{a}\hat{T}_{\eta}^{\dagger}\hat{T}_{\eta}|0\rangle$$
$$= (\hat{a} - \eta)\hat{T}_{\eta}|0\rangle$$
$$= (\hat{a} - \eta)|\eta\rangle$$

となり

$$0 = (\hat{a} - \eta) |\eta\rangle \tag{F.25}$$

が得られる。状態 $|\eta\rangle$ の波動関数を $u_{\eta}(x)$ とすれば、式 (F.25) は

$$0 = \left[\sqrt{\frac{m\omega}{2\hbar}} \left(x + \frac{\hbar}{m\omega} \frac{d}{dx}\right) - \eta\right] u_{\eta}(x)$$
 (F.26)

となる。このように見ていけば、波動関数 $u_n(x)$ が

$$u_{\eta}(x) = A \exp\left(-\frac{1}{2}\frac{m\omega}{\hbar}(x-\xi)^2\right), \qquad \xi = \sqrt{\frac{2\hbar}{m\omega}}\eta \tag{F.27}$$

と決定されることは明らかであろう。ここで、 \hat{T}_{η} はユニタリー演算子なので、状態 $|\eta\rangle$ は自動的に 規格化されることに注意。規格化の定数 *A* は $\langle 0|\eta\rangle = e^{-|\eta|^2/2}$ を用いることで求められ

$$A = A_0 \exp\left[\frac{1}{2} \left(\eta^2 - |\eta|^2\right)\right]$$
 (F.28)

と決定される。ここで、 A_0 は式 (F.17)で基底状態波動関数 u_0 を規格化したときに用いられた定数と同一である。

式 (F.22) で定義される調和振動子量子力学の状態はコヒーレント状態として知られている状態 である。調和振動子の量子力学は量子光学などの場の量子論において活用される。これらの重要な 応用において、コヒーレント状態でレーザー光が記述されるなど、大きな役割を果たす。

F.4 コヒーレント状態の性質

この節ではコヒーレント状態の性質を列挙していく。

コヒーレント状態 |η⟩ は、エネルギー固有状態 |n⟩ の重ね合わせの状態として

$$|\eta\rangle = e^{-\frac{1}{2}|\eta|^2} \sum_{n=0}^{\infty} \frac{1}{\sqrt{n!}} \eta^n |n\rangle$$
 (F.29)

の形で展開できる。

このことを示すには、次節で示すベーカー・キャンベル・ハウスドルフの公式を用いて

$$\hat{T}_{\eta} = \exp\left(-\frac{1}{2}|\eta|^2\right) \ \exp\left(\eta \hat{a}^{\dagger}\right) \ \exp\left(-\eta^* \hat{a}\right)$$

を示し、

$$\begin{aligned} |\eta\rangle &= \hat{T}_{\eta}|0\rangle \\ &= \exp\left(-\frac{1}{2}|\eta|^{2}\right) \exp\left(\eta\hat{a}^{\dagger}\right)|0\rangle \\ &= \exp\left(-\frac{1}{2}|\eta|^{2}\right) \sum_{n=0}^{\infty} \frac{1}{n!}\eta^{n}(\hat{a}^{\dagger})^{n}|0\rangle \\ &= \exp\left(-\frac{1}{2}|\eta|^{2}\right) \sum_{n=0}^{\infty} \frac{1}{\sqrt{n!}}\eta^{n}|n\rangle \end{aligned}$$

と計算すればよい。

コヒーレント状態 |η⟩ は、消滅演算子 â の固有値 η の固有状態

$$\hat{a}|\eta\rangle = \eta|a\rangle$$
 (F.30)

である。

この性質は式 (F.25) からすでに明らかであろう。あるいは、展開式 (F.29) と $\hat{a}|n\rangle=\sqrt{n}|n-1\rangle$ を用いても示すことができる。

• コヒーレント状態 $|\eta
angle$ は、生成演算子 \hat{a}^{\dagger} の固有状態ではない。

この性質は、 $[\hat{a}, \hat{a}^{\dagger}] = 1 \neq 0$ から、 $\hat{a} \geq \hat{a}^{\dagger}$ が同時固有状態を持たないことからも明らかである。あるいは、展開式 (F.29) を見て、 $|\eta\rangle$ には基底状態 $|0\rangle$ が含まれるのに対し、 $\hat{a}|\eta\rangle$ は基底状態 $|0\rangle$ を含まないことからも示すことができる。

• コヒーレント状態での、生成・消滅演算子の期待値は、

$$\langle \eta | \hat{a} | \eta \rangle = \eta, \qquad \langle \eta | \hat{a}^{\dagger} | \eta \rangle = \eta^*$$
 (F.31)

で与えられる。

この性質は、 $|\eta\rangle$ が \hat{a} の固有状態であり

$$\hat{a}|\eta
angle=\eta|\eta
angle, \qquad \langle\eta|\hat{a}^{\dagger}=\eta^{*}\langle\eta|$$

となることから明らかである。

コヒーレント状態 |η⟩ における位置と運動量の不確定性は

$$(\Delta x)^2 = \frac{\hbar}{2m\omega}, \qquad (\Delta p)^2 = \frac{\hbar m\omega}{2}$$
 (F.32)

で与えられ、たしかに最小不確定性状態

$$(\Delta x)^2 (\Delta p)^2 = \frac{\hbar^2}{4}$$

になっている。

この事実は波動関数の形から明らかである。演算子法を用いて示すには、不確定性の定義に 基づき

$$(\Delta x)^2 = \langle \eta | \hat{x}^2 | \eta \rangle - (\langle \eta | \hat{x} | \eta \rangle)^2, \qquad (\Delta p)^2 = \langle \eta | \hat{p}^2 | \eta \rangle - (\langle \eta | \hat{p} | \eta \rangle)^2,$$

を計算すればよい。その際、

$$\begin{split} \hat{x} &= \sqrt{\frac{\hbar}{2m\omega}} (\hat{a}^{\dagger} + \hat{a}), \qquad \hat{p} = i\sqrt{\frac{\hbar m\omega}{2}} (\hat{a}^{\dagger} - \hat{a}), \\ \hat{a} &|\eta\rangle = \eta &|\eta\rangle, \qquad \langle \eta &|\hat{a}^{\dagger} = \langle \eta &|\eta^{*} \end{split}$$

を用いれば、計算を簡単に済ますことができる。

• ふたつのコヒーレント状態 $|\eta_1\rangle$ と $|\eta_2\rangle$ は直交せず、その内積は

$$\langle \eta_1 | \eta_2 \rangle = \exp\left(-\frac{1}{2}|\eta_1|^2 - \frac{1}{2}|\eta_2|^2 + \eta_1^*\eta_2\right)$$
 (F.33)

で与えられる。

この性質は、展開式 (F.29) を用いて

$$\begin{aligned} \langle \eta_1 | \eta_2 \rangle &= e^{-\frac{1}{2}|\eta_1|^2} e^{-\frac{1}{2}|\eta_2|^2} \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} \frac{1}{\sqrt{n_1! n_2!}} (\eta_1^*)^{n_1} \eta_2^{n_2} \langle n_1 | n_2 \rangle \\ &= e^{-\frac{1}{2}|\eta_1|^2} e^{-\frac{1}{2}|\eta_2|^2} \sum_{n=0}^{\infty} \frac{1}{n!} (\eta_1^* \eta_2)^n \\ &= \exp\left(-\frac{1}{2}|\eta_1|^2 - \frac{1}{2}|\eta_2|^2 + \eta_1^* \eta_2\right) \end{aligned}$$

と計算することで示される。

• コヒーレント状態 $|\eta\rangle$ におけるエネルギー量子数 n を測定する場合、n 個のエネルギー量子 が測定される確率はポアソン分布

$$P_n = \frac{\bar{n}^n}{n!} e^{-\bar{n}} \tag{F.34}$$

で与えられる。ここで、 $\bar{n} = |\eta|^2$ はポアソン分布における量子数 n の期待値である。 (説明) これはレーザー中に n 光子状態が存在する確率がポアソン分布で与えられることを示 している。このことを示すには、 $\hat{N} = \hat{a}^{\dagger}\hat{a}$ はエネルギー量子の個数演算子であり、

 $\hat{N}|n\rangle = n|n\rangle$

であること、また、コヒーレント状態 $|\eta\rangle$ が消滅演算子 \hat{a} の固有状態であり

$$\langle \eta | \hat{N} | \eta \rangle = \langle \eta | \hat{a}^{\dagger} \hat{a} | \eta \rangle = |\eta|^2$$

であることを用いればよい。これらを用いて、エネルギー量子数期待値 n が

 $\bar{n} = |\eta|^2$

と求められる。エネルギー量子数が n である確率は

$$P_n = |\langle n|\eta\rangle|^2 = \frac{1}{n!}|\eta|^{2n}e^{-|\eta|^2}$$
$$= \frac{1}{n!}\bar{n}^n e^{-\bar{n}}$$

と求められる。

• コヒーレント状態の完全性

$$1 = \frac{1}{\pi} \int d^2 \eta \, |\eta\rangle\langle\eta| \tag{F.35}$$

ここで $d^2\eta$ は複素平面上の積分である。

この性質を示すには、式 (F.35) の両辺を $|n_1\rangle$, $|n_2\rangle$ で挟んだ

$$\delta_{n_1n_2} = \frac{1}{\pi} \int d^2\eta \langle n_1 | \eta \rangle \langle \eta | n_2 \rangle$$

を導くことができれば良い。

$$\eta = r e^{i\theta}$$

で与えられる変数 r, θを用い、

$$d^2\eta = dr \, r d\theta$$

として右辺に表れる複素平面上の積分を実行すると

$$\begin{aligned} \frac{1}{\pi} \int d^2 \eta \langle n_1 | \eta \rangle \langle \eta | n_2 \rangle &= \int_0^\infty dr \frac{2r^{n_1+n_2+1}e^{-r^2}}{\sqrt{n_1!n_2!}} \frac{1}{2\pi} \int_0^{2\pi} d\theta e^{i(n_1-n_2)\theta} \\ &= \delta_{n_1n_2} \int_0^\infty dr^2 \frac{r^{2n_1}}{n_1!} e^{-r^2} \\ &= \delta_{n_1n_2} \end{aligned}$$

が得られる。

• コヒーレント状態の時間発展を計算すると

$$e^{-i\hat{H}t/\hbar}|\eta\rangle = e^{-\frac{i}{2}\omega t}|\eta(t)\rangle, \qquad \eta(t) = e^{-i\omega t}\eta(t=0)$$
(F.36)

となる。つまり、パラメータ η は時間とともに角振動数 ω で振動している。 この事実は、

$$e^{-i\hat{H}t/\hbar}\hat{a}e^{+i\hat{H}t/\hbar} = e^{+i\omega t}\hat{a}, \qquad e^{-i\hat{H}t/\hbar}\hat{a}^{\dagger}e^{+i\hat{H}t/\hbar} = e^{-i\omega t}\hat{a}^{\dagger}$$

を用いて

$$e^{-i\hat{H}t/\hbar}|\eta\rangle = e^{-i\hat{H}t/\hbar}\hat{T}_{\eta}e^{i\hat{H}t/\hbar}e^{-\frac{i}{2}\omega t}|0\rangle$$

を計算すれば明らかであろう。

このような状態のパラメータの単振動の描像は、古典力学での調和振動子の単振動の描像に 符合するものとなっている。そのため、コヒーレント状態は「もっとも古典的な状態」とよ ばれることがある。

F.5 ベーカー・キャンベル・ハウスドルフの公式

交換しない演算子 \hat{X}, \hat{Y} の指数関数の積を

$$e^{\hat{X}}e^{\hat{Y}} = e^{\hat{W}} \tag{F.37}$$

のように単一の指数関数にまとめるとき、演算子 Ŵを

$$\hat{W} = \hat{X} + \hat{Y} + \frac{1}{2}[\hat{X}, \hat{Y}] + \frac{1}{12}[\hat{X} - \hat{Y}, [\hat{X}, \hat{Y}]] + \cdots$$
(F.38)

のように演算子 \hat{X}, \hat{Y} とそれらの交換関係を使った項による展開で書き下すことができる。特に

$$[\hat{X}, [\hat{X}, \hat{Y}]] = [\hat{Y}, [\hat{X}, \hat{Y}]] = 0$$

の場合は、

$$\hat{W} = \hat{X} + \hat{Y} + \frac{1}{2}[\hat{X}, \hat{Y}]$$
(F.39)

となる。これをベーカー・キャンベル・ハウスドルフの公式と呼ぶ。この公式は、具体的な問題を 解く上で役に立つことがしばしばあり、知っておいて損のない公式である。

公式 (F.38) を証明するには、実数パラメータ t を導入し

$$e^{\widetilde{W}} = e^{t\hat{X}}e^{t\hat{Y}} \tag{F.40}$$

で定義される演算子 🕅 のテイラー展開

$$\hat{\widetilde{W}} = \hat{W}_0 + t\hat{W}_1 + \frac{1}{2!}t^2\hat{W}_2 + \frac{1}{3!}t^3\hat{W}_3 + \cdots$$
(F.41)

を求めればよい。 \hat{W} はt=1のときの演算子

$$\hat{W} = \hat{W}_0 + \hat{W}_1 + \frac{1}{2!}\hat{W}_2 + \frac{1}{3!}\hat{W}_3 + \cdots$$
(F.42)

となる。

定義 (F.40) より、 $\hat{W}_0 = 0$ は明らかであろう。 $\hat{W}_1, \hat{W}_2, \cdots$ を求めるには、式 (F.40) の両辺を微分した

$$\left[\frac{d}{dt}e^{\widehat{\tilde{W}}}\right]e^{-\widehat{\tilde{W}}} = \left[\frac{d}{dt}\left(e^{t\hat{X}}e^{t\hat{Y}}\right)\right]e^{-t\hat{Y}}e^{-t\hat{X}}$$
(F.43)

を考えると便利である。この式の左辺は

$$\hat{\widetilde{W}}' = \hat{W}_1 + t\hat{W}_2 + \frac{1}{2!}t^2\hat{W}_2 + \cdots$$
 (F.44)

を用いて

$$\hat{\widetilde{W}}' + \frac{1}{2}[\hat{\widetilde{W}}, \hat{\widetilde{W}}'] + \frac{1}{3!}[\hat{\widetilde{W}}, [\hat{\widetilde{W}}, \hat{\widetilde{W}}']] + \cdots$$

と展開でき、この式に (F.41), (F.44), $\hat{W}_0 = 0$ を代入することで、

$$\left[\frac{d}{dt}e^{\hat{\widetilde{W}}}\right]e^{-\hat{\widetilde{W}}} = \hat{W}_1 + t\hat{W}_2 + \frac{1}{2}t^2\left(\hat{W}_3 + \frac{1}{2}[\hat{W}_1, \hat{W}_2]\right) + \cdots$$
(F.45)

が得られる。一方、右辺は

$$\begin{bmatrix} \frac{d}{dt} \left(e^{t\hat{X}} e^{t\hat{Y}} \right) \end{bmatrix} e^{-t\hat{Y}} e^{-t\hat{X}} = \hat{X} e^{t\hat{X}} e^{t\hat{Y}} e^{-t\hat{Y}} e^{-t\hat{X}} + e^{t\hat{X}} \hat{Y} e^{t\hat{Y}} e^{-t\hat{Y}} e^{-t\hat{X}}$$
$$= \hat{X} + e^{t\hat{X}} \hat{Y} e^{-t\hat{X}}$$
$$= \hat{X} + \hat{Y} + t[\hat{X}, \hat{Y}] + \frac{t^2}{2!} [\hat{X}, [\hat{X}, \hat{Y}]] + \cdots$$
(F.46)

と評価できる。式 (F.45) と式 (F.46) の t の各次数を比較することで、

$$\hat{W}_1 = \hat{X} + \hat{Y}, \tag{F.47}$$

$$\hat{W}_2 = [\hat{X}, \hat{Y}],$$
 (F.48)

$$\hat{W}_3 = \frac{1}{2} [\hat{X} - \hat{Y}, [\hat{X}, \hat{Y}]], \qquad (F.49)$$

が得られることはもはや明らかであろう。

式 (F.45) も式 (F.46) も、各項が演算子 \hat{X}, \hat{Y} とそれらの交換関係で表されることに注意しよう。 そのため、 \hat{W}_n の項はn-1次の交換関係を含むことがわかる。このことから、2次以上の交換関 係がゼロになる場合、つまり

$$[\hat{X}, [\hat{X}, \hat{Y}]] = [\hat{Y}, [\hat{X}, \hat{Y}]] = 0$$

となって、 $[\hat{X}, \hat{Y}]$ が \hat{X} とも \hat{Y} とも交換する場合には、 \hat{W}_3 以降の項は出現せず、式 (F.39)が導かれることがわかる。

F.6 そのほかの最小不確定性状態

コヒーレント状態以外にも最小不確定性状態を構成することができる。たとえば、

$$\hat{D}(\rho) = \exp\left(-\frac{i}{2\hbar}\rho(\hat{x}\hat{p} + \hat{p}\hat{x})\right)$$
(F.50)

で与えられるパラメータρによるスケール変換で基底状態を変形させた状態がそれである。この演 算子がスケール変換を与えることは、状態

$$|u\rangle = \int dx |x\rangle \, u(x)$$

に作用すると

$$\hat{D}(\rho)|u\rangle = \int dx|x\rangle e^{-\frac{1}{2}\rho}u(e^{-\rho}x)$$

なる状態を与えることから理解できる。調和振動子の基底状態 $|0\rangle$ の波動関数はガウス分布関数 なので、 $|0\rangle$ をスケール変換した $\hat{D}(\rho)|0\rangle$ の波動関数もガウス分布関数にとどまる。したがって、 $\hat{D}(\rho)|0\rangle$ は最小不確定性状態になることがわかる。

$$\hat{x}\hat{p} + \hat{p}\hat{x} = i\hbar\left[(\hat{a}^{\dagger})^2 - (\hat{a})^2\right]$$

であることに注意しよう。コヒーレント状態の場合にならって、以降では、複素数パラメータ*く*を 導入し

$$|\zeta\rangle = \hat{D}_{\zeta}|0\rangle, \qquad \hat{D}_{\zeta} = \exp(\zeta(\hat{a}^{\dagger})^2 - \zeta^*(\hat{a})^2)$$
(F.51)

で与えられる状態の性質を考えてみよう。

状態 |ζ⟩ の時間発展を計算すると

$$e^{-i\hat{H}t/\hbar}|\zeta\rangle = e^{-\frac{i}{2}\omega t}|\zeta(t)\rangle, \qquad \zeta(t) = e^{-2i\omega t}\zeta(t=0)$$
(F.52)

となる。つまり、パラメータζは時間とともに角振動数 2ω で振動している。

• この状態では、位置と運動量の期待値は $\langle \zeta | \hat{x} | \zeta \rangle = \langle \zeta | \hat{p} | \zeta \rangle = 0$ であり、それらの不確定性 は $(\Delta x)^2 = \langle \zeta \hat{x}^2 | \zeta \rangle, (\Delta p)^2 = \langle \zeta \hat{p}^2 | \zeta \rangle$ と計算できる。

$$\begin{aligned} \langle \zeta | \, \hat{x}^2 \, | \zeta \rangle &= \frac{\hbar}{2m\omega} \left[\cosh^2(2|\zeta|) + \sinh^2(2|\zeta|) + 2\frac{\operatorname{Re}\zeta}{|\zeta|} \cosh(2|\zeta|) \sinh(2|\zeta|) \right], \ (F.53) \\ \langle \zeta | \, \hat{p}^2 \, | \zeta \rangle &= \frac{\hbar m\omega}{2} \left[\cosh^2(2|\zeta|) + \sinh^2(2|\zeta|) - 2\frac{\operatorname{Re}\zeta}{|\zeta|} \cosh(2|\zeta|) \sinh(2|\zeta|) \right]. \ (F.54) \end{aligned}$$

 $(\Delta x)^2 \ge (\Delta p)^2$ は角振動数 2ω で振動しているが、エネルギー期待値は

$$\begin{split} &\langle \zeta | \hat{H} | \zeta \rangle = \frac{1}{2m} \langle \zeta | \hat{p}^2 | \zeta \rangle + \frac{1}{2} m \omega^2 \langle \zeta | \hat{x}^2 | \zeta \rangle = \frac{1}{2} \hbar \omega \left(\cosh^2(2|\zeta|) + \sinh^2(2|\zeta|) \right) \quad (F.55) \\ & \text{boundary of the states o$$

G 球座標・円筒座標系でのラプラシアン

この付録では、ブラケット記法を用いることによって3次元極座標系(球座標)や円筒座標系で のラプラシアン Δ が、簡単に導出できることを学ぶ。

G.1 デカルト座標系

最初にデカルト座標系の復習をするとともに記号の整理をしておく。3次元デカルト座標 (x, y, z)では、座標点 (x, y, z) と (x + dx, y + dy, z + dz)の間の距離(線素)は

$$ds^2 = dx^2 + dy^2 + dz^2 \tag{G.1}$$

で与えられる。3次元積分の無限小体積要素は

$$d^{3}V = dxdydz \tag{G.2}$$

である。

スカラー関数 f の勾配 (gradient) は

$$\vec{\nabla}f = \left(\frac{\partial}{\partial x}f\right)\vec{e}_x + \left(\frac{\partial}{\partial y}f\right)\vec{e}_y + \left(\frac{\partial}{\partial z}f\right)\vec{e}_z \tag{G.3}$$

で与えられる。 $\vec{e}_x, \vec{e}_y, \vec{e}_z$ は、それぞれx方向,y方向,z方向への単位ベクトルである。3次元運動量演算子 \vec{p} は

$$|f\rangle = \int d^{3}V |\vec{x}\rangle f(\vec{x})$$
$$\hat{\vec{p}}|f\rangle = \int d^{3}V |\vec{x}\rangle \left(-i\hbar \vec{\nabla} f(\vec{x})\right)$$
(G.4)

と作用する。

次の量を考える。

で与えられる状態 | f > に

$$I \equiv \langle f_1 | \, \hat{\vec{p}} \cdot \hat{\vec{p}} \, | \, f_2 \rangle \tag{G.5}$$

この量がラプラシアン

$$\Delta = \vec{\nabla} \cdot \vec{\nabla} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
(G.6)

を用いて

$$I = -\hbar^2 \int d^3 V f_1^* \Delta f_2 \tag{G.7}$$

と計算できることは明らかであろう。

通常の量子力学での仮定にしたがって、状態 $|f_1\rangle$, $|f_2\rangle$ を与える波動関数 $f_1(\vec{x})$, $f_2(\vec{x})$ は二乗可 積分であり無限遠方で十分に早くゼロになるとする。このとき、式 (G.5) で与えられる量が、状態 $\hat{p}|f_1\rangle$ と状態 $\hat{p}|f_1\rangle$ の内積であることは明らかである。

G.2 円筒座標系

次に円筒座標系 (r, θ, z) を考える。前節で考察したデカルト座標系との間の関係は

$$x = r\cos\theta, \quad y = r\sin\theta, \quad z = z$$
 (G.8)

で与えられる。円筒座標系での線素は

$$ds^{2} = dr^{2} + (rd\theta)^{2} + dz^{2}$$
 (G.9)

で与えられる。3次元積分の無限小体積要素は

$$d^{3}V = dr \, rd\theta \, dz = rdr \, d\theta \, dz \tag{G.10}$$

である。

スカラー関数 ƒ の勾配は

$$\vec{\nabla}f = \left(\frac{\partial}{\partial r}f\right)\vec{e_r} + \left(\frac{1}{r}\frac{\partial}{\partial\theta}f\right)\vec{e_\theta} + \left(\frac{\partial}{\partial z}f\right)\vec{e_z}$$
(G.11)

で与えられる。ここで \vec{e}_{θ} の係数に現れる 1/r の係数は、 θ 方向の線素が $rd\theta$ であったことに起因している。デカルト座標の場合と同様に、状態

$$\hat{\vec{p}}|f_1\rangle = \int d^3 V |\vec{x}\rangle \left(-i\hbar \vec{\nabla} f_1(\vec{x})\right)$$

と、状態

$$\hat{\vec{p}}|f_2\rangle = \int d^3V |\vec{x}\rangle \left(-i\hbar\vec{\nabla}f_2(\vec{x})\right)$$

との内積

$$I \equiv \langle f_1 | \hat{\vec{p}} \cdot \hat{\vec{p}} | f_2 \rangle$$

= $-\hbar^2 \int d^3 V f_1^* \Delta f_2$

を考える。次のように部分積分をしてみよう。

$$I = -\hbar^2 \int_0^\infty dr \int_0^{2\pi} d\theta \int_{-\infty}^\infty dz \left[f_1^* \frac{\partial}{\partial r} \left(r \frac{\partial f_2}{\partial r} \right) + \frac{1}{r} f_1^* \left(\frac{\partial^2 f_2}{\partial \theta^2} \right) + r f_1^* \left(\frac{\partial^2 f_2}{\partial z^2} \right) \right]$$
$$= -\hbar^2 \int d^3 V f_1^* \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f_2}{\partial r} \right) + \frac{1}{r^2} \left(\frac{\partial^2 f_2}{\partial \theta^2} \right) + \left(\frac{\partial^2 f_2}{\partial z^2} \right) \right].$$

この式をラプラシアンを用いた表式

$$I = -\hbar^2 \int d^3 V f_1^* \Delta f_2$$

と比較して、円筒座標系でのラプラシアン

$$\Delta f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} f \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} f + \frac{\partial^2}{\partial z^2} f \tag{G.12}$$

が求められる。

G.3 球座標系

最後に3次元極座標系(球座標系) (r, θ, φ) を考察する。デカルト座標系との関係は

$$x = r\sin\theta\cos\varphi, \quad y = r\sin\theta\sin\varphi, \quad z = r\cos\theta$$
 (G.13)

であり、線素および無限小体積要素は

$$ds^{2} = dr^{2} + (rd\theta)^{2} + (r\sin\theta d\varphi)^{2}, \qquad (G.14)$$

$$d^{3}V = dr \, r d\theta \, r \sin\theta d\varphi = r^{2} \sin\theta \, dr \, d\theta \, d\varphi \tag{G.15}$$

で与えられる。スカラー関数 ƒの勾配は、したがって

$$\vec{\nabla}f = \left(\frac{\partial}{\partial r}f\right)\vec{e}_r + \left(\frac{1}{r}\frac{\partial}{\partial\theta}f\right)\vec{e}_\theta + \left(\frac{1}{r\sin\theta}\frac{\partial}{\partial\varphi}f\right)\vec{e}_\varphi \tag{G.16}$$

と求められる。デカルト座標の場合と同様に積分

を考え、部分積分をすることでラプラシアンを導出しよう。部分積分の結果は

$$I = -\hbar^2 \int d^3 V f_1^* \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} f_2 \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} f_2 \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} f_2 \right]$$

であり、これをラプラシアンを使った表式

$$I = -\hbar^2 \int d^3 V f_1^* \Delta f_2$$

と比較することで、球座標系でのラプラシアンが

$$\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} f \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} f \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} f \tag{G.17}$$

と求められる。

H 球座標における角運動量の微分演算子

H.1 2次元極座標

2 次元極座標 (r, θ)

$$x = r\cos\theta, \qquad y = r\sin\theta$$
 (H.1)

において、角運動量に対応する微分演算子

$$L^{\rm op} = x p_y^{\rm op} - y p_x^{\rm op} = -i\hbar \left[x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right]$$
(H.2)

を求めよう。ここで

$$p_x^{\text{op}} = -i\hbar \frac{\partial}{\partial x}, \quad p_y^{\text{op}} = -i\hbar \frac{\partial}{\partial y}$$
 (H.3)

である。微分のチェーン則

$$\frac{\partial}{\partial r} = \frac{\partial x}{\partial r}\frac{\partial}{\partial x} + \frac{\partial y}{\partial r}\frac{\partial}{\partial y}, \quad \frac{1}{r}\frac{\partial}{\partial \theta} = \frac{1}{r}\frac{\partial x}{\partial \theta}\frac{\partial}{\partial x} + \frac{1}{r}\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}, \tag{H.4}$$

と極座標の定義式(H.1)より

$$\begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{1}{r} \frac{\partial}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix}$$
(H.5)

はすぐにわかる。これから

$$\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{1}{r}\frac{\partial}{\partial \theta} \end{pmatrix}$$
(H.6)

を得るのも容易である。2次元極座標の定義式 (H.1) と式 (H.6) を角運動量に対応する微分演算子の式 (H.2) に代入すると

$$L^{\rm op} = -i\hbar \frac{\partial}{\partial \theta} \tag{H.7}$$

を得る。

H.2 3次元極座標(球座標)

次に、3次元極座標系(球座標系) (r, θ, φ)

$$x = r\sin\theta\cos\varphi, \quad y = r\sin\theta\sin\varphi, \quad z = r\cos\theta$$
 (H.8)

における角運動量に対応する微分演算子

$$L_x^{\rm op} = y \, p_z^{\rm op} - z \, p_y^{\rm op}, \quad L_y^{\rm op} = z \, p_x^{\rm op} - x \, p_z^{\rm op}, \quad L_z^{\rm op} = x \, p_y^{\rm op} - y \, p_x^{\rm op}$$
(H.9)

を求めよう。ここで、運動量に対応する微分演算子は

$$p_x^{\text{op}} = -i\hbar \frac{\partial}{\partial x}, \quad p_y^{\text{op}} = -i\hbar \frac{\partial}{\partial y}, \quad p_z^{\text{op}} = -i\hbar \frac{\partial}{\partial z}$$
 (H.10)

である。2次元極座標での計算と同様に、微分のチェーン則と球座標の定義 (H.8) を用いると

$$\begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{1}{r} \frac{\partial}{\partial \theta} \\ \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \end{pmatrix} = U \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}, \qquad U = \begin{pmatrix} \sin \theta \cos \varphi & \sin \theta \sin \varphi & \cos \theta \\ \cos \theta \cos \varphi & \cos \theta \sin \varphi & -\sin \theta \\ -\sin \varphi & \cos \varphi & 0 \end{pmatrix}$$
(H.11)

と計算できる。式 (H.11) において、行列 U は直交行列であることに注意。従って、その逆行列は

$$U^{-1} = U^{\dagger} = \begin{pmatrix} \sin\theta\cos\varphi & \cos\theta\cos\varphi & -\sin\varphi\\ \sin\theta\sin\varphi & \cos\theta\sin\varphi & \cos\varphi\\ \cos\theta & -\sin\theta & 0 \end{pmatrix}$$
(H.12)

で与えられ、

$$\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} = U^{-1} \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{1}{r} \frac{\partial}{\partial \theta} \\ \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \end{pmatrix}$$
(H.13)

と求まる。3次元運動量の微分演算子の式 (H.10) に式 (H.13) を代入し、さらに3次元角運動量の 式 (H.9) に、式 (H.8), と (H.10) を代入することで

$$L_{x}^{\text{op}} = i\hbar \left[\sin \varphi \frac{\partial}{\partial \theta} + \cos \varphi \frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \varphi} \right],$$

$$L_{y}^{\text{op}} = i\hbar \left[-\cos \varphi \frac{\partial}{\partial \theta} + \sin \varphi \frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \varphi} \right],$$

$$L_{z}^{\text{op}} = -i\hbar \frac{\partial}{\partial \varphi}$$
(H.14)

が得られる。

I 球面調和関数

球面調和関数 $Y_{\ell m}(\theta, \varphi)$ は、球座標系 (r, θ, φ)

$$x = r\sin\theta\cos\varphi, \quad y = r\sin\theta\sin\varphi, \quad z = r\cos\theta$$

における固有値方程式

$$(\vec{L}^{\rm op})^2 Y_{\ell m}(\theta,\varphi) = \hbar^2 \ell(\ell+1) Y_{\ell m}(\theta,\varphi), \qquad (\ell \ge 0),$$

$$L_z^{\rm op}Y_{\ell m}(\theta,\varphi) = \hbar m Y_{\ell m}(\theta,\varphi),$$

の解である。この付録では球面調和関数の具体形の計算方法を説明する。

I.1 (*L*^{op})² の具体形

付録 §. H.2 において、球面調和関数の定義に現れる微分演算子 L_z^{op} の具体形はすでに求まって いる。ここでは、球面調和関数を定義するのに用いられるもう一つの微分演算子である $(\vec{L}^{\text{op}})^2$ の 具体形を求めよう。

計算の方法はいくつかあるが、ここではふたつのやり方を紹介しよう。 最初の方法は、式 (H.14)の結果を愚直に使って

$$-\frac{1}{\hbar^2}(\vec{L}^{\rm op})^2 = \left[s_{\varphi}\frac{\partial}{\partial\theta} + c_{\varphi}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\varphi}\right] \left[s_{\varphi}\frac{\partial}{\partial\theta} + c_{\varphi}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\varphi}\right] + \left[-c_{\varphi}\frac{\partial}{\partial\theta} + s_{\varphi}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\varphi}\right] \left[-c_{\varphi}\frac{\partial}{\partial\theta} + s_{\varphi}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\varphi}\right] + \frac{\partial^2}{\partial\varphi^2}$$

を計算するやり方である。ここでは、表記のスペースの節約のため、

$$s_{\theta} = \sin \theta, \quad c_{\theta} = \cos \theta, \quad s_{\varphi} = \sin \varphi, \quad c_{\varphi} = \cos \varphi$$

で定義される記号 $s_{\theta,\varphi}, c_{\theta,\varphi}$ を用いた。微分演算子 $\partial/\partial\theta$ や $\partial/\partial\varphi$ が、 $s_{\theta,\varphi}$ や $c_{\theta,\varphi}$ にも作用する ことに注意し、この式を次のように計算して $(\vec{L}^{op})^2$ の具体形を得ることができる。

$$\begin{aligned} &-\frac{1}{\hbar^{2}}(\vec{L}^{\text{op}})^{2} \\ &= \left[s_{\varphi}\frac{\partial}{\partial\theta} + c_{\varphi}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\varphi}\right] \left[s_{\varphi}\frac{\partial}{\partial\theta} + c_{\varphi}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\varphi}\right] + \left[-c_{\varphi}\frac{\partial}{\partial\theta} + s_{\varphi}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\varphi}\right] \left[-c_{\varphi}\frac{\partial}{\partial\theta} + s_{\varphi}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\varphi}\right] + \frac{\partial^{2}}{\partial\varphi^{2}} \\ &= s_{\varphi}^{2}\frac{\partial^{2}}{\partial\theta^{2}} + s_{\varphi}c_{\varphi}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\theta}\frac{\partial}{\partial\varphi} + s_{\varphi}c_{\varphi}\left[\frac{\partial}{\partial\theta}\frac{c_{\theta}}{s_{\theta}}\right]\frac{\partial}{\partial\varphi} \\ &+ s_{\varphi}c_{\varphi}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\theta}\frac{\partial}{\partial\varphi} + c_{\varphi}^{2}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\theta} + c_{\varphi}^{2}\frac{c_{\theta}^{2}}{s_{\theta}^{2}}\frac{\partial^{2}}{\partial\varphi^{2}} - s_{\varphi}c_{\varphi}\frac{c_{\theta}^{2}}{s_{\theta}^{2}}\frac{\partial}{\partial\varphi} \\ &+ c_{\varphi}^{2}\frac{\partial^{2}}{\partial\theta^{2}} - s_{\varphi}c_{\varphi}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\theta}\frac{\partial}{\partial\varphi} - s_{\varphi}c_{\varphi}\left[\frac{\partial}{\partial\theta}\frac{c_{\theta}}{s_{\theta}}\right]\frac{\partial}{\partial\varphi} \\ &- s_{\varphi}c_{\varphi}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\theta}\frac{\partial}{\partial\varphi} + s_{\varphi}^{2}\frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\theta} + s_{\varphi}^{2}\frac{c_{\theta}^{2}}{s_{\theta}^{2}}\frac{\partial^{2}}{\partial\varphi^{2}} + s_{\varphi}c_{\varphi}\frac{c_{\theta}^{2}}{s_{\theta}^{2}}\frac{\partial}{\partial\varphi} + \frac{\partial^{2}}{\partial\varphi^{2}} \\ &= \frac{\partial^{2}}{\partial\theta^{2}} + \frac{c_{\theta}}{s_{\theta}}\frac{\partial}{\partial\theta} + \frac{c_{\theta}}{s_{\theta}}\frac{\partial^{2}}{\partial\varphi^{2}} + \frac{\partial^{2}}{\partial\varphi^{2}} \\ &= \frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} + \frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial\varphi^{2}}. \end{aligned}$$
(I.1)

 $\hat{D} = \hat{x}\hat{p}_x + \hat{y}\hat{p}_y + \hat{z}\hat{p}_z$

とそのエルミート共軛

$$\hat{D}^{\dagger} = \hat{p}_x \hat{x} + \hat{p}_y \hat{y} + \hat{p}_z \hat{z}$$

を用いる方法である。この演算子を用いれば、

$$\hat{\vec{L}}^2 = \left(\hat{x}^2 + \hat{y}^2 + \hat{z}^2\right) \left(\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2\right) - \hat{D}^{\dagger}\hat{D} - 2i\hbar\hat{D}$$
(I.2)

であることを示すことができるので、 \hat{D} や \hat{D}^{\dagger} に対応する微分演算子さえ求めることができれば、 $(\vec{L}^{op})^2$ をラプラシアン ($-(\hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2)/\hbar^2$ に対応する微分演算子)と関係づけることができる。 式 (H.10) と (H.13) を用いれば、 \hat{D} に対応する微分演算子は

$$D_{\rm op} = -i\hbar x \frac{\partial}{\partial x} - i\hbar y \frac{\partial}{\partial y} - i\hbar z \frac{\partial}{\partial z}$$

$$= -i\hbar r \sin\theta \cos\varphi (\sin\theta \cos\varphi \frac{\partial}{\partial r} + \cos\theta \cos\varphi \frac{1}{r} \frac{\partial}{\partial \theta} - \sin\varphi \frac{1}{r \sin\theta} \frac{\partial}{\partial \varphi})$$

$$-i\hbar r \sin\theta \sin\varphi (\sin\theta \sin\varphi \frac{\partial}{\partial r} + \cos\theta \sin\varphi \frac{1}{r} \frac{\partial}{\partial \theta} + \cos\varphi \frac{1}{r \sin\theta} \frac{\partial}{\partial \varphi})$$

$$-i\hbar r \cos\theta (\cos\theta \frac{\partial}{\partial r} - \sin\theta \frac{1}{r} \frac{\partial}{\partial \theta})$$

$$= -i\hbar r \frac{\partial}{\partial r}$$
(I.3)

のように計算できる。エルミート共軛な演算子 \hat{D}^{\dagger} は、

$$\begin{aligned} \langle \psi_1 | \, \hat{D}^{\dagger} \, | \psi_2 \rangle &= (\langle \psi_2 | \, \hat{D} \, | \psi_1 \rangle)^* = \left(-i\hbar \int dr r^2 d\theta \sin \theta d\varphi \psi_2^* r \frac{\partial}{\partial r} \psi_1 \right)^* \\ &= i\hbar \int dr r^2 d\theta \sin \theta d\varphi \left(r \frac{\partial}{\partial r} \psi_1^* \right) \psi_2 \\ &= -i\hbar \int dr r^2 d\theta \sin \theta d\varphi \psi_1^* \left(\frac{1}{r^2} \frac{\partial}{\partial r} r^3 \right) \psi_2 \end{aligned} \tag{I.4}$$

であることに注意すれば、

$$D_{\rm op}^{\dagger} = -i\hbar \frac{1}{r^2} \frac{\partial}{\partial r} r^3 \tag{I.5}$$

であることがわかる。式 (I.4) の 2 行目から 3 行目への変形には部分積分を用いた。 これで準備が整ったので、いよいよ (I.2) を用いた (\vec{L}^{op})² の計算にはいろう。

$$-\frac{1}{\hbar^{2}}(\vec{L}^{\text{op}})^{2} = r^{2}\Delta + \frac{2i}{\hbar}D_{\text{op}} + \frac{1}{\hbar^{2}}D_{\text{op}}^{\dagger}D_{\text{op}}$$
$$= r^{2}\Delta + 2r\frac{\partial}{\partial r} - \frac{1}{r^{2}}\frac{\partial}{\partial r}r^{4}\frac{\partial}{\partial r}$$
$$= r^{2}\Delta - \frac{\partial}{\partial r}r^{2}\frac{\partial}{\partial r}$$
(I.6)

と式 (G.17) で与えられる球座標表示でのラプラシアンの結果を用いると

$$-\frac{1}{\hbar^2}(\vec{L}^{\rm op})^2 = \frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\varphi^2}.$$
 (I.7)

が得られる。もちろん、この結果は式(I.1)で愚直に計算した結果と同一のものである。

I.2 $Y_{\ell m}(\theta, \varphi)$ の具体形

前節の結果で、球面調和関数 Y_{ℓm} が満たすべき微分方程式が

$$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left[\sin\theta \frac{\partial}{\partial\theta} Y_{\ell m}(\theta,\varphi) \right] + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\varphi^2} Y_{\ell m}(\theta,\varphi) + \ell(\ell+1) Y_{\ell m}(\theta,\varphi) = 0, \quad (I.8)$$

$$\frac{\partial}{\partial\varphi}Y_{\ell m}(\theta,\varphi) - imY_{\ell m}(\theta,\varphi) = 0 \tag{I.9}$$

であることがわかった。以下では $Y_{\ell m}(\theta, \varphi)$ の具体的な関数形を求めることにする。まず、

$$X_m(\varphi) = e^{im\varphi} \tag{I.10}$$

が式 (I.9) と同じ形の微分方程式

$$\frac{d}{d\varphi}X_m(\varphi) - imX_m(\varphi) = 0 \tag{I.11}$$

の解であることに着目する。微分方程式 (I.11) は 1 階の線形微分方程式なので、微分方程式 (I.9) の解は、 $X_m(\varphi)$ に φ には依存しない θ だけの任意関数 $F_{\ell m}(\theta)$ を掛けた

$$Y_{\ell m}(\theta,\varphi) = F_{\ell m}(\theta) X_m(\varphi) \tag{I.12}$$

の形で表すことができる。球面調和関数は、φについて 2π の周期の周期関数であり、

$$Y_{\ell m}(\theta, \varphi + 2\pi) = Y_{\ell m}(\theta, \varphi)$$

の周期的境界条件を満たさねばならない。このことから、固有値 *m* は整数でなければならないことがわかる。

次に、式 (I.12) を微分方程式 (I.8) に代入することで得られる $F_{\ell m}$ についての微分方程式

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d}{d\theta} F_{\ell m} \right) + \left[\ell(\ell+1) - \frac{m^2}{\sin^2\theta} \right] F_{\ell m} = 0$$
(I.13)

を解いていこう。微分方程式 (I.13) は

$$\zeta = \cos\theta, \qquad (0 \le \theta \le \pi) \tag{I.14}$$

で定義される変数 ζ ($0 \le \zeta \le 1$) を用いて

$$\frac{d}{d\zeta} \left[(1-\zeta^2) \frac{d}{d\zeta} F_{\ell m} \right] + \left[\ell(\ell+1) - \frac{m^2}{1-\zeta^2} \right] F_{\ell m} = 0$$
(I.15)

と書き直すと解きやすくなる。この式変形では、

$$\frac{d}{d\theta} = \frac{d\zeta}{d\theta}\frac{d}{d\zeta} = -\sin\theta\frac{d}{d\zeta}$$
(I.16)

であることを用いた。

微分方程式 (I.15) は、 $\zeta = \pm 1$ に確定特異点を持つ微分方程式である。まずは、確定特異点 $\zeta = 1$ の近傍での解のふるまいを調べよう。そのためには、フロベニウスの方法にしたがって、

$$F_{\ell m} = (1 - \zeta)^s \sum_{n=0}^{\infty} a_n (1 - \zeta)^n$$
(I.17)

と展開する。式 (I.17) を微分方程式 (I.15) に代入し、 $(1 - \zeta)$ の最低次の冪の係数を比較することで得られる決定方程式を解けば、式 (I.17) のsが $s = \pm |m|/2$ と求まり、 $\zeta = 1$ の近傍において微分方程式の解の振る舞いが

$$F_{\ell m} \sim (1-\zeta)^{\pm |m|/2}$$
 (I.18)

であることがわかる。ふたつの解のうち、s = -|m|の解は $\zeta \to +1$ の極限で発散するため採用せず、以降では

$$F_{\ell m} \sim (1 - \zeta)^{|m|/2}$$
 (I.19)

となる解を探すことにする。

 $\zeta = -1$ の近傍でも同様の解析を行うことによって、 $\zeta = -1$ の特異点の近傍での解の振る舞いが

$$F_{\ell m} \sim (1+\zeta)^{|m|/2}$$
 (I.20)

であることを得る。

以上の結果から、 $\zeta = \pm 1$ において有限な関数 $G_{\ell m}$ を使って

$$F_{\ell m} = (1 - \zeta^2)^{|m|/2} G_{\ell m}(\zeta) \tag{I.21}$$

と書き換えることにする。式 (I.21) を微分方程式 (I.13) に代入することによって、 $G_{\ell m}$ の満たすべき微分方程式

$$\frac{d}{d\zeta} \left[(1-\zeta^2) \frac{d}{d\zeta} G_{\ell m} \right] - 2|m|\zeta \frac{d}{d\zeta} G_{\ell m} + \left[\ell(\ell+1) - |m|(|m|+1) \right] G_{\ell m} = 0$$
(I.22)

が得られる。

微分方程式 (I.22) は、

$$\zeta \to \zeta' = -\zeta$$

と変数変換しても不変であることに着目しよう。このような場合、確定特異点 $\xi = 1$ あるいは $\xi = -1$ の近傍で解を級数展開するよりも、 $\xi \to -\xi$ の対称性をもつ $\xi = 0$ の近傍で

$$G_{\ell m}(\zeta) = \sum_{n} a_n \zeta^n \tag{I.23}$$

と展開するほうが見通しを得やすい。微分方程式 (I.22) から得られる an の漸化式は

$$a_{n+2} = \frac{(n+|m|)(n+|m|+1) - \ell(\ell+1)}{(n+2)(n+1)}a_n, \qquad n = 0, 1, 2, \cdots$$
(I.24)

である。この漸化式によって級数 (I.23) が無限に続く場合は、級数 (I.23) が $\zeta \to \pm 1$ で収束せず採用できない。逆にいうと、我々が採用できる解は、漸化式 (I.24) によって $G_{\ell m}$ が有限次数の多項式になる場合、つまり、 ℓ が |m| 以上の整数の場合に限られることがわかる。

m がゼロのときの微分方程式 (I.22) は、付録 E.2 で考察するルジャンドルの微分方程式

$$\frac{d}{d\zeta} \left[(1-\zeta^2) \frac{d}{d\zeta} P_\ell \right] + \ell(\ell+1) P_\ell = 0 \tag{I.25}$$

そのものになっている。また、ルジャンドルの微分方程式 (I.25) をくで |m| 回微分することによって

$$\frac{d}{d\zeta} \left[(1-\zeta^2) \frac{d}{d\zeta} \frac{d^{|m|} P_{\ell}}{d\zeta^{|m|}} \right] - 2|m|\zeta \frac{d}{d\zeta} \frac{d^{|m|} P_{\ell}}{d\zeta^{|m|}} + \left[\ell(\ell+1) - |m|(|m|+1) \right] \frac{d^{|m|} P_{\ell}}{d\zeta^{|m|}} = 0$$
(I.26)

が得られる。式 (I.26) が、我々が解きたい微分方程式 (I.22) とほぼ同一の形になっていることに注意すると、ルジャンドル多項式 P_ℓ を使って、 $G_{\ell m}$ の多項式解が

$$G_{\ell m}(\zeta) = N_{\ell m} \frac{d^{|m|}}{d\zeta^{|m|}} P_{\ell}(\zeta)$$
(I.27)

と書き表すことができることがわかる。ここで、 $N_{\ell m}$ は適当な定数。つまり、球面調和関数 $Y_{\ell m}$ は、ルジャンドル陪関数

$$P_{\ell}^{|m|}(\zeta) = (1 - \zeta^2)^{|m|/2} \frac{d^{|m|}}{d\zeta^{|m|}} P_{\ell}(\zeta)$$
(I.28)

を使って、

$$Y_{\ell m}(\theta,\varphi) = N_{\ell m} P_{\ell}^{|m|}(\cos\theta) e^{im\varphi}$$
(I.29)

と表すことができるのである。

異なる m のあいだの定数 $N_{\ell m}$ の関係は、式 (7.79) と式 (7.80) で与えられる角運動量の昇降演 算子の微分演算子版を用いて

$$Y_{\ell,m+1}(\theta,\varphi) = \frac{1}{C_+(\ell,m)} L^{\rm op}_+ Y_{\ell,m}(\theta,\varphi), \qquad (I.30)$$

$$Y_{\ell,m-1}(\theta,\varphi) = \frac{1}{C_{-}(\ell,m)} L^{\text{op}}_{-} Y_{\ell,m}(\theta,\varphi), \qquad (I.31)$$

となるようにして決める。ここで、係数 C_+ , C_- は式 (7.58) と式 (7.56) でそれぞれ与えられる係数である。

式 (I.30) を用いると、 $m \ge 0$ での定数 $N_{\ell m}$ は $N_{\ell m=0}$ と関係づけることができ、その結果は

$$N_{\ell m} = (-1)^m \sqrt{\frac{(\ell - m)!}{(\ell + m)!}} N_{\ell 0}, \quad \text{for } m \ge 0$$

である。同様に、式 (I.31) を用いると

$$N_{\ell m} = \sqrt{\frac{(\ell+m)!}{(\ell-m)!}} N_{\ell 0}, \qquad \text{for } m < 0$$

であることがわかる。定数 N_{ℓ0} を求めるには、球面調和関数の規格化条件

$$\int_0^{\pi} d\theta \sin \theta \int_0^{2\pi} d\varphi Y_{\ell m}^*(\theta, \varphi) Y_{\ell' m'}(\theta, \varphi) = \delta_{\ell \ell'} \delta_{m m'}$$
(I.32)

を使えばよい。m = m' = 0の場合についてこの規格化条件を適用し、

$$Y_{\ell,m=0}(\theta,\varphi) = N_{\ell,0}P_{\ell}(\cos\theta) \tag{I.33}$$

であることと、ルジャンドル多項式の規格化の式 (E.40) を用いれば、

$$|N_{\ell,m=0}|^2 = \frac{1}{2\pi \int_{-1}^{1} d\zeta \, |P_{\ell}(\zeta)|^2} = \frac{2\ell+1}{4\pi}$$
(I.34)

が得られる。ここでは、多くの文献に従い $N_{\ell,m=0}$ は正の実数になるように選ぶことする。その場合、定数 $N_{\ell m}$ は

$$N_{\ell m} = \begin{cases} (-1)^m \left[\frac{2\ell + 1}{4\pi} \frac{(\ell - m)!}{(\ell + m)!} \right]^{1/2}, & \text{for} \quad m \ge 0, \\ \left[\frac{2\ell + 1}{4\pi} \frac{(\ell + m)!}{(\ell - m)!} \right]^{1/2}, & \text{for} \quad m < 0, \end{cases}$$
(I.35)

のように求まる。

定数 $N_{\ell m}$ の絶対値を求めるだけであれば、球面調和関数の規格化条件 (I.32) をそのまま使って もよい。 $\ell = \ell', m = m'$ のとき、この規格化条件から

$$|N_{\ell m}|^2 = \frac{1}{2\pi \int_{-1}^{1} d\zeta \, |P_{\ell}^{|m|}(\zeta)|^2} \tag{I.36}$$

が得られる。この式の右辺の積分は、ルジャンドル陪関数を式 (E.49) を用いてゲーゲンバウアー多 項式に書き換え、さらにゲーゲンバウアー多項式の規格化の式 (E.53) を用いれば容易に計算でき、

$$|N_{\ell m}|^2 = \frac{2\ell + 1}{4\pi} \frac{(\ell - |m|)!}{(\ell + |m|)!}$$
(I.37)

が得られる。もちろんこの結果は、式(I.35)で与えた結果と無矛盾である。

I.3 超球面調和関数

仮に、*x*, *y*, *z* の 3 方向以外にも空間次元が存在する場合、角運動量演算子や球面調和関数の議論はどのように拡張せねばならないだろうか。

この節ではそのような世界として、x, y, zに加えて4番目の独立な空間方向wが存在する仮想 世界を考察してみよう。このような洞察を行うことで、通常の3次元空間の角運動量演算子や球面 調和関数の性質についてのより深い理解が可能になる。

通常の3次元空間の世界では位置ベクトル *x* と運動量ベクトル *p*の両者と垂直な方向をもつ(軸性)ベクトル量として角運動量が定義される。しかし、4次元空間の仮想世界では、*x* にも *p* にも 垂直な方向が複数存在する。したがって(軸性)ベクトル量としての角運動量の定義は不可能であ る。そこでふたつの添字をもつ2階反対称テンソル量として角運動量演算子を

$$\hat{L}_{ij} = \hat{x}_i \hat{p}_j - \hat{x}_j \hat{p}_i, \qquad i, j = x, y, z, w$$
 (I.38)

と定義することにしよう。4次元空間での2階反対称テンソルの自由度 $4 \times (4-1)/2 = 6$ に対応して、4次元空間の角運動量の成分は6つあることに注意しよう。

愚直に計算すれば、角運動量演算子と位置演算子あるいは運動量演算子との交換関係は

$$[\hat{L}_{ij}, \hat{x}_k] = i\hbar \left(\delta_{ik} \hat{x}_j - \delta_{jk} \hat{x}_i\right), \qquad (I.39)$$

$$[\hat{L}_{ij}, \hat{p}_k] = i\hbar \left(\delta_{ik}\hat{p}_j - \delta_{jk}\hat{p}_i\right), \qquad (I.40)$$

であることがわかる。従って、角運動量演算子どうしの交換関係は

$$[\hat{L}_{ij}, \hat{L}_{kl}] = i\hbar \left(\delta_{ik}\hat{L}_{jl} + \delta_{il}\hat{L}_{kj} - \delta_{jk}\hat{L}_{il} - \delta_{jl}\hat{L}_{ki}\right)$$
(I.41)

と求められる。角運動量演算子は、このように非自明な交換関係をもつため、たとえば \hat{L}_{xy} と \hat{L}_{yz} の同時固有状態は一般には存在しない。量子力学での状態の量子数を指定するためには、互いに交換するひとくみの演算子の固有値を用いる必要がある。

そのような、互いに交換するひとくみの演算子として、ここでは

$$\hat{L}_{xy}, \qquad \hat{\mathbf{L}}_{(3)}^2, \qquad \hat{\mathbf{L}}_{(4)}^2$$
(I.42)

を採用する。ここで、 $\hat{\mathbf{L}}^2_{(3)}$ は xyz 3次元部分空間内の角運動量の大きさ (の二乗)

$$\hat{\mathbf{L}}_{(3)}^2 = \hat{L}_{xy}^2 + \hat{L}_{yz}^2 + \hat{L}_{zz}^2$$

であり、 $\hat{\mathbf{L}}^2_{(4)}$ は4次元空間全体の角運動量の大きさ(の二乗)

$$\hat{\mathbf{L}}^2_{(4)} = \hat{L}^2_{xy} + \hat{L}^2_{yz} + \hat{L}^2_{zx} + \hat{L}^2_{xw} + \hat{L}^2_{yw} + \hat{L}^2_{zw}$$

である。 $[\hat{L}_{xy}, \hat{\mathbf{L}}_{(3)}^2] = 0$ は3次元での角運動量の解析経験から明らかであろう。また、 $\hat{\mathbf{L}}_{(4)}^2$ がすべての \hat{L}_{ij} と交換すること($[\hat{L}_{ij}, \hat{\mathbf{L}}_{(4)}^2] = 0$)をすぐに示すことができ、これから $[\hat{L}_{xy}, \hat{\mathbf{L}}_{(4)}^2] = 0$ 、 $[\hat{\mathbf{L}}_{(3)}^2, \hat{\mathbf{L}}_{(4)}^2] = 0$ が得られる。

4次元仮想世界での球面調和関数対応物(超球面調和関数)を具体的に構成するにあたって、4 次元空間を動径座標 r と角度座標 ω, θ, φ を用いて

$$w = r \cos \omega, \quad z = r \sin \omega \cos \theta, \quad x = r \sin \omega \sin \theta \cos \varphi, \quad y = r \sin \omega \sin \theta \sin \varphi$$
 (I.43)

と極座標表示してみよう。極座標表示では、線素は

$$ds^{2} = dr^{2} + (r \, d\omega)^{2} + (r \, \sin \omega \, d\theta)^{2} + (r \, \sin \omega \, \sin \theta \, d\varphi)^{2} \tag{I.44}$$

で与えられ、4次元体積要素 dx dy dz dw は

$$dx \, dy \, dz \, dw = dr \, r^3 \, d\omega \, \sin^2 \omega \, d\theta \, \sin \theta \, d\varphi, \tag{I.45}$$

スカラー関数 f の微分は

$$\vec{\nabla}f = \vec{e}_r \frac{\partial}{\partial r} f + \vec{e}_\omega \frac{1}{r} \frac{\partial}{\partial \omega} f + \vec{e}_\theta \frac{1}{r \sin \omega} \frac{\partial}{\partial \theta} f + \vec{e}_\varphi \frac{1}{r \sin \omega \sin \theta} \frac{\partial}{\partial \varphi} f \tag{I.46}$$

で与えられる。付録 G で説明した計算テクニックを使えば、この座標でのラプラシアンが

$$\Delta f = \frac{1}{r^3} \frac{\partial}{\partial r} \left(r^3 \frac{\partial}{\partial r} f \right) + \frac{1}{r^2} \left(\frac{1}{\sin^2 \omega} \frac{\partial}{\partial \omega} \left(\sin^2 \omega \frac{\partial}{\partial \omega} f \right) + \frac{1}{\sin^2 \omega \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} f \right) + \frac{1}{\sin^2 \omega \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} f \right)$$
(I.47)

となることを示すのは簡単である。さらに付録 I.1 節で説明した方法を用いて、 $\hat{\mathbf{L}}^2_{(4)}$ に対応する微 分演算子 $(\mathbf{L}^{\mathrm{op}}_{(4)})^2$ を式 (I.47) のラプラシアンから抽出することができる。その結果は、式 (I.47) の 2行目に r^2 をかけた

$$-\frac{1}{\hbar^2} (\mathbf{L}_{(4)}^{\mathrm{op}})^2 = \frac{1}{\sin^2 \omega} \frac{\partial}{\partial \omega} \sin^2 \omega \frac{\partial}{\partial \omega} + \frac{1}{\sin^2 \omega \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \omega \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}$$
(I.48)

である。超球面調和関数を求めるには、このほか、 $\hat{\mathbf{L}}^2_{(3)}$ に対応する微分演算子 $(\mathbf{L}^{\text{op}}_{(3)})^2$ と \hat{L}_{xy} に対応する微分演算子 L^{op}_{xy} の情報も必要になるが、それらは3次元角運動量での $(\vec{L}^{\text{op}})^2$ や L^{op}_{z} の結果をそのまま流用すればよい。すなわち

$$-\frac{1}{\hbar^2} (\mathbf{L}_{(3)}^{\mathrm{op}})^2 = \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \sin\theta \frac{\partial}{\partial\theta} + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\varphi^2}, \qquad (I.49)$$

$$L_{xy}^{\rm op} = -i\hbar \frac{\partial}{\partial \varphi}.$$
 (I.50)

である。

ここまでで概ね準備が整ったので、いよいよ超球面調和関数 $Z_{klm}(\omega, \theta, \varphi)$ を考えよう。超球面 調和関数は、微分演算子 $(\mathbf{L}_{(4)}^{\mathrm{op}})^2$, $(\mathbf{L}_{(3)}^{\mathrm{op}})^2$, L_{xy}^{op} の固有関数であり、

$$\frac{1}{\hbar^2} (\mathbf{L}_{(4)}^{\mathrm{op}})^2 Z_{klm}(\omega, \theta, \varphi) = k(k+2) Z_{klm}(\omega, \theta, \varphi), \qquad (I.51)$$

$$\frac{1}{\hbar^2} (\mathbf{L}_{(3)}^{\mathrm{op}})^2 Z_{klm}(\omega, \theta, \varphi) = l(l+1) Z_{klm}(\omega, \theta, \varphi), \qquad (I.52)$$

$$\frac{1}{\hbar} L_{xy}^{\text{op}} Z_{klm}(\omega, \theta, \varphi) = m Z_{klm}(\omega, \theta, \varphi)$$
(I.53)

を満たす。ここで、 $\hbar^2 k(k+2), \hbar^2 l(l+1), \hbar m$ はそれぞれ、 $\hat{\mathbf{L}}^2_{(4)}, \hat{\mathbf{L}}^2_{(3)}, \hat{L}_{xy}$ の固有値である。 $\hat{\mathbf{L}}^2_{(3)}$ と \hat{L}_{xy} については、通常の3次元空間の球面調和関数の議論が流用でき、量子数lが非負の整数 (ゼロまたは正の整数) に量子化されること、量子数mは $-l, -l+1, \cdots, l-1, l$ のいずれかの値 をとる整数に量子化されることがわかる。以降では、超球面調和関数 Z_{klm} の量子数kも非負の整 数に量子化されること、lのとりうる値の上限がkになることを学ぶ。

このことを見るためには、通常の球面調和関数 $Y_{lm}(\theta, \varphi)$ を使って、

$$Z_{klm}(\omega,\theta,\varphi) = G_{kl}(\omega)Y_{lm}(\theta,\varphi) \tag{I.54}$$

と変数分離すればよい。式 (I.54) が (I.52) と (I.53) を満たすことは、 $Y_{lm}(\theta, \varphi)$ が球面調和関数であることから明らかである。一方、(I.51) からは

$$\frac{1}{\sin^2 \omega} \frac{d}{d\omega} \sin^2 \omega \frac{d}{d\omega} G_{kl} + \left[k(k+2) - \frac{l(l+1)}{\sin^2 \omega} \right] G_{kl} = 0$$
(I.55)

が得られ、さらに式 (I.55) を変数 $\zeta = \cos \omega$ を導入して書き直すと

$$\frac{1}{\sqrt{1-\zeta^2}}\frac{d}{d\zeta}\left[(1-\zeta^2)^{3/2}\frac{d}{d\zeta}G_{kl}\right] + \left[k(k+2) - \frac{l(l+1)}{1-\zeta^2}\right]G_{kl} = 0$$
(I.56)

が得られる。このように、kの量子化の問題は、微分方程式 (I.56) を解く問題に最終的に帰着する。

l = 0の場合の微分方程式 (I.56) が、 $\nu = 1, n = k$ の場合のゲーゲンバウアー微分方程式 (E.52) に一致することに注意しよう。一般の*l* について微分方程式 (E.52) を解くにあたって、ゲーゲンバ

ウアー微分方程式 (E.52) の知識が使えそうである。そこで、微分方程式 (I.56) に含まれる *l*(*l*+1) に比例する項を処理するよう

$$G_{kl} = (1 - \zeta^2)^{l/2} \tilde{G}_{kl} \tag{I.57}$$

と置いてみる。実際、式 (I.56) に (I.57) を代入して変形すると

$$\frac{1}{(1-\zeta^2)^{l+1/2}}\frac{d}{d\zeta}\left[(1-\zeta^2)^{l+3/2}\frac{d}{d\zeta}\tilde{G}_{kl}\right] + \left[k(k+2) - l(l+2)\right]\tilde{G}_{kl} = 0$$
(I.58)

が得られ、解くべき微分方程式 (I.58) が、ゲーゲンバウアー微分方程式 (E.52) の $\nu = l+1, n = k-l$ の場合に帰着できる。

ゲーゲンバウアー微分方程式 (E.52) は $\zeta = \pm 1$ で確定特異点を持つ微分方程式であり、フロベニウスの方法を用いて解くことができる。 $\zeta = \pm 1$ で有限に留まる解が存在することを要求すると、n = k - lが非負の整数であることがわかる。したがって、超球面調和関数 Z_{klm} では、kが非負の整数に量子化され、各 k に対して量子数 l は

 $l = 0, 1, 2, \cdots, k$

の値のいずれかである。また、各1について、量子数 m は

$$m = -l, -l+1, \cdots, l-1, l$$

の2l+1とおりの可能性があることになる。kをひとつ固定した場合、とりうる l, m の場合の数は

$$(k+1)^2 = \sum_{l=0}^{k} (2l+1)$$
(I.59)

であることがわかる。

超球面調和関数 $Z_{klm}(\omega, \theta, \varphi)$ の具体形は結局、n = k - lが非負の整数の場合の微分方程式 (I.56) の解が付録 (E.3) で学んだゲーゲンバウアー多項式 (超球多項式) $C_{n=k-l}^{(\nu=l+1)}$ を使って

$$G_{kl} = N_{kl} (1 - \zeta^2)^{l/2} C_{n=k-1}^{(\nu=l+1)}(\zeta)$$
(I.60)

となることを用いて、

$$Z_{klm}(\omega,\theta,\varphi) = N_{kl}(1-\zeta^2)^{\ell/2} C_{n=k-l}^{(\nu=l+1)}(\zeta) Y_{lm}(\theta,\varphi), \qquad \zeta = \cos\omega$$
(I.61)

である。ここで N_{kl} は規格化の定数。

最後に、Z_{klm}の規格化

$$\int_0^{\pi} d\omega \sin^2 \omega \int_0^{\pi} d\theta \sin \theta \int_0^{2\pi} d\varphi Z_{klm}^* Z_{k'l'm'} = \delta_{kk'} \delta_{ll'} \delta_{mm'}$$
(I.62)

を考える。 Y_{lm} がすでに規格化されていることに注意し、ゲーゲンバウアー多項式 $C_n^{(\nu)}$ の直交性の式 (E.53)を用いると、規格化定数 N_{kl} は

$$N_{kl} = \frac{1}{2^{\ell} l!} \left[\frac{2}{\pi} (k+1) \frac{(k-l)!}{(k+l+1)!} \right]^{1/2}$$
(I.63)

と求められる。

I.4 4次元空間角運動量の量子化(演算子法)

前節の超球面調和関数を用いた4次元角運動量の議論で、演算子 $\hat{\mathbf{L}}^2_{(4)}$ の固有値が $\hbar^2 k(k+2)$ に 量子化 (kは非負の整数) されることが導かれた。また、kをひとつの値に固定すると、独立な角 運動量の状態数 (l, mの場合の数) が (k+1)² であることもわかった (式 (I.59))。この節では演 算子法を用いて、これらの結果を再現してみよう。

そのためには、4次元空間の6つの角運動量演算子 \hat{L}_{ij} を直接取り扱うのではなく、線形結合を取り直して

$$\hat{A}_1 \equiv \frac{1}{2} \left(\hat{L}_{yz} + \hat{L}_{wx} \right), \quad \hat{A}_2 \equiv \frac{1}{2} \left(\hat{L}_{zx} + \hat{L}_{wy} \right), \quad \hat{A}_3 \equiv \frac{1}{2} \left(\hat{L}_{xy} + \hat{L}_{wz} \right),$$
(I.64)

$$\hat{B}_{1} \equiv \frac{1}{2} \left(\hat{L}_{yz} - \hat{L}_{wx} \right), \quad \hat{B}_{2} \equiv \frac{1}{2} \left(\hat{L}_{zx} - \hat{L}_{wy} \right), \quad \hat{B}_{3} \equiv \frac{1}{2} \left(\hat{L}_{xy} - \hat{L}_{wz} \right)$$
(I.65)

で定義される演算子 \hat{A}_i と \hat{B}_i (i = 1, 2, 3)を用いて考えるとよい。このようにすると、角運動量 演算子 \hat{A}_i , \hat{B}_i の交換関係が

$$[\hat{A}_i, \hat{B}_j] = 0 \tag{I.66}$$

となり、演算子 \hat{A}_i と演算子 \hat{B}_i がそれぞれで閉じた交換関係を持つからである。さらに、 \hat{A}_i どうしの交換関係と、 \hat{B}_i どうしの交換関係が

$$[\hat{A}_1, \hat{A}_2] = i\hbar\hat{A}_3, \quad [\hat{A}_2, \hat{A}_3] = i\hbar\hat{A}_1, \quad [\hat{A}_3, \hat{A}_1] = i\hbar\hat{A}_2, \tag{I.67}$$

$$[\hat{B}_1, \hat{B}_2] = i\hbar \hat{B}_3, \quad [\hat{B}_2, \hat{B}_3] = i\hbar \hat{B}_1, \quad [\hat{B}_3, \hat{B}_1] = i\hbar \hat{B}_2, \tag{I.68}$$

となり、それぞれが 3 次元角運動量の交換関係 (7.25) と同型であることもわかる。したがって、角 運動量 \hat{A}_i , \hat{B}_i の量子化には、本文 7.1 節と 7.2 節で説明した 3 次元角運動量の演算子法による量子 化の方法がそのまま適用できる。つまり、演算子 \hat{A}^2 と \hat{B}^2 を

$$\hat{\mathbf{A}}^2 \equiv \sum_{i=1,2,3} \hat{A}_i^2, \qquad \hat{\mathbf{B}}^2 \equiv \sum_{i=1,2,3} \hat{B}_i^2$$
(I.69)

と定義し、それらの固有値を

$$\hbar^2 \ell_A (\ell_A + 1), \quad \hbar^2 \ell_B (\ell_B + 1),$$
 (I.70)

とすると、 ℓ_A , ℓ_B は、0,1/2,1,3/2,2,··· に量子化される。また、 \hat{A}_3 , \hat{B}_3 の固有値を m_A , m_B と するとそれらの取りうる値は

$$m_A = -\ell_A, -\ell_A + 1, \cdots, \ell_A - 1, \ell_A, \tag{I.71}$$

$$m_B = -\ell_B, -\ell_B + 1, \cdots, \ell_B - 1, \ell_B, \tag{I.72}$$

であることがわかる。

定義に基いて \hat{A}^2 , \hat{B}^2 を具体的に計算すると

$$\hat{\mathbf{A}}^2 = \hat{\mathbf{B}}^2 = \frac{1}{4}\hat{\mathbf{L}}_{(4)}^2 \tag{I.73}$$

が得られることに注意しよう。したがって、 $\hat{\mathbf{L}}^2_{(4)}$ の固有値を $\hbar^2 k(k+2)$ とすると

$$\ell_A(\ell_A + 1) = \ell_B(\ell_B + 1) = \frac{1}{4}k(k+2)$$
(I.74)

となり

$$\ell_A = \ell_B = \frac{1}{2}k\tag{I.75}$$

が得られ、 $k = 2\ell_A = 2\ell_B$ が非負の整数に量子化されることが見て取れる。また、kを固定したときの独立な状態の数は

$$(2\ell_A + 1)(2\ell_B + 1) = (k+1)^2 \tag{I.76}$$

と計算され、前節の結果とたしかに一致している。

J 球ベッセル関数と3次元井戸型ポテンシャル

J.1 球ベッセル関数

3次元自由粒子の波動関数を球座標で表示することを考える。このときに表れる動径波動関数が 満たす微分方程式(動径方程式)

$$\left[\frac{d^2}{d\rho^2} + \frac{2}{\rho}\frac{d}{d\rho} - \frac{\ell(\ell+1)}{\rho^2} + 1\right]R_\ell = 0$$
 (J.1)

を考えよう。ここでℓはゼロまたは正の整数。式 (J.1) の導出については、本文の式 (8.43) の直前 の議論を参照のこと。

まず、この微分方程式の解の $\rho \ll 1$ の領域を級数展開で調べる。微分方程式 (J.1) は、 $\rho = 0$ で 確定特異点を持つので

$$R_{\ell}(\rho) = \rho^s \sum_{k=0}^{\infty} a_k \rho^k \tag{J.2}$$

と展開可能である。フロベニウスの方法での決定方程式を解くことで冪 s は求められ、その結果は

$$s = \ell, -\ell - 1 \tag{J.3}$$

である。つまり、 $\rho = 0 \ (r = 0)$ 近傍で、

$$R_{\ell} \sim \rho^{\ell},\tag{J.4}$$

ષ્ટ

$$R_{\ell} \sim \frac{1}{\rho^{\ell+1}} \tag{J.5}$$

の2種の解が存在している。式 (J.4)の解を原点で正則な解、式 (J.5)の解を正則でない解と呼ぶ。 平面波の場合と同様、自由粒子を取り扱う場合は、(系を適当な有限領域に限って定義しないかぎ り)波動関数の二乗可積分条件を課すことができないことに注意しておく。

動径波動関数 R_{ℓ} のふるまいをより精密に決定するためには、級数展開 (J.2) での係数 a_k の漸 化式を解けばよい。微分方程式 (J.1) は、 $\rho = 0$ の確定特異点を除いて ρ の有限領域には特異点が 存在していない。このような場合の2 階微分方程式の解は、合流型超幾何関数の理論を使って記 述できることが知られている。ただ、球面波の微分方程式 (J.1) の場合は、初等関数の知識だけを 使って解を得ることも可能である。この節では、超幾何関数や合流型超幾何関数の議論は省略し、 初等関数の知識だけを使った解の導出方法を紹介する。

そのために

$$R_{\ell}(\rho) = (-\rho)^{\ell} \chi_{\ell}(\rho) \tag{J.6}$$

なる関数 χ_{ℓ} を導入する。動径方程式 (J.1) を χ_{ℓ} について書き直すと

$$D_{\ell}\chi_{\ell} = 0, \qquad D_{\ell} \equiv \frac{d^2}{d\rho^2} + \frac{2(\ell+1)}{\rho}\frac{d}{d\rho} + 1$$
 (J.7)

が得られる。 ρ の任意の関数fに対し、微分演算子 D_{ℓ} は

$$D_{\ell} \frac{1}{\rho} \frac{d}{d\rho} f = \frac{1}{\rho} \frac{d}{d\rho} D_{\ell-1} f \tag{J.8}$$

なる性質をもつことに注意。式 (J.8) をよく見ると、いったん $D_{\ell-1}\chi_{\ell-1} = 0$ の解 $\chi_{\ell-1}$ が得られ れば、 $D_{\ell}\chi_{\ell} = 0$ の解 χ_{ℓ} が

$$\chi_{\ell} = \frac{1}{\rho} \frac{d}{d\rho} \chi_{\ell-1} \tag{J.9}$$

の形で自動的に求めることができる構造になっていることがわかる。

量子力学での対応物はないが、ℓ = −1のとき微分方程式はとても単純な形

$$D_{-1}\chi_{-1} = 0, \qquad D_{-1} = \frac{d^2}{d\rho^2} + 1$$
 (J.10)

をしており、その解は

$$\chi_{-1} = -C_1 \cos \rho - C_2 \sin \rho \tag{J.11}$$

である。ここで $C_1 \ge C_2$ は任意定数。これを式 (J.9) を適用すれば、 $\ell = 0$ のときの解 χ_0 が

$$\chi_0 = \frac{1}{\rho} \frac{d}{d\rho} \chi_{-1} = \frac{C_1}{\rho} \sin \rho - \frac{C_2}{\rho} \cos \rho$$
 (J.12)

であることがわかる。さらに任意の整数 $\ell \ge 0$ のときの解 χ_{ℓ} が

$$\chi_{\ell} = \frac{1}{\rho} \frac{d}{d\rho} \chi_{-1} = C_1 \left(\frac{1}{\rho} \frac{d}{d\rho} \right)^{\ell} \left(\frac{\sin \rho}{\rho} \right) - C_2 \left(\frac{1}{\rho} \frac{d}{d\rho} \right)^{\ell} \left(\frac{\cos \rho}{\rho} \right)$$
(J.13)

であることを示すことも容易である。

以上の結果をまとめると、微分方程式 (J.1) の解が

$$R_{\ell} = C_j^{(\ell)} j_{\ell}(\rho) + C_n^{(\ell)} n_{\ell}(\rho)$$
(J.14)

で与えられることがわかる。ここで、 $C_j^{(\ell)}, C_n^{(\ell)}$ は定数であり、関数 $j_\ell(
ho)$ と $n_\ell(
ho)$ は

$$j_{\ell}(\rho) = (-\rho)^{\ell} \left(\frac{1}{\rho} \frac{d}{d\rho}\right)^{\ell} \left(\frac{\sin\rho}{\rho}\right), \qquad (J.15)$$

$$n_{\ell}(\rho) = -(-\rho)^{\ell} \left(\frac{1}{\rho} \frac{d}{d\rho}\right)^{\ell} \left(\frac{\cos\rho}{\rho}\right)$$
(J.16)

で定義されている。 $j_{\ell}(\rho)$ は $\rho = 0$ で正則であるが、 $j_{\ell}(\rho)$ は $\rho = 0$ で正則でないことに注意。球面 状に外向きに進行する球面波を表す解と内向きに進行する波を表す解は j_{ℓ} と n_{ℓ} の重ね合わせで記 述され、それぞれ

$$h_{\ell}^{(1)} = j_{\ell}(\rho) + in_{\ell}(\rho),$$
 (J.17)

$$h_{\ell}^{(2)} = j_{\ell}(\rho) - in_{\ell}(\rho),$$
 (J.18)

である。

関数 j_{ℓ} , n_{ℓ} , $h_{\ell}^{(1)}$, $h_{\ell}^{(2)}$ を総称して球ベッセル関数と呼ぶ⁴¹。関数 j_{ℓ} を(狭い意味の)球ベッセル関数、 n_{ℓ} を球ノイマン関数、 $h_{\ell}^{(1)}$, $h_{\ell}^{(2)}$ を球ハンケル関数と呼ぶ。 以下に、 $\ell = 0, 1, 2, 3, 4$ の場合について、球ベッセル関数 $j_{\ell}(\rho)$ と球ノイマン関数 $n_{\ell}(\rho)$ の具体

形を示す。

$$\begin{split} j_{0}(\rho) &= \frac{1}{\rho} \sin \rho, \\ n_{0}(\rho) &= -\frac{1}{\rho} \cos \rho, \\ j_{1}(\rho) &= \frac{1}{\rho^{2}} \sin \rho - \frac{1}{\rho} \cos \rho, \\ n_{1}(\rho) &= -\frac{1}{\rho^{2}} \cos \rho - \frac{1}{\rho} \sin \rho, \\ j_{2}(\rho) &= \left(\frac{3}{\rho^{3}} - \frac{1}{\rho}\right) \sin \rho - \frac{3}{\rho^{2}} \cos \rho, \\ n_{2}(\rho) &= -\left(\frac{3}{\rho^{3}} - \frac{1}{\rho}\right) \cos \rho - \frac{3}{\rho^{2}} \sin \rho, \\ j_{3}(\rho) &= \left(\frac{15}{\rho^{4}} - \frac{6}{\rho^{2}}\right) \sin \rho - \left(\frac{15}{\rho^{3}} - \frac{1}{\rho}\right) \cos \rho, \\ n_{3}(\rho) &= -\left(\frac{15}{\rho^{5}} - \frac{45}{\rho^{3}} + \frac{1}{\rho}\right) \sin \rho - \left(\frac{105}{\rho^{4}} - \frac{10}{\rho^{2}}\right) \cos \rho, \\ n_{4}(\rho) &= -\left(\frac{105}{\rho^{5}} - \frac{45}{\rho^{3}} + \frac{1}{\rho}\right) \cos \rho - \left(\frac{105}{\rho^{4}} - \frac{10}{\rho^{2}}\right) \sin \rho. \end{split}$$

⁴¹このように、球ベッセル関数は3次元量子力学の自由粒子の波動関数を球座標表示するときにあらわれる関数である。 同様に、3次元量子力学の自由粒子の波動関数の円筒座標表示にはベッセル関数(円筒関数)があらわれる。

球ハンケル関数 $h^{(1)}, h^{(2)}$ の具体形は、 ρ の代わりに $\rho = i\tilde{\rho}$ で定義される $\tilde{\rho}$ で表すと見やすくなる。

$$\begin{split} h_{0}^{(1)}(i\tilde{\rho}) &= -\frac{1}{\tilde{\rho}}e^{-\tilde{\rho}}, \\ h_{0}^{(2)}(i\tilde{\rho}) &= \frac{1}{\tilde{\rho}}e^{+\tilde{\rho}}, \\ h_{1}^{(1)}(i\tilde{\rho}) &= i\left(\frac{1}{\tilde{\rho}} + \frac{1}{\tilde{\rho}^{2}}\right)e^{-\tilde{\rho}}, \\ h_{1}^{(1)}(i\tilde{\rho}) &= i\left(\frac{1}{\tilde{\rho}} - \frac{1}{\tilde{\rho}^{2}}\right)e^{+\tilde{\rho}}, \\ h_{2}^{(1)}(i\tilde{\rho}) &= \left(\frac{1}{\tilde{\rho}} + \frac{3}{\tilde{\rho}^{2}} + \frac{3}{\tilde{\rho}^{3}}\right)e^{-\tilde{\rho}}, \\ h_{2}^{(2)}(i\tilde{\rho}) &= -\left(\frac{1}{\tilde{\rho}} - \frac{3}{\tilde{\rho}^{2}} + \frac{3}{\tilde{\rho}^{3}}\right)e^{+\tilde{\rho}}, \\ h_{3}^{(1)}(i\tilde{\rho}) &= -i\left(\frac{1}{\tilde{\rho}} - \frac{6}{\tilde{\rho}^{2}} + \frac{15}{\tilde{\rho}^{3}} + \frac{15}{\tilde{\rho}^{4}}\right)e^{-\tilde{\rho}}, \\ h_{3}^{(2)}(i\tilde{\rho}) &= -i\left(\frac{1}{\tilde{\rho}} - \frac{6}{\tilde{\rho}^{2}} + \frac{15}{\tilde{\rho}^{3}} - \frac{15}{\tilde{\rho}^{4}}\right)e^{+\tilde{\rho}}, \\ h_{4}^{(1)}(i\tilde{\rho}) &= -\left(\frac{1}{\tilde{\rho}} + \frac{10}{\tilde{\rho}^{2}} + \frac{45}{\tilde{\rho}^{3}} + \frac{105}{\tilde{\rho}^{4}} + \frac{105}{\tilde{\rho}^{5}}\right)e^{-\tilde{\rho}}, \\ h_{4}^{(2)}(i\tilde{\rho}) &= \left(\frac{1}{\tilde{\rho}} - \frac{10}{\tilde{\rho}^{2}} + \frac{45}{\tilde{\rho}^{3}} - \frac{105}{\tilde{\rho}^{4}} + \frac{105}{\tilde{\rho}^{5}}\right)e^{+\tilde{\rho}}. \end{split}$$

最後に、球ベッセル関数の $\rho \ll 1 \ge \rho \gg \ell$ での性質を(証明抜きで)まとめておく。証明は比較的簡単なので、各自で確かめておくとよい。

 ρ≪1での球ベッセル関数のふるまい

$$j_{\ell}(\rho) \simeq + \frac{\rho^{\ell}}{(2\ell+1)!!}, \qquad (J.19)$$

$$n_{\ell}(\rho) \simeq -\frac{(2\ell-1)!!}{\rho^{\ell+1}}.$$
 (J.20)

ここで *n*!! は自然数 *n* の二重階乗を意味し、*n* が奇数であれば 1 から *n* までのすべての奇数 の積を、*n* が偶数であれば 1 から *n* までのすべての偶数の積を表す。

 $1!! = 1, \quad 2!! = 2, \quad 3!! = 3 \cdot 1, \quad 4!! = 4 \cdot 2, \quad 5!! = 5 \cdot 3 \cdot 1, \quad \cdots$

 ρ ≫ ℓ での球ベッセル関数のふるまい

$$j_{\ell}(\rho) \simeq \frac{1}{\rho} \sin\left(\rho - \frac{\ell\pi}{2}\right),$$
 (J.21)

$$n_{\ell}(\rho) \simeq -\frac{1}{\rho} \cos\left(\rho - \frac{\ell\pi}{2}\right).$$
 (J.22)

つまり、原点で正則な解 $R_{\ell} = j_{\ell}(kr)$ は、 $r \gg \ell/k$ では

$$R_{\ell}(r) \simeq -\frac{1}{2ikr} \left[e^{-i(kr-\ell\pi/2)} - e^{i(kr-\ell\pi/2)} \right]$$

と近似できる。この式の初項は原点に向かって落ち込んで行く球面波を、第2項は原点から 外向きに出て行く球面波を表している。原点で正則な解 $R_{\ell} = j_{\ell}(kr)$ において、この両者の 大きさは等しい。 $\ell = 0, 1, 2, 3, 4$ について、球ベッセル関数 $j_{\ell}(\rho)$ と球ノイマン関数 $n_{\ell}(\rho)$ の振る舞いを下図に示す。

 $\ell = 0, 1, 2, 3, 4$ の場合の球ベッセル関数 $j_{\ell}(\rho)$

 $\ell = 0, 1, 2, 3, 4$ の場合の球ノイマン関数 $n_{\ell}(\rho)$

J.2 3次元球対称井戸型ポテンシャル

この付録では、質量 µ の粒子の3次元球対称井戸型ポテンシャル

$$V(\vec{x}) = V(r) = \begin{cases} -V_0, & \text{for } r < a, \\ 0, & \text{for } r > a, \end{cases} \qquad r \equiv \sqrt{x^2 + y^2 + z^2}$$
(J.23)

への束縛状態を考える ⁴²。ここで、a > 0 は長さの次元をもつ定数 (井戸の半径) であり、 $-V_0 < 0$ は井戸の深さを表す。

時間に依存しないシュレディンガー方程式

$$Eu = \left[-\frac{\hbar^2}{2\mu} \Delta + V(\vec{x}) \right] u \tag{J.24}$$

を球座標を用いて書き直し、波動関数 u を

$$u = R_{\ell}(r) Y_{\ell m}(\theta, \varphi) \tag{J.25}$$

と変数分離することで、動径方程式

$$\left[\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - \frac{\ell(\ell+1)}{r^2} + \frac{2\mu}{\hbar^2}(E - V(r))\right]R_\ell(r) = 0$$
(J.26)

を得る。 $k > 0 \ \varepsilon \kappa > 0 \ \varepsilon$

$$E + V_0 = \frac{\hbar^2}{2\mu}k^2, \qquad E = -\frac{\hbar^2}{2\mu}\kappa^2$$
 (J.27)

で定義する。動径方程式 (J.26) を解くことによって、動径関数 $R_{\ell}(r)$ が、球ベッセル関数を用いて

$$R_{\ell}(r) = \begin{cases} A_{\ell} j_{\ell}(kr) + B_{\ell} n_{\ell}(kr), & \text{for } r < a, \\ C_{\ell} h_{\ell}^{(1)}(i\kappa r) + D_{\ell} h_{\ell}^{(2)}(i\kappa r), & \text{for } r > a, \end{cases}$$
(J.28)

⁴²3次元球対称井戸型ポテンシャルが引き起こす粒子散乱の散乱断面積計算は、量子力学3で学ぶ。

と表せることがわかる。ここで、 $j_{\ell}, n_{\ell}, h_{\ell}^{(1)}, h_{\ell}^{(2)}$ の定義は付録 J.1 を参照のこと $A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}$ は定数である。r = 0で波動関数が正則であることと、 $\lim_{r \to \infty} R_{\ell}(r) = 0$ より、 $B_{\ell} = D_{\ell} = 0$ でなければならない。さらに、r = aにおける接続条件から、

$$A_{\ell}j_{\ell}(ka) = C_{\ell}h_{\ell}^{(1)}(i\kappa a), \qquad A_{\ell}kj_{\ell}'(ka) = C_{\ell}i\kappa h_{\ell}^{(1)'}(i\kappa a)$$
(J.29)

が得られる。ここで、 $j'_{\ell}, h^{(1)\prime}_{\ell}$ はそれぞれ球ベッセル関数の導関数である。式 (J.29) が非自明な解をもつためには、

$$\det \begin{pmatrix} j_{\ell}(ka) & -h_{\ell}^{(1)}(\kappa a) \\ kj_{\ell}(ka) & -i\kappa h_{\ell}^{(1)\prime}(\kappa a) \end{pmatrix} = 0$$
(J.30)

を満たされねばならない。

以下では、角運動量がゼロ ($\ell = 0$)のときについて条件 (J.30)を少し詳しく調べてみよう。このとき、条件 (J.30)から

$$\kappa = -\frac{k}{\tan ka} \tag{J.31}$$

が得られる。これは1次元量子力学での井戸型ポテンシャルの奇パリティ解の存在条件式 (4.60) と まったく同一の条件である。つまり、3次元量子力学の球対称井戸型ポテンシャルに対し、 $\ell = 0$ の束縛状態が存在するためには、ポテンシャルの深さ V_0 は

$$V_0 a^2 > \frac{\pi^2 \hbar^2}{8\mu}$$
 (J.32)

の条件を満たさねばならない。同様に、ℓ=1の束縛状態が存在するためには、ポテンシャルの深 さは

$$V_0 a^2 > \frac{\pi^2 \hbar^2}{2\mu} \tag{J.33}$$

を満たさねばならないことがわかる。

1次元量子力学では、どんなにポテンシャルが浅くても、引力でありさえすれば束縛状態が存在 したことを思い起こそう。この性質は、実は、1次元の場合に特有のものであって2次元以上の量 子力学では成立しない性質である。2次元以上の場合は、ポテンシャルが非常に浅い場合は粒子を 束縛することが不可能になる。